Градиент функции
Градиент — вектор, своим направлением указывающий направление наискорейшего возрастания некоторой величины u. Другими словами, направление градиента есть направление наибыстрейшего возрастания функции.
Назначение сервиса. Онлайн калькулятор используется для нахождения градиента функции нескольких переменных. (см. пример) При этом решаются следующие задачи:
- нахождение частных производных функции, запись формулы градиента, вычисление наибольшой скорости возрастания функции в указанной точке;
- вычисление градиента в точке A, нахождение производной в точке A по направлению вектора a;
- нахождение полного дифференциала функции.
- Шаг №1
- Шаг №2
- Видеоинструкция
- Оформление Word
Решение со всеми исходными формулами сохраняется в формате Word.
Полный дифференциал для функции двух переменных:
Полный дифференциал для функции трех переменных равен сумме частных дифференциалов: d f(x,y,z)=dxf(x,y,z)dx+dyf(x,y,z)dy+dzf(x,y,z)dz
Алгоритм нахождения градиента
- Вычисление частных производных по формуле:
- Вычисление частных производных в точке A.
- Нахождение направляющих углов вектора a.
- Вычисление производной в точке A по направлению вектора a по формуле;
- Наибольшая скорость возрастания функции в указанной точке равна модулю градиента функции в этой точке.
Задать свои вопросы или оставить замечания можно внизу страницы в разделе Disqus.
Можно также оставить заявку на помощь в решении своих задач у наших проверенных партнеров (здесь или здесь).
Зафиксируем
значение
,
получим уравнениепервой степени с двумя переменными,
которое геометрически задает прямую.
В каждой точке данной прямой функция
принимает одно и то же значениеи являетсялинией
уровня.
Придавая
различные значения, например,,
… , получим множество линий уровня,
которые образуютсовокупность
параллельных
прямых.
Для линейной
функции
градиент
– это вектор
,
координаты которого равны частным
производным функциипои по(значениям коэффициентов при переменных
в целевой функции). Данный вектор
перпендикулярен каждой прямой (линии
уровня)и показывает направление возрастания
целевой функции.
Пример 4.
Построить линии уровня и градиент
функции
.
Линии уровня
при
,,– это прямые,,,параллельные
друг другу.
Градиент
– это вектор
,
перпендикулярный каждой линии уровня.
2.4. Графическое нахождение наибольшего и наименьшего значений линейной функции в области
Геометрическая
постановка задачи.
Найти в
области решений системы линейных
неравенств точку, через которую проходит
линия уровня, соответствующая наибольшему
(наименьшему) значению линейной функции
с двумя переменными.
Последовательность
действий:
-
Построить
область допустимых решений системы
линейных неравенств
Если область непустая, то можно говорить
о целесообразности нахождения в ней
наибольшего и наименьшего значений
функции.
В
A
-
Построить градиент
и одну из линий уровня
функции
. -
Параллельным
перемещением прямой
в направлении векторагеометрически найти две точки:
-
точку А «входа»
в область. Эта точка определяет точку
наименьшего значения функции
; -
точку В «выхода»
из области. Эта точка определяет точку
наибольшего значения функции
.
4. Найти координаты
точки А, решая систему уравнений прямых,
пересекающихся в точке А. Вычислить
наименьшее значение функции
.
Аналогично – для точки В и наибольшего
значения функции.
Пример 5.
Найти наибольшее и наименьшее значения
функции
в области решений
системы линейных неравенств
Решение
1.
Построим область решений системы
линейных неравенств.
у
1
О 2 x
Прямая (),
точки для построенияи.
Так какверно, то полуплоскость обращена в
сторону точки.
Прямую ()строим по точками;
неравенствоверное, полуплоскость направлена к
началу координат.
Прямая ()построена по точками;
полуплоскость обращена в сторону.
Неравенства
ипоказывают, что искомая область
(пересечение всех полуплоскостей)
находится в первой координатной четверти.
2. Построим
градиент функции
.
Это вектор с координатамис началом в точке.
Перпендикулярно градиенту построимодну из линий
уровня.
3. Параллельным
движением линии уровня в направлении
градиента
найдем точку
«входа» линии уровня в область
– это точка О(0,0). Вычислим значение
функции в
этой точке:
.
4. Продолжая движение
линии уровня в направлении градиента
,
найдемточку
«выхода» линии уровня из области
– это точка А. Для определения ее
координат решим систему уравнений
прямых
и:Решение системы уравненийи.
Вычислимзначение
функции в точке
:.
Ответ:
,.
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
Приветствую всех. Сегодня на занятии хотелось бы затронуть немало важную тему, связанную одновременно с дифференциальным исчислением и векторной алгеброй. Мы постараемся как можно меньше углубляться в теоретические тезисы и побольше сделаем упор на решение практических задач. Незамедлительно начнём.
Определение слова “градиент” в математике нужно усвоить.
Градиент – это вектор показывающий направление наибольшего возрастания функции. Модуль вектора градиента показывает скорость изменения функции.
Запишем формулу для нахождения вектора градиента:
При нашем раскладе можно с теорией закончить, этого будет достаточно.
Разберём простенький примерчик для начала.
Никто ведь не забыл как брать частные производные? Если подзабыли, ссылочка (на статью) будет в конце урока.
Было слишком уж просто для нас, возьмём что-нибудь посложнее.
Такого плана примеры уже устно не решишь, хотя… Нет, всё же возможно.
Не будем перенапрягаться сильно, рассмотрим последний пример и пойдём отдыхать.
Берёмся за дело.
Не отчаиваемся что уже конец практики, у вас всегда есть возможность найти похожие задачки в интернете или взять в библиотеке задачник по высшей математике. Практикуйтесь, практикуйтесь, и ещё раз практикуйтесь. Спасибо за внимание.
Другие темы:
Градиент функции
Как найти?
Постановка задачи
Найти градиент функции $ f(x,y,z) $ в точке $ M(x_0,y_0,z_0) $
План решения
Градиент функции $ f(x,y,z) $ – это вектор, каждая координата которого является частной производной первого порядка этой функции:
$$ grad f = frac{partial f}{partial x} overline {i} + frac{partial f}{partial y} overline{j} + frac{partial f}{partial z} overline {k} $$
- Берём частные производные первого порядка от функции $ f(x,y,z) $:
$$ frac{partial f}{partial x}, frac{partial f}{partial y}, frac{partial f}{partial z} $$ - Вычисляем полученные производные в точке $ M(x_0,y_0,z_0) $:
$$ frac{partial f}{partial x} bigg |_{M(x_0,y_0,z_0)}, frac{partial f}{partial y} bigg |_{M(x_0,y_0,z_0)}, frac{partial f}{partial z} bigg |_{M(x_0,y_0,z_0)} $$ - Подставляем, полученные данные в формулу градиента функции:
$$ grad f bigg |_M = frac{partial f}{partial x} bigg |_M overline{i} + frac{partial f}{partial y} bigg |_M overline{j} + frac{partial f}{partial z} bigg |_M overline{k} $$
Примеры решений
Пример 1 |
Найти градиент функции $ u = x + ln (z^2+y^2) $ в точке $ M(2,1,1) $ |
Решение |
Находим частные производные первого порядка функции трёх переменных: Вычисляем значение производных в точке $ M(2,1,1) $: $$ frac{partial f}{partial x} bigg |_{M(2,1,1)} = 1 $$ $$ frac{partial f}{partial y} bigg |_{M(2,1,1)} = frac{2 cdot 1}{1^2+1^2} = frac{2}{2}=1 $$ $$ frac{partial f}{partial z} bigg |_{M(2,1,1)} = frac{2cdot 1}{1^2 + 1^2} = frac{2}{2}=1 $$ Подставляем в формулу градиента функции полученные данные: $$ grad f = 1 cdot overline{i} + 1 cdot overline{j} + 1 cdot overline{k} = overline{i}+overline{j}+overline{k} $$ Запишем ответ в координатной форме: $$ grad f = overline{i}+overline{j}+overline{k} = (1,1,1) $$ Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение онлайн. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя! |
Ответ |
$$ grad f = (1,1,1) $$ |
Пример 2 |
Найти градиент функции $ u = sin(x+2y)+2sqrt{xyz} $ в точке $ M bigg (frac{pi}{2},frac{3pi}{2},3 bigg ) $ |
Решение |
Находим частные производные: $$ frac{partial f}{partial x} = cos(x+2y) + frac{yz}{sqrt{xyz}} $$ $$ frac{partial f}{partial y} = 2cos(x+2y) + frac{xz}{sqrt{xyz}} $$ $$ frac{partial f}{partial z} = frac{xy}{sqrt{xyz}} $$ Вычисляем значения производных в точке $ M bigg (frac{pi}{2},frac{3pi}{2},3 bigg ) $: $$ frac{partial f}{partial x} bigg |_{M(frac{pi}{2},frac{3pi}{2},3)} = cos(frac{pi}{2}+3pi)+ frac{frac{9pi}{2}}{sqrt{frac{9pi^2}{4}}} = cos frac{7pi}{2} + sqrt{9} = 3 $$ $$ frac{partial f}{partial y} bigg |_{M(frac{pi}{2},frac{3pi}{2},3)} = 2 cos(frac{pi}{2}+3pi) + frac{frac{3pi}{2}}{sqrt{frac{9pi^2}{4}}} = 2 cos frac{7pi}{2} + 1 = 2 cdot 0 + 1 = 1 $$ $$ frac{partial f}{partial y} bigg |_{M(frac{pi}{2},frac{3pi}{2},3)} = frac{frac{3pi^2}{4}}{sqrt{frac{9pi^2}{4}}} = sqrt{frac{pi^2}{4}} = frac{pi}{2} $$ Подставляем вычисленные недостающие данные в формулу и получаем: $$ grad f = 3 cdot overline{i}+ 1 cdot overline{j} + frac{pi}{2} cdot overline{k} = 3overline{i}+overline{j}+frac{pi}{2} overline{k} $$ Записываем ответ в координатной форме: $$ grad f = (3,1,frac{pi}{2}) $$ |
Ответ |
$$ grad f = (3,1,frac{pi}{2}) $$ |
Пусть F(x,y,z)F(x,y,z) – функция трех переменных, (x,y,z)(x,y,z) – декартовы координаты.
Градиентом функции F(x,y,z)F(x,y,z) называется векторное поле
∇F(x,y,z)=∂F∂xi+∂F∂yj+∂F∂zk,
nabla F(x,y,z)=frac{partial F}{partial x}mathbf{i}+frac{partial F}{partial y}mathbf{j}+frac{partial F}{partial z}mathbf{k},
где ∂F∂xfrac{partial F}{partial x}, ∂F∂yfrac{partial F}{partial y} и ∂F∂zfrac{partial F}{partial z} – частные производные функции F(x,y,z)F(x,y,z), а imathbf{i}, jmathbf{j} и kmathbf{k} – базис декартовой системы координат (x,y,z)(x,y,z).
Иногда градиент обозначается так: gradF(x,y,z)operatorname{grad} F(x,y,z).
Градиент функции в данной точке показывает направление наибольшего роста функции.
Пример 1
Найти градиент функции F(x,y,z)=ln(x2+y2+z2)F(x,y,z)=ln(x^2+y^2+z^2) в точке M(1,2,3)M(1,2,3).
Вычислим частные производные:
∂F∂x=∂∂xln(x2+y2+z2)=2xx2+y2+z2,
frac{partial F}{partial x}=frac{partial }{partial x}ln(x^2+y^2+z^2)=frac{2x}{x^2+y^2+z^2},
∂F∂y=∂∂yln(x2+y2+z2)=2yx2+y2+z2,
frac{partial F}{partial y}=frac{partial }{partial y}ln(x^2+y^2+z^2)=frac{2y}{x^2+y^2+z^2},
∂F∂z=∂∂zln(x2+y2+z2)=2zx2+y2+z2.
frac{partial F}{partial z}=frac{partial }{partial z}ln(x^2+y^2+z^2)=frac{2z}{x^2+y^2+z^2}.
Градиент в точке M(1,2,3)M(1,2,3) (подставляем в формулы для частных производных значения x=1x=1, y=2y=2, z=3z=3):
∇F(M)=17 i+27 j+37 k=17 OM→.
nabla F(M)=frac{1}{7},,mathbf{i}+frac{2}{7},,mathbf{j}+frac{3}{7},,mathbf{k}=frac{1}{7},,overrightarrow{OM}.
Производная по направлению
Пусть FF – функция на плоскости или в пространстве.
Производной функции FF по направлению вектора amathbf{a} в точке MM называется число
∂F∂a(M)=1∥a∥ddεF(M+εa)∣ε=0,
frac{partial F}{partialmathbf{a}}(M)=frac{1}{|mathbf{a}|}left.frac{d}{dvarepsilon}Fleft(M+varepsilon mathbf{a}right)right|_{varepsilon=0},
если производная в правой части существует.
Пример 2
Найдем производную функции F(x,y,z)=x2y−y2z+z2xF(x,y,z)=x^2y-y^2z+z^2x по направлению вектора a=i−2j+2kmathbf{a}=mathbf{i}-2mathbf{j}+2mathbf{k} в точке M(−1,0,1)M(-1,0,1).
Вычисляем значение функции в точке M+εaM+varepsilon mathbf{a} с координатами (−1+ε,−2ε,1+2ε)(-1+varepsilon,-2varepsilon,1+2varepsilon):
F(M+εa)=(−1+ε)2(−2ε)−(−2ε)2(1+2ε)+(1+2ε)2(−1+ε)=−6ε3−5ε−1.
Fleft(M+varepsilon mathbf{a}right)=(-1+varepsilon)^2(-2varepsilon)-(-2varepsilon)^2(1+2varepsilon)+(1+2varepsilon)^2(-1+varepsilon)=-6{varepsilon^{3}}-5varepsilon-1.
Длина вектора amathbf{a}:
∥a∥=a12+a22+a32=12+(−2)2+22=9=3.
|mathbf{a}|=sqrt{a_1^2+a_2^2+a_3^2}=sqrt{1^2+(-2)^2+2^2}=sqrt{9}=3.
Производная по направлению:
∂F∂a(M)=1∥a∥ddεF(M+εa)∣ε=0=13ddε(−6ε3−5ε−1)∣ε=0=−53
frac{partial F}{partialmathbf{a}}(M)=frac{1}{|mathbf{a}|}left.frac{d}{dvarepsilon}Fleft(M+varepsilon mathbf{a}right)right|_{varepsilon=0}=frac{1}{3}left.frac{d}{dvarepsilon}left(-6{varepsilon^{3}}-5varepsilon-1right)right|_{varepsilon=0}=-frac{5}{3}
Выражение производной по направлению через градиент
Используя формулу Тейлора для функций нескольких переменных, легко получить выражение производной по направлению через градиент. Действительно, из равенства
F(M+εa)=F(M)+ε(∇F(M),a)+o(ε2)Fleft(M+varepsilon mathbf{a}right)=F(M)+varepsilonleft(nabla F(M),mathbf{a}right)+oleft(varepsilon^2right)
следует, что
ddεF(M+εa)∣ε=0=(∇F(M),a).
left.frac{d}{dvarepsilon}Fleft(M+varepsilon mathbf{a}right)right|_{varepsilon=0}=left(nabla F(M),mathbf{a}right).
Таким образом,
∂F∂a(M)=(∇F(M),a)∥a∥.
frac{partial F}{partialmathbf{a}}(M)=frac{left(nabla F(M),mathbf{a}right)}{|mathbf{a}|}.
Пример 2′2′
Найдем производную функции F(x,y,z)=x2y−y2z+z2xF(x,y,z)=x^2y-y^2z+z^2x по направлению вектора a=i−2j+2kmathbf{a}=mathbf{i}-2mathbf{j}+2mathbf{k} в точке M(−1,0,1)M(-1,0,1) используя градиент.
Частные производные:
∂F∂x(M)=2xy+z2∣(x,y,z)=(−1,0,1)=1,
frac{partial F}{partial x}(M)=left.2xy+z^2right|_{(x,y,z)=(-1,0,1)}=1,
∂F∂y(M)=x2−2yz∣(x,y,z)=(−1,0,1)=1,
frac{partial F}{partial y}(M)=left.x^2-2yzright|_{(x,y,z)=(-1,0,1)}=1,
∂F∂z(M)=−y2+2zx∣(x,y,z)=(−1,0,1)=−2.
frac{partial F}{partial z}(M)=left.-y^2+2zxright|_{(x,y,z)=(-1,0,1)}=-2.
Градиент:
∇F(M)=i+j−2k.
nabla F(M)=mathbf{i}+mathbf{j}-2mathbf{k}.
Скалярное произведение:
(∇F(M),a)=(i+j−2k,i−2j+2k)=1−2−4=−5.
left(nabla F(M),mathbf{a}right)=left(mathbf{i}+mathbf{j}-2mathbf{k},mathbf{i}-2mathbf{j}+2mathbf{k}right)=1-2-4=-5.
Производная по направлению:
∂F∂a(M)=(∇F(M),a)∥a∥=−53.
frac{partial F}{partialmathbf{a}}(M)=frac{left(nabla F(M),mathbf{a}right)}{|mathbf{a}|}=-frac{5}{3}.