Как определить градусную меру угла
Содержание:
-
Градусная мера угла — формулировка
- Что отражает величина
- Обозначение
- Мера прямого угла
- Мера развернутого угла
- Мера тупого угла
- Мера острого угла
-
Как найти градусную меру
- Описание
-
Свойства углов
- Мера больше нуля
- Мера соответствует сумме градусных мер углов, разбиваемых лучом
- Отложение угла от луча
- Примеры нахождения меры угла
Градусная мера угла — формулировка
Градусная мера, в первую очередь, делает возможным измерение углов в геометрии.
Это число – показатель того, сколько градусов, минут и секунд содержится в данном угле.
Примечание
Оно всегда больше нуля.
Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.
Что отражает величина
Количество градусов, минут и секунд, которые находятся между сторонами угла.
Обозначение
С помощью символов градусов ((º)), минут ((′)) и секунд ((″)).
В одном градусе содержится шестьдесят минут, в одной минуте — шестьдесят секунд.
Пример
(125º) (22′) (15″) (сто двадцать пять градусов, двадцать две минуты, пятнадцать секунд).
Примечание
Если настолько точно, как показано выше определить меру невозможно, пользуются дробной мерой градуса. Например, (123,5º).
Пример
Обозначение на чертеже:
Мера прямого угла
Прямой всегда равен (90º). В него входит (5400′) или (324000″). Является половиной развернутого.
Мера развернутого угла
Развернутый всегда равен (180º). Представляет собой прямую.
Мера тупого угла
Тупой всегда больше (90º), но меньше (180º).
Мера острого угла
Острый всегда меньше (90º).
Примечание
Выглядит как нечто с острым концом, способным «уколоть».
Как найти градусную меру
С помощью специального измерительного инструмента – транспортира. Он может быть сделан из разного материала (пластик, дерево, тонкий металл) и выглядеть по-разному.
Разница только во внешнем виде. Устроены инструменты одинаково. Состоят из:
- основания (часто со шкалой-линейкой),
- дуги (полукруга) с двумя шкалами с градусной сеткой.
Примечание
Круглый транспортир имеет отличие в строении сетки: на нем указан полный круг в (360°).
Описание
Как производить измерения:
- найти в середине транспортира специальную метку (это может быть отверстиештрихточка и т.п.), она проходит через «0º» на сетке дуги;
- приложить инструмент этой отметкой к вершине угла, т.е. совместить «0º» с точкой вершины;
- повернуть так, чтобы основание инструмента совпадало с одной из сторон угла;
- следить, чтобы при повороте транспортира отметка «0º» не сходила с вершины;
- проводим мысленно дугу справа налево (снизу, от основания, вверх по дуге) до второй стороны угла;
- вторая сторона угла покажет на отметку с цифрой на шкале инструмента;
- это и будет градусная мера данного угла.
Примечание
Если после того, как вы приложили центральную метку транспортира к вершине угла, одна из его сторон прошла через отметку «0º» на внешней шкале полукруга, то дальше измерение проводите только по внешней шкале. Если же сторона прошла через внутренний «0º», то пользуйтесь внутренней шкалой, на внешнюю уже смотреть не нужно.
Чтобы не сделать ошибку при измерении, воспользуйтесь образцом: https://yadi.sk/i/LVbtcivDBPzimw
Свойства углов
Градусная мера меньшего всегда меньше.
Если углы равны, то их градусные меры тоже равны (и наоборот: равные меры говорят о равенстве углов).
Ниже представлены основные свойства.
Мера больше нуля
Градусная мера любого угла всегда больше (0º).
Мера соответствует сумме градусных мер углов, разбиваемых лучом
Если угол разделен лучом на несколько углов, то его градусная мера будет равна сумме всех этих углов.
Отложение угла от луча
От любого луча можно построить только один угол с градусной мерой меньше (180º).
Примеры нахождения меры угла
Задача №1
Луч ОС лежит внутри (∠АОВ). При этом (∠АОС = 36º), а (∠ВОС = 18º). Чему равен (∠АОВ)?
Решение
- Луч делит исходный угол на два.
- Значит, чтобы найти (∠АОВ), нужно сложить меры углов, полученных при проведении луча.
- (36º+18º=54º.)
Задача №2
Луч (ОК) делит (∠АОВ) на два угла. Один из них больше другого в два раза и равен (60º). Чему равен (∠АОВ)?
Здесь, как и в задаче выше, решение будет простое. Специальная формула не требуется.
Решение:
- (∠AOK = 60º,)
- Известно также, что второй — вдвое меньше него, значит, (∠KOB = 60º:2 = 30º,)
- Мы знаем что (∠АОВ = ∠АОК+∠КОВ,)
- Нам остается только выполнить сложение:( 60º+30°= 90º). Это и есть величина (∠AOB.)
При рассмотрении основных составляющих измерения углов, следует изучить исходные геометрические сведения:
- Угол.
- Развернутый угол, неразвернутый угол.
- Градус, секунда и минута.
- Градусная мера.
- Острый, прямой или тупой.
Геометрическая фигура, которая представляет собой точку — называется вершиной. А исходящие из этой вершины два луча, являются ее сторонами.
Измерение углов производится с помощью градусной меры угла. Углы измеряются таким же способом, как и отрезки, при помощи специальных единиц измерения – градусов.
Определение
Градус — геометрическая единица измерения, представляющая собой угол, который сравнивается с другими углами.
Равенство градуса таково: [frac{1}{180}] от развернутого угла. Исходя из этого, можно понять, что развернутый угол равен 180 градусам, а неразвернутый угол любой меньше 180 градусов.
Чему равна градусная мера угла
Определение
Градусная мера угла – это положительное число, которое показывает сколько раз градус и его части укладываются в данном углу.
А для их измерения используется инструмент – транспортир.
Транспортир используется следующим образом:
- Совместить вершину угла с центром транспортира, при этом одна сторона угла должна пройти по линейке.
- Штрих на шкале транспортира, через который пройдет 2-я сторона, покажет его градусную меру.
Как найти градусную меру угла
На рисунке угол АОВ = 135 градусов. Угол АОС = 90 градусов, угол ВОС = 45 градусов. Градусная мера углов равна сумме углов, на которые он разбит лучом, который проходит между его сторонами.
Отсюда следует, что величина угла AOB на рисунке 1 равна сумме величин углов AOC и [B O C: angle A O B=angle A O C+angle B O C].
Какие бывают названия углов можно понять, разобравшись со следующими обозначениями.
- Минута – 1/60 часть градуса. Обозначается знаком ‘
- Секунда – 1/60 часть минуты. Обозначают знаком»
Например: угол в 65 градусов, 35 минут,18 секунд записывается так: 75°45’28». Если градусная мера у нескольких углов одинаковая, эти углы считаются равными. Сравнить их можно по размерам – больше или меньше. Развернутый и неразвернутый углы.
Нет времени решать самому?
Наши эксперты помогут!
Градусная мера вписанного угла
Градусная мера вписанного угла равняется половине градусной меры дуги, опирающуюся на нее, и половине градусной меры угла, находящегося по центру, которая опирается на эту же дугу.
Вписанный угол равняется половине градусной меры дуги, на которую он опирается.
АВ-хорда
ВС-хорда
В-точка окружности.
Углы также различаются несколькими типами:
- Прямыми
- Острыми
- Тупыми
Равность прямого угла составляет — 90 градусов. Острый равен цифре меньше 90 градусов. А тупой же – больше 90 и меньше 180 градусов. В чем же заключается важность умения измерения углов и градусной меры в жизни? Оно пригодится в исследованиях, таких как: астрономия. Например, чтобы вычислить положение различных тел в космосе. Чтобы попрактиковаться, необходимо прочертить несколько неразвернутых углов, отличающихся друг от друга. Также важно потренироваться чертить развернутые. А еще, можно при помощи транспортира поупражняться, задавая случайные цифры, в правильности воспроизведения углов.
Существует еще такое понятие, как, биссектриса.
Определение
Биссектриса— луч, который исходит из вершины этого угла и делит его пополам.
Пример 1. Задача с биссектрисой и развернутым углом.
Рис.3 Лучи DЕ и DF – это биссектрисы, которые соответствуют углам ADB и BDC.
Теперь нужно найти угол ADC, при этом угол EDF = 75°
Ответ. Угол EDF имеет по половинке от углов ADB и BDC, это значит, что EDF – это половина самого угла ADC. Теперь получили вычисление угол ADC = 75 умножить на 2 = 150°.
Ответ: 150°
Пример 2. Задача с биссектрисой и прямым углом.
Рисунок 4. По рисунку 4 видно, что угол АВС прямой, а углы ABE EBD DBC равны. Нужно найти угол, который образовали биссектрисы — ABE и DBC.
Решение будет таким: угол АВС прямой, и исходя из этого, можно понять что он равен 90°. Угол ЕВD=90/3=30°. Согласно правилу, углы ABE EBD DBC равны и поэтому каждый из них будет = 30°. Далее видно, что биссектриса любого из трех углов делит любой из этих углов на 2 угла, которые будут равны 15°. Обе половины углов ABE и DBC относятся к углу, который необходимо найти, то можно смело утверждать, что угол, который мы вычисляем, равен 30+15+15=60°.
Решение: 60°
Градусная мера углов треугольника
У любой геометрической фигуры, кроме округлой, имеются углы. При рассмотрении углов треугольника можно увидеть следующее: Сумма углов треугольника всегда равняется 180°. Если рассматривать прямоугольный треугольник, то можно увидеть, что один из углов равен 90°. А сумма двух других углов тоже равняется 90°.
Поэтому, если известно сколько градусов составляет один из острых углов треугольника, второй угол можно найти по формуле:
[angle a=90^{circ}-angle beta]
У прямоугольного треугольника один из углов прямой, соответственно, два других – острые.
Разъяснение острого угла таково: острым углом называется угол, значение которого составляет менее 90 градусов.
Исходя из вышесказанного, можно отметить, что прямоугольный треугольник — это геометрическая фигура, которая образовалась из трех отрезков. Эти отрезки соединяются между собой тремя точками. Углы у нее все внутренние, а один из них — прямой и равняется 90°. Пример — рисунок 5.
Угол может измеряться следующими величинами:
- Градусами (и соответствующими ему величинами: угловыми минутами и секундами);
- Радианами.
Градусная мера угла
Если взять развернутый угол (это два прямых угла) и поделить его на 180 частей, то одна такая часть будет называться одним градусом. Для того, чтобы измерить градусную меру угла, необходимо посчитать, сколько раз 1 градус входит в данный угол. Полученное число и будет ответом.
Если угол таков, что его нельзя измерить целым числом, либо же он меньше единичного угла, то используют такие меры измерения как угловые минуты и секунды.
Если градус поделить на 60 частей, то одной такой частью будет минута. В свою же очередь, если минуту разделить на те же 60 частей, то полученным числом будет 1 секунда.
Радианная мера угла
Радианом называют угол, образованный дугой окружности длинной равной радиусу этой окружности.
Длина окружности равна:
l=2⋅π⋅rl=2cdotpicdot r,
где rr — радиус этой окружности.
Тогда, разделив на радиус, получаем, что полный угол в радианах равен:
lr=2⋅π⋅rr=2⋅π радианfrac{l}{r}=frac{2cdotpicdot r}{r}=2cdotpitext{ радиан}
В градусах этот же угол равен, как известно, 360∘360^{circ}.
Отсюда находим связь между радианами и градусами:
2⋅π радиан=360∘2cdotpitext{ радиан}=360^{circ}
Это та главная формула, которая нужна, чтобы переводить градусы в радианы и наоборот.
Один радиан равен:
1 радиан=360∘2⋅π≈57.3∘1text{ радиан}=frac{360^{circ}}{2cdotpi}approx57.3^{circ}
Один радиан в минутах:
1 радиан=360∘2⋅π⋅60≈3438′1text{ радиан}=frac{360^{circ}}{2cdotpi}cdot60approx3438′
Один радиан в секундах:
1 радиан=360∘2⋅π⋅60⋅60≈206280′′1text{ радиан}=frac{360^{circ}}{2cdotpi}cdot60cdot60approx206280”
Перевод градусов в радианы
Если по условию известна градусная мера угла, то чтобы перевести ее в радианную, нужно сделать следующие действия: умножить ее на πpi и разделить на 180.
y радиан=π180⋅xytext{ радиан}=frac{pi}{180}cdot x
xx — значение угла в градусах;
yy — значение того же угла в радианах.
Переведите 45 градусов в радианную меру измерения. Ответ округлите до десятой доли.
Решение
45∘=π180⋅45 радиан≈0.8 радиан45^{circ}=frac{pi}{180}cdot 45text{ радиан}approx0.8text{ радиан}
Ответ
0.8 радиан0.8text{ радиан}
Земля совершила треть от половины оборота вокруг Солнца. На какой угол в радианах она повернулась?
Решение
Найдем сначала этот угол в градусах. Полный угол составляет 360∘360^circ. Половина от полного оборота это 180∘180^{circ}. Нам же нужна треть этого угла, то есть:
180∘3=60∘frac{180^circ}{3}=60^circ
Земля отклонилась на угол 60∘60^circ от своего начального положения. Переведем теперь этот угол в радианы:
60∘=π180⋅60 радиан≈1 радиан60^circ=frac{pi}{180}cdot 60text{ радиан}approx1text{ радиан}
Решение
1 радиан1text{ радиан}
Перевод радиан в градусы
Чтобы перевести радианы в градусы, нужно умножить угол в радианах на 180 и разделить на πpi.
y∘=180π⋅xy^{circ}=frac{180}{pi}cdot x
xx — значение угла в радианах;
yy — значение того же угла в градусах.
Переведите 3 радиана в градусную меру угла.
Решение
3 радиана=180π⋅3≈172∘3text{ радиана}=frac{180}{pi}cdot3approx172^circ
Ответ
172∘172^circ
Ищете, где можно заказать задачу по математике недорого? Обратитесь к нашим экспертам в данной области!
Тест по теме «Перевод градусов в радианы и наоборот»
Геометрия,
вопрос задал Andrei282,
4 года назад
Ответы на вопрос
Ответил arturnurullin07
1
Ответ:
40
Объяснение:
т.к. углы при основании равнобедренного тр-ка равны то:
180-100=80
80/2=40
arturnurullin07:
Отметь как лучший)(
viskovvladimir6:
лучший)
Andrei282:
ответьте плз на мой второй вопрос
arturnurullin07:
ок
Ответил viskovvladimir6
2
Ответ:
т.к 1 угол 100° значит 80:2=40 это и есть 2 угла т к две угла равнобедренного треугольника при основании равны по свойству
Предыдущий вопрос
Следующий вопрос
Новые вопросы
Геометрия,
8 месяцев назад
AB=BC,AB=AC+7 (см) в треугольнике ABC.Найдите меньшую сторону треугольника ABC,если его периметр равен 23 см Очень срочно помогите!Даю 25 баллов…
Физика,
8 месяцев назад
Чему равна потенциальная энергия 3 л воды на высоте 48 км? (g = 10 Н/кг, ρводы = 1000 кг/м3). Ответ представь в МДж. Даю 60 баллов помогите через 10 мин сдавать!!!
Обществознание,
4 года назад
Помогите пожалуйста ответить на вопросы под картинкой зарание спасибо!
Химия,
4 года назад
1)название вещества и ИЗОМЕРА 2) формула вещества и ИЗОМЕРА…
Математика,
6 лет назад
Математика 6 класс зубарева номер 984…
Математика,
6 лет назад
Только сегодня новую тему прошли, вот, в ДЗ на примере застряла: 0.1х+9=0.2х-4…
1. ∠ABC — вписанный, ∠AOC — центральный. Они опираются на одну и ту же дугу ⇒ ∠AOC = 2∠ABC, откуда ∠ABC = 110°/2 = 55°
2. Градусная мера дуги ABC = 120°. Градусная мера дуги AC = 360° — 120° = 240°. ∠ABC вписан, опирается на AC ⇒ ∠ABC = 240°/2 = 120°
3. ∠ABC опираются на диаметр ⇒ ∠ABC = 90°
4. Вписанные углы ABC и ADC опираются на одну и ту же дугу ⇒ ∠ABC = ∠ADC = 40°
5. Градусная мера дуги ABC = 50°*2 = 100°. Градусная мера дуги ADC = 360° — 100° = 260°. ∠ABC вписан, опирается на ADC ⇒ ∠ABC = 260°/2 = 130°
6. ∠CBD опираются на диаметр ⇒ ∠СBD = 90°. ∠ABC = ∠СBD + ∠DBA = 90° + 30° = 120°
7. ∠CBD опираются на диаметр ⇒ ∠СBD = 90°. ∠ABC = ∠DBA — ∠СBD = 120° — 90° = 30°
8. ∠ABD опираются на диаметр ⇒ ∠ABD = 90°. BO — медиана, так как DO = OA = R. ΔABC р/б, так как AB = BD ⇒ BO не только медиана, но и биссектриса ⇒ ∠ABC = 1/2∠ABD = 45°
9. Градусная мера дуги DBC = 150°*2 = 300°. Градусная мера дуги CAD = 360° — 300° = 60°. Градусные меры дуг AC и AD равны, так как AC = AD ⇒ градусная мера дуги AC = 60°/2 = 30°. ∠ABC вписан, опирается на AC ⇒ ∠ABC = 30°/2 = 15°
10. Градусная мера дуги DC = 30°*2 = 60°. Дугу ACD стягивает диаметр ⇒ градусная мера дуги ACD = 180°. Градусная мера дуги AC = 180° — 60° = 120°. ∠ABC вписан, опирается на AC ⇒ ∠ABC = 120°/2 = 60°
11. Градусная мера дуги BC = 30°*2 = 60°. Дугу ADCB стягивает диаметр ⇒ градусная мера дуги ADCB = 180°. Градусная мера дуги AC = 180° — 60° = 120°. ∠ABC вписан, опирается на AC ⇒ ∠ABC = 120°/2 = 60°
12. Градусная мера дуги EBC = 70°*2 = 140°. Дугу ACBE стягивает диаметр ⇒ градусная мера дуги ACBE = 180°. Градусная мера дуги AC = 180° — 140° = 40°. ∠ABC вписан, опирается на AC ⇒ ∠ABC = 40°/2 = 20°
0