Как найти главный минор матрицы

Минор матрицы

Определение
Минор матрицы – это определитель $ n-1 $ порядка, составленный путём вычеркивания $ i $-ой строки и $ j $-го столбца из матрицы $ A $ порядка $ n $. Обозначается минор $ M_{ij} $

Формула минора матрицы выводится для каждого элемента этой матрицы отдельно. Пусть задана квадратная матрица $ A $ порядка $ n = 3 $:

$$ A = begin{pmatrix} a_{11}&a_{12}&a_{13} \ a_{21}&a_{22}&a_{23} \ a_{31}&a_{32}&a_{33} end{pmatrix} $$

По определению каждый минор $ M_{ij} $ равен определителю, получаемому при вычеркивании $ i $-ой строки и $ j $-ого столбца из матрицы $ A $.

$$ M_{11} = begin{vmatrix} a_{22}&a_{23} \ a_{32}&a_{33} end{vmatrix}; M_{12} = begin{vmatrix} a_{21}&a_{23} \ a_{31}&a_{33} end{vmatrix}; M_{13} = begin{vmatrix} a_{21}&a_{22} \ a_{31}&a_{32} end{vmatrix}; $$

$$ M_{21} = begin{vmatrix} a_{12}&a_{13} \ a_{32}&a_{33} end{vmatrix}; M_{22} = begin{vmatrix} a_{11}&a_{13} \ a_{31}&a_{33} end{vmatrix}; M_{33} = begin{vmatrix} a_{11}&a_{12} \ a_{21}&a_{22} end{vmatrix}; $$

$$ M_{31} = begin{vmatrix} a_{12}&a_{13} \ a_{22}&a_{23} end{vmatrix}; M_{32} = begin{vmatrix} a_{11}&a_{13} \ a_{21}&a_{23} end{vmatrix}; M_{33} = begin{vmatrix} a_{11}&a_{12} \ a_{21}&a_{22} end{vmatrix}; $$

Аналогично миноры находятся для любого порядка. В частности для матрицы второго порядка в определитель будет входить одно число.

Как найти?

Чтобы найти миноры матрицы $ M_{ij} $ нужно составить определители, полученные путем вычеркивания из матрицы $ A $ соответствующие строку и столбец.

Пример для матрицы второго порядка:

$$ M_{12} = begin{pmatrix} {a_{11}} & {a_{12}} \ a_{21}&{a_{22}} end{pmatrix} = a_{21} $$

Пример для матрицы третьего порядка:

$$ M_{12} = begin{pmatrix} {a_{11}}&{a_{12}}&{a_{13}} \ a_{21}&{a_{22}}&a_{23} \ a_{31}&{a_{32}}&a_{33} end{pmatrix} = begin{vmatrix} a_{21}&a_{23} \ a_{31}&a_{33} end{vmatrix} = a_{21}a_{33}-a_{23}a_{31} $$

Если полученный определитель:

  1. Первого порядка, то записываем оставшееся число
  2. Второго или третьего порядка, то вычисляем его по правилу треугольников
  3. Четвертого и выше порядка, то выполняем разложение по строке (столбцу), либо методом Гаусса

Примеры решений

Пример 1

Определить миноры матрицы:

$$ A = begin{pmatrix} 2&1 \ 0&5 end{pmatrix} $$

Решение

Вычеркиваем строку и столбец, которые соответствуют индексу при $M$:

$$ M_{11} = begin{pmatrix} {2}&{1} \ {0}&5 end{pmatrix} = 5 $$

$$ M_{12} = begin{pmatrix} {2}&{1} \ 0&{5} end{pmatrix} = 0 $$

$$ M_{21} = begin{pmatrix} {2}&1 \ {0}&{5} end{pmatrix} = 1 $$

$$ M_{22} = begin{pmatrix} 2&{1} \ {0}&{5} end{pmatrix} = 2 $$

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение онлайн. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ
$$ M_{11} = 5; M_{12} = 0; M_{21} = 1; M_{22} = 2 $$
Пример 2

Найти миноры элементов на главной диагонали матрицы:

$$ A = begin{pmatrix} 2&3&1 \ 1&-2&-3 \ 0&1&2 end{pmatrix} $$

Решение

Рассчитываем миноры:

$$ M_{11} = begin{pmatrix} {2}&{3}&{1} \ {1}&-2&-3 \ {0}&1&2 end{pmatrix} = begin{vmatrix} -2&-3 \ 1&2 end{vmatrix} = -4+3 = -1 $$

$$ M_{22} = begin{pmatrix} 2&{3}&1 \ {1}&{-2}&{-3} \ 0&{1}&2 end{pmatrix} = begin{vmatrix} 2&1 \ 0&2 end{vmatrix} = 4-0 = 4 $$

$$ M_{33} = begin{pmatrix} 2&3&{1} \ 1&-2&{-3} \ {0}&{1}&{2} end{pmatrix} = begin{vmatrix} 2&3 \ 1&-2 end{vmatrix} = -4-3 = -7 $$

Ответ
$$ M_{11} = -1; M_{22} = 4; M_{33} = -7 $$

Алгебраические дополнения и миноры. Виды миноров и алгебраических дополнений.

В данной теме рассмотрим понятия алгебраического дополнения и минора. Изложение материала опирается на термины, пояснённые в теме “Матрицы. Виды матриц. Основные термины”. Также нам понадобятся некоторые формулы для вычисления определителей. Так как в данной теме немало терминов, относящихся к минорам и алгебраическим дополнениям, то я добавлю краткое содержание, чтобы ориентироваться в материале было проще.

Содержание темы:

  1. Минор $M_{ij}$ элемента $a_{ij}$.
  2. Алгебраическое дополнение $A_{ij}$ элемента $a_{ij}$.
  3. Минор k-го порядка матрицы $A_{mtimes n}$. Главный минор, базисный минор, окаймляющий минор.
  4. Минор k-го порядка матрицы $A_{ntimes n}$. Дополнительный минор. Алгебраическое дополнение к минору квадратной матрицы.

Минор $M_{ij}$ элемента $a_{ij}$

Пусть задана квадратная матрица $A_{ntimes n}$ (т.е. квадратная матрица n-го порядка).

Минором $M_{ij}$ элемента $a_{ij}$ матрицы $A_{ntimes n}$ именуют определитель матрицы, полученной из матрицы $A$ вычёркиванием i-й строки и j-го столбца (т.е. строки и столбца, на пересечении которых находится элемент $a_{ij}$).

Для примера рассмотрим квадратную матрицу четвёртого порядка:
$A=left( begin{array} {cccc}
1 & 0 & -3 & 9\
2 & -7 & 11 & 5 \
-9 & 4 & 25 & 84\
3 & 12 & -5 & 58 end{array} right)$. Найдём минор элемента $a_{32}$, т.е. найдём $M_{32}$. Сперва запишем минор $M_{32}$, а потом вычислим его значение. Для того, чтобы составить $M_{32}$, вычеркнем из матрицы $A$ третью строку и второй столбец (именно на пересечении третьей строки и второго столбца расположен элемент $a_{32}$). Мы получим новую матрицу, определитель которой и есть искомый минор $M_{32}$:

Минор

Этот минор несложно вычислить, используя формулу №2 из темы вычисления определителей второго и третьего порядков:

$$
M_{32}=left| begin{array} {ccc}
1 & -3 & 9\
2 & 11 & 5 \
3 & -5 & 58 end{array} right|=
1cdot 11cdot 58+(-3)cdot 5cdot 3+2cdot (-5)cdot 9-9cdot 11cdot 3-(-3)cdot 2cdot 58-5cdot (-5)cdot 1=579.

$$

Итак, минор элемента $a_{32}$ равен 579, т.е. $M_{32}=579$.

Часто вместо словосочетания “минор элемента матрицы” в литературе встречается “минор элемента определителя”. Суть остается неизменной: чтобы получить минор элемента $a_{ij}$ нужно вычеркнуть из исходного определителя i-ю строку и j-й столбец. Оставшиеся элементы записывают в новый определитель, который и является минором элемента $a_{ij}$. Например, найдём минор элемента $a_{12}$ определителя
$left| begin{array} {ccc}
-1 & 3 & 2\
9 & 0 & -5 \
4 & -3 & 7 end{array} right|$. Чтобы записать требуемый минор $M_{12}$ нам понадобится вычеркнуть из заданного определителя первую строку и второй столбец:

Минор

Чтобы найти значение данного минора используем формулу №1 из темы вычисления определителей второго и третьего порядков:

$$
M_{12}=left| begin{array} {cc}
9 & -5\
4 & 7 end{array} right|=9cdot 7-(-5)cdot 4=83.
$$

Итак, минор элемента $a_{12}$ равен 83, т.е. $M_{12}=83$.

Алгебраическое дополнение $A_{ij}$ элемента $a_{ij}$

Пусть задана квадратная матрица $A_{ntimes n}$ (т.е. квадратная матрица n-го порядка).

Алгебраическое дополнением $A_{ij}$ элемента $a_{ij}$ матрицы $A_{ntimes n}$ находится по следующей формуле:
$$
A_{ij}=(-1)^{i+j}cdot M_{ij},
$$

где $M_{ij}$ – минор элемента $a_{ij}$.

Найдем алгебраическое дополнение элемента $a_{32}$ матрицы $A=left( begin{array} {cccc}
1 & 0 & -3 & 9\
2 & -7 & 11 & 5 \
-9 & 4 & 25 & 84\
3 & 12 & -5 & 58 end{array} right)$, т.е. найдём $A_{32}$. Ранее мы уже находили минор $M_{32}=579$, поэтому используем полученный результат:

Дополнение

Обычно при нахождении алгебраических дополнений не вычисляют отдельно минор, а уж потом само дополнение. Запись минора опускают. Например, найдем $A_{12}$, если $A=left( begin{array} {ccc}
-5 & 10 & 2\
6 & 9 & -4 \
4 & -3 & 1 end{array} right)$. Согласно формуле $A_{12}=(-1)^{1+2}cdot M_{12}=-M_{12}$. Однако чтобы получить $M_{12}$ достаточно вычеркнуть первую строку и второй столбец матрицы $A$, так зачем же вводить лишнее обозначение для минора? Сразу запишем выражение для алгебраического дополнения $A_{12}$:

Дополнение

Минор k-го порядка матрицы $A_{mtimes n}$

Если в предыдущих двух пунктах мы говорили лишь о квадратных матрицах, то здесь поведём речь также и о прямоугольных матрицах, у которых количество строк вовсе не обязательно равняется количеству столбцов. Итак, пусть задана матрица $A_{mtimes n}$, т.е. матрица, содержащая m строк и n столбцов.

Минором k-го порядка матрицы $A_{mtimes n}$ называется определитель, элементы которого расположены на пересечении k строк и k столбцов матрицы $A$ (при этом предполагается, что $k≤ m$ и $k≤ n$).

Например, рассмотрим такую матрицу:

$$A=left( begin{array} {cccc}
-1 & 0 & -3 & 9\
2 & 7 & 14 & 6 \
15 & -27 & 18 & 31\
0 & 1 & 19 & 8\
0 & -12 & 20 & 14\
5 & 3 & -21 & 9\
23 & -10 & -5 & 58 end{array} right)
$$

Запишем для неё какой-либо минор третьего порядка. Чтобы записать минор третьего порядка нам потребуется выбрать какие-либо три строки и три столбца данной матрицы. Например, возьмём строки №2, №4, №6 и столбцы №1, №2, №4. На пересечении этих строк и столбцов будут располагаться элементы требуемого минора. На рисунке элементы минора показаны синим цветом:

$$
left( begin{array} {cccc}
-1 & 0 & -3 & 9 \
boldblue{2} & boldblue{7} & 14 & boldblue{6} \
15 & -27 & 18 & 31\
boldblue{0} & boldblue{1} & 19 & boldblue{8}\
0 & -12 & 20 & 14\
boldblue{5} & boldblue{3} & -21 & boldblue{9}\
23 & -10 & -5 & 58 end{array} right);;

M=left|begin{array} {ccc}
2 & 7 & 6 \
0 & 1 & 8 \
5 & 3 & 9 end{array} right|.
$$

Миноры первого порядка находятся на пересечении одной строки и одного столбца, т.е. миноры первого порядка равны элементам заданной матрицы.

Минор k-го порядка матрицы $A_{mtimes n}=(a_{ij})$ называется главным, если на главной диагонали данного минора находятся только главные диагональные элементы матрицы $A$.

Напомню, что главными диагональными элементами именуют те элементы матрицы, у которых индексы равны: $a_{11}$, $a_{22}$, $a_{33}$ и так далее. Например, для рассмотренной выше матрицы $A$ такими элементами будут $a_{11}=-1$, $a_{22}=7$, $a_{33}=18$, $a_{44}=8$. На рисунке они выделены зелёным цветом:

$$left( begin{array} {cccc}
boldgreen{-1} & 0 & -3 & 9\
2 & boldgreen{7} & 14 & 6 \
15 & -27 & boldgreen{18} & 31\
0 & 1 & 19 & boldgreen{8}\
0 & -12 & 20 & 14\
5 & 3 & -21 & 9\
23 & -10 & -5 & 58 end{array} right)
$$

Например, если в матрице $A$ мы вычеркнем строки и столбцы с номерами 1 и 3, то на их пересечении будут расположены элементы минора второго порядка, на главной диагонали которого будут находиться только диагональные элементы матрицы $A$ (элементы $a_{11}=-1$ и $a_{33}=18$ матрицы $A$). Следовательно, мы получим главный минор второго порядка:

$$
M=left|begin{array} {cc}
boldgreen{-1} & -3 \
15 & boldgreen{18} end{array} right|
$$

Естественно, что мы могли взять иные строки и столбцы, – например, с номерами 2 и 4, получив при этом иной главный минор второго порядка.

Пусть некий минор $M$ k-го порядка матрицы $A_{mtimes n}$ не равен нулю, т.е. $Mneq 0$. При этом все миноры, порядок которых выше k, равны нулю. Тогда минор $M$ называют базисным, а строки и столбцы, на которых расположены элементы базисного минора, именуют базисными строками и базисными столбцами.

Для примера рассмотрим такую матрицу:

$$A=left( begin{array} {ccc}
-1 & 0 & 3 & 0 & 0 \
2 & 0 & 4 & 1 & 0\
1 & 0 & -2 & -1 & 0\
0 & 0 & 0 & 0 & 0 end{array} right)
$$

Запишем минор этой матрицы, элементы которого расположены на пересечении строк №1, №2, №3 и столбцов с №1, №3, №4. Мы получим минор третьего порядка (его элементы выделены в матрице $A$ фиолетовым цветом):

$$
left( begin{array} {ccc}
boldpurple{-1} & 0 & boldpurple{3} & boldpurple{0} & 0 \
boldpurple{2} & 0 & boldpurple{4} & boldpurple{1} & 0\
boldpurple{1} & 0 & boldpurple{-2} & boldpurple{-1} & 0\
0 & 0 & 0 & 0 & 0 end{array} right);;

M=left|begin{array} {ccc}
-1 & 3 & 0 \
2 & 4 & 1 \
1 & -2 & -1 end{array} right|.
$$

Найдём значение этого минора, используя формулу №2 из темы вычисления определителей второго и третьего порядков:

$$
M=left| begin{array} {ccc}
-1 & 3 & 0\
2 & 4 & 1 \
1 & -2 & -1 end{array} right|=4+3+6-2=11.
$$

Итак, $M=11neq 0$. Теперь попробуем составить любой минор, порядок которого выше трёх. Чтобы составить минор четвёртого порядка, нам придётся использовать четвёртую строку, однако все элементы этой строки равны нулю. Следовательно, в любом миноре четвёртого порядка будет нулевая строка, а это означает, что все миноры четвёртого порядка равны нулю. Миноры пятого и более высоких порядков составить мы не можем, так как матрица $A$ имеет всего 4 строки.

Мы нашли минор третьего порядка, не равный нулю. При этом все миноры высших порядков равны нулю, следовательно, рассмотренный нами минор – базисный. Строки матрицы $A$, на которых расположены элементы этого минора (первая, вторая и третья), – базисные строки, а первый, третий и четвёртый столбцы матрицы $A$ – базисные столбцы.

Данный пример, конечно, тривиальный, так как его цель – наглядно показать суть базисного минора. Вообще, базисных миноров может быть несколько, и обычно процесс поиска такого минора куда сложнее и объёмнее.

Введём ещё одно понятие – окаймляющий минор.

Пусть некий минор k-го порядка $M$ матрицы $A_{mtimes n}$ расположен на пересечении k строк и k столбцов. Добавим к набору этих строк и столбцов ещё одну строку и столбец. Полученный минор (k+1)-го порядка именуют окаймляющим минором для минора $M$.

Для примера обратимся к такой матрице:

$$A=left( begin{array} {ccccc}
-1 & 2 & 0 & -2 & -14\
3 & -17 & -3 & 19 & 29\
5 & -6 & 8 & -9 & 41\
-5 & 11 & 19 & -20 & -98\
6 & 12 & 20 & 21 & 54\
-7 & 10 & 14 & -36 & 79 end{array} right)
$$

Запишем минор второго порядка, элементы которого расположены на пересечении строк №2 и №5, а также столбцов №2 и №4. Эти элементы выделены в матрице красным цветом:

$$
left( begin{array} {ccccc}
-1 & 2 & 0 & -2 & -14\
3 & boldred{-17} & -3 & boldred{19} & 29\
5 & -6 & 8 & -9 & 41\
-5 & 11 & 19 & -20 & -98\
6 & boldred{12} & 20 & boldred{21} & 54\
-7 & 10 & 14 & -36 & 79 end{array} right);;

M=left|begin{array} {ccc}
-17 & 19 \
12 & 21 end{array} right|.
$$

Добавим к набору строк, на которых лежат элементы минора $M$, ещё строку №1, а к набору столбцов – столбец №5. Получим новый минор $M’$ (уже третьего порядка), элементы которого расположены на пересечении строк №1, №2, №5 и столбцов №2, №4, №5. Элементы минора $M$ на рисунке выделены красным цветом, а элементы, которые мы добавляем к минору $M$ – синим:

$$
left( begin{array} {ccccc}
-1 & boldblue{2} & 0 & boldblue{-2} & boldblue{-14}\
3 & boldred{-17} & -3 & boldred{19} & boldblue{29}\
5 & -6 & 8 & -9 & 41\
-5 & 11 & 19 & -20 & -98\
6 & boldred{12} & 20 & boldred{21} & boldblue{54}\
-7 & 10 & 14 & -36 & 79 end{array} right);;

M’=left|begin{array} {ccc}
2 & -2 & -14 \
-17 & 19 & 29 \
12 & 21 & 54 end{array} right|.
$$

Минор $M’$ является окаймляющим минором для минора $M$. Аналогично, добавляя к набору строк, на которых лежат элементы минора $M$, строку №4, а к набору столбцов – столбец №3, получим минор $M”$ (минор третьего порядка):

$$
left( begin{array} {ccccc}
-1 & 2 & 0 & -2 & -14\
3 & boldred{-17} & boldblue{-3} & boldred{19} & 29\
5 & -6 & 8 & -9 & 41\
-5 & boldblue{11} & boldblue{19} & boldblue{-20} & -98\
6 & boldred{12} & boldblue{20} & boldred{21} & 54\
-7 & 10 & 14 & -36 & 79 end{array} right);;

M”=left|begin{array} {ccc}
-17 & -3 & 19 \
11 & 19 & -20 \
12 & 20 & 21 end{array} right|.
$$

Минор $M”$ также является окаймляющим минором для минора $M$.

Минор k-го порядка матрицы $A_{ntimes n}$. Дополнительный минор. Алгебраическое дополнение к минору квадратной матрицы.

Вновь вернёмся к квадратным матрицам. Введём понятие дополнительного минора.

Пусть задан некий минор $M$ k-го порядка матрицы $A_{ntimes n}$. Определитель (n-k)-го порядка, элементы которого получены из матрицы $A$ после вычеркивания строк и столбцов, содержащих минор $M$, называется минором, дополнительным к минору $M$.

Для примера рассмотрим квадратную матрицу пятого порядка:

$$
A=left( begin{array}{ccccc}
-1 & 2 & 0 & -2 & -14\
3 & -17 & -3 & 19 & 29\
5 & -6 & 8 & -9 & 41\
-5 & 11 & 16 & -20 & -98\
-7 & 10 & 14 & -36 & 79 end{array} right)
$$

Выберем в ней строки №1 и №3, а также столбцы №2 и №5. На пересечении оных строк и столбцов будут элементы минора $M$ второго порядка. Эти элементы выделены в матрице $A$ зелёным цветом:

$$
left(begin{array}{ccccc}
-1 & boldgreen{2} & 0 & -2 & boldgreen{-14}\
3 & -17 & -3 & 19 & 29\
5 & boldgreen{-6} & 8 & -9 & boldgreen{41}\
-5 & 11 & 16 & -20 & -98\
-7 & 10 & 14 & -36 & 79 end{array} right);;

M=left|begin{array}{cc}
2 & -14 \
-6 & 41 end{array} right|.
$$

Теперь уберём из матрицы $A$ строки №1 и №3 и столбцы №2 и №5, на пересечении которых находятся элементы минора $M$ (элементы убираемых строк и столбцов показаны красным цветом на рисунке ниже). Оставшиеся элементы образуют минор $M’$:

$$
left( begin{array}{ccccc}
boldred{-1} & boldred{2} & boldred{0} & boldred{-2} & boldred{-14}\
3 & boldred{-17} & -3 & 19 & boldred{29}\
boldred{5} & boldred{-6} & boldred{8} & boldred{-9} & boldred{41}\
-5 & boldred{11} & 16 & -20 & boldred{-98}\
-7 & boldred{10} & 14 & -36 & boldred{79} end{array} right);;

M’=left|begin{array} {ccc}
3 & -3 & 19 \
-5 & 16 & -20 \
-7 & 14 & -36 end{array}right|.
$$

Минор $M’$, порядок которого равен $5-2=3$, является минором, дополнительным к минору $M$.

Алгебраическим дополнением к минору $M$ квадратной матрицы $A_{ntimes n}$ называется выражение $(-1)^{alpha}cdot M’$, где $alpha$ – сумма номеров строк и столбцов матрицы $A$, на которых расположены элементы минора $M$, а $M’$ – минор, дополнительный к минору $M$.

Словосочетание “алгебраическое дополнение к минору $M$” часто заменяют словосочетанием “алгебраическое дополнение минора $M$”.

Для примера рассмотрим матрицу $A$, для которой мы находили минор второго порядка
$
M=left| begin{array} {ccc}
2 & -14 \
-6 & 41 end{array} right|
$ и дополнительный к нему минор третьего порядка:

$M’=left| begin{array} {ccc}
3 & -3 & 19\
-5 & 16 & -20 \
-7 & 14 & -36 end{array} right|$. Обозначим алгебраическое дополнение минора $M$ как $M^*$. Тогда согласно определению:

$$
M^*=(-1)^alphacdot M’.
$$

Параметр $alpha$ равен сумме номеров строк и столбцов, на которых находится минор $M$. Этот минор расположен на пересечении строк №1, №3 и столбцов №2, №5. Следовательно, $alpha=1+3+2+5=11$. Итак:

$$
M^*=(-1)^{11}cdot M’=-left| begin{array} {ccc}
3 & -3 & 19\
-5 & 16 & -20 \
-7 & 14 & -36 end{array} right|.
$$

В принципе, используя формулу №2 из темы вычисления определителей второго и третьего порядков, можно довести вычисления до конца, получив значение $M^*$:

$$
M^*=-left| begin{array} {ccc}
3 & -3 & 19\
-5 & 16 & -20 \
-7 & 14 & -36 end{array} right|=-30.
$$

Минор и алгебраическое дополнение

Автор статьи

оксана николаевна кузнецова

Эксперт по предмету «Математика»

Задать вопрос автору статьи

Для квадратной матрицы в теории матриц вводятся понятия «минор элемента» и «алгебраическое дополнение».

Определение 1

Минор $M_{ij} $ элемента $a_{ij} $ матрицы $A=left(a_{ij} right)_{ntimes n} $ – это определитель матрицы, которая образована после вычеркивания из исходной матрицы строки с номером $i$ и столбца с номером $j$.

Пример 1

Выписать и вычислить миноры элементов $a_{11} $ и $a_{22} $ матрицы $A=left(begin{array}{ccc} {1} & {9} & {-2} \ {0} & {-3} & {2} \ {1} & {3} & {4} end{array}right)$.

Решение:

[M_{11} =left|begin{array}{cc} {-3} & {2} \ {3} & {4} end{array}right|=-3cdot 4-3cdot 2=-12-6=-18;]

[M_{22} =left|begin{array}{cc} {1} & {-2} \ {1} & {4} end{array}right|=1cdot 4-1cdot (-2)=4+2=6.]

Определение 2

Алгебраическое дополнение $A_{ij} $ элемента $a_{ij} $ матрицы $A=left(a_{ij} right)_{ntimes n} $ определяется следующей формулой:

[A_{ij} =(-1)^{i+j} cdot M_{ij} ,]

где $M_{ij} $ – минор соответствующего элемента матрицы.

Пример 2

Найти алгебраические дополнения элементов $a_{11} $ и $a_{22} $ матрицы $A=left(begin{array}{ccc} {1} & {9} & {-2} \ {0} & {-3} & {2} \ {1} & {3} & {4} end{array}right)$.

Решение:

[A_{11} =(-1)^{1+1} cdot M_{11} =1cdot left|begin{array}{cc} {-3} & {2} \ {3} & {4} end{array}right|=-3cdot 4-3cdot 2=-12-6=-18;]

[A_{22} =(-1)^{2+2} cdot M_{22} =1cdot left|begin{array}{cc} {1} & {-2} \ {1} & {4} end{array}right|=1cdot 4-1cdot (-2)=4+2=6.]

Для прямоугольной матрицы вводится понятие «минор k-го порядка».

«Минор и алгебраическое дополнение» 👇

Определение 3

Минор k-го порядка матрицы $A=left(a_{ij} right)_{mtimes n} $ – это определитель матрицы, которая образована из исходной матрицы путем выписывания элементов, находящихся на пересечении k строк и k столбцов.

Схема формирования минора 3-го порядка изображена на рисунке.

Схема формирования минора 3-го порядка

Пример 3

Найти миноры 1-го и 2-го порядков матрицы $A=left(begin{array}{ccc} {1} & {9} & {-2} \ {0} & {-3} & {2} \ {1} & {3} & {4} end{array}right)$.

Решение:

$M=left|1right|=1$ (пересечение первой строки с первым столбцом);

$M=left|begin{array}{cc} {1} & {9} \ {1} & {3} end{array}right|=1cdot 3-1cdot 9=3-9=-6$ (пересечение первой и третьей строк с первым и вторым столбцами).

Из примера видно, что миноры первого порядка совпадают с элементами исходной матрицы.

Определение 4

Главный минор — это минор k-го порядка матрицы $A=left(a_{ij} right)_{mtimes n} $, в котором на главной диагонали расположены только элементы главной диагонали исходной матрицы.

Пример 4

Найти главные миноры 2-го порядков матрицы $A=left(begin{array}{ccc} {1} & {9} & {-2} \ {0} & {-3} & {2} \ {1} & {3} & {4} end{array}right)$.

Решение:

$M=left|begin{array}{cc} {1} & {9} \ {0} & {-3} end{array}right|=1cdot (-3)-0cdot 9=-3$ (пересечение первой и второй строки, первого и второго столбца).

$M=left|begin{array}{cc} {1} & {-2} \ {1} & {4} end{array}right|=1cdot 4-1cdot (-2)=4+2=6$ (пересечение первой и третьей строки, первого и третьего столбца).

Определение 5

Базисный минор k-го порядка матрицы $A=left(a_{ij} right)_{mtimes n} $ – это такой не равный нулю минор, что все миноры порядка выше k обращаются в ноль.

Пример 5

Найти базисный минор 2-го порядка матрицы $A=left(begin{array}{ccc} {1} & {0} & {-2} \ {0} & {0} & {2} \ {0} & {0} & {0} end{array}right)$.

Решение:

$M=left|begin{array}{cc} {1} & {-2} \ {0} & {2} end{array}right|=1cdot 2-0cdot (-2)=2-0=2$ (пересечение первой и второй строки, первого и третьего столбца).

Любой минор 3-го порядка совпадает с исходной матрицей. Так как матрица имеет нулевой столбец, то ее определитель равен нулю. Следовательно, найденный минор является базисным.

Определение 6

Дополнительный минор (n-k)-го порядка матрицы $A=left(a_{ij} right)_{mtimes n} $ – это такой минор, элементы которого выписаны из исходной матрицы после вычеркивания строк и столбцов, содержащих минор М.

Пример 6

Найти дополнительный минор для минора 2-го порядка матрицы $A=left(begin{array}{cccc} {1} & {2} & {0} & {-3} \ {4} & {2} & {1} & {-5} \ {0} & {2} & {-1} & {3} \ {0} & {1} & {0} & {3} end{array}right)$.

Решение:

$M=left|begin{array}{cc} {1} & {2} \ {4} & {2} end{array}right|=1cdot 2-4cdot 2=2-8=-6$ (пересечение первой и второй строки, первого и второго столбца).

$M’=left|begin{array}{cc} {-1} & {3} \ {0} & {3} end{array}right|=-1cdot 3-0cdot 3=-3$ – дополнительный минор

Находи статьи и создавай свой список литературы по ГОСТу

Поиск по теме

Дата последнего обновления статьи: 18.11.2022

Понятие минора и алгебраического дополнения было рассмотрено нами в теме «Как вычислить определитель матрицы третьего порядка». В данной статье разберем тему более подробно, а также научимся вычислять миноры и алгебраические дополнения матриц высших порядков.

Сначала рекомендуется повторить вычисление определителей второго, третьего и высших порядков.

Минор

Минором MijM_{ij} к элементу aija_{ij} определителя nn-го порядка называется определитель (n−1)(n-1)-го порядка, который получается из исходного определителя вычеркиванием ii-той строки и jj-того столбца.

Таким образом, минор — это определитель, который остается после вычеркивания определенной строки и определенного столбца. Например, M12M_{12} получается вычеркиванием 1-й строки и 2-го столбца, M34M_{34} — вычеркиванием 3-й строки и 4-го столбца.
Алгоритм нахождения миноров

  1. вычеркиваем i-ю строку;
  2. вычеркиваем j-й столбец;
  3. записываем определитель, который получили в результате действий 1 и 2.

Пример 1

Найти минор M34M_{34} к элементу a34a_{34} определителя ∣21−23−121213−1543−31∣begin{vmatrix}2&1&-2&3\-1&2&1&2\1&3&-1&5\4&3&-3&1end{vmatrix}.

Те строки и столбцы, которые будем вычеркивать, выделим зеленым цветом.

M34=∣21−23−121213−1543−31∣=∣21−2−12143−3∣=2⋅2⋅(−3)+1⋅1⋅4+(−2)⋅3⋅(−1)−(−2)⋅2⋅4−1⋅(−3)⋅(−1)−2⋅1⋅3=−12+4+6+16−3−6=5M_{34}=begin{vmatrix}2&1&-2&color{green}3\-1&2&1&color{green}2\color{green}1&color{green}3&color{green}-1&color{green}5\4&3&-3&color{green}1end{vmatrix}=begin{vmatrix}2&1&-2\-1&2&1\4&3&-3end{vmatrix}=2cdot2cdot(-3)+1cdot1cdot4+(-2)cdot3cdot(-1)-(-2)cdot2cdot4-1cdot(-3)cdot(-1)-2cdot1cdot3=-12+4+6+16-3-6=5.

Пример 2

Найти миноры матрицы K=(03−122100−2−102−5711)K= begin{pmatrix}0&3&-1&2\2&1&0&0\-2&-1&0&2\-5&7&1&1end{pmatrix}.

Те строки и столбцы, которые будем вычеркивать, выделим зеленым цветом.

M11=(03−122100−2−102−5711)=∣100−102711∣=1⋅(−1)1+1∣0211∣=1⋅(−1)2∣0211∣=∣0211∣=1⋅(−1)2+1⋅2=1⋅(−1)3⋅2=−2M_{11}= begin{pmatrix}color{green}0&color{green}3&color{green}-1&color{green}2\color{green}2&1&0&0\color{green}-2&-1&0&2\color{green}-5&7&1&1end{pmatrix}=begin{vmatrix}1&0&0\-1&0&2\7&1&1end{vmatrix}=1cdot(-1)^{1+1}begin{vmatrix}0&2\1&1end{vmatrix}=1cdot(-1)^{2}begin{vmatrix}0&2\1&1end{vmatrix}=begin{vmatrix}0&2\1&1end{vmatrix}=1cdot(-1)^{2+1}cdot2=1cdot(-1)^{3}cdot2=-2,

M12=(03−122100−2−102−5711)=∣200−202−511∣=2⋅(−1)1+1∣0211∣=2⋅(−1)2∣0211∣=2∣0211∣=2⋅(−1)2+1⋅2=2⋅(−1)3⋅2=−4M_{12}= begin{pmatrix}color{green}0&color{green}3&color{green}-1&color{green}2\2&color{green}1&0&0\-2&color{green}-1&0&2\-5&color{green}7&1&1end{pmatrix}=begin{vmatrix}2&0&0\-2&0&2\-5&1&1end{vmatrix}=2cdot(-1)^{1+1}begin{vmatrix}0&2\1&1end{vmatrix}=2cdot(-1)^{2}begin{vmatrix}0&2\1&1end{vmatrix}=2begin{vmatrix}0&2\1&1end{vmatrix}=2cdot(-1)^{2+1}cdot2=2cdot(-1)^{3}cdot2=-4,

M13=(03−122100−2−102−5711)=∣210−2−12−571∣=2⋅(−1)⋅1+0⋅7⋅(−2)+1⋅2⋅(−5)−0⋅(−1)⋅(−5)−2⋅2⋅7−1⋅1⋅(−2)=−2−10−28+2=−38M_{13}= begin{pmatrix}color{green}0&color{green}3&color{green}-1&color{green}2\2&1&color{green}0&0\-2&-1&color{green}0&2\-5&7&color{green}1&1end{pmatrix}=begin{vmatrix}2&1&0\-2&-1&2\-5&7&1end{vmatrix}=2cdot(-1)cdot1+0cdot7cdot(-2)+1cdot2cdot(-5)-0cdot(-1)cdot(-5)-2cdot2cdot7-1cdot1cdot(-2)=-2-10-28+2=-38,

M14=(03−122100−2−102−5711)=∣210−2−10−571∣=1⋅(−1)3+3∣21−2−1∣=0M_{14}= begin{pmatrix}color{green}0&color{green}3&color{green}-1&color{green}2\2&1&0&color{green}0\-2&-1&0&color{green}2\-5&7&1&color{green}1end{pmatrix}=begin{vmatrix}2&1&0\-2&-1&0\-5&7&1end{vmatrix}=1cdot(-1)^{3+3}begin{vmatrix}2&1\-2&-1end{vmatrix}=0,

M21=(03−122100−2−102−5711)=∣3−12−102711∣=3⋅0⋅1+2⋅1⋅(−1)+(−1)⋅2⋅7−2⋅0⋅7−(−1)⋅1⋅(−1)−3⋅2⋅1=−2−14−1−6=−23M_{21}= begin{pmatrix}color{green}0&3&-1&2\color{green}2&color{green}1&color{green}0&color{green}0\color{green}-2&-1&0&2\color{green}-5&7&1&1end{pmatrix}=begin{vmatrix}3&-1&2\-1&0&2\7&1&1end{vmatrix}=3cdot0cdot1+2cdot1cdot(-1)+(-1)cdot2cdot7-2cdot0cdot7-(-1)cdot1cdot(-1)-3cdot2cdot1=-2-14-1-6=-23,

M22=(03−122100−2−102−5711)=∣0−12−202−511∣=0⋅0⋅1+(−1)⋅2⋅(−5)+2⋅1⋅(−2)−2⋅0⋅(−5)−(−1)⋅1⋅(−2)−0⋅2⋅1=10−4−2=4M_{22}= begin{pmatrix}0&color{green}3&-1&2\color{green}2&color{green}1&color{green}0&color{green}0\-2&color{green}-1&0&2\-5&color{green}7&1&1end{pmatrix}=begin{vmatrix}0&-1&2\-2&0&2\-5&1&1end{vmatrix}=0cdot0cdot1+(-1)cdot2cdot(-5)+2cdot1cdot(-2)-2cdot0cdot(-5)-(-1)cdot1cdot(-2)-0cdot2cdot1=10-4-2=4,

M23=(03−122100−2−102−5711)=∣032−2−12−571∣=0⋅(−1)⋅1+3⋅2⋅(−5)+2⋅7⋅(−2)−2⋅(−1)⋅(−5)−3⋅1⋅(−2)−0⋅2⋅7=−30−28−10+6=−62M_{23}= begin{pmatrix}0&3&color{green}-1&2\color{green}2&color{green}1&color{green}0&color{green}0\-2&-1&color{green}0&2\-5&7&color{green}1&1end{pmatrix}=begin{vmatrix}0&3&2\-2&-1&2\-5&7&1end{vmatrix}=0cdot(-1)cdot1+3cdot2cdot(-5)+2cdot7cdot(-2)-2cdot(-1)cdot(-5)-3cdot1cdot(-2)-0cdot2cdot7=-30-28-10+6=-62,

M24=(03−122100−2−102−5711)=∣03−1−2−10−571∣=0⋅(−1)⋅1+3⋅0⋅(−5)+(−1)⋅7⋅(−2)−(−1)⋅(−1)⋅(−5)−3⋅1⋅(−2)−0⋅0⋅7=14+5+6=25M_{24}= begin{pmatrix}0&3&-1&color{green}2\color{green}2&color{green}1&color{green}0&color{green}0\-2&-1&0&color{green}2\-5&7&1&color{green}1end{pmatrix}=begin{vmatrix}0&3&-1\-2&-1&0\-5&7&1end{vmatrix}=0cdot(-1)cdot1+3cdot0cdot(-5)+(-1)cdot7cdot(-2)-(-1)cdot(-1)cdot(-5)-3cdot1cdot(-2)-0cdot0cdot7=14+5+6=25,

M31=(03−122100−2−102−5711)=∣3−12100711∣=1⋅(−1)2+1∣−1211∣=1⋅(−1)3∣−1211∣=−∣−1211∣=−(−1−2)=3M_{31}= begin{pmatrix}color{green}0&3&-1&2\color{green}2&1&0&0\color{green}-2&color{green}-1&color{green}0&color{green}2\color{green}-5&7&1&1end{pmatrix}=begin{vmatrix}3&-1&2\1&0&0\7&1&1end{vmatrix}=1cdot(-1)^{2+1}begin{vmatrix}-1&2\1&1end{vmatrix}=1cdot(-1)^{3}begin{vmatrix}-1&2\1&1end{vmatrix}=-begin{vmatrix}-1&2\1&1end{vmatrix}=-(-1-2)=3,

M32=(03−122100−2−102−5711)=∣0−12200−511∣=2⋅(−1)2+1∣−1211∣=2⋅(−1)3∣−1211∣=−2∣−1211∣=−2(−1−2)=6M_{32}= begin{pmatrix}0&color{green}3&-1&2\2&color{green}1&0&0\color{green}-2&color{green}-1&color{green}0&color{green}2\-5&color{green}7&1&1end{pmatrix}=begin{vmatrix}0&-1&2\2&0&0\-5&1&1end{vmatrix}=2cdot(-1)^{2+1}begin{vmatrix}-1&2\1&1end{vmatrix}=2cdot(-1)^{3}begin{vmatrix}-1&2\1&1end{vmatrix}=-2begin{vmatrix}-1&2\1&1end{vmatrix}=-2(-1-2)=6,

M33=(03−122100−2−102−5711)=∣032210−571∣=0⋅1⋅1+3⋅0⋅(−5)+2⋅7⋅2−2⋅1⋅(−5)−0⋅0⋅7−3⋅1⋅2=28+10−6=32M_{33}= begin{pmatrix}0&3&color{green}-1&2\2&1&color{green}0&0\color{green}-2&color{green}-1&color{green}0&color{green}2\-5&7&color{green}1&1end{pmatrix}=begin{vmatrix}0&3&2\2&1&0\-5&7&1end{vmatrix}=0cdot1cdot1+3cdot0cdot(-5)+2cdot7cdot2-2cdot1cdot(-5)-0cdot0cdot7-3cdot1cdot2=28+10-6=32,

M34=(03−122100−2−102−5711)=∣03−1210−571∣=0⋅1⋅1+3⋅0⋅(−5)+(−1)⋅7⋅2−(−1)⋅1⋅(−5)−3⋅1⋅2−0⋅0⋅7=−14−5−6=−25M_{34}= begin{pmatrix}0&3&-1&color{green}2\2&1&0&color{green}0\color{green}-2&color{green}-1&color{green}0&color{green}2\-5&7&1&color{green}1end{pmatrix}=begin{vmatrix}0&3&-1\2&1&0\-5&7&1end{vmatrix}=0cdot1cdot1+3cdot0cdot(-5)+(-1)cdot7cdot2-(-1)cdot1cdot(-5)-3cdot1cdot2-0cdot0cdot7=-14-5-6=-25,

M41=(03−122100−2−102−5711)=∣3−12100−102∣=1⋅(−1)2+1∣−1202∣=1⋅(−1)3∣−1202∣=−∣−1202∣=−(−1)⋅(−1)1+1⋅2=1⋅(−1)2⋅2=2M_{41}= begin{pmatrix}color{green}0&3&-1&2\color{green}2&1&0&0\color{green}-2&-1&0&2\color{green}-5&color{green}7&color{green}1&color{green}1end{pmatrix}=begin{vmatrix}3&-1&2\1&0&0\-1&0&2end{vmatrix}=1cdot(-1)^{2+1}begin{vmatrix}-1&2\0&2end{vmatrix}=1cdot(-1)^{3}begin{vmatrix}-1&2\0&2end{vmatrix}=-begin{vmatrix}-1&2\0&2end{vmatrix}=-(-1)cdot(-1)^{1+1}cdot2=1cdot(-1)^{2}cdot2=2,

M42=(03−122100−2−102−5711)=∣0−12200−202∣=2⋅(−1)2+1∣−1202∣=2⋅(−1)3∣−1202∣=−2∣−1202∣=−2⋅(−1)⋅(−1)1+1⋅2=2⋅(−1)2⋅2=4M_{42}= begin{pmatrix}0&color{green}3&-1&2\2&color{green}1&0&0\-2&color{green}-1&0&2\color{green}-5&color{green}7&color{green}1&color{green}1end{pmatrix}=begin{vmatrix}0&-1&2\2&0&0\-2&0&2end{vmatrix}=2cdot(-1)^{2+1}begin{vmatrix}-1&2\0&2end{vmatrix}=2cdot(-1)^{3}begin{vmatrix}-1&2\0&2end{vmatrix}=-2begin{vmatrix}-1&2\0&2end{vmatrix}=-2cdot(-1)cdot(-1)^{1+1}cdot2=2cdot(-1)^{2}cdot2=4,

M43=(03−122100−2−102−5711)=∣032210−2−12∣=0⋅1⋅2+3⋅0⋅(−2)+2⋅(−1)⋅2−2⋅1⋅(−2)−3⋅2⋅2−0⋅0⋅(−1)=−4+4−12=−12M_{43}= begin{pmatrix}0&3&color{green}-1&2\2&1&color{green}0&0\-2&-1&color{green}0&2\color{green}-5&color{green}7&color{green}1&color{green}1end{pmatrix}=begin{vmatrix}0&3&2\2&1&0\-2&-1&2end{vmatrix}=0cdot1cdot2+3cdot0cdot(-2)+2cdot(-1)cdot2-2cdot1cdot(-2)-3cdot2cdot2-0cdot0cdot(-1)=-4+4-12=-12,

M44=(03−122100−2−102−5711)=∣03−1210−2−10∣=0M_{44}= begin{pmatrix}0&3&-1&color{green}2\2&1&0&color{green}0\-2&-1&0&color{green}2\color{green}-5&color{green}7&color{green}1&color{green}1end{pmatrix}=begin{vmatrix}0&3&-1\2&1&0\-2&-1&0end{vmatrix}=0.

Алгебраическое дополнение

Алгебраическим дополнением AijA_{ij} к элементу aija_{ij} определителя n-го порядка называется число Aij=(−1)i+j⋅MijA_{ij}=(-1)^{i+j}cdot M_{ij}, где i,ji, j — соответствующие строка и столбец, а MijM_{ij} — минор к элементу aija_{ij}.

Алгоритм нахождения алгебраических дополнений

  1. найти сумму номеров строки (i)(i) и столбца (j)(j);
  2. найти минор MijM_{ij} по алгоритму нахождения миноров, который представлен выше;
  3. подставить значения, полученные на шагах 1 и 2, в формулу Aij=(−1)i+j⋅MijA_{ij}=(-1)^{i+j}cdot M_{ij}.

Пример 1

Найти алгебраическое дополнение A34A_{34} к элементу a34a_{34} определителя
∣21−23−121213−1543−31∣begin{vmatrix}2&1&-2&3\-1&2&1&2\1&3&-1&5\4&3&-3&1end{vmatrix}.
A34=(−1)3+4⋅M34=(−1)7⋅∣21−23−121213−1543−31∣=−∣21−2−12143−3∣=−(2⋅2⋅(−3)+1⋅1⋅4+(−2)⋅3⋅(−1)−(−2)⋅2⋅4−1⋅(−3)⋅(−1)−2⋅1⋅3)=−(−12+4+6+16−3−6)=−5A_{34}=(-1)^{3+4}cdot M_{34}=(-1)^{7}cdot
begin{vmatrix}2&1&-2&color{green}3\-1&2&1&color{green}2\color{green}1&color{green}3&color{green}-1&color{green}5\4&3&-3&color{green}1end{vmatrix}=-begin{vmatrix}2&1&-2\-1&2&1\4&3&-3end{vmatrix}=-(2cdot2cdot(-3)+1cdot1cdot4+(-2)cdot3cdot(-1)-(-2)cdot2cdot4-1cdot(-3)cdot(-1)-2cdot1cdot3)=-(-12+4+6+16-3-6)=-5
.

Пример 2

Найти алгебраические дополнения матрицы K=(03−122100−2−102−5711)K= begin{pmatrix}0&3&-1&2\2&1&0&0\-2&-1&0&2\-5&7&1&1end{pmatrix}.

Те строки и столбцы, которые будем вычеркивать, выделим зеленым цветом.

A11=(−1)1+1⋅M11=(−1)1+1⋅∣100−102711∣=(−1)2∣100−102711∣=∣100−102711∣=−2A_{11}=(-1)^{1+1}cdot M_{11}=(-1)^{1+1}cdotbegin{vmatrix}1&0&0\-1&0&2\7&1&1end{vmatrix}=(-1)^{2}begin{vmatrix}1&0&0\-1&0&2\7&1&1end{vmatrix}=begin{vmatrix}1&0&0\-1&0&2\7&1&1end{vmatrix}=-2,

A12=(−1)1+2⋅M12=(−1)1+2⋅∣200−202−511∣=(−1)3⋅∣200−202−511∣=−∣200−202−511∣=−(−4)=4A_{12}=(-1)^{1+2}cdot M_{12}=(-1)^{1+2}cdotbegin{vmatrix}2&0&0\-2&0&2\-5&1&1end{vmatrix}=(-1)^{3}cdotbegin{vmatrix}2&0&0\-2&0&2\-5&1&1end{vmatrix}=-begin{vmatrix}2&0&0\-2&0&2\-5&1&1end{vmatrix}=-(-4)=4,

A13=(−1)1+3⋅M13=(−1)1+3⋅∣210−2−12−571∣=(−1)4⋅∣210−2−12−571∣=∣210−2−12−571∣=−38A_{13}=(-1)^{1+3}cdot M_{13}=(-1)^{1+3}cdot begin{vmatrix}2&1&0\-2&-1&2\-5&7&1end{vmatrix}=(-1)^{4}cdot begin{vmatrix}2&1&0\-2&-1&2\-5&7&1end{vmatrix}=begin{vmatrix}2&1&0\-2&-1&2\-5&7&1end{vmatrix}=-38,

A14=(−1)1+4⋅M14=(−1)1+4⋅∣210−2−10−571∣=(−1)5⋅∣210−2−10−571∣=−∣210−2−10−571∣=0A_{14}=(-1)^{1+4}cdot M_{14}=(-1)^{1+4}cdotbegin{vmatrix}2&1&0\-2&-1&0\-5&7&1end{vmatrix}=(-1)^{5}cdot begin{vmatrix}2&1&0\-2&-1&0\-5&7&1end{vmatrix}=-begin{vmatrix}2&1&0\-2&-1&0\-5&7&1end{vmatrix}=0,

A21=(−1)2+1⋅M21=(−1)2+1⋅∣3−12−102711∣=(−1)3⋅∣3−12−102711∣=−∣3−12−102711∣=−(−23)=23A_{21}=(-1)^{2+1}cdot M_{21}=(-1)^{2+1}cdotbegin{vmatrix}3&-1&2\-1&0&2\7&1&1end{vmatrix}=(-1)^{3}cdotbegin{vmatrix}3&-1&2\-1&0&2\7&1&1end{vmatrix}=-begin{vmatrix}3&-1&2\-1&0&2\7&1&1end{vmatrix}=-(-23)=23,

A22=(−1)2+2⋅M22=(−1)2+2⋅∣0−12−202−511∣=(−1)4⋅∣0−12−202−511∣=∣0−12−202−511∣=4A_{22}=(-1)^{2+2}cdot M_{22}=(-1)^{2+2}cdotbegin{vmatrix}0&-1&2\-2&0&2\-5&1&1end{vmatrix}=(-1)^{4}cdotbegin{vmatrix}0&-1&2\-2&0&2\-5&1&1end{vmatrix}=begin{vmatrix}0&-1&2\-2&0&2\-5&1&1end{vmatrix}=4,

A23=(−1)2+3⋅M23=(−1)2+3⋅∣032−2−12−571∣=(−1)5⋅∣032−2−12−571∣=−∣032−2−12−571∣=−(−62)=62A_{23}=(-1)^{2+3}cdot M_{23}=(-1)^{2+3}cdotbegin{vmatrix}0&3&2\-2&-1&2\-5&7&1end{vmatrix}=(-1)^{5}cdotbegin{vmatrix}0&3&2\-2&-1&2\-5&7&1end{vmatrix}=-begin{vmatrix}0&3&2\-2&-1&2\-5&7&1end{vmatrix}=-(-62)=62,

A24=(−1)2+4⋅M24=(−1)2+4⋅∣03−1−2−10−571∣=(−1)6⋅∣03−1−2−10−571∣=∣03−1−2−10−571∣=25A_{24}=(-1)^{2+4}cdot M_{24}=(-1)^{2+4}cdotbegin{vmatrix}0&3&-1\-2&-1&0\-5&7&1end{vmatrix}=(-1)^{6}cdotbegin{vmatrix}0&3&-1\-2&-1&0\-5&7&1end{vmatrix}=begin{vmatrix}0&3&-1\-2&-1&0\-5&7&1end{vmatrix}=25,

A31=(−1)3+1⋅M31=(−1)3+1⋅∣3−12100711∣=(−1)4⋅∣3−12100711∣=∣3−12100711∣=3A_{31}=(-1)^{3+1}cdot M_{31}=(-1)^{3+1}cdotbegin{vmatrix}3&-1&2\1&0&0\7&1&1end{vmatrix}=(-1)^{4}cdotbegin{vmatrix}3&-1&2\1&0&0\7&1&1end{vmatrix}=begin{vmatrix}3&-1&2\1&0&0\7&1&1end{vmatrix}=3,

A32=(−1)3+2⋅M32=(−1)3+2⋅∣0−12200−511∣=(−1)5⋅∣0−12200−511∣=−∣0−12200−511∣=−6A_{32}=(-1)^{3+2}cdot M_{32}=(-1)^{3+2}cdotbegin{vmatrix}0&-1&2\2&0&0\-5&1&1end{vmatrix}=(-1)^{5}cdotbegin{vmatrix}0&-1&2\2&0&0\-5&1&1end{vmatrix}=-begin{vmatrix}0&-1&2\2&0&0\-5&1&1end{vmatrix}=-6,

A33=(−1)3+3⋅M33=(−1)3+3⋅∣032210−571∣=(−1)6⋅∣032210−571∣=∣032210−571∣=32A_{33}=(-1)^{3+3}cdot M_{33}=(-1)^{3+3}cdotbegin{vmatrix}0&3&2\2&1&0\-5&7&1end{vmatrix}=(-1)^{6}cdotbegin{vmatrix}0&3&2\2&1&0\-5&7&1end{vmatrix}=begin{vmatrix}0&3&2\2&1&0\-5&7&1end{vmatrix}=32,

A34=(−1)3+4⋅M34=(−1)3+4⋅∣03−1210−571∣=(−1)7⋅∣03−1210−571∣=−∣03−1210−571∣=−(−25)=25A_{34}=(-1)^{3+4}cdot M_{34}=(-1)^{3+4}cdotbegin{vmatrix}0&3&-1\2&1&0\-5&7&1end{vmatrix}=(-1)^{7}cdotbegin{vmatrix}0&3&-1\2&1&0\-5&7&1end{vmatrix}=-begin{vmatrix}0&3&-1\2&1&0\-5&7&1end{vmatrix}=-(-25)=25,

A41=(−1)4+1⋅M41=(−1)4+1⋅∣3−12100−102∣=(−1)5⋅∣3−12100−102∣=−∣3−12100−102∣=−2A_{41}=(-1)^{4+1}cdot M_{41}=(-1)^{4+1}cdotbegin{vmatrix}3&-1&2\1&0&0\-1&0&2end{vmatrix}=(-1)^{5}cdotbegin{vmatrix}3&-1&2\1&0&0\-1&0&2end{vmatrix}=-begin{vmatrix}3&-1&2\1&0&0\-1&0&2end{vmatrix}=-2,

A42=(−1)4+2⋅M42=(−1)4+2⋅∣0−12200−202∣=(−1)6⋅∣0−12200−202∣=∣0−12200−202∣=4A_{42}=(-1)^{4+2}cdot M_{42}=(-1)^{4+2}cdotbegin{vmatrix}0&-1&2\2&0&0\-2&0&2end{vmatrix}=(-1)^{6}cdotbegin{vmatrix}0&-1&2\2&0&0\-2&0&2end{vmatrix}=begin{vmatrix}0&-1&2\2&0&0\-2&0&2end{vmatrix}=4,

A43=(−1)4+3⋅M43=(−1)4+3⋅∣032210−2−12∣=(−1)7⋅∣032210−2−12∣=−∣032210−2−12∣=−(−12)=12A_{43}=(-1)^{4+3}cdot M_{43}=(-1)^{4+3}cdotbegin{vmatrix}0&3&2\2&1&0\-2&-1&2end{vmatrix}=(-1)^{7}cdotbegin{vmatrix}0&3&2\2&1&0\-2&-1&2end{vmatrix}=-begin{vmatrix}0&3&2\2&1&0\-2&-1&2end{vmatrix}=-(-12)=12,

A44=(−1)4+4⋅M44=(−1)4+4⋅∣03−1210−2−10∣=(−1)8⋅∣03−1210−2−10∣=∣03−1210−2−10∣=0A_{44}=(-1)^{4+4}cdot M_{44}=(-1)^{4+4}cdotbegin{vmatrix}0&3&-1\2&1&0\-2&-1&0end{vmatrix}=(-1)^{8}cdotbegin{vmatrix}0&3&-1\2&1&0\-2&-1&0end{vmatrix}=begin{vmatrix}0&3&-1\2&1&0\-2&-1&0end{vmatrix}=0.

Задачи на заказ недорого по любому предмету от наших экспертов!

Тест по теме «Минор матрицы и алгебраическое дополнение матрицы»

      1. Главный минор и ранг матрицы

Если
А
– матрица порядка nn,
то ее главный минор (M(i,
j))
порядка k
есть подматрица порядка kk,
полученная путем исключения из матрицы
А
произвольных nk
строк (i)
и соответствующих этим строкам столбцов
(j),
т. е. строк и столбцов с одинаковыми
номерами. Например,

.

Главными минорами
порядка 1 являются диагональные элементы
1, 5 и 9. Главные миноры порядка 2 представляют
собой следующие матрицы порядка (2∙2):

.

Главным
минором порядка 3 является сама матрица
А.
Если удаляются строки и столбцы с
некоторого до n,
то главный минор называется угловым.
Например,

сам определитель.

Определитель
главного минора называется главным
определителем. Общее количество главных
определителей для квадратной матрицы
порядка nхn
равно 2n-1.

Ведущий
главный минор

порядка k
матрицы порядка nn
строится путем исключения последних
nk
строк и соответствующих этим строкам
столбцов. В примере ведущий главный
минор порядка 1 равен 1 (следует исключить
последние две строки и два столбца).
Ведущий главный минор порядка 2 есть
матрица
,
а ведущий главный минор порядка 3 – сама
матрицаА.
Количество ведущих главных определителей
матрицы порядка nn
равно n.

Выделим
в определителе (1.6) некоторый элемент
aij.
Соберем в сумме все члены определителя,
в которые в качестве множителя входит
выделенный нами элемент aij
и вынесем его за скобки. Оставшееся в
скобках выражение обозначается через
Aij
и называется алгебраическим дополнением
элемента aij
в определителе D.

Пусть
роль элемента аij
играет, например, элемент а23.
Его алгебраическим дополнением является
выражение А23
= а12а31а11а32.

Таким же путем
можно найти алгебраические дополнения
остальных элементов определителя:

D
=
а13А13+а23А23+а33А33

В
общем виде алгебраическое дополнение
элемента с индексом (i,
j)
будет иметь вид

Аij
=
(-1)i+jMij,
i,
j
= 1, 2, . . . , n
(1.7)

С
учетом (1.7) можно сказать, что определитель
матрицы является разложением по
алгебраическим дополнениям

,
j
= 1, 2, . . . , n
(разложение по столбцу)

,
i
= 1, 2, . . . , n
(разложение по строке)

Если
А
– матрица порядка nхn,
то

,

где
Мi1
представляет собой подматрицу матрицы
А,
полученную путем исключения строки i
и столбца 1. Например, если

,
то

Определитель
равен сумме произведений всех элементов
любого из его столбцов на их алгебраические
дополнения. Порядок наибольшего отличного
от нуля минора данной матрицы называется
рангом
R(A).

R(A)

min(m,
n).

Рангом
квадратной матрицы А
называют наибольший порядок не
обращающегося в ноль минора этой матрицы.

Матрица
называется невырожденной (неособенной
или несингулярной), если R(A)
= n
, т. е. Det(A)
≠ 0. Матрица называется вырожденной,
если Det(A)
= 0.

      1. Линейные комбинации

Рассмотрим
два n
– мерных вектора
а
= (а1,
а2,
. . . , аn)Т
и b
= (b1,
b2,
. . . , bn)T.
Вектор а
называется пропорциональным
вектору b
, если существует число k,
такое что a
= kb,
т. е. если компоненты вектора а
пропорциональны
компонентам вектора b.

Согласно
определению, нуль-вектор пропорционален
любому вектору, так как справедливо
равенство 0n
= 0na.

Понятие
пропорциональности двух векторов
является частным случаем более общего
понятия – линейной
комбинации
.

Имея
набор, состоящий из n
векторов (а1,
а2,
. . . , аn)Т,
и набор из n
чисел (k1,
k2,
. . . , kn)
можно составить линейную комбинацию
векторов (аi)
с коэффициентами (ki).
Для этого надо i
вектор умножить на i
скаляр и все полученные таким образом
произведения сложить, т. е. линейной
комбинации векторов (аi)
с коэффициентами (ki)
называется вектор b,
определенный равенством

b
= k1a1+k2a2+
. . . +knan.

Эта
процедура есть не что иное, как умножение
матрицы А
со столбцами (аi)
на вектор с компонентами (ki),
т. е. b
= (а1,
а2,
. . . , аn)
(k1,
k2,
. . . , kn)T.

Таким образом,
любое произведение матрицы и вектора
есть линейная комбинация столбцов
матрицы с коэффициентами, равными
компонентам вектора.

Линейную
комбинацию с нулевыми коэффициентами
принято называть тривиальной,
а если хотя бы один из коэффициентов в
линейной комбинации отличен от нуля,
ее называют нетривиальной.

Например,
вектор b
= (12; 46) является
линейной комбинацией векторов

а1
= (12;
12) и а2
= (0;
34): b
= а1+а2.

Частным
случаем линейной комбинации является
неотрицательная комбинация (ki
0), в которой выполняется условиеk1+k2+
. . . +kn
=
1 . Тогда
линейная комбинация называется выпуклой
комбинацией
.

Добавить комментарий