Как найти градусную меру угла алгебра

Алгебра и начала математического анализа, 10 класс

Урок №29. Радианная мера угла

Перечень вопросов, рассматриваемых в теме:

1) Понятие тригонометрической окружности;

2) Поворот точки вокруг начала координат;

3) Длина дуги окружности и площадь кругового сектора.

Глоссарий по теме

Окружность – это замкнутая линия, все точки которой равноудалены от центра.

Радиус окружности – отрезок, соединяющий её центр с любой лежащей на окружности точкой.

Круг – часть плоскости, ограниченная окружностью.

Дуга окружности – кривая линия, лежащая на окружности и ограниченная двумя точками.

Круговой сектор – часть круга, ограниченная двумя радиусами.

Угол в 1 радиан – центральный угол, опирающийся на дугу, равную по длине радиусу окружности.

Основная литература:

Колягин Ю.М., Ткачева М.В, Федорова Н.Е. и др., под ред. Жижченко А.Б. Алгебра и начала математического анализа (базовый и профильный уровни) 10 кл.– М.: Просвещение, 2014.

Колягин Ю.М., Ткачева М.В, Федорова Н.Е. и др., под ред. Жижченко А.Б. Учебно-методический комплект: Алгебра и начала математического анализа (базовый и профильный уровни) 10 кл.– М.: Просвещение, 2014.

Теоретический материал для самостоятельного изучения

На уроках геометрии мы с вами изучали окружность, её элементы, свойства. Повторим понятие окружности. Это замкнутая линия, все точки которой равноудалены от центра.

Радиусом окружности называется отрезок, соединяющий её центр с любой лежащей на окружности точкой.

На окружности можно выделить дугу. А если рассмотреть круг – часть плоскости, ограниченной окружностью – то можно выделить круговой сектор.

«Окружность бесконечно большого круга и прямая линия – одно и то же» Г. Галилей

Действительно, и окружность и прямая – бесконечны. Рассмотрим окружность радиуса, равному 1 единичному отрезку, в прямоугольной системе координат хОу с центром в начале координат. Такую окружность называют единичной или тригонометрической. (рис.1)

Длина этой окружности (в предыдущей задаче велотрека), как мы помним из уроков геометрии, . А учитывая, что R=1, , осями координат она поделена на четыре дуги, которые находятся соответственно в I, II, III и IV координатных четвертях.

Вычислите длину каждой дуги.

Ответ. длина каждой дуги равна части окружности или

Длина полуокружности равна А так как образовался развернутый угол, то 180.

Рассмотрим дугу, равную по длине радиусу единичной окружности. Полученный центральный угол РОМ равен длине дуги МР=R.

рис.3

Определение. Углом в 1 радиан называется центральный угол, опирающийся на дугу, равную по длине радиусу окружности.

Обозначается 1рад.

;

α рад=(180/π α)° (1)

Длину дуги l окружности радиуса R (рис.4)

можно вычислять по формуле(3)

А площадь S кругового сектора радиуса R и дугой рад (рис.5)

находят по формуле: , где (4)

Вернёмся к единичной окружности в координатной плоскости.

Каждая точка этой окружности будет иметь координаты х и у такие, что выполняются неравенства -1≤ х ≤ 1; -1≤ у ≤ 1.

Введём понятие поворота точки. (рис.2)

  1. Пусть Тогда точка А(1;0) будет двигаться по единичной окружности против часовой стрелки. Она пройдёт путь α рад от точки А(1;0) до точки В. Говорят, точка В получена из точки А поворотом на угол
  2. Пусть точка А(1;0) будет двигаться по единичной окружности по часовой стрелки . Она пройдёт путь α рад от точки А(1;0)до точки С. Говорят, точка С получена из точки А поворотом на угол – α.

При повороте на 0 рад точка остаётся на месте.

Давайте рассмотрим такой пример:

при повороте точки М(1;0) на угол получается точка N (0;1). В эту же точку можно попасть из точки М(1;0) при повороте на

угол (рис.6)

(рис.6)

Примеры и разбор решения заданий тренировочного модуля

Пример 1.

Найти градусную меру угла, равного рад.

Решение: Используя формулу (1),

находим .

Так как , то рад, тогда (2)

Ответ: .

Пример 2. Найти радианную меру угла, равного 60.

Решение:

Вычисляем по формуле (2): рад

рад

При обозначении мер угла, наименование «рад» опускают.

Ответ: рад, рад.

Пример 3. Найти длину дуги окружности радиуса 6 см, если её радианная мера .

Решение: Используя формулу (3),

получим:

Ответ: .

Пример 4. Найти площадь сектора, если радиус окружности 10 м, а радианная мера центрального угла .

Решение:

По формуле (4) вычисляем

Ответ: 45 м2

Пример 5. Найти координаты точки М, полученной из точки N(1;0) поворотом на угол, равный .

Решение: Абсцисса точки М равна отрезку ОК, ордината отрезку ОТ=МК. Так как то

прямоугольный равнобедренный треугольник ОМК имеет равные катеты и гипотенузу ОМ=R=1. По теореме Пифагора можно найти длины катетов. Они равны Учитывая, что точка М находится в I координатной четверти, её координаты положительны.

На окружности можно найти координаты любой точки.

Ответ:

Курс тригонометрии. Как найти радианную и градусную меру угла

 Сегодня мы начинаем курс тригонометрии с самого начала. Если вы планируете повторить это направление и как раз думаете, тригонометрия с чего начать, то данная серия роликов вам будет весьма полезна. Сегодня вы узнаете как найти радианную и градусную меру угла. Поэтому если у вас такие задания вызывают трудности - сопоставьте градусную и радианную меры углов - то этот ролик будет для вас полезен. Задания формата какой четверти принадлежит точка соответствующая углу, очень простые. Как найти радиус радианная мера угла - это основы, которые важно понять и запомнить. Иначе дальше придется трудно. Если вдруг у вас возникнут вопросы, как искать радианную меру угла, то пишите свои комментарии.
Сегодня мы начинаем курс тригонометрии с самого начала. Если вы планируете повторить это направление и как раз думаете, тригонометрия с чего начать, то данная серия роликов вам будет весьма полезна. Сегодня вы узнаете как найти радианную и градусную меру угла. Поэтому если у вас такие задания вызывают трудности – сопоставьте градусную и радианную меры углов – то этот ролик будет для вас полезен. Задания формата какой четверти принадлежит точка соответствующая углу, очень простые. Как найти радиус радианная мера угла – это основы, которые важно понять и запомнить. Иначе дальше придется трудно. Если вдруг у вас возникнут вопросы, как искать радианную меру угла, то пишите свои комментарии.

При рассмотрении основных составляющих измерения углов, следует изучить исходные геометрические сведения:

  • Угол.
  • Развернутый угол, неразвернутый угол.
  • Градус, секунда и минута.
  • Градусная мера.
  • Острый, прямой или тупой.

Геометрическая фигура, которая представляет собой точку — называется вершиной. А исходящие из этой вершины два луча, являются ее сторонами.

Измерение углов производится с помощью градусной меры угла. Углы измеряются таким же способом, как и отрезки, при помощи специальных единиц измерения – градусов.

Развернутый и обычный углы

Определение

Градус — геометрическая единица измерения, представляющая собой угол, который сравнивается с другими углами.

Равенство градуса таково: [frac{1}{180}] от развернутого угла. Исходя из этого, можно понять, что развернутый угол равен 180 градусам, а неразвернутый угол любой меньше 180 градусов.

Чему равна градусная мера угла

Определение

Градусная мера угла – это положительное число, которое показывает сколько раз градус и его части укладываются в данном углу.

А для их измерения используется инструмент – транспортир.

Транспортир

Рисунок 1. Транспортир

Транспортир используется следующим образом:

  • Совместить вершину угла с центром транспортира, при этом одна сторона угла должна пройти по линейке.
  • Штрих на шкале транспортира, через который пройдет 2-я сторона, покажет его градусную меру.

Как найти градусную меру угла

На рисунке угол АОВ = 135 градусов. Угол АОС = 90 градусов, угол ВОС = 45 градусов. Градусная мера углов равна сумме углов, на которые он разбит лучом, который проходит между его сторонами.

Отсюда следует, что величина угла AOB на рисунке 1 равна сумме величин углов AOC и [B O C: angle A O B=angle A O C+angle B O C].

Какие бывают названия углов можно понять, разобравшись со следующими обозначениями.

  • Минута – 1/60 часть градуса. Обозначается знаком ‘
  • Секунда – 1/60 часть минуты. Обозначают знаком»

Например: угол в 65 градусов, 35 минут,18 секунд записывается так: 75°45’28». Если градусная мера у нескольких углов одинаковая, эти углы считаются равными. Сравнить их можно по размерам – больше или меньше. Развернутый и неразвернутый углы.

Нет времени решать самому?

Наши эксперты помогут!

Градусная мера вписанного угла

Градусная мера вписанного угла равняется половине градусной меры дуги, опирающуюся на нее, и половине градусной меры угла, находящегося по центру, которая опирается на эту же дугу.

Вписанный угол равняется половине градусной меры дуги, на которую он опирается.

Вписанный угол
Рисунок.2.

АВ-хорда

ВС-хорда

В-точка окружности.

Углы также различаются несколькими типами:

  • Прямыми
  • Острыми
  • Тупыми

Равность прямого угла составляет — 90 градусов. Острый равен цифре меньше 90 градусов. А тупой же – больше 90 и меньше 180 градусов. В чем же заключается важность умения измерения углов и градусной меры в жизни? Оно пригодится в исследованиях, таких как: астрономия. Например, чтобы вычислить положение различных тел в космосе. Чтобы попрактиковаться, необходимо прочертить несколько неразвернутых углов, отличающихся друг от друга. Также важно потренироваться чертить развернутые. А еще, можно при помощи транспортира поупражняться, задавая случайные цифры, в правильности воспроизведения углов.

Существует еще такое понятие, как, биссектриса.

Определение

Биссектриса— луч, который исходит из вершины этого угла и делит его пополам.

Пример 1. Задача с биссектрисой и развернутым углом.

Биссектриса и развернутый угол

Рисунок.3.

Рис.3 Лучи DЕ и DF – это биссектрисы, которые соответствуют углам ADB и BDC.

Теперь нужно найти угол ADC, при этом угол EDF = 75°

Ответ. Угол EDF имеет по половинке от углов ADB и BDC, это значит, что EDF – это половина самого угла ADC. Теперь получили вычисление угол ADC = 75 умножить на 2 = 150°.

Ответ: 150°


Пример 2. Задача с биссектрисой и прямым углом.

Биссектриса и прямой угол

Рисунок.4.

Рисунок 4.  По рисунку 4 видно, что угол АВС прямой, а углы ABE EBD DBC равны. Нужно найти угол, который образовали биссектрисы — ABE и DBC.

Решение будет таким: угол АВС прямой, и исходя из этого, можно понять что он равен 90°. Угол ЕВD=90/3=30°. Согласно правилу, углы ABE EBD DBC равны и поэтому каждый из них будет = 30°. Далее видно, что биссектриса любого из трех углов делит любой из этих углов на 2 угла, которые будут равны 15°. Обе половины углов ABE и DBC относятся к углу, который необходимо найти, то можно смело утверждать, что угол, который мы вычисляем, равен 30+15+15=60°.

Решение: 60°

Градусная мера углов треугольника

У любой геометрической фигуры, кроме округлой, имеются углы. При рассмотрении углов треугольника можно увидеть следующее: Сумма углов треугольника всегда равняется 180°. Если рассматривать прямоугольный треугольник, то можно увидеть, что один из углов равен 90°. А сумма двух других углов тоже равняется 90°.

Поэтому, если известно сколько градусов составляет один из острых углов треугольника, второй угол можно найти по формуле:

[angle a=90^{circ}-angle beta]

У прямоугольного треугольника один из углов прямой, соответственно, два других – острые.

Разъяснение острого угла таково: острым углом называется угол, значение которого составляет менее 90 градусов.

Прямоугольный треугольник

Рисунок 5. Прямоугольный треугольник

Исходя из вышесказанного, можно отметить, что прямоугольный треугольник — это геометрическая фигура, которая образовалась из трех отрезков. Эти отрезки соединяются между собой тремя точками. Углы у нее все внутренние, а один из них — прямой и равняется 90°. Пример —  рисунок 5.

Углы в математике (а также в тригонометрии и физике) высчитываются и измеряются в градусах или в радианах. Важно понимать и определять связь между этими единицами измерения, и переводить их из одной в другую. Понимание и определение этой связи позволяет оперировать углами и перевести градусы в радианы, а также осуществить перевод из радиан в градусы с помощью специальной тригонометрической формулы – формулы перевода градусов в радианы. В данной статье мы разберемся, зачем все это нужно конвертировать (и что делать с конвертируемым), выведем формулу для перевода градусов в радианы и обратно – из радианов в градусы, а также разберем несколько примеров из практики по конвертации.

Связь между градусами и радианами

Что такое радиан? Радиан вместе с градусом является выражением угловой меры: это величина, которая используется для измерения плоских углов. Поэтому, когда говорят о таблице градусов и радиан, то имеют в виду таблицу, в которой представлены соответствия угловых градусов радианам (что позволяет вам не находить и не считать самостоятельно на калькуляторе, к примеру).

Как перевести радианы в градусы — есть формула? Для нахождения связи между градусами и радианами, необходимо узнать, сколько будет градусная и ридианная (радиальная) мера какого-либо угла (и для этого нам не нужно пользоваться каким-либо переводчиком онлайн). Например, возьмем центральный угол, который опирается на диаметр окружности радиуса r. Чтобы вычислить радианную меру этого угла, необходимо рассчитать определенные данные: длину дуги разделить на длину радиуса окружности. Рассматриваемому углу соответствует длина дуги, равная половине длины окружности π·r. Разделим длину дуги на радиус и получим радианную меру угла: π·rr=π рад.

Итак, рассматриваемый угол равен π радиан. С другой стороны, это развернутый угол, равный 180°. Следовательно, 180°=π рад. 

Связь градусов с радианами

Связь между радианами и градусами выражается следующей полной формулой 

π радиан =180°

Формулы перевода из градусов в радианы и наоборот

Как перевести градусы в радианы не более, чем за минуту? Что делать с координатами в градусах, если нужны в радианах? Из содержания формулы, полученной выше, можно вывести другие формулы для перевода углов из радианов в градусы и обратно из градусов в радианы (взаимно преобразовывать и пересчитывать).

Как онлайн найти градусную меру угла и сделать пересчет? Выразим 1 радиан в градусах. Для этого разделим левую и правую части радиуса на пи.

1 рад=180π° – град. мера угла в 1 радиан равна 180π.

Также можно выразить один градус в радианах. Чему равен 1 радиан и во что он будет переходить? Вот простой расчет.

1°=π180рад

Можно произвести приблизительные вычисления величин угла в радианах и наоборот. Для этого возьмем значения числа π с точностью до десятитысячных и подставим в полученные формулы. 

1 рад=180π°=1803,1416°=57,2956°

Значит, в одном радиане примерно 57 градусов

1°=π180рад=3,1416180рад=0,0175 рад

Один градус содержит 0,0175 радиана.

По какой формуле перевести радианы в градусы?

Формула перевода радианов в градусы

x рад=х·180π°

Чтобы перевести угол из радианов в градусы, нужно значение угла в радианах умножить на 180 и разделить на пи.

Примеры перевода градусов в радианы и радианов в градусы

Рассмотрим пример, как перевести градусы в радианы по формуле.

Конечно, в интернете это все может считаться за секунду, но у самостоятельного подсчета другие преимущества.

Пример 1. Перевод косинуса угла из радианов в градусы

Пусть α=3,2 рад. Нужно узнать градусную меру этого угла.

Применим формулу перехода от радианов к градусам и получим:

3,2 рад=3,2·180π°≈3,2·1803,14°≈5763,14°≈183,4°

Аналогично можно получить формулу перевода в радианы из градусов.

Формула перевода из градусов в радианы

y°=y·π180рад

Пример 2. Перевод из градусов в радианы

Переведем 47 градусов в радианы.

Согласно формуле, умножим 47 на пи и разделим на 180.

47°≈47·3,14180≈0,82 рад

Ирина Мальцевская

Преподаватель математики и информатики. Кафедра бизнес-информатики Российского университета транспорта

Материалы урока

Прежде, чем приступить к рассмотрению новой темы, давайте вспомним, что градусом называют величину центрального угла, которому соответствует  часть окружности. Градусная мера угла – это положительное число, которое показывает, сколько раз градус и его части укладываются в измеряемом угле.

А углы можно измерять только в градусах? Сегодня на уроке мы рассмотрим ещё одну единицу измерения углов.

Давайте изобразим окружность с центром в точке  и радиусом . Затем проведём вертикальную прямую, которая касается окружности в точке . Эту прямую мы будем считать числовой осью с началом отсчёта в точке . Положительным направлением на прямой будем считать направление вверх. За единичный отрезок на числовой оси возьмём радиус окружности.

Отметим на прямой несколько точек:  и  и  и  и  и .

Теперь представим нашу прямую в виде нерастяжимой нити, которая закреплена на окружности в точке . Будем наматывать нить на окружность. При этом точки на числовой прямой с координатами  перейдут соответственно в точки окружности . При этом длина дуги  равна , длина дуги  равна , длина дуги  равна , длина дуги  равна .

Получается, что каждой точке прямой ставится в соответствие некоторая точка окружности.

Так, точке прямой с координатой  ставится в соответствие точка . А значит, угол  можем считать единичным? Да, и его мерой мы будем измерять другие углы. Например, угол  следует считать равным , а угол  равным .

А где используют такой способ измерения углов? Такой способ измерения углов широко используется в математике и физике. Говорят, что углы измеряются в радианной мере.

Единичный угол  называют углом в один радиан. Записывают так:  рад.

И напомним, что длина дуги  равна радиусу нашей окружности.

Сейчас давайте рассмотрим окружность радиуса . И отметим на ней дугу , равную длине радиуса окружности, и угол .

И такой угол называется углом в один радиан? Верно.

Запомните! Центральный угол, опирающийся на дугу, длина которой равна радиусу окружности, называется углом в один радиан.

Интересно, а скольким градусам равен угол в один радиан? Давайте найдём градусную меру угла в один радиан. Мы знаем из курса геометрии, что дуге длиной , то есть полуокружности, соответствует центральный угол, равный . Следовательно, дуге окружности длиной  соответствует угол в  раз меньший.

Выше мы назвали такой угол углом в один радиан, а значит, можем записать, что рад , тогда рад .

Если угол содержит  рад, то рад . Эту формулу называют формулой перехода от радианной меры к градусной.

Давайте с вами найдём градусную меру угла, равного  рад. Для этого воспользуемся формулой перехода от радианной меры к градусной. Подставим  вместо . Сократим на  и на . И в результате получим .

Можно ли, наоборот, перейти от градусной меры к радианной? Конечно, можно, но такой переход будет чуть сложнее. Так как угол в  равен  рад, то  рад. Тогда  рад. Такую формулу называют формулой перехода от градусной меры к радианной.

Найдём радианную меру угла, равного . Воспользуемся формулой перехода от градусной меры к радианной. Подставим  вместо . Сократим  и  на . И в результате получим .

Обратите внимание, что при обозначении меры угла в радианах слово «радиан» обычно не пишут: . При этом обозначение градуса в записи меры угла пропускать нельзя.

В следующей таблице представлены углы в градусной и радианной мере, с которыми мы будем встречаться чаще всего.

Отметим, что радианная мера углов позволяет значительно упростить многие формулы в математике, физике, механике. В частности, радианная мера угла удобна для вычисления длины дуги окружности. Так, выше мы выяснили, что угол в  рад стягивает дугу, длина которой равна радиусу , а значит, угол в  рад стягивает дугу длиной: . Если , то эта формула принимает совсем простой вид: , то есть длина дуги равна величине центрального угла, стягиваемого этой дугой.

Сейчас, прежде чем приступить к выполнению заданий, мы докажем, что площадь кругового сектора радиуса , образованного углом в  рад, равна , где .

Докажем это. Известно, что площадь круга вычисляется по формуле: . Площадь полукруга, то есть кругового сектора в  рад: . Тогда площадь сектора в  рад в  раз меньше, то есть . Следовательно, площадь сектора в  рад равна .

Ну а сейчас давайте выполним несколько заданий.

Первое задание. Найдите градусную меру угла, выраженную в радианах: а) ; б) ; в) ; г) ; д) .

Решение.

Второе задание. Найдите радианную меру угла, выраженного в градусах: а) ; б) ; в) ; г) .

Решение.

Следующее задание. Чему равен радиус окружности, если дуге длиной  см соответствует центральный угол в  рад?

Решение.

И ещё одно задание. Дуге кругового сектора соответствует угол, равный  рад. Чему равна площадь сектора, если радиус круга равен  см?

Решение.

Ну а сейчас немного истории.

Впервые радиан как единица измерения был использован английским математиком Роджером Котсом в 1713 году. Он считал, что радиан является наиболее естественной единицей измерения углов. Термин «радиан» впервые появился в печати в 1873 году в экзаменационных билетах Университета Квинса в Белфасте, составленных британским инженером и физиком Джеймсом Томсоном.

В 1960 году XI Генеральной конференцией по мерам и весам радиан был принят в качестве единицы измерения плоских углов в Международной системе единиц (СИ).

Добавить комментарий