Углы в математике (а также в тригонометрии и физике) высчитываются и измеряются в градусах или в радианах. Важно понимать и определять связь между этими единицами измерения, и переводить их из одной в другую. Понимание и определение этой связи позволяет оперировать углами и перевести градусы в радианы, а также осуществить перевод из радиан в градусы с помощью специальной тригонометрической формулы – формулы перевода градусов в радианы. В данной статье мы разберемся, зачем все это нужно конвертировать (и что делать с конвертируемым), выведем формулу для перевода градусов в радианы и обратно – из радианов в градусы, а также разберем несколько примеров из практики по конвертации.
Связь между градусами и радианами
Что такое радиан? Радиан вместе с градусом является выражением угловой меры: это величина, которая используется для измерения плоских углов. Поэтому, когда говорят о таблице градусов и радиан, то имеют в виду таблицу, в которой представлены соответствия угловых градусов радианам (что позволяет вам не находить и не считать самостоятельно на калькуляторе, к примеру).
Как перевести радианы в градусы — есть формула? Для нахождения связи между градусами и радианами, необходимо узнать, сколько будет градусная и ридианная (радиальная) мера какого-либо угла (и для этого нам не нужно пользоваться каким-либо переводчиком онлайн). Например, возьмем центральный угол, который опирается на диаметр окружности радиуса r. Чтобы вычислить радианную меру этого угла, необходимо рассчитать определенные данные: длину дуги разделить на длину радиуса окружности. Рассматриваемому углу соответствует длина дуги, равная половине длины окружности π·r. Разделим длину дуги на радиус и получим радианную меру угла: π·rr=π рад.
Итак, рассматриваемый угол равен π радиан. С другой стороны, это развернутый угол, равный 180°. Следовательно, 180°=π рад.
Связь между радианами и градусами выражается следующей полной формулой
π радиан =180°
Формулы перевода из градусов в радианы и наоборот
Как перевести градусы в радианы не более, чем за минуту? Что делать с координатами в градусах, если нужны в радианах? Из содержания формулы, полученной выше, можно вывести другие формулы для перевода углов из радианов в градусы и обратно из градусов в радианы (взаимно преобразовывать и пересчитывать).
Как онлайн найти градусную меру угла и сделать пересчет? Выразим 1 радиан в градусах. Для этого разделим левую и правую части радиуса на пи.
1 рад=180π° – град. мера угла в 1 радиан равна 180π.
Также можно выразить один градус в радианах. Чему равен 1 радиан и во что он будет переходить? Вот простой расчет.
1°=π180рад
Можно произвести приблизительные вычисления величин угла в радианах и наоборот. Для этого возьмем значения числа π с точностью до десятитысячных и подставим в полученные формулы.
1 рад=180π°=1803,1416°=57,2956°
Значит, в одном радиане примерно 57 градусов
1°=π180рад=3,1416180рад=0,0175 рад
Один градус содержит 0,0175 радиана.
По какой формуле перевести радианы в градусы?
x рад=х·180π°
Чтобы перевести угол из радианов в градусы, нужно значение угла в радианах умножить на 180 и разделить на пи.
Примеры перевода градусов в радианы и радианов в градусы
Рассмотрим пример, как перевести градусы в радианы по формуле.
Конечно, в интернете это все может считаться за секунду, но у самостоятельного подсчета другие преимущества.
Пусть α=3,2 рад. Нужно узнать градусную меру этого угла.
Применим формулу перехода от радианов к градусам и получим:
3,2 рад=3,2·180π°≈3,2·1803,14°≈5763,14°≈183,4°
Аналогично можно получить формулу перевода в радианы из градусов.
y°=y·π180рад
Переведем 47 градусов в радианы.
Согласно формуле, умножим 47 на пи и разделим на 180.
47°≈47·3,14180≈0,82 рад
Преподаватель математики и информатики. Кафедра бизнес-информатики Российского университета транспорта
Угол может измеряться следующими величинами:
- Градусами (и соответствующими ему величинами: угловыми минутами и секундами);
- Радианами.
Градусная мера угла
Если взять развернутый угол (это два прямых угла) и поделить его на 180 частей, то одна такая часть будет называться одним градусом. Для того, чтобы измерить градусную меру угла, необходимо посчитать, сколько раз 1 градус входит в данный угол. Полученное число и будет ответом.
Если угол таков, что его нельзя измерить целым числом, либо же он меньше единичного угла, то используют такие меры измерения как угловые минуты и секунды.
Если градус поделить на 60 частей, то одной такой частью будет минута. В свою же очередь, если минуту разделить на те же 60 частей, то полученным числом будет 1 секунда.
Радианная мера угла
Радианом называют угол, образованный дугой окружности длинной равной радиусу этой окружности.
Длина окружности равна:
l=2⋅π⋅rl=2cdotpicdot r,
где rr — радиус этой окружности.
Тогда, разделив на радиус, получаем, что полный угол в радианах равен:
lr=2⋅π⋅rr=2⋅π радианfrac{l}{r}=frac{2cdotpicdot r}{r}=2cdotpitext{ радиан}
В градусах этот же угол равен, как известно, 360∘360^{circ}.
Отсюда находим связь между радианами и градусами:
2⋅π радиан=360∘2cdotpitext{ радиан}=360^{circ}
Это та главная формула, которая нужна, чтобы переводить градусы в радианы и наоборот.
Один радиан равен:
1 радиан=360∘2⋅π≈57.3∘1text{ радиан}=frac{360^{circ}}{2cdotpi}approx57.3^{circ}
Один радиан в минутах:
1 радиан=360∘2⋅π⋅60≈3438′1text{ радиан}=frac{360^{circ}}{2cdotpi}cdot60approx3438′
Один радиан в секундах:
1 радиан=360∘2⋅π⋅60⋅60≈206280′′1text{ радиан}=frac{360^{circ}}{2cdotpi}cdot60cdot60approx206280”
Перевод градусов в радианы
Если по условию известна градусная мера угла, то чтобы перевести ее в радианную, нужно сделать следующие действия: умножить ее на πpi и разделить на 180.
y радиан=π180⋅xytext{ радиан}=frac{pi}{180}cdot x
xx — значение угла в градусах;
yy — значение того же угла в радианах.
Переведите 45 градусов в радианную меру измерения. Ответ округлите до десятой доли.
Решение
45∘=π180⋅45 радиан≈0.8 радиан45^{circ}=frac{pi}{180}cdot 45text{ радиан}approx0.8text{ радиан}
Ответ
0.8 радиан0.8text{ радиан}
Земля совершила треть от половины оборота вокруг Солнца. На какой угол в радианах она повернулась?
Решение
Найдем сначала этот угол в градусах. Полный угол составляет 360∘360^circ. Половина от полного оборота это 180∘180^{circ}. Нам же нужна треть этого угла, то есть:
180∘3=60∘frac{180^circ}{3}=60^circ
Земля отклонилась на угол 60∘60^circ от своего начального положения. Переведем теперь этот угол в радианы:
60∘=π180⋅60 радиан≈1 радиан60^circ=frac{pi}{180}cdot 60text{ радиан}approx1text{ радиан}
Решение
1 радиан1text{ радиан}
Перевод радиан в градусы
Чтобы перевести радианы в градусы, нужно умножить угол в радианах на 180 и разделить на πpi.
y∘=180π⋅xy^{circ}=frac{180}{pi}cdot x
xx — значение угла в радианах;
yy — значение того же угла в градусах.
Переведите 3 радиана в градусную меру угла.
Решение
3 радиана=180π⋅3≈172∘3text{ радиана}=frac{180}{pi}cdot3approx172^circ
Ответ
172∘172^circ
Ищете, где можно заказать задачу по математике недорого? Обратитесь к нашим экспертам в данной области!
Тест по теме «Перевод градусов в радианы и наоборот»
Radians to degrees is a type of transformation used in geometry to convert angle measurements. There are two alternative methods for measuring an angle. Radians and degrees are the two units used to measure angles. Radian is the most commonly used unit in trigonometry. Various types of angles are measured in radians and then converted to degrees using a formula. This formula is discussed below.
Radians to Degrees Conversion
Two separate ways are used to measure angles. A right angle is split into 90 equal portions, which are referred to as degrees, in the Sexagesimal System. Each degree is split into 60 equal parts called minutes, which are divided further into 60 equal parts called seconds. Degree to Radian conversion can also be learned here.
- 60” = 1 minute (1’)
- 90° = 1 right angle
Radians
Angle subtended to center of a circle by radius after a complete rotation is called 2π radians. The angle in radians made by radius at the center of the circle is the ratio of length of an arc to length of a radius. If the length of the arc is equal to the length of the radius, the angle subtended at the center is called 1 radian. The unit of a radian is rad. Radian is the SI unit for measuring angles.
Degrees
Angles can also be measured in degrees. One revolution divides the circle into 360 equal parts and each part is equal to a degree. Thus, angle subtended at the center of a circle after one complete rotation is 360°. Symbol used to denote degrees is ‘°’. Degrees is not an SI unit for measuring an angle, but it is the most commonly used unit to measure an angle.
By comparing the measures of an angle for a complete rotation
- 360 Degrees = 2π Radians
- 180 Degrees = π Radians
How to Convert Degrees to Radians?
Value of 180° is equal to π radians. For converting the given angle from degrees to radians, we multiply the value of the angle in degrees by a factor of π/180.
Where the value of π = 22/7 or 3.14
Steps shown below are used for the conversion of angle in degrees to radians.
Step 1: Mark the value of the given angle in degrees
Step 2: Multiply the value obtained from the above step by π/180
Step 3: Solve the expression and rationalize the answer
Step 4: The result obtained is the measure of the angle in radian
Example: Convert 60 degrees to radians.
Solution:
Given angle is 60 degrees
Angle in radian = Angle in degree x (π/180)
= 60 x (π/180)
= π/3
Hence, 60 degrees is equal to π/3 in radian.
Radians to Degrees Formula
Radians to Degrees formula converts the value of angle in radians to degrees. To convert the angle in radians to degrees we multiply the value in radians by 180°/π. Angles are used in two units: degrees and radians, 1 degree is expressed as 1° whereas 1 radian is expressed 1c or 1 i.e. no unit is also used to express angle in radian. The formula for changing the angle in radians to degrees is:
Angle in Radians × 180°/π = Angle in Degrees
2π radians = 360°
π radians = 180°
1 radian = 180/π degrees = 57.296 degrees
Radians to Degrees Conversion Table
The table is given below shows the values angle in radian and their respective value in degree.
Angle in radian | Angle in degree |
0 | 0° |
π/6 | 30° |
π/4 | 45° |
π/3 | 60° |
π/2 | 90° |
π | 180º |
(3π)/2 | 270º |
2π | 360º |
Solved Examples on Radians to Degrees
Example 1: Convert 9π/5 radians to degrees.
Solution:
Since, π radians = 180° or 1 radian = 1c = (180/π)°
Hence, (9π/5)c = (9π/5 × 180/π)° = 324°
Thus, (9π/5)c = 324o
Example 2: Convert −5π/6 radians into degrees.
Solution:
We know that π radians = 180° or 1 radian = 1c = (180/π)°
Hence, (−5π/6)c = (−5π/6 × 180/π)° = −150°
Thus, (9π/5)c = −150°
Example 3: Convert 18π/5 into degrees.
Solution:
We know that π radians = 180° or 1 radian = 1c = (180/π)°
Hence, (18π/5)c = (18π/5 × 180/π)° = 648°
Thus, (18π/5)c = 648°
Example 4: Convert −3 radians into degrees.
Solution:
We know that π radians = 180° or 1 radian = 1c = (180/π)°
Hence, (−3)c = (−3 × 180/π)° = (180 × 7 × −3/22)° = (−1719/11) = −171°(9 × 60/11)’ = −171°49’5”
Thus, (−3)c = −171o49’5”
Example 5: Convert 11 radians into degrees.
Solution:
We know that π radians = 180° or 1 radian = 1c = (180/π)°
Hence, (11)c = (11 × 180/π)° = (11 × 180 × 7/22) = 630°
Thus, (11)c = 630°
Example 6: Convert 1 radian to degrees.
Solution:
We know that π radians = 180° or 1 radian = 1c = (180/π)°
Hence, (1)c = (1 × 180/π)° = (180 × 7/22) = 57°(3 × 60/11) = 57°16′(4 × 60/11)” = 57°16’21”
Thus, (1)c = 57o16’21”
FAQs on Radians to Degrees
Question 1: What is the Difference between Radians and Degrees?
Answer:
Radians and Degrees both are units used to measure angles. Radian is the SI unit for measurement of angle, whereas degree is the general unit used to measure angles. The relationship between them is π rad = 180°
Question 2: What is the Radian of 1 Degree?
Answer:
A complete revolution of a circle is equal to 2π radians that is equivalent to 360°, i.e. 2π rad = 360°
1° = 2π/360 rad
Thus, 1 degree is equal to π/180 radians.
Question 3: What is the value of 1 radian in degrees?
Answer:
We know that π radians are equal to 180 degrees. So, 1 radian = 57o16’21”
Question 4: Is π radians equal to 180 degrees?
Answer:
Yes, we know that 2π radians are equal to 360 degrees. Thus, π radians equal 180 degrees.
Question 5: Why are 360 degrees equal to 2π?
Answer:
The Right angle is equal to π/2 radians. One complete revolution is considered as the length of an entire circumference of a circle divided by its radius, or 2πr / r. Thus 2π radians equals to 360 degrees,
Related Article
- Types of angles
- Pair of Angles
Перевод градусов в радианы и обратно
- Главная
- /
- Математика
- /
- Геометрия
- /
- Перевод градусов в радианы и обратно
Чтобы перевести градусы в радианы и обратно, воспользуйтесь нашим удобным онлайн конвертером:
Перевод градусов в радианы
°
Округление ответа: Округление числа π:
Просто введите значение угла в градусах и получите результат в радианах с подробным решением.
Перевод радиан в градусы
Числовое значение:
рад.
=
0
°
Значение с π:
⋅π рад. =
180
°
Округление ответа: Округление числа π:
Просто введите значение угла в радианах и получите результат в градусах с подробным решением.
Теория
Градусы в радианы
Чтобы перевести градусы в радианы, нужно воспользоваться следующий формулой:
Формула
рад. = гр. ⋅ π180
Пример
К примеру, переведём 45° в радианы:
45°=45 ⋅ 3.14180=0.785 рад.
45°=45 ⋅ π180=45 : 45 ⋅ π180 : 45=π4 рад.
Радианы в градусы
Чтобы перевести радианы в градусы, нужно воспользоваться следующий формулой:
Формула
гр. = рад. ⋅ 180π
Пример №1
К примеру, переведём 0.785 рад. в градусы:
0.785 рад.=0.785 ⋅ 1803.14=45°
Пример №2
К примеру, переведём π4 рад. в градусы:
π4 рад.=π4 ⋅ 180π=1804=45°
Основное понятие градуса и радиана и их взаимосвязь
В математике, такое определение, как угол принято измерять градусами и радианами.
Эти два измерения угла имеют взаимосвязь и необходимо четко понимать в чем она заключается.
В данном материале, мы постараемся разобраться и вывести
основную формулу для вычисления градусов в значение радиан, и соответственно в обратном порядке.
Определение
Радиан — это угол, который образуется окружной дугой, ее длина, следовательно, равняется радиусу данной окружности.
Радианная мера — угловое значение,где за единицу берется угол в 1 радиан. А именно, вышеупомянутая мера любого угла — это соотношение принятого угла к радиану. Из этого следует, что величина полного значения угла равняется [2 cdot pi] радиан.
Определяем длину окружности, по стандартной формуле:
[ l=2 cdot pi cdot r ]
Чтобы определить полный угол в радианах проводим следующие действие: [frac{l}{r}=frac{2 cdot pi cdot r}{r}=2 cdot pi] , соответственно в градусах значение будет равно 360. Отсюда следует [2 cdot pi=360^{circ}].
Какова связь между градусами и радианами?
Угол имеет градусную и радианную меру. Зная ее, можно установить связь между градусом и радианом.
Например, возьмем для примера центральный угол, который примыкает к диаметру окружности радиуса R.
Нам необходимо вычислить значение радианной меры угла. Для решения этой задачи, длину самой дуги поделить на длину радиуса окружности.
Заданный угол равен [pi] радиан. Данный угол 180 градусов и по законам математики, является развернутым. Отсюда следует, что 180 градусов эквивалентно [pi] радиан.
Данную связь можно выразить через формулу.
[text { п рад }=180 text { град. }]
Перевод радианов в градусы и соответственно в обратном порядке
Для перевода радиан в градусы и наоборот необходимо знать и применять на практике следующие формулы:
Один радиан равен: [frac{360^{circ}}{2 cdot pi} approx 57^{circ}];
Один радиан в минутах: [frac{360^{circ}}{2 cdot pi} cdot 60 approx 3438];
Один радиан в секундах: [frac{360^{circ}}{2 cdot pi} cdot 3600 approx 206280].
[ 1 text { радиан }=left(frac{180}{pi}right) text { градусов. } ]
[ 1 text { градус }=left(frac{pi}{180}right) text { рад. } ]
Рассмотрим на конкретном примере:
[1 text { радиан }=left(frac{180}{pi}right)=left(frac{180}{3,14}right)=57,324] следовательно в 1 радиане 57 градусов.
[1 text { градус }=left(frac{pi}{180}right) text { радиан }=left(frac{3,14}{180}right)=0,017] радиан (сокращенно рад.).
[text { х радиан }=left(frac{chi cdot 180}{pi}right)], дословно будет звучать как: 180 * умножить на числовое значение угла и раздели.
Соответствие градусов и радиан принято, для удобства решения сводить в таблицу.
Пример, приведен в таблице 1.
Таблица 1. Соотношение значений.
Числовые значения в градусах | Соответствующие данные радиан |
1° | 0,018 |
2° | 0,035 |
Как мы видим изученная тема не очень сложная. Достаточно знать основные формулы и в расчетах, и проблем не должно возникать.
Для более лучшего закрепления разберемся и решим несколько задач по вычислении градусов и радианов углов.
Нет времени решать самому?
Наши эксперты помогут!
Задача №1
Переведите 35 градусов в радианы.
[ 35^{circ}=left(frac{pi}{180}right) cdot 35 text { радиан }=0,6 text { рад } ]
Ответ: 35°=0,6 рад.
Задача №2
Переведите 55 градусов в радианы.
[55^{circ}=left(frac{pi}{180}right) cdot 55 text { радиан}=0,9 text { paд }]
Ответ: 55°=0,9 рад.
Задача №3
Необходимо вычислить значение третьей половины полного угла.
Для начала определяем угол в градусах.
Нужно определить третью часть угла. Следовательно полный угол равняется 360 градусов, половина 180, а треть [frac{180}{3}=60] градусов.
Пользуясь формулой из задач №1 и 2, определяем значение в радианах.
[ 60^{circ}=left(frac{pi}{180}right) cdot 60 text { радиан }=1 text { рад } ]
Ответ: 1 рад.