В этой статье мы рассмотрим линейную функцию, график линейной функции и его свойства. И, как обычно, решим несколько задач на эту тему.
Линейной функцией называется функция вида
В уравнении функции число , которое мы умножаем на называется коэффициентом наклона.
Например, в уравнении функции ;
в уравнении функции ;
в уравнении функции ;
в уравнении функции .
Графиком линейной функции является прямая линия.
1. Чтобы построить график функции, нам нужны координаты двух точек, принадлежащих графику функции. Чтобы их найти, нужно взять два значения х, подставить их в уравнение функции, и по ним вычислить соответствующие значения y.
Например, чтобы построить график функции , удобно взять и , тогда ординаты эти точек будут равны и .
Получим точки А(0;2) и В(3;3). Соединим их и получим график функции :
2. В уравнении функции коэффициент отвечает за наклон графика функции:
Коэффициент отвечает за сдвиг графика вдоль оси :
На рисунке ниже изображены графики функций ; ;
Заметим, что во всех этих функциях коэффициент больше нуля, и все графики функций наклонены вправо. Причем, чем больше значение , тем круче идет прямая.
Во всех функциях – и мы видим, что все графики пересекают ось OY в точке (0;3)
Теперь рассмотрим графики функций ; ;
На этот раз во всех функциях коэффициент меньше нуля, и все графики функций наклонены влево.
Заметим, что чем больше |k|, тем круче идет прямая. Коэффициент b тот же, b=3, и графики также как в предыдущем случае пересекают ось OY в точке (0;3)
Рассмотрим графики функций ; ;
Теперь во всех уравнениях функций коэффициенты равны. И мы получили три параллельные прямые.
Но коэффициенты b различны, и эти графики пересекают ось OY в различных точках:
График функции (b=3) пересекает ось OY в точке (0;3)
График функции (b=0) пересекает ось OY в точке (0;0) – начале координат.
График функции (b=-2) пересекает ось OY в точке (0;-2)
Итак, если мы знаем знаки коэффициентов k и b, то можем сразу представить, как выглядит график функции .
Если k<0 и b>0, то график функции имеет вид:
Если k>0 и b>0, то график функции имеет вид:
Если k>0 и b<0, то график функции имеет вид:
Если k<0 и b<0, то график функции имеет вид:
Если k=0 , то функция превращается в функцию и ее график имеет вид:
Ординаты всех точек графика функции равны
Если b=0, то график функции проходит через начало координат:
Это график прямой пропорциональности.
3. Отдельно отмечу график уравнения . График этого уравнения представляет собой прямую линию, параллельую оси все точки которой имеют абсциссу .
Например, график уравнения выглядит так:
Внимание! Уравнение не является функцией, так как различным значениям функции соответствует одно и то же значение аргумента, что не соответствует определению функции.
4. Условие параллельности двух прямых:
График функции параллелен графику функции , если
5. Условие перпендикулярности двух прямых:
График функции перпендикулярен графику функции , если или
6. Точки пересечения графика функции с осями координат.
С осью ОY. Абсцисса любой точки, принадлежащей оси ОY равна нулю. Поэтому, чтобы найти точку пересечения с осью ОY нужно в уравнение функции вместо х подставить ноль. Получим y=b. То есть точка пересечения с осью OY имеет координаты (0;b).
С осью ОХ: Ордината любой точки, принадлежащей оси ОХ равна нулю. Поэтому, чтобы найти точку пересечения с осью ОХ нужно в уравнение функции вместо y подставить ноль. Получим 0=kx+b. Отсюда . То есть точка пересечения с осью OX имеет координаты (;0):
Рассмотрим решение задач.
1. Постройте график функции , если известно, что он проходит через точку А(-3;2) и параллелен прямой y=-4x.
В уравнении функции два неизвестных параметра: k и b. Поэтому в тексте задачи должны быть два условия, характеризующих график функции.
а) Из того, что график функции параллелен прямой y=-4x, следует, что k=-4. То есть уравнение функции имеет вид
б) Нам осталось найти b. Известно, что график функции проходит через точку А(-3;2). Если точка принадлежит графику функции, то при подстановке ее координат в уравнение функции, мы получим верное равенство:
отсюда b=-10
Таким образом, нам надо построить график функции
Точка А(-3;2) нам известна, возьмем точку B(0;-10)
Поставим эти точки в координатной плоскости и соединим их прямой:
2. Написать уравнение прямой, проходящей через точки A(1;1); B(2;4).
Если прямая проходит через точки с заданными координатами, следовательно, координаты точек удовлетворяют уравнению прямой . То есть если мы координаты точек подставим в уравнение прямой, то получим верное равенство.
Подставим координаты каждой точки в уравнение и получим систему линейных уравнений.
Вычтем из второго уравнения системы первое, и получим . Подставим значение k в первое уравнение системы, и получим b=-2.
Итак, уравнение прямой .
3. Постройте график уравнения
Чтобы найти, при каких значениях неизвестного произведение нескольких множителей равно нулю, нужно каждый множитель приравнять к нулю и учесть ОДЗ каждого множителя.
Это уравнение не имеет ограничений на ОДЗ. Разложим на множители вторую скобку и приравняем каждый множитель к нулю. Получим совокупность уравнений:
Построим графики всех уравнений совокупности в одной коорднатной плоскости. Это и есть график уравнения :
4. Постройте график функции , если он перпендикулярен прямой и проходит через точку М(-1;2)
Мы не будем строить график, только найдем уравнение прямой.
а) Так как график функции , если он перпендикулярен прямой , следовательно , отсюда . То есть уравнение функции имеет вид
б) Мы знаем, что график функции проходит через точку М(-1;2). Подставим ее координаты в уравнение функции. Получим:
, отсюда .
Следовательно, наша функция имеет вид: .
5. Постройте график функции
Упростим выражение, стоящее в правой части уравнения функции.
Важно! Прежде чем упрощать выражение, найдем его ОДЗ.
Знаменатель дроби не может быть равен нулю, поэтому , .
Тогда наша функция принимает вид:
То есть нам надо построить график функции и выколоть на нем две точки: с абсциссами x=1 и x=-1:
И.В. Фельдман, репетитор по математике.
16
Май 2013
Категория: Справочные материалыФункции и графики
Линейная функция
2013-05-16
2019-08-13
Линейная функция – функция вида , где и – некоторые числа.
Число называется угловым коэффициентом прямой (и равняется тангенсу угла наклона прямой к положительному направлению оси абсцисс). Число называется свободным членом. График линейной функции является прямой линией, откуда и вытекает название.
Графики линейных функций, имеющие один и тот же угловой коэффициент, параллельны друг другу ( см. рис. слева (ниже)).
Графики функций, коэффициенты и которых связаны следующим образом: , перпендикулярны друг другу (рис. справа).
Частные случаи:
1)
Тогда , графиком является прямая, параллельная оси абсцисс, проходящая, в частности, через точку (рис. слева (ниже))
2)
Тогда (прямая пропорциональность), графиком является прямая, проходящая через начало координат (рис. справа).
Строить график линейной функции можно двумя основными способами:
1) Через две точки
Одну из точек обычно берут . Эта точка сразу же видна, ведь свободный член в формуле задает ординату точки пересечения с осью (оy). Вторую точку выбираем любую (), лишь бы удобно было в ней считать соответствующее значение .
2) По угловому коэффициенту
Строим на координатной плоскости произвольную точку прямой. Проводим через эту точку прямую, образующую с осью (OX) угол, тангенс которого равен k
Автор: egeMax |
Нет комментариев
| Метки: графики функций, функции
Лучший ответ
МарьПетровна Математичка
Гуру
(4660)
14 лет назад
1я и вторая. произведение угловых коэффициентов должно быть равно -1
Остальные ответы
Ярослав Карпов
Профи
(567)
14 лет назад
Начертить их надо. 1 и 2 уравнения это перпендикулярные прямые
Алексей Ванин
Ученик
(204)
14 лет назад
У перпендикулярных прямых коэффициенты при переменной (обозначают tg угла наклонай к оси абсцис) противоположны.
FOX
Мудрец
(13958)
14 лет назад
у перпендикулярных прямых угловые коэффициенты обратно-пропорциональны и противоположны по знаку. В твоем случае k1=3,
k2=-1/3, k3=-3, значит первая и вторая прямые перпенд.
где k и b – произвольные (вещественные) числа.
При любых значениях k и b графиком линейной функции является прямая линия .
Число k называют угловым коэффициентом прямой линии (1), а число b – свободным членом .
При k > 0 линейная функция (1) возрастает на всей числовой прямой, а её график ( прямая линия ) имеет вид, изображенный на рис. 1, 2 и 3.
При k = 0 линейная функция (1) принимает одно и тоже значение y = b при всех значениях x , а её график представляет собой прямую линию, параллельную оси абсцисс, и изображен на рис. 4, 5 и 6.
При k линейная функция (1) убывает на всей числовой прямой, а её график ( прямая линия ) имеет вид, изображенный на рис. 7, 8 и 9.
имеющие одинаковые угловые коэффициенты и разные свободные члены , параллельны .
имеющие разные угловые коэффициенты , пересекаются при любых значениях свободных членов.
y = kx + b1 и
перпендикулярны при любых значениях свободных членов.
Угловой коэффициент прямой линии
равен тангенсу угла φ , образованному (рис. 10) при повороте положительной полуоси абсцисс против часовой стрелки вокруг начала координат до прямой (2).
Рис.10 |
Рис.11 |
Рис.12 |
Прямая (1) пересекает ось Oy в точке, ордината которой (рис. 11) равна b .
При прямая (1) пересекает ось Ox в точке, абсцисса которой (рис. 12) вычисляется по формуле
Прямые, параллельные оси ординат
Прямые, параллельные оси Oy , задаются формулой
где c – произвольное число, и изображены на рис. 13, 14, 15.
Рис.13 |
Рис.14 |
Рис.15 |
Замечание 1 . Из рис. 13, 14, 15 вытекает, что зависимость, заданная формулой (3), функцией не является, поскольку значению аргумента x = c соответствует бесконечное множество значений y .;
Уравнение вида px + qy = r . Параллельные прямые. Перпендикулярные прямые
где p, q, r – произвольные числа.
В случае, когда уравнение (4) можно переписать в виде (1), откуда вытекает, что оно задаёт прямую линию .
что и требовалось.
В случае, когда получаем:
откуда вытекает, что уравнение (4) задает прямую линию вида (3).
В случае, когда q = 0, p = 0, уравнение (4) имеет вид
и при r = 0 его решением являются точки всей плоскости:
В случае, когда уравнение (5) решений вообще не имеет.
Замечание 2 . При любом значении r1 , не совпадающем с r прямая линия, заданная уравнением
параллельна прямой, заданной уравнением (4) .
Замечание 3 . При любом значении r2 прямая линия, заданная уравнением
перпендикулярна прямой, заданной уравнением (4) .
Пример . Составить уравнение прямой, проходящей через точку с координатами (2; – 3) и
- параллельной к прямой
- перпендикулярной к прямой (8).
В соответствии с формулой (6), будем искать уравнение прямой, параллельной прямой (8), в виде
где r1 – некоторое число. Поскольку прямая (9) проходит через точку с координатами (2; – 3), то справедливо равенство
Итак, уравнение прямой, параллельной к прямой
В соответствии с формулой (7), будем искать уравнение прямой, перпендикулярной прямой (8), в виде
где r2 – некоторое число. Поскольку прямая (10) проходит через точку с координатами (2; – 3), то справедливо равенство
Love Soft
Инструменты пользователя
Инструменты сайта
Боковая панель
Навигация
Загрузки всякие
Связь
Содержание
Уравнение прямой
Прямая – ГМТ, равноудаленных от двух точек.
(I) Общее уравнение прямой на плоскости
Уравнение прямой имеет вид $Ax + By + C = 0$, где $A$, $B$ и $C$ – некоторые числа, причем $A$ и $B$ не равны 0 одновременно.
При $A=0$ прямая параллельна оси oX, при $B=0$ — параллельна оси oY.
При $C=0$ прямая проходит через начало координат.
Вектор с координатами $(A;B)$ называется нормальным вектором, он перпендикулярен прямой.
Также уравнение можно переписать в виде $$A(x-x_0) + B(y-y_0) = 0$$
(II) Уравнение прямой с угловым коэффициентом
Уравнением вида $y = kx + b$ можно задать не любую прямую – а именно, нельзя задать прямую, перпендикулярную оси абсцисс.
(III) Уравнение прямой в отрезках на осях
Если прямая пересекает оси OX и OY в точках с координатами (a, 0) и (0, b), то она может быть найдена используя формулу уравнения прямой в отрезках $$frac x a + frac = 1$$
В этом виде невозможно представить прямую, проходящую через начало координат.
(IV) Уравнение прямой, проходящей через две точки
Пусть даны две несовпадающие точки A(x1;y1) и B(x2;y2). Уравнение прямой, проходящей через точки A(x1;y1) и B(x2;y2) имеет вид:
(V) Каноническое уравнение прямой
Если известны координаты точки $P(x_0, y_0)$ лежащей на прямой и направляющего вектора $ vec v = (a; b)$, то уравнение прямой можно записать в каноническом виде, используя следующую формулу:
(VI) Параметрическое уравнение прямой
Параметрические уравнения прямой могут быть записаны следующим образом $$ x = a t + x_0, y = b t + y_0$$ где $(x_0, y_0)$ – координаты точки лежащей на прямой, $(a, b)$ – координаты направляющего вектора прямой.
(VII) Уравнение прямой в полярных координатах
Уравнение прямой с углом наклона $alpha$ в полярных координатах $r$ и $phi$: $$r cos(phi-alpha)=p$$
Калькулятор
Калькулятор для составления уравнения прямой – показывает ход решения
Переход к другой форме записи
От общего уравнения к уравнению с угловым коэффициентом
Выразить переменную y: $Ax + By + C = 0$
$y = -frac A B x- frac C B$
От уравнения с угловым коэффициентом к общему уравнению
Перенести все члены в левую часть уравнения
Угловой коэффициент прямой
Угловой коэффициент прямой $k$ = численно равен тангенсу угла между прямой и положительным направлением оси абсцисс.
Тангенс угла может рассчитываться как отношение противолежащего катета к прилежащему.
Slope – угловой коэффициент – наклон, склон холма, показатель насколько крутой холм или гора.
Чтобы найти наклон между двумя точками на плоскости используется формула:
Иногда горизонтальное изменение называют «пробег», а вертикальное изменение – «подъем» или «снижение, спад».
Наклон биссектрисы первого координатного угла равен 1, так как скорость изменения по оси X и по оси Y одинаковы.
Например, найдем наклон между точками (2, 1) и (-9, 7)
Найдем наклон между точками (-1, -3) и (1, 1)
Чем больше модуль числа, чем круче склон. Положительное число означает, что наклон идет вверх при движении слева направо (прямая возрастает). Отрицательное число означает, что наклон идет вниз при движении слева направо (прямая убывает).
Угол между двумя прямыми
Пусть две неперпендикулярные прямые представляются уравнениями $$y= a_1 x+ b_1 \ y= a_2 x+ b_2$$ Тогда угол между двумя прямыми найдется по формуле $$tg(θ)=frac<1+ a_1 cdot a_2>$$
Условие параллельности двух прямых
Две прямые параллельны (или совпадают), если равны их угловые коэффициенты.
Теорема. Прямые $y = k_1 x + b_1$ и $y = k_2 x + b_2$ параллельны тогда и только тогда, когда $k_1 = k_2$ и $b_1 ne b_2$.
Задача
Проверить, выполняется ли условие параллельности прямых $2x-3y+1=0$ и $4x-6y-5=0$.
Задача
Составить уравнение прямой линии, проходящей через точку $(1;2)$ параллельно прямой $2x-3y+1=0$.
Условие перпендикулярности двух прямых
Условие перпендикулярности прямых заключается в том, что произведение их угловых коэффициентов равно –1: $$k_1 cdot k_2=-1$$
Задача
При каком значении $k$ уравнение $y=kx+1$ определяет прямую, перпендикулярную к прямой $y=2x-1$?
Задача
Составить уравнение прямой линии, проходящей через точку $(-1;1)$ перпендикулярно к прямой $3x-y+2=0$.
Сводная таблица
угловые коэффициенты | прямые |
---|---|
Если угловые коэффициенты двух линейных функций равны, то прямые, являющиеся их графиками, параллельны | Параллельные прямые имеют одинаковый наклон. |
Если угловые коэффициенты двух линейных функций не равны, то прямые, являющиеся их графиками, пересекаются | Если прямые пересекаются, то их наклоны не равны |
Если произведение угловых коэффициентов равно (-1), то прямые, являющиеся их графиками, перпендикулярны. | Если прямые перпендикулярны, то произведение их наклонов всегда = -1. |
– | Если прямая параллельна оси ординат, то формула не применима (возникает деление на 0), и для таких прямых угловой коэффициент не определён. |
Задачи – угловой коэффициент на бумаге в клетку
Определить угловой коэффициент прямой:
Расстояние от точки до прямой
Когда прямая на плоскости задана уравнением $ax + by + c = 0$, где a, b и c — такие вещественные константы, что a и b не равны нулю одновременно, и расстояние от прямой до точки $(x_0,y_0)$ равно
Точка на прямой, наиболее близкая к $(x_0,y_0)$, имеет координаты
Общее уравнение прямой: описание, примеры, решение задач
Данная статья продолжает тему уравнения прямой на плоскости: рассмотрим такой вид уравнения, как общее уравнение прямой. Зададим теорему и приведем ее доказательство; разберемся, что такое неполное общее уравнение прямой и как осуществлять переходы от общего уравнения к другим типам уравнений прямой. Всю теорию закрепим иллюстрациями и решением практических задач.
Общее уравнение прямой: основные сведения
Пусть на плоскости задана прямоугольная система координат O x y .
Любое уравнение первой степени, имеющее вид A x + B y + C = 0 , где А , В , С – некоторые действительные числа ( А и В не равны одновременно нулю) определяет прямую линию в прямоугольной системе координат на плоскости. В свою очередь, любая прямая в прямоугольной системе координат на плоскости определяется уравнением, имеющим вид A x + B y + C = 0 при некотором наборе значений А , В , С .
указанная теорема состоит из двух пунктов, докажем каждый из них.
- Докажем, что уравнение A x + B y + C = 0 определяет на плоскости прямую.
Пусть существует некоторая точка М 0 ( x 0 , y 0 ) , координаты которой отвечают уравнению A x + B y + C = 0 . Таким образом: A x 0 + B y 0 + C = 0 . Вычтем из левой и правой частей уравнений A x + B y + C = 0 левую и правую части уравнения A x 0 + B y 0 + C = 0 , получим новое уравнение, имеющее вид A ( x – x 0 ) + B ( y – y 0 ) = 0 . Оно эквивалентно A x + B y + C = 0 .
Полученное уравнение A ( x – x 0 ) + B ( y – y 0 ) = 0 является необходимым и достаточным условием перпендикулярности векторов n → = ( A , B ) и M 0 M → = ( x – x 0 , y – y 0 ) . Таким образом, множество точек M ( x , y ) задает в прямоугольной системе координат прямую линию, перпендикулярную направлению вектора n → = ( A , B ) . Можем предположить, что это не так, но тогда бы векторы n → = ( A , B ) и M 0 M → = ( x – x 0 , y – y 0 ) не являлись бы перпендикулярными, и равенство A ( x – x 0 ) + B ( y – y 0 ) = 0 не было бы верным.
Следовательно, уравнение A ( x – x 0 ) + B ( y – y 0 ) = 0 определяет некоторую прямую в прямоугольной системе координат на плоскости, а значит и эквивалентное ему уравнение A x + B y + C = 0 определяет ту же прямую. Так мы доказали первую часть теоремы.
- Приведем доказательство, что любую прямую в прямоугольной системе координат на плоскости можно задать уравнением первой степени A x + B y + C = 0 .
Зададим в прямоугольной системе координат на плоскости прямую a ; точку M 0 ( x 0 , y 0 ) , через которую проходит эта прямая, а также нормальный вектор этой прямой n → = ( A , B ) .
Пусть также существует некоторая точка M ( x , y ) – плавающая точка прямой. В таком случае, векторы n → = ( A , B ) и M 0 M → = ( x – x 0 , y – y 0 ) являются перпендикулярными друг другу, и их скалярное произведение есть нуль:
n → , M 0 M → = A ( x – x 0 ) + B ( y – y 0 ) = 0
Перепишем уравнение A x + B y – A x 0 – B y 0 = 0 , определим C : C = – A x 0 – B y 0 и в конечном результате получим уравнение A x + B y + C = 0 .
Так, мы доказали и вторую часть теоремы, и доказали всю теорему в целом.
Уравнение, имеющее вид A x + B y + C = 0 – это общее уравнение прямой на плоскости в прямоугольной системе координат O x y .
Опираясь на доказанную теорему, мы можем сделать вывод, что заданные на плоскости в фиксированной прямоугольной системе координат прямая линия и ее общее уравнение неразрывно связаны. Иначе говоря, исходной прямой соответствует ее общее уравнение; общему уравнению прямой соответствует заданная прямая.
Из доказательства теоремы также следует, что коэффициенты А и В при переменных x и y являются координатами нормального вектора прямой, которая задана общим уравнением прямой A x + B y + C = 0 .
Рассмотрим конкретный пример общего уравнения прямой.
Пусть задано уравнение 2 x + 3 y – 2 = 0 , которому соответствует прямая линия в заданной прямоугольной системе координат. Нормальный вектор этой прямой – это вектор n → = ( 2 , 3 ) . Изобразим заданную прямую линию на чертеже.
Также можно утверждать и следующее: прямая, которую мы видим на чертеже, определяется общим уравнением 2 x + 3 y – 2 = 0 , поскольку координаты всех точек заданной прямой отвечают этому уравнению.
Мы можем получить уравнение λ · A x + λ · B y + λ · C = 0 , умножив обе части общего уравнения прямой на число λ , не равное нулю. Полученное уравнение является эквивалентом исходного общего уравнения, следовательно, будет описывать ту же прямую на плоскости.
Неполное уравнение общей прямой
Полное общее уравнение прямой – такое общее уравнение прямой A x + B y + C = 0 , в котором числа А , В , С отличны от нуля. В ином случае уравнение является неполным.
Разберем все вариации неполного общего уравнения прямой.
- Когда А = 0 , В ≠ 0 , С ≠ 0 , общее уравнение принимает вид B y + C = 0 . Такое неполное общее уравнение задает в прямоугольной системе координат O x y прямую, которая параллельна оси O x , поскольку при любом действительном значении x переменная y примет значение – C B . Иначе говоря, общее уравнение прямой A x + B y + C = 0 , когда А = 0 , В ≠ 0 , задает геометрическое место точек ( x , y ) , координаты которых равны одному и тому же числу – C B .
- Если А = 0 , В ≠ 0 , С = 0 , общее уравнение принимает вид y = 0 . Такое неполное уравнение определяет ось абсцисс O x .
- Когда А ≠ 0 , В = 0 , С ≠ 0 , получаем неполное общее уравнение A x + С = 0 , задающее прямую, параллельную оси ординат.
- Пусть А ≠ 0 , В = 0 , С = 0 , тогда неполное общее уравнение примет вид x = 0 , и это есть уравнение координатной прямой O y .
- Наконец, при А ≠ 0 , В ≠ 0 , С = 0 , неполное общее уравнение принимает вид A x + B y = 0 . И это уравнение описывает прямую, которая проходит через начало координат. В самом деле, пара чисел ( 0 , 0 ) отвечает равенству A x + B y = 0 , поскольку А · 0 + В · 0 = 0 .
Графически проиллюстрируем все вышеуказанные виды неполного общего уравнения прямой.
Известно, что заданная прямая параллельна оси ординат и проходит через точку 2 7 , – 11 . Необходимо записать общее уравнение заданной прямой.
Решение
Прямая, параллельная оси ординат, задается уравнением вида A x + C = 0 , в котором А ≠ 0 . Также условием заданы координаты точки, через которую проходит прямая, и координаты этой точки отвечают условиям неполного общего уравнения A x + C = 0 , т.е. верно равенство:
Из него возможно определить C , если придать A какое-то ненулевое значение, к примеру, A = 7 . В таком случае получим: 7 · 2 7 + C = 0 ⇔ C = – 2 . Нам известны оба коэффициента A и C , подставим их в уравнение A x + C = 0 и получим требуемое уравнение прямой: 7 x – 2 = 0
Ответ: 7 x – 2 = 0
На чертеже изображена прямая, необходимо записать ее уравнение.
Решение
Приведенный чертеж позволяет нам легко взять исходные данные для решения задачи. Мы видим на чертеже, что заданная прямая параллельна оси O x и проходит через точку ( 0 , 3 ) .
Прямую, которая параллельна очи абсцисс, определяет неполное общее уравнение B y + С = 0 . Найдем значения B и C . Координаты точки ( 0 , 3 ) , поскольку через нее проходит заданная прямая, будут удовлетворять уравнению прямой B y + С = 0 , тогда справедливым является равенство: В · 3 + С = 0 . Зададим для В какое-то значение, отличное от нуля. Допустим, В = 1 , в таком случае из равенства В · 3 + С = 0 можем найти С : С = – 3 . Используем известные значения В и С , получаем требуемое уравнение прямой: y – 3 = 0 .
Ответ: y – 3 = 0 .
Общее уравнение прямой, проходящей через заданную точку плоскости
Пусть заданная прямая проходит через точку М 0 ( x 0 , y 0 ) , тогда ее координаты отвечают общему уравнению прямой, т.е. верно равенство: A x 0 + B y 0 + C = 0 . Отнимем левую и правую части этого уравнения от левой и правой части общего полного уравнения прямой. Получим: A ( x – x 0 ) + B ( y – y 0 ) + C = 0 , это уравнение эквивалентно исходному общему, проходит через точку М 0 ( x 0 , y 0 ) и имеет нормальный вектор n → = ( A , B ) .
Результат, который мы получили, дает возможность записывать общее уравнение прямой при известных координатах нормального вектора прямой и координатах некой точки этой прямой.
Даны точка М 0 ( – 3 , 4 ) , через которую проходит прямая, и нормальный вектор этой прямой n → = ( 1 , – 2 ) . Необходимо записать уравнение заданной прямой.
Решение
Исходные условия позволяют нам получить необходимые данные для составления уравнения: А = 1 , В = – 2 , x 0 = – 3 , y 0 = 4 . Тогда:
A ( x – x 0 ) + B ( y – y 0 ) = 0 ⇔ 1 · ( x – ( – 3 ) ) – 2 · y ( y – 4 ) = 0 ⇔ ⇔ x – 2 y + 22 = 0
Задачу можно было решить иначе. Общее уравнение прямой имеет вид A x + B y + C = 0 . Заданный нормальный вектор позволяет получить значения коэффициентов A и B , тогда:
A x + B y + C = 0 ⇔ 1 · x – 2 · y + C = 0 ⇔ x – 2 · y + C = 0
Теперь найдем значение С, используя заданную условием задачи точку М 0 ( – 3 , 4 ) , через которую проходит прямая. Координаты этой точки отвечают уравнению x – 2 · y + C = 0 , т.е. – 3 – 2 · 4 + С = 0 . Отсюда С = 11 . Требуемое уравнение прямой принимает вид: x – 2 · y + 11 = 0 .
Ответ: x – 2 · y + 11 = 0 .
Задана прямая 2 3 x – y – 1 2 = 0 и точка М 0 , лежащая на этой прямой. Известна лишь абсцисса этой точки, и она равна – 3 . Необходимо определить ординату заданной точки.
Решение
Зададим обозначение координат точки М 0 как x 0 и y 0 . В исходных данных указано, что x 0 = – 3 . Поскольку точка принадлежит заданной прямой, значит ее координаты отвечают общему уравнению этой прямой. Тогда верным будет равенство:
2 3 x 0 – y 0 – 1 2 = 0
Определяем y 0 : 2 3 · ( – 3 ) – y 0 – 1 2 = 0 ⇔ – 5 2 – y 0 = 0 ⇔ y 0 = – 5 2
Ответ: – 5 2
Переход от общего уравнения прямой к прочим видам уравнений прямой и обратно
Как мы знаем, существует несколько видов уравнения одной и той же прямой на плоскости. Выбор вида уравнения зависит от условий задачи; возможно выбирать тот, который более удобен для ее решения. Здесь очень пригодится навык преобразования уравнения одного вида в уравнение другого вида.
Для начала рассмотрим переход от общего уравнения вида A x + B y + C = 0 к каноническому уравнению x – x 1 a x = y – y 1 a y .
Если А ≠ 0 , тогда переносим слагаемое B y в правую часть общего уравнения. В левой части выносим A за скобки. В итоге получаем: A x + C A = – B y .
Это равенство возможно записать как пропорцию: x + C A – B = y A .
В случае, если В ≠ 0 , оставляем в левой части общегь уравнения только слагаемое A x , прочие переносим в правую часть, получаем: A x = – B y – C . Выносим – В за скобки, тогда: A x = – B y + C B .
Перепишем равенство в виде пропорции: x – B = y + C B A .
Конечно, заучивать полученные формулы нет необходимости. Достаточно знать алгоритм действий при переходе от общего уравнения к каноническому.
Задано общее уравнение прямой 3 y – 4 = 0 . Необходимо преобразовать его в каноническое уравнение.
Решение
Запишем исходное уравнение как 3 y – 4 = 0 . Далее действуем по алгоритму: в левой части остаётся слагаемое 0 x ; а в правой части выносим – 3 за скобки; получаем: 0 x = – 3 y – 4 3 .
Запишем полученное равенство как пропорцию: x – 3 = y – 4 3 0 . Так, мы получили уравнение канонического вида.
Ответ: x – 3 = y – 4 3 0 .
Чтобы преобразовать общее уравнение прямой в параметрические, сначала осуществляют переход к каноническому виду, а затем переход от канонического уравнения прямой к параметрическим уравнениям.
Прямая задана уравнением 2 x – 5 y – 1 = 0 . Запишите параметрические уравнения этой прямой.
Решение
Осуществим переход от общего уравнения к каноническому:
2 x – 5 y – 1 = 0 ⇔ 2 x = 5 y + 1 ⇔ 2 x = 5 y + 1 5 ⇔ x 5 = y + 1 5 2
Теперь примем обе части полученного канонического уравнения равными λ , тогда:
x 5 = λ y + 1 5 2 = λ ⇔ x = 5 · λ y = – 1 5 + 2 · λ , λ ∈ R
Ответ: x = 5 · λ y = – 1 5 + 2 · λ , λ ∈ R
Общее уравнение можно преобразовать в уравнение прямой с угловым коэффициентом y = k · x + b , но только тогда, когда В ≠ 0 . Для перехода в левой части оставляем слагаемое B y , остальные переносятся в правую. Получим: B y = – A x – C . Разделим обе части полученного равенство на B , отличное от нуля: y = – A B x – C B .
Задано общее уравнение прямой: 2 x + 7 y = 0 . Необходимо преобразовать то уравнение в уравнение с угловым коэффициентом.
Решение
Произведем нужные действия по алгоритму:
2 x + 7 y = 0 ⇔ 7 y – 2 x ⇔ y = – 2 7 x
Ответ: y = – 2 7 x .
Из общего уравнения прямой достаточно просто получить уравнение в отрезках вида x a + y b = 1 . Чтобы осуществить такой переход, перенесем число C в правую часть равенства, разделим обе части полученного равенства на – С и, наконец, перенесем в знаменатели коэффициенты при переменных x и y :
A x + B y + C = 0 ⇔ A x + B y = – C ⇔ ⇔ A – C x + B – C y = 1 ⇔ x – C A + y – C B = 1
Необходимо преобразовать общее уравнение прямой x – 7 y + 1 2 = 0 в уравнение прямой в отрезках.
Решение
Перенесем 1 2 в правую часть: x – 7 y + 1 2 = 0 ⇔ x – 7 y = – 1 2 .
Разделим на -1/2 обе части равенства: x – 7 y = – 1 2 ⇔ 1 – 1 2 x – 7 – 1 2 y = 1 .
Преобразуем далее в необходимый вид: 1 – 1 2 x – 7 – 1 2 y = 1 ⇔ x – 1 2 + y 1 14 = 1 .
Ответ: x – 1 2 + y 1 14 = 1 .
В общем, несложно производится и обратный переход: от прочих видов уравнения к общему.
Уравнение прямой в отрезках и уравнение с угловым коэффициентом легко преобразовать в общее, просто собрав все слагаемые в левой части равенства:
x a + y b ⇔ 1 a x + 1 b y – 1 = 0 ⇔ A x + B y + C = 0 y = k x + b ⇔ y – k x – b = 0 ⇔ A x + B y + C = 0
Каноническое уравнение преобразуется к общему по следующей схеме:
x – x 1 a x = y – y 1 a y ⇔ a y · ( x – x 1 ) = a x ( y – y 1 ) ⇔ ⇔ a y x – a x y – a y x 1 + a x y 1 = 0 ⇔ A x + B y + C = 0
Для перехода от параметрических сначала осуществляется переход к каноническому, а затем – к общему:
x = x 1 + a x · λ y = y 1 + a y · λ ⇔ x – x 1 a x = y – y 1 a y ⇔ A x + B y + C = 0
Заданы параметрические уравнения прямой x = – 1 + 2 · λ y = 4 . Необходимо записать общее уравнение этой прямой.
Решение
Осуществим переход от параметрических уравнений к каноническому:
x = – 1 + 2 · λ y = 4 ⇔ x = – 1 + 2 · λ y = 4 + 0 · λ ⇔ λ = x + 1 2 λ = y – 4 0 ⇔ x + 1 2 = y – 4 0
Перейдем от канонического к общему:
x + 1 2 = y – 4 0 ⇔ 0 · ( x + 1 ) = 2 ( y – 4 ) ⇔ y – 4 = 0
Ответ: y – 4 = 0
Задано уравнение прямой в отрезках x 3 + y 1 2 = 1 . Необходимо осуществить переход к общему виду уравнения.
Решение:
Просто перепишем уравнение в необходимом виде:
x 3 + y 1 2 = 1 ⇔ 1 3 x + 2 y – 1 = 0
Ответ: 1 3 x + 2 y – 1 = 0 .
Составление общего уравнения прямой
Выше мы говорили о том, что общее уравнение возможно записать при известных координатах нормального вектора и координатах точки, через которую проходит прямая. Такая прямая определяется уравнением A ( x – x 0 ) + B ( y – y 0 ) = 0 . Там же мы разобрали соответствующий пример.
Сейчас рассмотрим более сложные примеры, в которых для начала необходимо определить координаты нормального вектора.
Задана прямая, параллельная прямой 2 x – 3 y + 3 3 = 0 . Также известна точка M 0 ( 4 , 1 ) , через которую проходит заданная прямая. Необходимо записать уравнение заданной прямой.
Решение
Исходные условия говорят нам о том, что прямые параллельны, тогда, как нормальный вектор прямой, уравнение которой требуется записать, возьмем направляющий вектор прямой n → = ( 2 , – 3 ) : 2 x – 3 y + 3 3 = 0 . Теперь нам известны все необходимые данные, чтобы составить общее уравнение прямой:
A ( x – x 0 ) + B ( y – y 0 ) = 0 ⇔ 2 ( x – 4 ) – 3 ( y – 1 ) = 0 ⇔ 2 x – 3 y – 5 = 0
Ответ: 2 x – 3 y – 5 = 0 .
Заданная прямая проходит через начало координат перпендикулярно прямой x – 2 3 = y + 4 5 . Необходимо составить общее уравнение заданной прямой.
Решение
Нормальный вектором заданной прямой будет направляющий вектор прямой x – 2 3 = y + 4 5 .
Тогда n → = ( 3 , 5 ) . Прямая проходит через начало координат, т.е. через точку О ( 0 , 0 ) . Составим общее уравнение заданной прямой:
A ( x – x 0 ) + B ( y – y 0 ) = 0 ⇔ 3 ( x – 0 ) + 5 ( y – 0 ) = 0 ⇔ 3 x + 5 y = 0
[spoiler title=”источники:”]
http://xlench.bget.ru/doku.php/mat/algebra/eq-line
http://zaochnik.com/spravochnik/matematika/prjamaja-ploskost/obschee-uravnenie-prjamoj/
[/spoiler]
Цели урока:
- Повторить знания школьников о линейной функции
и ее графиках. - Рассмотреть взаимное расположение графиков
линейных функций. - Продолжить развитие интереса к предмету.
- Развивать умение анализировать и делать выводы.
Структура урока:
- Организационный момент.
- Актуализация опорных знаний.
- Сообщение темы урока, цели урока.
- Инструктирование и планирование работы.
- Выполнение работы.
- Подведение итогов.
- Первичное закрепление, работа с учебником.
- Постановка домашнего задания.
-
Подведение итогов урока.
Ход урока
1. Организационный момент.
Слова на доске
Да, путь познания не гладок,
Но знаем мы со школьных лет,
Загадок больше,чем отгадок
И поискам предела нет.
2. Актуализация опорных знаний.
Рис. 1
Вопрос учителя | Ответ ученика |
Какую тему изучаем? | Линейная функция |
Что называется линейной функцией? | Линейной функцией называется функция вида у=кх+в, где х-независимая переменная, к и в – числа. |
Что является графиком линейной функции? | Графиком линейной функции является прямая |
График какой функции лишний на рис. 1? Почему ? |
График №4. На графике изображена кривая линия. |
На каком рисунке изображен график прямой пропорциональности? Почему? |
График прямой пропорциональности изображен на рисунке №1, №5, так как прямая проходит через начало координат. |
На каком рисунке у линейной функции отрицательный угловой коэффициент? Почему? |
На рисунке №1 у линейной функции угловой коэффициент отрицательный, так как функция убывает. |
Рис. 2
Вопрос учителя | Ответ ученика |
Рассмотрите рисунок 2. Ученик допустил ошибку при построении графика одной из функций. На каком рисунке эта ошибка? Почему? |
Ученик допустил ошибку при построении графика функции у=1,5х, так как это график |
Рис. 3
Вопрос учителя | Ответ ученика |
На рисунке изображены графики функций у=2х,у=-2х,у=х+2. Рассмотрите расположение прямых в координатной плоскости и укажите, какая формула соответствует каждой из них. |
Подведение итога.
Вопрос учителя | Ответ ученика |
Как выглядит уравнение линейной функции? |
У= кх+в |
Что называют угловым коэффициентом линейной функции? |
Значение к |
Как построить график линейной функции? | Для построения графика линейной функции достаточно найти координаты двух точек графика, отметить эти точки в координатной плоскости и провести через них прямую. |
Как подобрать два числа , произведение которых равно (-1)? |
-1 и 1; -1/2 и 1/2 и т. д. |
Как могут располагаться на плоскости две прямые относительно друг друга? |
На плоскости прямые могут пересекаться, быть параллельными, перпендикулярными. |
Сообщение темы урока, цели.
Вопрос учителя | Ответ ученика |
Из последнего ответа сформулируйте цель урока. |
Взаимное расположение графиков линейных функций. |
Что сегодня нужно узнать на уроке? | В каком случае графики пересекаются ? В каком случае графики параллельны ? В каком случае графики перпендикулярны? |
Инструктирование и планирование работы.
- Каждому ученику выдаются планы
исследовательской работы. (Приложение1) - Вы должны ответить на вопрос стоящий в начале.
- Что для этого нужно сделать указано под цифрами
1 и 2. - На третий вопрос вам нужно ответить и сделать
вывод, запись продолжить одним словом. - Вывод все записывают в тетрадь.
- Три человека выполняют задание на больших
листах и затем объясняют у доски это всему
классу. - Все три вывода должны быть записаны всеми в
тетради.
Выполнение работы.
Подведение итогов.
Первичное закрепление.
На доске ряд линейных функций. Не выполняя
построения графиков, назовите пары функций,
графики которых параллельны, пересекаются,
перпендикулярны.
У=2х – 4, у=-4х + 2, у= 2х +3, у=2х, у= 7х – 8, у=5х +2.
Работа с учебником.
Прочитать вывод в учебнике с. 65, рассмотреть
рисунки 31, 32.
Работа с учебником самостоятельно №335.
Постановка домашнего задания.
Домашнее задание дифференцированное.
- Оценка “3” – №337;
- оценка “4” ;
- “5” – №340.
Подведение итогов урока.
Вопрос учителя | Ответ ученика |
Какую тему изучили ? | Взаимное расположение графиков линейных функций. |
От чего зависит расположение графиков линейных функций? |
Расположение графиков линейных функций зависит от коэффициента. |
Как зависит расположение графиков линейных функций от коэффициентов? |
Если угловые коэффициенты двух линейных функций равны, то прямые, являющиеся их графиками, параллельны; Если угловые если произведение угловых коэффициентов равно |
Приложение 1
Как расположены графики двух линейных
функций, если их угловые коэффициенты равны?
- Составьте уравнение двух линейных функций так,
чтобы их угловые коэффициенты были равны.
Запишите полученные уравнения. - Постройте графики этих функций в одной системе
координат (не забудьте подписать их). - Как располагаются относительно друга эти
графики? Запишите вывод: если угловые
коэффициенты двух линейных функций равны, то
прямые, являющиеся их графиками. . .
Как расположены графики двух линейных
функций, если их угловые коэффициенты не равны?
- Составьте уравнение двух линейных функций так,
чтобы их угловые коэффициенты были не равны.
Запишите полученные уравнения. - Постройте графики этих функций в одной системе
координат (не забудьте подписать их). - Как располагаются относительно друга эти
графики? Запишите вывод: если угловые
коэффициенты двух линейных функций не равны, то
прямые, являющиеся их графиками. . .
Как расположены графики двух линейных
функций, если произведение угловых
коэффициентов равно (-1)?
- Составьте уравнение двух линейных функций так,
чтобы произведение их угловых коэффициентов
было равно (-1). Запишите полученные уравнения. - Постройте графики этих функций в одной системе
координат (не забудьте подписать их). - Как располагаются относительно друга эти
графики? Запишите вывод: если угловые
коэффициенты двух линейных функций в
произведении дают (-1), то прямые, являющиеся их
графиками. . .
На изучение темы “Линейная функция” отводится
9 часов. Данный урок является 6 в теме.