Комплексные числа в тригонометрической
и показательной формах
Тригонометрическая форма комплексного числа
Каждому комплексному числу геометрически соответствует точка на плоскости . Но положение точки на плоскости, кроме декартовых координат , можно зафиксировать другой парой — ее полярных координат в полярной системе (рис. 1.3,a).
Величина является неотрицательной и для данной точки определяется единственным образом, а угол может принимать бесчисленное множество значений (при этом ): если точке соответствует некоторое значение , то ей также соответствуют значения . Например, если для точки (см. рис. 1.1) выбрать , то ей соответствует любое , в частности при . Если же выбрать , то , а при получаем .
Используя связь декартовых и полярных координат точки (рис. 1.3,б), из алгебраической формы записи комплексного числа получаем тригонометрическую форму:
(1.3)
Показательная форма комплексного числа
Если обозначить комплексное число , у которого , а , через , то есть , то из (1.3) получим показательную форму записи комплексного числа:
(1.4)
Равенство называется формулой Эйлера.
Заметим, что геометрически задание комплексного числа равносильно заданию вектора , длина которого равна , то есть , а направление — под углом к оси (рис. 1.3,б).
Модуль комплексного числа
Число — длина радиуса-вектора точки называется модулем комплексного числа . Обозначение: .
Из рис. 1.3,б получаем формулу для нахождения модуля числа, заданного и алгебраической форме
(1.5)
Очевидно, что и только для числа .
С помощью правила вычитания запишем модуль числа , где и
А это, как известно, есть формула для расстояния между точками и .
Таким образом, число есть расстояние между точками и на комплексной плоскости.
Пример 1.13. Найти модули комплексных чисел:
Решение
Аргумент комплексного числа
Полярный угол точки называется аргументом комплексного числа . Обозначение: .
В дальнейшем, если нет специальных оговорок, под будем понимать значение , удовлетворяющее условию . Так, для точки (см. рис. 1.1) .
Формулу для нахождения аргумента комплексного числа , заданного в алгебраической форме, получаем, используя связь декартовых и полярных координат точки (см. рис. 1.3,б). Для точек, не лежащих на мнимой оси, т.е. для , у которых , получаем ; для точек мнимой положительной полуоси, т.е. для , у которых , имеем ; для точек мнимой отрицательной полуоси, т.е. для , у которых , соответственно .
Аргумент числа — величина неопределенная.
Нахождение аргумента при сводится к решению тригонометрического уравнения . При , т.е. когда — число действительное, имеем при и при . При решение уравнения зависит от четверти плоскости . Четверть, в которое расположена точка , определяется по знакам и . В результате получаем:
(1.6)
При решении примеров удобно пользоваться схемой, которая изображена на рис. 1.5.
Пример 1.14. Найти аргументы чисел из примера 1.13.
Решение
Пример 1.15. Найти модуль и аргумент числа .
Решение. Находим . Так как , т.е. точка расположена в четвертой четверти, то из равенства получаем (рис. 1.5).
Главное значение аргумента комплексного числа
Аргумент комплексного числа определяется неоднозначно. Это следует из неоднозначности задания величины угла для данной точки, а также из тригонометрической формы записи комплексного числа и свойства периодичности функций и .
Всякий угол, отличающийся от на слагаемое, кратное , обозначается и записывается равенством:
(1.7)
где — главное значение аргумента, .
Пример 1.16. Записать и для чисел .
Решение. Числа и — действительные, расположены на действительной оси (рис. 1.6), поэтому
числа и — чисто мнимые, расположены на мнимой оси (рис. 1.6), поэтому
Пример 1.17. Записать комплексные числа из примера 1.16:
а) в тригонометрической форме;
б) в показательной форме.
Решение
Модули всех чисел, очевидно, равны 1. Поэтому, используя решение предыдущего примера и формулы (1.3) и (1.4), получаем:
а)
б) .
Пример 1.18. Записать в тригонометрической форме числа .
Решение
Числа и записаны в алгебраической форме (заметим, что заданная запись числа не является тригонометрической формой записи (сравните с (1.3)). Находим модули чисел по формуле (1.5):
Далее находим аргументы. Для числа имеем и, так как (точка расположена в третьей четверти), получаем (см. рис. 1.5). Для числа имеем , или , и, так как (точка расположена в четвертой четверти (см. рис. 1.5)), получаем .
Записываем числа и в тригонометрической форме
Заметим, что для числа решение можно найти иначе, а именно используя свойства тригонометрических функций: .
Число является произведением двух чисел. Выполнив умножение, получим алгебраическую форму записи (найдем и ): . Здесь, как и для числа , при решении удобно использовать преобразования тригонометрических выражений, а именно .
Рассуждая, как выше, найдем . Для числа , записанного в алгебраической форме, получаем тригонометрическую форму:
Равенство комплексных чисел в тригонометрической форме
Условия равенства комплексных чисел получаем, используя геометрический смысл модуля и аргумента комплексного числа, заданного в тригонометрической форме. Так, для чисел из условия . очевидно, следует:
или
(1.8)
Аргументы равных комплексных чисел либо равны (в частности равны главные значения), либо отличаются на слагаемое, кратное .
Для пары сопряженных комплексных чисел и справедливы следующие равенства:
(1.9)
Умножение комплексных чисел в тригонометрической форме
Зададим два комплексных числа в тригонометрической форме и и перемножим их по правилу умножения двучленов:
или
Получили новое число , записанное в тригонометрической форме: , для которого .
Правило умножения. При умножении комплексных чисел, заданных в тригонометрической форме, их модули перемножаются, а аргументы складываются:
(1.10)
В результате умножения чисел может получиться аргумент произведения, не являющийся главным значением.
Пример 1.19. Найти модули и аргументы чисел:
Решение
Каждое из заданных чисел записано в виде произведения. Найдем модули и аргументы сомножителей и воспользуемся правилом (1.10) умножения чисел, заданных в тригонометрической форме:
Для чисел и находим модули и аргументы: . Используя формулы (1.10), получаем
б) . Для числа имеем: ; для числа , и так как (точка расположена в четвертой четверти), то . Используя формулы (1.10), получаем .
Заметим, что для решения этой задачи можно раскрыть скобки, записать каждое число в алгебраической форме, а затем найти и , используя формулы (1.5), (1.6).
Деление комплексных чисел в тригонометрической форме
Рассмотрим частное комплексных чисел , заданных в тригонометрической форме. Из определения частного имеем и, применяя к произведению правило умножения (формулы (1.10)), получаем .
Правило деления. Модуль частного, полученного в результате деления чисел, заданных в тригонометрической форме, равен частному от деления модуля числителя на модуль знаменателя, а аргумент частного равен разности аргументов делимого и делителя:
(1.11)
В результате деления чисел по формуле (1.11) может получиться аргумент честного, не являющийся главным значением.
Пример 1.20. Записать в тригонометрической форме комплексное число .
Решение. Обозначим . Для чисел и находим модули и аргументы: (см. пример 1.19). По формуле (1.11) получаем и
Возведение в степень комплексного числа в тригонометрической форме
Из определения степени и правила умножения чисел, записанных в тригонометрической форме (формула (1.10)), получаем
, где .
Правило возведения в степень. При возведении в степень комплексного числа в эту степень возводится модуль числа, а аргумент умножается на показатель степени:
(1.12)
Записывая число в тригонометрической форме , получаем формулу возведения в степень:
(1.13)
При это равенство принимает вид и называется формула Муавра
(1.14)
Пример 1.21. Найти модуль и аргумент комплексного числа .
Решение. Обозначим . Находим модуль и аргумент числа . Поэтому и . Так как по определению для главного значения аргумента выполняется условие , то .
Пример 1.22. Записать в тригонометрической форме число .
Решение
Пример 1.23. Используя формулу Муавра, найти выражения для и через тригонометрические функции угла .
Решение
Из формулы (1.14) при имеем . Возведем левую часть в степень, учитывая, что (см. пример 1.8):
Используя условие равенства комплексных чисел, получаем:
Извлечение корня из комплексного числа в тригонометрической форме
Рассмотрим задачу извлечения корня из комплексного числа, заданного в показательной или тригонометрической форме , или . Искомое число также запишем в показательной форме: . Используя определение операции извлечения корня и условия (1.8), получаем соотношения
или
(1.15)
Правило извлечения корня. Чтобы извлечь корень из комплексного числа, нужно извлечь корень (арифметический) той же степени из модуля данного числа, а аргумент разделить на показатель корня:
(1.16)
Теперь можно записать число в показательной форме:
Если записать это соотношение в тригонометрической форме, то, учитывая периодичность тригонометрических функций, нетрудно убедиться, что выражение принимает только различных значений. Для их записи достаточно в формуле (1.15) взять последовательных значений , например . В результате получаем формулу извлечения корня из комплексного числа в тригонометрической форме, где :
(1.17)
Замечания 1.1
1. Рассмотренная задача извлечения корня степени из комплексного числа равносильна решению уравнения вида , где, очевидно, .
Для решения уравнения нужно найти значений , а для этого необходимо найти и использовать формулу извлечения корня.
2. Исследование формулы (1.17) показывает, что все комплексные числа (значения ) имеют равные модули, т.е. геометрически расположены на окружности радиуса . Аргументы двух последовательных чисел отличаются на , так как , т.е. каждое последующее значение может быть получено из предыдущего поворотом радиуса-вектора точки на .В этом заключается геометрический смысл формулы (1.17), что можно сформулировать следующим образом.
Точки, соответствующие значениям , расположены в вершинах правильного n-угольника, вписанного в окружность с центром в начале координат, радиус которой , причем аргумент одного из значений равен (рис. 1.7).
Алгоритм решения комплексных уравнений вида z^n-a=0
1. Найти модуль и аргумент числа .
2. Записать формулу (1.17) при заданном значении .
3. Выписать значения корней уравнения , придавая значения .
Пример 1.24. Решить уравнения: a) ; б) .
Решение
Задача равносильна задаче нахождения всех значений корня из комплексного числа. Решаем в каждом случае по алгоритму.
а) Найдем .
1. Определим модуль и аргумент числа .
2. При полученных значениях и записываем формулу (1.17):
Заметим, что справа стоит — арифметический корень, его единственное значение равно 1.
3. Придавая последовательно значения от 0 до 5, выписываем решения уравнения:
Геометрически соответствующие точки расположены в вершинах правильного шестиугольника, вписанного в окружность радиуса , одна из точек (соответствует ) . Строим шестиугольник (рис. 1.8,в). Отметим свойства корней этого уравнения с действительными коэффициентами — его комплексные корни являются попарно сопряженными: и — действительные числа.
б) Найдем .
1. Определим модуль и аргумент числа .
2. По формуле (1.17) имеем
3. Выписываем корни .
Для геометрического представления решения уравнения достаточно изобразить одно значение, например (при ) — это точка окружности , лежащая на луче . После этого строим правильный треугольник, вписанный в окружность (рис. 1.8,б).
Пример 1.25. Найти корень уравнения , для которого .
Решение
Задача равносильна задаче нахождения при условие .
1. Находим модуль и аргумент числа .
2. По формуле (1.17) имеем: .
3. Для нахождения искомого решения нет необходимости выписывать все значения корня. Нужно выбрать значение , при котором выполняется условие (соответствующая точка — точка второй четверти). Удобно при этом использовать чертеж (рис. 1.9).
Условию поставленной задачи удовлетворяет корень (при ): .
Математический форум (помощь с решением задач, обсуждение вопросов по математике).
Если заметили ошибку, опечатку или есть предложения, напишите в комментариях.
Модуль и аргумент комплексного числа
Пусть задано комплексное число $ z = a+bi $.
Формула |
Модуль комплексного числа равен корню квадратному из суммы квадратов мнимой и действительной части и находится по формуле: $$ |z| = sqrt{a^2 + b^2} $$ |
Если комплексное число состоит только из действительной части $ z = a $, то его модуль равен $ |z| = |a| $.
Стоит заметить, что модуль комплексных чисел всегда неотрицательный $ |z| ge 0 $ и равен нулю $ |z| = 0 $, только в случае $ z = 0 $.
Формула |
Аргумент комплексного числа обозначается $ varphi = arg z $ и зависит от полуплоскости, в которой лежат числа $a,b$:
|
Введите комплексное число
Пример 1 Пример 2 Правила ввода
Пример 1 |
Найти модуль и аргумент комплексного числа $ z = 3 – 4i $. |
Решение |
Комплексное число состоит из действительной и мнимой части: $$ a = Re z = 3 $$ $$ b = Im z = -4 $$ Применяя формулу вычисления модуля получаем: $$ |z| = sqrt{a^2 + b^2} = sqrt{3^2 + (-4)^2} = sqrt{9+16} = 5 $$ Теперь вычисляем аргумент. Так как $a = 3 > 0$, то получаем аргумент: $$varphi = arctg frac{b}{a} = arctg frac{-4}{3} = -arctg frac{4}{3}.$$ |
Ответ |
$$ |z| = 5, varphi = -arctg frac{4}{3} $$ |
Пример 2 |
Найти модуль и аргумент комплексного числа $ z = 3i $ |
Решение |
В данном случае отсутствует действительная часть, а вернее она равна нулю: $$ a = Re z = 0 $$ Мнимая часть комплексного числа равна: $$ b = Im z = 3 $$ Вычисляем модуль по уже известной формуле: $$ |z| = sqrt{a^2 + b^2} = sqrt{0^2 + 3^2} = sqrt{9} = 3 $$ А вот аргумент здесь попадает под правило при $a = 0, b>0$ и значит равен $$varphi = frac{pi}{2}.$$ |
Ответ |
$$ |z| = 3, varphi = frac{pi}{2} $$ |
Пример 3 |
Найти модуль и аргумент комплексного числа $$ z = 1+sqrt{3}i $$ |
Решение |
Выписываем действительную и мнимую часть: $$ a = 1 $$ $$ b = sqrt{3} $$ Так как $ a > 0 $, то аргумент равен $$ varphi = arctg frac{sqrt{3}}{1} = arctg sqrt{3} = frac{pi}{3} $$ Находим модуль извлекая квадратный корень из суммы квадратов действительной и мнимой части: $$|z| = sqrt{1^2 + (sqrt{3})^2} = sqrt{1+3}=2.$$ Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение онлайн. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя! |
Ответ |
$$ varphi = frac{pi}{3}, |z| = 2 $$ |
Пример 4 |
Найти аргумент комплексного числа $$ z = -1 + sqrt{3}i $$ |
Решение |
Действительная часть $$ a = Re z = -1 $$ Мнимая часть $$ b = Im z = sqrt{3} $$ Так как $ a < 0 $ и $ b > 0 $, то пользуемся второй формулой: $$ varphi = arg z = pi + arctg frac{sqrt{3}}{-1} = pi + arctg (-sqrt{3}) = $$ $$ = pi – arctg(sqrt{3}) = pi – frac{pi}{3} = frac{2pi}{3}. $$ |
Ответ |
$$ varphi = frac{2pi}{3} $$ |
Тригонометрическая форма комплексных чисел
29 ноября 2021
Второй урок по комплексным числам. Если вы только начинаете изучать эту тему (что такое комплексная единица, модуль, сопряжённые), см. первый урок: «Что такое комплексное число».
Сегодня мы узнаем:
- Что такое тригонометрическая форма
- Умножение и деление комплексных чисел в тригонометрической форме
- Формула Муавра (возведение в степень)
- Дополнение 1. Геометрический подход, чтобы не путать, где синус, а где косинус
- Дополнение 2. Как быстро и надёжно искать аргумент комплексного числа?
Начнём с ключевого определения.
1. Тригонометрическая форма
Определение. Тригонометрическая форма комплексного числа — это выражение вида
[z=left| z right|cdot left( cos text{ }!!varphi!!text{ }+isin text{ }!!varphi!!text{ } right)]
где $left| z right|$ — модуль комплексного числа, $text{ }!!varphi!!text{ }$ — некоторый угол, который называется аргумент комплексного числа (пишут $text{ }!!varphi!!text{ }=arg left( z right)$).
Любое число $z=a+bi$, отличное от нуля, можно записать с тригонометрической форме. Для этого нужно вычислить модуль и аргумент. Например:
Записать в тригонометрической форме число $z=sqrt{3}+i$.
Переписываем исходное число в виде $z=sqrt{3}+1cdot i$ и считаем модуль:
[left| z right|=sqrt{{{left( sqrt{3} right)}^{2}}+{{1}^{2}}}=2]
Выносим модуль за скобки:
[z=sqrt{3}+1cdot i=2cdot left( frac{sqrt{3}}{2}+frac{1}{2}cdot i right)]
Вспоминаем тригонометрию, 10-й класс:
[frac{sqrt{3}}{2}=cos frac{text{ }!!pi!!text{ }}{6};quad frac{1}{2}=sin frac{text{ }!!pi!!text{ }}{6}]
Окончательный ответ:
[z=2cdot left( cos frac{text{ }!!pi!!text{ }}{6}+icdot sin frac{text{ }!!pi!!text{ }}{6} right)]
Понятно, что вместо $frac{text{ }!!pi!!text{ }}{6}$ с тем же успехом можно взять аргумент $frac{13text{ }!!pi!!text{ }}{6}$. Синус и косинус не поменяется. Главное — выбрать такой аргумент, чтобы в тригонометрической форме не осталось никаких минусов. Все минусы должны уйти внутрь синуса и косинуса. Сравните:
Записать в тригонометрической форме число $z=-1-i$.
Правильно:
[z=sqrt{2}cdot left( cos frac{5text{ }!!pi!!text{ }}{4}+isin frac{5text{ }!!pi!!text{ }}{4} right)]
Неправильно:
[begin{align} & z=-sqrt{2}cdot left( cos frac{text{ }!!pi!!text{ }}{4}+isin frac{text{ }!!pi!!text{ }}{4} right) \ & z=sqrt{2}cdot left( -cos frac{text{ }!!pi!!text{ }}{4}-isin frac{text{ }!!pi!!text{ }}{4} right) \ & z=sqrt{2}cdot left( cos frac{3text{ }!!pi!!text{ }}{4}-isin frac{3text{ }!!pi!!text{ }}{4} right) \ end{align}]
2. Умножение и деление комплексных чисел
Комплексные числа, записанные в тригонометрической форме, очень удобно умножать и делить.
Теорема. Пусть даны два комплексных числа:
[begin{align} & {{z}_{1}}=left| {{z}_{1}} right|cdot left( cos alpha +isin alpha right) \ & {{z}_{2}}=left| {{z}_{2}} right|cdot left( cos beta +isin beta right) \ end{align}]
Тогда их произведение равно
[{{z}_{1}}cdot {{z}_{2}}=left| {{z}_{1}} right|cdot left| {{z}_{2}} right|cdot left( cos left( alpha +beta right)+isin left( alpha +beta right) right)]
А если ещё и $left| {{z}_{2}} right|ne 0$, то их частное равно
[frac{{{z}_{1}}}{{{z}_{2}}}=frac{left| {{z}_{1}} right|}{left| {{z}_{2}} right|}cdot left( cos left( alpha -beta right)+isin left( alpha -beta right) right)]
Получается, что при умножении комплексных чисел мы просто умножаем их модули, а аргументы складываем. При делении — делим модули и вычитаем аргументы. И всё!
Найти произведение и частное двух комплексных чисел:
[begin{align} & {{z}_{1}}=2cdot left( cos frac{pi }{3}+isin frac{pi }{3} right) \ & {{z}_{2}}=5cdot left( cos frac{pi }{6}+isin frac{pi }{6} right) \ end{align}]
Считаем произведение:
[begin{align} {{z}_{1}}cdot {{z}_{2}} & =2cdot 5cdot left( cos left( frac{pi }{3}+frac{pi }{6} right)+isin left( frac{pi }{3}+frac{pi }{6} right) right)= \ & =10cdot left( cos frac{pi }{2}+isin frac{pi }{2} right) \ end{align}]
Считаем частное:
[begin{align} frac{{{z}_{1}}}{{{z}_{2}}} & =frac{2}{5}cdot left( cos left( frac{pi }{3}-frac{pi }{6} right)+isin left( frac{pi }{3}-frac{pi }{6} right) right)= \ & =0,4cdot left( cos frac{pi }{6}+isin frac{pi }{6} right) \ end{align}]
По сравнению со стандартной (алгебраической) формой записи комплексных чисел экономия сил и времени налицо.:)
3. Формула Муавра
Пусть дано комплексное число в тригонометрической форме:
[z=left| z right|cdot left( cos text{ }!!varphi!!text{ }+isin text{ }!!varphi!!text{ } right)]
Возведём его в квадрат, умножив на само себя:
[begin{align} {{z}^{2}} & =zcdot z = \ & =left| z right|left| z right|cdot left( cos left( text{ }!!varphi!!text{ + }!!varphi!!text{ } right)+isin left( text{ }!!varphi!!text{ + }!!varphi!!text{ } right) right)= \ & ={{left| z right|}^{2}}cdot left( cos 2text{ }!!varphi!!text{ }+isin 2text{ }!!varphi!!text{ } right) \ end{align}]
Затем возведём в куб, умножив на себя ещё раз:
[{{z}^{3}}={{left| z right|}^{3}}cdot left( cos 3varphi +isin 3varphi right)]
Несложно догадаться, что будет дальше — при возведении в степень $n$. Это называется формула Муавра.
Формула Муавра. При возведении всякого комплексного числа
[z=left| z right|cdot left( cos varphi +isin varphi right)]
в степень $nin mathbb{N}$ получим
[{{z}^{n}}={{left| z right|}^{n}}cdot left( cos left( nvarphi right)+isin left( nvarphi right) right)]
Простая формула, которая ускоряет вычисления раз в десять! И кстати: эта формула работает при любом $nin mathbb{R}$, а не только натуральном. Но об этом позже. Сейчас примеры:
Вычислить:
[{{left( sqrt{3}-i right)}^{16}}]
Представим первое число в тригонометрической форме:
[begin{align} sqrt{3}-i & = 2cdot left( frac{sqrt{3}}{2}+icdot left( -frac{1}{2} right) right)= \ & =2cdot left( cos left( -frac{pi }{6} right)+isin left( -frac{pi }{6} right) right) \ end{align}]
По формуле Муавра:
[begin{align} & {{left( 2cdot left( cos frac{11pi }{6}+isin frac{11pi }{6} right) right)}^{16}}= \ & ={{2}^{16}}cdot left( cos frac{88pi }{3}+isin frac{88pi }{3} right)= \ & ={{2}^{16}}cdot left( cos frac{4pi }{3}+isin frac{4pi }{3} right) \ end{align}]
Последним шагом мы воспользовались периодичностью синуса и косинуса, уменьшив аргумент сразу на 28π.
Следующую задачу в разных вариациях любят давать на контрольных работах и экзаменах:
Вычислить:
[{{left( left( -frac{sqrt{2}}{2} right)+left( -frac{sqrt{2}}{2} right)i right)}^{2022}}]
Теперь второе число запишем в комплексной форме:
[begin{align} & left( -frac{sqrt{2}}{2} right)+left( -frac{sqrt{2}}{2} right)i= \ & =1cdot left( cos frac{5pi }{4}+isin frac{5pi }{4} right) \ end{align}]
По формуле Муавра:
[begin{align} & {{left( 1cdot left( cos frac{5pi }{4}+isin frac{5pi }{4} right) right)}^{2022}}= \ & ={{1}^{2022}}cdot left( cos frac{5055pi }{2}+isin frac{5055pi }{2} right)= \ & =1cdot left( cos frac{3pi }{2}+isin frac{3pi }{2} right)=-i \ end{align}]
Вот так всё просто! Следующие два раздела предназначены для углублённого изучения. Для тех, кто хочет действительно разобраться в комплексных числах.
4. Дополнение 1. Геометрический подход
Многие путают местами косинус и синус. Почему комплексная единица стоит именно у синуса? Вспомним, что есть декартова система координат, где точки задаются отступами по осям $x$ и $y$:
А есть полярная система координат, где точки задаются поворотом на угол $varphi $ и расстоянием до центра $r$:
А теперь объединим эти картинки и попробуем перейти из декартовой системы координат в полярную:
Комплексное число $z=a+bi$ задаёт на плоскости точку $C$, удалённую от начала координат на расстояние
[AC=sqrt{{{a}^{2}}+{{b}^{2}}}=left| z right|]
Треугольник $ABC$ — прямоугольный. Пусть $angle BAC=varphi $. Тогда:
[begin{align} & AB=ACcdot cos varphi =left| z right|cdot cos varphi \ & BC=ACcdot sin varphi =left| z right|cdot sin varphi \ end{align}]
С другой стороны, длины катетов $AB$ и $BC$ — это те самые отступы $a$ и $b$, с помощью которых мы задаём комплексное число. Поэтому:
[begin{align} a+bi & =left| z right|cos varphi +icdot left| z right|sin varphi = \ & =left| z right|left( cos varphi +isin varphi right) \ end{align}]
Итак, мы перешли от пары $left( a;b right)$ к паре $left( left| z right|;varphi right)$, где $left| z right|$ — модуль комплексного числа, $varphi $ — его аргумент (проще говоря, угол поворота).
Важное замечание. А кто сказал, что такой угол $varphi $ существует? Возьмём число $z=a+bi$ и вынесем модуль за скобку:
[begin{align} z & =a+bi= \ & =sqrt{{{a}^{2}}+{{b}^{2}}}cdot left( frac{a}{sqrt{{{a}^{2}}+{{b}^{2}}}}+icdot frac{b}{sqrt{{{a}^{2}}+{{b}^{2}}}} right)= \ & =left| z right|cdot left( cos text{ }!!varphi!!text{ }+isin text{ }!!varphi!!text{ } right) \ end{align}]
Осталось подобрать такой угол $varphi $, чтобы выполнялось два равенства:
[begin{align} & frac{a}{sqrt{{{a}^{2}}+{{b}^{2}}}}=cos text{ }!!varphi!!text{ } \ & frac{b}{sqrt{{{a}^{2}}+{{b}^{2}}}}=sin text{ }!!varphi!!text{ } \ end{align}]
Такой угол обязательно найдётся, поскольку выполняется основное тригонометрическое тождество:
[begin{align} {{sin }^{2}}text{ }!!varphi!!text{ } & +{{cos }^{2}}text{ }!!varphi!!text{ }= \ & ={{left( frac{a}{sqrt{{{a}^{2}}+{{b}^{2}}}} right)}^{2}}+{{left( frac{b}{sqrt{{{a}^{2}}+{{b}^{2}}}} right)}^{2}}= \ & =frac{{{a}^{2}}}{{{a}^{2}}+{{b}^{2}}}+frac{{{b}^{2}}}{{{a}^{2}}+{{b}^{2}}}=frac{{{a}^{2}}+{{b}^{2}}}{{{a}^{2}}+{{b}^{2}}}=1 \ end{align}]
На практике основная трудность заключается именно в поиске подходящего аргумента.
5. Дополнение 2. Как найти аргумент?
В учебниках пишут много разной дичи, типа вот этой:
Формула правильная, но пользы от неё — ноль. Запомнить сложно, а применять и вовсе невозможно. Мы пойдём другим путём.
5.1. Точки на координатных осях
Для начала рассмотрим точки, лежащие осях координат.
Тут всё очевидно:
- На положительной полуоси абсцисс $varphi =0$ (фиолетовая точка $A$).
- На отрицательной — $varphi =pi $ (синяя точка $B$).
- На положительной полуоси ординат $varphi =frac{pi }{2}$ (зелёная точка $B$).
- На отрицательной — $varphi =frac{3pi }{2}$ (красная точка $C$). Однако ничто не мешает рассмотреть $varphi =-frac{pi }{2}$ — результат будет тем же самым.:)
5.2. Точки с арктангенсом
А если точки не лежат на осях, то в записи комплексного числа $a+bi$ числа $ane 0$ и $bne 0$. Рассмотрим вспомогательный угол
[{{varphi }_{1}}=operatorname{arctg}left| frac{b}{a} right|]
Очевидно, это острый угол:
[0 lt operatorname{arctg}left| frac{a}{b} right| lt frac{pi }{2}]
Зная знаки чисел $a$ и $b$, мы немедленно определим координатную четверть, в которой располагается искомая точка. И нам останется лишь отложить вспомогательный угол ${{varphi }_{1}}$ от горизонтальной оси в эту четверть.
В правой полуплоскости мы откладываем от «нулевого» луча:
Точка $Aleft( 3;4 right)$ удалена от начала координат на расстояние 5:
[begin{align} 3+4i & =5cdot left( cos varphi +isin varphi right) \ varphi & =operatorname{arctg}frac{4}{3} end{align}]
Для точки $Bleft( 6;-6 right)$ арктангенс оказался табличным:
[6-6i=6sqrt{2}cdot left( cos left( -frac{pi }{4} right)+isin left( -frac{pi }{4} right) right)]
В левой полуплоскости откладываем от луча, соответствующего углу $pi $:
Итого для точки $Cleft( -2;5 right)$ имеем:
[begin{align} -2+5i & =sqrt{29}cdot left( cos varphi +isin varphi right) \ varphi & =pi -operatorname{arctg}frac{5}{2} end{align}]
И, наконец, для точки $Dleft( -5;-3 right)$:
[begin{align} -5-3i & =sqrt{34}cdot left( cos varphi +isin varphi right) \ varphi & =pi +operatorname{arctg}frac{3}{5} end{align}]
Звучит просто, выглядит красиво, работает идеально! Но требует небольшой практики. Пробуйте, тренируйтесь и берите на вооружение.
А в следующем уроке мы научимся извлекать корни из комплексных чисел.:)
Смотрите также:
- Как извлекать корни из комплексных чисел
- Комплексные числа — первый и самый важный уок
- Тест к параграфу «Что такое логарифм» (легкий)
- Тест к уроку «Площади многоугольников без координатной сетки» (средний)
- Четырехугольная пирамида: как найти координаты вершин
- Задача C1: тригонометрические уравнения и формула двойного угла
6
Пример. Произведением двух комплексных чисел z1 = 3 +7i и z2 = −1+2i будет комплексное число z1z2 = (3 +7i)(−1+2i)= −3 −7i +6i −14 = −17 −i .
Произведением комплексно сопряжённых чисел является действительное число.
Действительно, (x +iy)(x −iy)= x2 +iyx −iyx −i2 y2 = x2 + y2 .
4.4 Деление комплексных чисел
Частным двух |
комплексных чисел |
z1 = x1 +iy1 |
и |
z2 = x2 +iy2 , |
z2 |
≠ 0 |
называется |
|||||||||||||||||||||||
комплексное число, вычисляемое по правилу |
z1 |
= |
z1z2 |
= |
x1x2 |
+ y1 y2 |
+i |
x2 y1 − x1 y2 |
. |
|||||||||||||||||||||
z |
2 |
z |
z |
2 |
x2 + y2 |
x2 |
+ y |
2 |
||||||||||||||||||||||
2 |
2 |
2 |
2 |
2 |
||||||||||||||||||||||||||
Иногда сначала |
определяют при z |
2 |
≠ 0 |
величину |
1 |
= |
z2 |
= |
x2 |
−i |
y2 |
. Тогда |
||||||||||||||||||
z |
x2 + y2 |
x2 |
+ y2 |
|||||||||||||||||||||||||||
2 |
z |
z |
2 |
|||||||||||||||||||||||||||
2 |
2 |
2 |
2 |
2 |
z1 = z1 1 и далее используется операцияумножения комплексных чисел. z2 z2
3 +i |
(3 +i)(4 +3i) |
12 +4i +9i −3 |
9 13 |
|||||||||||||||
Пример. |
= |
= |
= |
+ 25 i . |
||||||||||||||
4 −3i |
(4 −3i)(4 +3i) |
16 +9 |
25 |
|||||||||||||||
Тригонометрическая (или полярная) форма записи комплексного числа |
z |
имеет |
вид |
|||||||||||||||
z = r (cosϕ +i sinϕ), где |
||||||||||||||||||
r = |
z |
= |
x2 + y2 |
– модуль комплексного числа. |
||||||||||||||
ϕ – аргумент комплексного числа. |
||||||||||||||||||
Аргумент |
комплексного числа |
z = x +iy |
при |
x ≠ 0 вычисляется исходя |
из |
того, |
что |
tg (Argz)= tgϕ = xy . Случай когда x = 0 рассмотрен чуть ниже.
Главное значение аргумента комплексного числа, обозначаемое arg z , есть такое значение аргумента комплексного числа, которое удовлетворяет условию −π < arg z ≤π (иногда, для удобства, выбирают 0 ≤ arg z < 2π ). Соответственно, Argz = argz +2kπ , где k Z .
Главное значение аргумента комплексного числа можно найти по следующему правилу
Оглавление Е.Е. Красновский, В.Д. Морозова «Теория функций комплексного переменного»
7 |
|||||||
arctg (y x), x > 0 |
|||||||
π |
+arctg (y x), x < 0, y ≥ 0 |
||||||
arg z = |
π |
+arctg (y x), x |
< |
0, y |
< |
0 |
|
– |
|||||||
π 2, x = 0, y > 0 |
|||||||
−π 2, x = 0, y > 0 |
|||||||
Пример. Найдём модуль и главное значение аргумента для следующих комплексных чисел z1 =1+i : z1 = 2 , arg (z1 )=π4 ;
z2 =1−3 i : z2 = 2 , arg (z2 )= −π3; z3 = −2 +2i : z3 = 22 , arg (z3 )= 3π4;
z4 = −1− |
i |
: |
z4 |
= 2 |
, arg (z4 )= −5π 6 ; |
||||
3 |
|||||||||
3 |
|||||||||
6.Действия с комплексными числами втригонометрической форме
6.1Умножение комплексных чисел в тригонометрической форме
При умножении двух комплексных чисел z1 = r1 (cosϕ1 +i sinϕ1 ) |
и z2 |
= r2 (cosϕ2 +i sinϕ2 ) |
в |
|||||||||||||||
тригонометрической форме их |
модули |
следует |
перемножить, |
а |
аргументы сложить: |
|||||||||||||
z1z2 = r1r2 (cos(ϕ1 +ϕ2 )+i sin (ϕ1 +ϕ2 )), то есть |
z1z2 |
= |
z1 |
z2 |
, Arg (z1z2 )= Argz1 +Argz2 . |
|||||||||||||
6.2 Деление комплексных чисел в тригонометрической форме |
||||||||||||||||||
При делении двух комплексных |
чисел z1 = r1 (cosϕ1 +i sinϕ1 ) |
и z2 |
= r2 (cosϕ2 +i sinϕ2 ) |
в |
||||||||||||||
тригонометрической форме при z2 ≠ 0 |
(а значит, и r2 |
≠ 0 ) модуль делимого надо разделить на |
||||||||||||||||
модуль делителя, а аргумент делителя вычесть из аргумента делимого: |
||||||||||||||||||
z1 |
= |
r1 |
(cos(ϕ1 −ϕ2 ) +i sin(ϕ1 −ϕ2 )). |
|||||||||||||||
z2 |
||||||||||||||||||
r2 |
То есть,
z |
= |
z1 |
, Arg |
z |
||||||
1 |
1 |
= Argz − Argz |
. |
|||||||
z2 |
z2 |
z2 |
1 |
2 |
||||||
Оглавление Е.Е. Красновский, В.Д. Морозова «Теория функций комплексного переменного»
8
6.3 Возведение комплексного числа в целую положительную степень
При возведении комплексного числа в целую положительную степень удобно предварительно записать его в тригонометрической форме после чего воспользоваться формулой Муавра возведения комплексного числа в целую положительную степень.
zn = (r(cosϕ +i sinϕ))n = rn (cos nϕ +i sin nϕ). |
||||||||||||||||||||||||||||||||||||||||||||||||||||
3 |
π |
π |
3 |
3 |
3π |
3π |
||||||||||||||||||||||||||||||||||||||||||||||
Пример. |
(3 +3i) |
2 |
+i sin |
= (3 2 ) |
+i sin |
= |
||||||||||||||||||||||||||||||||||||||||||||||
= 3 |
cos |
4 |
4 |
cos |
4 |
4 |
||||||||||||||||||||||||||||||||||||||||||||||
1 |
+i |
1 |
= −54 +54i . |
|||||||||||||||||||||||||||||||||||||||||||||||||
= 54 2 |
− |
|||||||||||||||||||||||||||||||||||||||||||||||||||
2 |
2 |
|||||||||||||||||||||||||||||||||||||||||||||||||||
6.4 Извлечение корня целой положительной степени из комплексного числа |
||||||||||||||||||||||||||||||||||||||||||||||||||||
arg z +2kπ |
+i sin |
arg z +2kπ |
||||||||||||||||||||||||||||||||||||||||||||||||||
n z = n r |
cos |
n |
n |
, |
||||||||||||||||||||||||||||||||||||||||||||||||
1 |
||||||||||||||||||||||||||||||||||||||||||||||||||||
k = 0,1,…, n − |
||||||||||||||||||||||||||||||||||||||||||||||||||||
Из этого соотношения называемого формулой Муавра извлечения корня целой |
||||||||||||||||||||||||||||||||||||||||||||||||||||
положительной степени из комплексного числа, следует, что среди возможных значений |
n |
|||||||||||||||||||||||||||||||||||||||||||||||||||
z |
||||||||||||||||||||||||||||||||||||||||||||||||||||
(при z ≠ 0 ) различными будут n значений, соответствующих, например, значениям k = |
||||||||||||||||||||||||||||||||||||||||||||||||||||
0, n −1. |
||||||||||||||||||||||||||||||||||||||||||||||||||||
Геометрически, все значения n |
располагаются на окружности с центром в точке z = 0 и |
|||||||||||||||||||||||||||||||||||||||||||||||||||
z |
||||||||||||||||||||||||||||||||||||||||||||||||||||
радиусом |
и являются вершинами правильного n-угольника, вписанного в эту окружность. |
|||||||||||||||||||||||||||||||||||||||||||||||||||
n |
z |
|||||||||||||||||||||||||||||||||||||||||||||||||||
Пример. |
Найдём |
a |
, |
где |
a . |
У |
этого |
корня |
a |
различных значений zk , |
при |
|||||||||||||||||||||||||||||||||||||||||
1 |
||||||||||||||||||||||||||||||||||||||||||||||||||||
k = 0,1,2,3 a −1. |
Поскольку |
1 =1(cos(0)+i sin (0)), то |
значения |
корня имеют |
вид |
|||||||||||||||||||||||||||||||||||||||||||||||
0 +2kπ |
+i sin |
0 +2kπ |
2kπ |
+i sin |
2kπ |
. Они лежат на окружности с центром в |
||||||||||||||||||||||||||||||||||||||||||||||
zk =1 cos |
a |
a |
= |
1 cos |
a |
a |
||||||||||||||||||||||||||||||||||||||||||||||
точке z = 0 и радиусом 1, являются вершинами правильного a-угольника, вписанного в эту окружность и при этом координаты одной из вершин имеют вид (1,0).
Оглавление Е.Е. Красновский, В.Д. Морозова «Теория функций комплексного переменного»
9 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
4 |
π |
π |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Пример. |
Решим уравнение |
z |
= |
3 −3i . Учтём, |
что |
(3 −3i)= 3 2 |
− |
. У |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
cos − |
4 |
+i sin |
4 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
этого |
уравнения |
4 |
корня |
zk , |
k = 0,1,2,3 , которые имеют вид |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
π |
π |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
− |
4 |
+2kπ |
− |
4 |
+ |
2kπ |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
zk = 4 3 |
, а именно |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
2 |
cos |
+i sin |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
4 |
4 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
− |
π |
− |
π |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
4 |
4 |
π |
π |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
z0 |
= 8 18 cos |
+i sin |
= 8 |
18 |
cos − |
+i sin |
− |
, |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
4 |
4 |
16 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
16 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
π |
π |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
z = 8 |
cos |
− |
4 |
+ |
2π |
+i sin |
− |
4 +2π |
= |
8 |
cos 7π +i sin |
7π , |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
18 |
18 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1 |
4 |
4 |
16 |
16 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
− |
π |
+4π |
− |
π |
+ |
4π |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
z2 = |
4 |
+i sin |
4 |
15π |
+i sin |
15π |
, |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
8 18 |
cos |
= 8 |
18 |
cos |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
4 |
4 |
16 |
16 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
− |
π |
+6π |
− |
π |
+6π |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
z3 = |
4 |
+i sin |
4 |
23π |
+i sin |
23π |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
8 18 |
cos |
= 8 |
18 |
cos |
. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
4 |
16 |
16 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
4 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
6.5 Возведение комплексного числа в рациональную степень
Формула для возведения комплексного числа в рациональную степень. Возведение комплексного числа z2 ≠ 0 в рациональную степень q = m / n, где m / n – несократимая дробь, можно рассматривать как две последовательные операции: сперва возведение комплексного числа в целую степень m Z, а затем извлечение из результата корня n-й степени. Учитывая,
что Arg(zm ) = mArgz, получаем |
||||||||||
q |
= r |
q |
m arg z |
+2kπ |
+i sin |
marg z |
+2kπ |
, |
||
z |
cos |
n |
n |
|||||||
k = 0,1,…, n −1 |
Оглавление Е.Е. Красновский, В.Д. Морозова «Теория функций комплексного переменного»
Соседние файлы в папке 11-02-2013_11-32-37
- #
10.02.201511.41 Кб5index.htm
- #
10.02.201543.73 Кб6riadi_furie_variant_17.xmcd
- #
Щебетун Виктор
Эксперт по предмету «Математика»
Задать вопрос автору статьи
Определение 1
Длина радиус-вектора, который изображает заданное комплексное число $z=a+bi$, называется модулем данного комплексного числа.
Модуль заданного комплексного числа вычисляется по следующей формуле:
[r=|z|=|a+bi|=sqrt{a^{2} +b^{2} } .]
Пример 1
Вычислить модуль заданных комплексных чисел $z_{1} =13,, , z_{2} =4i,, , , z_{3} =4+3i$.
Решение:
Модуль комплексного числа $z=a+bi$ вычислим по формуле: $r=sqrt{a^{2} +b^{2} } $.
Для исходного комплексного числа $z_{1} =13$ получим $r_{1} =|z_{1} |=|13+0i|=sqrt{13^{2} +0^{2} } =sqrt{169} =13$
Для исходного комплексного числа $, z_{2} =4i$ получим $r_{2} =|z_{2} |=|0+4i|=sqrt{0^{2} +4^{2} } =sqrt{16} =4$
Для исходного комплексного числа $, z_{3} =4+3i$ получим $r_{3} =|z_{3} |=|4+3i|=sqrt{4^{2} +3^{2} } =sqrt{16+9} =sqrt{25} =5$
Сдай на права пока
учишься в ВУЗе
Вся теория в удобном приложении. Выбери инструктора и начни заниматься!
Получить скидку 3 000 ₽
Определение 2
Угол $varphi $, образованный положительным направлением вещественной оси и радиус-вектором $overrightarrow{OM} $, который соответствует заданному комплексному числу $z=a+bi$, называется аргументом данного числа и обозначается $arg z$.
Примечание 1
Модуль и аргумент заданного комплексного числа в явном виде используются при представлении комплексного числа в тригонометрической или показательной форме:
- $z=rcdot (cos varphi +isin varphi )$ – тригонометрическая форма;
- $z=rcdot e^{ivarphi } $ – показательная форма.
Пример 2
Записать комплексное число в тригонометрической и показательной формах, заданное следующими данными: 1) $r=3;varphi =pi $; 2) $r=13;varphi =frac{3pi }{4} $.
«Модуль и аргумент комплексного числа» 👇
Решение:
1) Подставим данные $r=3;varphi =pi $ в соответствующие формулы и получим:
$z=3cdot (cos pi +isin pi )$ – тригонометрическая форма
$z=3cdot e^{ipi } $ – показательная форма.
2) Подставим данные $r=13;varphi =frac{3pi }{4} $ в соответствующие формулы и получим:
$z=13cdot (cos frac{3pi }{4} +isin frac{3pi }{4} )$ – тригонометрическая форма
$z=13cdot e^{ifrac{3pi }{4} } $ – показательная форма.
Пример 3
Определить модуль и аргумент заданных комплексных чисел:
1) $z=sqrt{2} cdot (cos 2pi +isin 2pi )$; 2) $z=frac{5}{3} cdot (cos frac{2pi }{3} +isin frac{2pi }{3} )$; 3) $z=sqrt{13} cdot e^{ifrac{3pi }{4} } $; 4) $z=13cdot e^{ipi } $.
Решение:
Модуль и аргумент найдем, используя формулы записи заданного комплексного числа в тригонометрической и показательной формах соответственно
[z=rcdot (cos varphi +isin varphi );] [z=rcdot e^{ivarphi } .]
1) Для исходного комплексного числа $z=sqrt{2} cdot (cos 2pi +isin 2pi )$ получим $r=sqrt{2} ;varphi =2pi $.
2) Для исходного комплексного числа $z=frac{5}{3} cdot (cos frac{2pi }{3} +isin frac{2pi }{3} )$ получим $r=frac{5}{3} ;varphi =frac{2pi }{3} $.
3) Для исходного комплексного числа $z=sqrt{13} cdot e^{ifrac{3pi }{4} } $ получим $r=sqrt{13} ;varphi =frac{3pi }{4} $.
4) Для исходного комплексного числа $z=13cdot e^{ipi } $ получим $r=13;varphi =pi $.
Аргумент $varphi $ заданного комплексного числа $z=a+bi$ можно вычислить, используя следующие формулы:
[varphi =tgfrac{b}{a} ;cos varphi =frac{a}{sqrt{a^{2} +b^{2} } } ;sin varphi =frac{b}{sqrt{a^{2} +b^{2} } } .]
На практике для вычисления значения аргумента заданного комплексного числа $z=a+bi$ обычно пользуются формулой:
$varphi =arg z=left{begin{array}{c} {arctgfrac{b}{a} ,age 0} \ {arctgfrac{b}{a} +pi ,a
или решают систему уравнений
$left{begin{array}{c} {cos varphi =frac{a}{sqrt{a^{2} +b^{2} } } } \ {sin varphi =frac{b}{sqrt{a^{2} +b^{2} } } } end{array}right. $. (**)
Пример 4
Вычислить аргумент заданных комплексных чисел: 1) $z=3$; 2) $z=4i$; 3) $z=1+i$; 4) $z=-5$; 5) $z=-2i$.
Решение:
1) $z=3$
Так как $z=3$, то $a=3,b=0$. Вычислим аргумент исходного комплексного числа, используя формулу (*):
[varphi =arg z=arctgfrac{0}{3} =arctg0=0.]
2) $z=4i$
Так как $z=4i$, то $a=0,b=4$. Вычислим аргумент исходного комплексного числа, используя формулу (*):
[varphi =arg z=arctgfrac{4}{0} =arctg(infty )=frac{pi }{2} .]
3) $z=1+i$.
Так как $z=1+i$, то $a=1,b=1$. Вычислим аргумент исходного комплексного числа, решая систему (**):
[left{begin{array}{c} {cos varphi =frac{1}{sqrt{1^{2} +1^{2} } } =frac{1}{sqrt{2} } =frac{sqrt{2} }{2} } \ {sin varphi =frac{1}{sqrt{1^{2} +1^{2} } } =frac{1}{sqrt{2} } =frac{sqrt{2} }{2} } end{array}right. .]
Из курса тригонометрии известно, что $cos varphi =sin varphi =frac{sqrt{2} }{2} $ для угла, соответствующего первой координатной четверти и равного $varphi =frac{pi }{4} $.
4) $z=-5$
Так как $z=-5$, то $a=-5,b=0$. Вычислим аргумент исходного комплексного числа, используя формулу (*):
[varphi =arg z=arctgfrac{0}{-5} +pi =arctg0+pi =0+pi =pi .]
5) $z=-2i$
Так как $z=-2i$, то $a=0,b=-2$. Вычислим аргумент исходного комплексного числа, используя формулу (*):
[varphi =arg z=arctgfrac{-2}{0} =arctg(-infty )=frac{3pi }{2} .]
Примечание 3
Аргумент чисто мнимых чисел равен соответственно:
- $frac{pi }{2} $ с положительной мнимой частью;
- $frac{3pi }{2} $ с отрицательной мнимой частью.
Решение:
Число $z_{1} $ изображено точкой $(3;0)$, следовательно, длина радиус-вектора равна 3, т.е. $r=3$, а аргумент $varphi =0$ по примечанию 2.
Число $z_{2} $ изображено точкой $(-2;0)$, следовательно, длина соответствующего радиус-вектора равна 2, т.е. $r=2$, а аргумент $varphi =pi $ по примечанию 2.
Число $z_{3} $ изображено точкой $(0;1)$, следовательно, длина соответствующего радиус-вектора равна 1, т.е. $r=1$, а аргумент $varphi =frac{pi }{2} $ по примечанию 3.
Число $z_{4} $ изображено точкой $(0;-1)$, следовательно, длина соответствующего радиус-вектора равна 1, т.е. $r=1$, а аргумент $varphi =frac{3pi }{2} $ по примечанию 3.
Число $z_{5} $ изображено точкой $(2;2)$, следовательно, длина соответствующего радиус-вектора равна $sqrt{2^{2} +2^{2} } =sqrt{4+4} =sqrt{8} =2sqrt{2} $, т.е. $r=2sqrt{2} $, а аргумент $varphi =frac{pi }{4} $ по свойству прямоугольного треугольника.
Находи статьи и создавай свой список литературы по ГОСТу
Поиск по теме