Как найти график зависимости проекции ускорения

  • Равноускоренное прямолинейное движение — движение по прямой линии с постоянным ускорением (a=const).
  • Ускорение — векторная физическая величина, показывающая изменение скорости тела за 1 с. Обозначается как a.
  • Единица измерения ускорения — метр в секунду в квадрате (м/с2).
  • Акселерометр — прибор для измерения ускорения.

Формула ускорения

Ускорение тела равно отношению изменения вектора скорости ко времени, в течение которого это изменение произошло:

v — скорость тела в данный момент времени, v0 — скорость тела в начальный момент времени, t — время, в течение которого изменялась скорость

Пример №1. Состав тронулся с места и через 20 секунд достиг скорости 36 км/ч. Найти ускорение его разгона.

Сначала согласуем единицы измерения. Для этого переведем скорость в м/с: умножим километры на 1000 и поделим на 3600 (столько секунд содержится в 1 часе). Получим 10 м/с.

Начальная скорость состава равно 0 м/с, так как изначально он стоял на месте. Имея все данные, можем подставить их в формулу и найти ускорение:

Проекция ускорения

Проекция ускорения на ось ОХ

vx — проекция скорости тела в данный момент времени, v0x — проекция скорости в начальный момент времени, t — время, в течение которого изменялась скорость

Знак проекции ускорения зависит от того, в какую сторону направлен вектор ускорения относительно оси ОХ:

  • Если вектор ускорения направлен в сторону оси ОХ, то его проекция положительна.
  • Если вектор ускорения направлен в сторону, противоположную направлению оси ОХ, его проекция отрицательная.

При решении задач на тему равноускоренного прямолинейного движения проекции величин можно записывать без нижнего индекса, так как при движении по прямой тело изменяет положение относительно только одной оси (ОХ). Их обязательно нужно записывать, когда движение описывается относительно двух и более осей.

Направление вектора ускорения

Направление вектора ускорения не всегда совпадает с направлением вектора скорости!

Равноускоренным движением называют такое движение, при котором скорость за одинаковые промежутки времени изменяется на одну и ту же величину. При этом направления векторов скорости и ускорения тела совпадают (а↑↑v).

Равнозамедленное движение — частный случай равноускоренного движения, при котором скорость за одинаковые промежутки времени уменьшается на одну и ту же величину. При этом направления векторов скорости и ускорения тела противоположны друг другу (а↑↓v).

Пример №2. Автомобиль сначала разогнался, а затем затормозил. Во время разгона направления векторов его скорости и ускорения совпадают, так как скорость увеличивается. Но при торможении скорость уменьшается, потому что вектор ускорения изменил свое направление в противоположную сторону.

График ускорения

График ускорения — график зависимости проекции ускорения от времени. Проекция ускорения при равноускоренном прямолинейном движении не изменяется (ax=const). Графиком ускорения при равноускоренном прямолинейном движении является прямая линия, параллельная оси времени.

Зависимость положения графика проекции ускорения относительно оси ОХ от направления вектора ускорения:

  • Если график лежит выше оси времени, движение равноускоренное (направление вектора ускорения совпадает с направлением оси ОХ). На рисунке выше тело 1 движется равноускорено.
  • Если график лежит ниже оси времени, движение равнозамедленное (вектор ускорения направлен противоположно оси ОХ). На рисунке выше тело 2 движется равнозамедлено.

Если график ускорения лежит на оси времени, движение равномерное, так как ускорение равно 0. Скорость в этом случае — величина постоянная.

Чтобы сравнить модули ускорений по графикам, нужно сравнить степень их удаленности от оси времени независимо от того, лежат они выше или ниже нее. Чем дальше от оси находится график, тем больше его модуль. На рисунке график 2 находится дальше от оси времени по сравнению с графиком один. Поэтому модуль ускорения тела 2 больше модуля ускорения тела 1.

Пример №3. По графику проекции ускорения найти участок, на котором тело двигалось равноускорено. Определить ускорение в момент времени t1 = 1 и t2 = 3 с.

В промежуток времени от 0 до 1 секунды график ускорения рос, с 1 до 2 секунд — не менялся, а с 2 до 4 секунд — опускался. Так как при равноускоренном движении ускорение должно оставаться постоянным, ему соответствует второй участок (с 1 по 2 секунду).

Чтобы найти ускорение в момент времени t, нужно мысленно провести перпендикулярную прямую через точку, соответствующую времени t. От точки пересечения с графиком нужно мысленно провести перпендикуляр к оси проекции ускорения. Значение точки, в которой пересечется перпендикуляр с этой осью, покажет ускорение в момент времени t.

В момент времени t1 = 1с ускорение a = 2 м/с2. В момент времени t2 = 3 ускорение a = 0 м/с2.

Задание EF18774

На рисунке показан график зависимости координаты x тела, движущегося вдоль оси Ох, от времени t (парабола). Графики А и Б представляют собой зависимости физических величин, характеризующих движение этого тела, от времени t. Установите соответствие между графиками и физическими величинами, зависимости которых от времени эти графики могут представлять.

К каждой позиции графика подберите соответствующую позицию утверждения и запишите в поле цифры в порядке АБ.


Алгоритм решения

  1. Определить, какому типу движения соответствует график зависимости координаты тела от времени.
  2. Определить величины, которые характеризуют такое движение.
  3. Определить характер изменения величин, характеризующих это движение.
  4. Установить соответствие между графиками А и Б и величинами, характеризующими движение.

Решение

График зависимости координаты тела от времени имеет вид параболы в случае, когда это тело движется равноускоренно. Так как движение тела описывается относительно оси Ох, траекторией является прямая. Равноускоренное прямолинейное движение характеризуется следующими величинами:

  • перемещение и путь;
  • скорость;
  • ускорение.

Перемещение и путь при равноускоренном прямолинейном движении изменяются так же, как координата тела. Поэтому графики их зависимости от времени тоже имеют вид параболы.

График зависимости скорости от времени при равноускоренном прямолинейном движении имеет вид прямой, которая не может быть параллельной оси времени.

График зависимости ускорения от времени при таком движении имеет вид прямой, перпендикулярной оси ускорения и параллельной оси времени, так как ускорение в этом случае — величина постоянная.

Исходя из этого, ответ «3» можно исключить. Остается проверить ответ «1». Кинетическая энергия равна половине произведения массы тела на квадрат его скорости. Графиком квадратичной функции является парабола. Поэтому ответ «1» тоже не подходит.

График А — прямая линия, параллельная оси времени. Мы установили, что такому графику может соответствовать график зависимости ускорения от времени (или его модуля). Поэтому первая цифра ответа — «4».

График Б — прямая линия, не параллельная оси времени. Мы установили, что такому графику может соответствовать график зависимости скорости от времени (или ее проекции). Поэтому вторая цифра ответа — «2».

Ответ: 24

pазбирался: Алиса Никитина | обсудить разбор

Задание EF17992

Начальная скорость автомобиля, движущегося прямолинейно и равноускоренно, равна 5 м/с. После прохождения расстояния 40 м его скорость оказалась равной 15 м/c. Чему равно ускорение автомобиля?


Алгоритм решения

  1. Записать исходные данные.
  2. Записать формулу, связывающую известные из условия задачи величины.
  3. Выразить из формулы искомую величину.
  4. Вычислить искомую величину, подставив в формулу исходные данные.

Решение

Запишем исходные данные:

  • Начальная скорость v0 = 5 м/с.
  • Конечная скорость v = 15 м/с.
  • Пройденный путь s = 40 м.

Формула, которая связывает ускорение тела с пройденным путем:

Так как скорость растет, ускорение положительное, поэтому перед ним в формуле поставим знак «+».

Выразим из формулы ускорение:

Подставим известные данные и вычислим ускорение автомобиля:

Ответ: 2,5

pазбирался: Алиса Никитина | обсудить разбор

Задание EF18202

Внимательно прочитайте текст задания и выберите верный ответ из списка. На рисунке приведён график зависимости проекции скорости тела vx от времени.

Какой из указанных ниже графиков  совпадает с графиком зависимости от времени проекции ускорения этого тела ax в интервале времени от 6 с до 10 с?


Алгоритм решения

  1. Охарактеризовать движение тела на участке графика, обозначенном в условии задачи.
  2. Вычислить ускорение движение тела на этом участке.
  3. Выбрать график, который соответствует графику зависимости от времени проекции ускорения тела.

Решение

Согласно графику проекции скорости в интервале времени от 6 с до 10 с тело двигалось равнозамедленно. Это значит, что проекция ускорения на ось ОХ отрицательная. Поэтому ее график должен лежать ниже оси времени, и варианты «а» и «в» заведомо неверны.

Чтобы выбрать между вариантами «б» и «г», нужно вычислить ускорение тела. Для этого возьмем координаты начальной и конечной точек рассматриваемого участка:

  • t1 = 6 с. Этой точке соответствует скорость v1 = 0 м/с.
  • t2 = 10 с. Этой точке соответствует скорость v2 = –10 м/с.

Используем для вычислений следующую формулу:

Подставим в нее известные данные и сделаем вычисления:

Этому значению соответствует график «г».

Ответ: г

pазбирался: Алиса Никитина | обсудить разбор

Задание EF18027

На графике приведена зависимость проекции скорости тела от времени при прямолинейном движении по оси х. Определите модуль ускорения тела.


Алгоритм решения

  1. Записать формулу ускорения.
  2. Записать формулу для вычисления модуля ускорения.
  3. Выбрать любые 2 точки графика.
  4. Определить для этих точек значения времени и проекции скорости (получить исходные данные).
  5. Подставить данные формулу и вычислить ускорение.

Решение

Записываем формулу ускорения:

По условию задачи нужно найти модуль ускорения, поэтому формула примет следующий вид:

Выбираем любые 2 точки графика. Пусть это будут:

  • t1 = 1 с. Этой точке соответствует скорость v1 = 15 м/с.
  • t2 = 2 с. Этой точке соответствует скорость v2 = 5 м/с.

Подставляем данные формулу и вычисляем модуль ускорения:

Ответ: 10

pазбирался: Алиса Никитина | обсудить разбор

Алиса Никитина | Просмотров: 13.7k

3.1. Равнопеременное движение по прямой.

3.1.1. Равнопеременное движение по прямой — движение по прямой с постоянным по модулю и направлению ускорением: veca=const.

3.1.2. Ускорение (veca левая квадратная скобка м/с в квадрате правая квадратная скобка ) — физическая векторная величина, показывающая, на сколько изменится скорость за 1 с.

В векторном виде:

veca= дробь: числитель: vecnu минус overrightarrownu_0, знаменатель: t конец дроби ,

где overrightarrownu_0 — начальная скорость тела, vecnu — скорость тела в момент времени t.

В проекции на ось Ox:

a_x= дробь: числитель: nu_x минус nu_0x, знаменатель: t конец дроби ,

где nu_0x — проекция начальной скорости на ось Ox, nu_x — проекция скорости тела на ось Ox в момент времени t.

Знаки проекций зависят от направления векторов и оси Ox.

a= дробь: числитель: nu минус nu_0, знаменатель: t конец дроби .

 минус a= дробь: числитель: nu минус nu_0, знаменатель: t конец дроби .

3.1.3. График проекции ускорения от времени.

При равнопеременном движении ускорение постоянно, поэтому будет представлять собой прямые линии, параллельные оси времени (см. рис.):

Значение ускорения: чем дальше от оси времени лежит прямая, тем больше модуль ускорения  левая круглая скобка |а_1| больше |а_2| правая круглая скобка .

3.1.4. Скорость при равнопеременном движении.

В векторном виде:

vecnu=overrightarrownu_0 плюс vecat.

В проекции на ось Ox:

nu_x=nu_0x плюс a_x t.

Для равноускоренного движения:

nu=nu_0 плюс at.

Для равнозамедленного движения:

nu=nu_0 минус at.

3.1.5. График проекции скорости в зависимости от времени.

График проекции скорости от времени — прямая линия.

Направление движения: если график (или часть его) находятся над осью времени, то тело движется в положительном направлении оси Ox.

Значение ускорения: чем больше тангенс угла наклона (чем круче поднимается вверх или опускает вниз), тем больше модуль ускорения; a= дробь: числитель: Deltanu, знаменатель: Delta t конец дроби , где Deltanu — изменение скорости за время Delta t.

Пересечение с осью времени: если график пересекает ось времени, то до точки пересечения тело тормозило (равнозамедленное движение), а после точки пересечения начало разгоняться в противоположную сторону (равноускоренное движение).

3.1.6. Геометрический смысл площади под графиком в осях  левая круглая скобка nu_x,t правая круглая скобка .

Площадь под графиком, когда на оси Oy отложена скорость, а на оси Ox — время — это путь, пройденный телом.

На рис. 3.5 нарисован случай равноускоренного движения. Путь в данном случае будет равен площади трапеции:

S= дробь: числитель: 1, знаменатель: 2 конец дроби левая круглая скобка nu_0 плюс nu правая круглая скобка t. (3.9)

3.1.7. Формулы для расчета пути

Равноускоренное движение

nu=nu_0 плюс at

Равнозамедленное движение

nu=nu_0 минус at

S=nu_0 t плюс дробь: числитель: at в квадрате , знаменатель: 2 конец дроби (3.10) S=nu_0 t минус дробь: числитель: at в квадрате , знаменатель: 2 конец дроби (3.12)
S= дробь: числитель: nu в квадрате минус nu_0 в квадрате , знаменатель: 2a конец дроби (3.11) S= дробь: числитель: nu_0 в квадрате минус nu в квадрате , знаменатель: 2a конец дроби (3.13)
S= дробь: числитель: 1, знаменатель: 2 конец дроби левая круглая скобка nu_0 плюс nu правая круглая скобка t (3.14)

Все формулы, представленные в таблице, работают только при сохранении направления движения, то есть до пересечения прямой с осью времени на графике зависимости проекции скорости от времени.

Если же пересечение произошло, то движение проще разбить на два этапа:

до пересечения (торможение):

t_1= дробь: числитель: nu_0, знаменатель: a конец дроби , S_1=nu_0 t_1 минус дробь: числитель: at_1 в квадрате , знаменатель: 2 конец дроби .

После пересечения (разгон, движение в обратную сторону)

t_2=t минус t_1, S_2= дробь: числитель: at_2 в квадрате , знаменатель: 2 конец дроби , |overrightarrowDelta r|=|S_1 минус S_2 |, L=S_1 плюс S_2.

В формулах выше — время от начала движения до пересечения с осью времени (время до остановки), S_1 — путь, который прошло тело от начала движения до пересечения с осью времени, t_2 — время, прошедшее с момента пересечения оси времени до данного момента t, S_2 — путь, который прошло тело в обратном направлении за время, прошедшее с момента пересечения оси времени до данного момента t, |overrightarrowDelta r| — модуль вектора перемещения за все время движения, L — путь, пройденный телом за все время движения.

3.1.8. Перемещение за -ую секунду.

За время t= левая круглая скобка n минус 1 правая круглая скобка t_0 тело пройдет путь:

S_n минус 1=nu_0 левая круглая скобка n минус 1 правая круглая скобка t_0 плюс дробь: числитель: a, знаменатель: 2 конец дроби левая круглая скобка n минус 1 правая круглая скобка в квадрате t_0 в квадрате .

За время t=nt_0 тело пройдет путь:

S_n=nu_0 nt_0 плюс дробь: числитель: a, знаменатель: 2 конец дроби n в квадрате t_0 в квадрате .

Тогда за -ый промежуток  t_0 тело пройдет путь:

S_N=S_n минус S_n минус 1=nu_0 t_0 плюс левая круглая скобка at_0 в квадрате правая круглая скобка /2 левая круглая скобка 2n минус 1 правая круглая скобка .

За промежуток t_0 можно принимать любой отрезок времени. Чаще всего t_0=1 с.

Если nu_0=0, то

S_N= дробь: числитель: at_0 в квадрате , знаменатель: 2 конец дроби левая круглая скобка 2n минус 1 правая круглая скобка .

Тогда за 1-ую секунду тело проходит путь:

S_1= дробь: числитель: a, знаменатель: 2 конец дроби левая круглая скобка 2 умножить на 1 минус 1 правая круглая скобка = дробь: числитель: a, знаменатель: 2 конец дроби ;

За 2-ую секунду:

S_2= дробь: числитель: a, знаменатель: 2 конец дроби левая круглая скобка 2 умножить на 2 минус 1 правая круглая скобка =3 умножить на дробь: числитель: a, знаменатель: 2 конец дроби ;

За 3-ю секунду:

S_3= дробь: числитель: a, знаменатель: 2 конец дроби левая круглая скобка 2 умножить на 3 минус 1 правая круглая скобка =5 умножить на дробь: числитель: a, знаменатель: 2 конец дроби ;

и т. д.

Если внимательно посмотрим, то увидим, что S_2=2S_1;S_3=5S_1 и т. д.

Таким образом, приходим к формуле:

S_1:S_2:S_3:…:S_N=1:3:5:…: левая круглая скобка 2N минус 1 правая круглая скобка .

Словами: пути, проходимые телом за последовательные промежутки времени соотносятся между собой как ряд нечетных чисел, и это не зависит от того, с каким ускорением движется тело. Подчеркнем, что это соотношение справедливо при nu_0=0.

3.1.9. Уравнение координаты тела при равнопеременном движении

Уравнение координаты

x=x_0 плюс nu_0x t плюс дробь: числитель: a_x t в квадрате , знаменатель: 2 конец дроби .

Знаки проекций начальной скорости и ускорения зависят от взаимного расположения соответствующих векторов и оси Ox.

Для решения задач к уравнению S_n минус 1=nu_0 левая круглая скобка n минус 1 правая круглая скобка t_0 плюс дробь: числитель: a, знаменатель: 2 конец дроби левая круглая скобка n минус 1 правая круглая скобка в квадрате t_0 в квадрате необходимо добавлять уравнение изменения проекции скорости на ось:

nu_x=nu_0x плюс a_x t.

3.2. Графики кинематических величин при прямолинейном движении

3.3. Свободное падение тела

Под свободным падением подразумевается следующая физическая модель:

1) Падение происходит под действием силы тяжести:

2) Сопротивление воздуха отсутствует (в задачах иногда пишут «сопротивлением воздуха пренебречь»);

3) Все тела, независимо от массы падают с одинаковым ускорением (иногда добавляют — «независимо от формы тела», но мы рассматриваем движение только материальной точки, поэтому форма тела уже не учитывается);

4) Ускорение свободного падения направлено строго вниз и на поверхности Земли равно g=9,8м/с в квадрате (в задачах часто принимаем g=10м/с в квадрате для удобства подсчетов);

3.3.1. Уравнения движения в проекции на ось Oy

В отличии от движения по горизонтальной прямой, когда далеко не всех задач происходит смена направления движения, при свободном падении лучше всего сразу пользоваться уравнениями, записанными в проекциях на ось Oy.

Уравнение координаты тела:

y=y_0 плюс nu_0y t плюс дробь: числитель: a_y t в квадрате , знаменатель: 2 конец дроби .

Уравнение проекции скорости:

nu_y=nu_0y плюс a_y t.

Как правило, в задачах удобно выбрать ось Oy следующим образом:

Ось Oy направлена вертикально вверх;

Начало координат совпадает с уровнем Земли или самой нижней точкой траектории.

При таком выборе уравнения t_2=t минус t_1 и S_2= дробь: числитель: at_2 в квадрате , знаменатель: 2 конец дроби перепишутся в следующем виде:

y=y_0 плюс nu_0y t минус дробь: числитель: gt в квадрате , знаменатель: 2 конец дроби , nu_y=nu_0y минус gt.

3.4. Движение в плоскости Oxy.

Мы рассмотрели движение тела с ускорением вдоль прямой. Однако этим равнопеременное движение не ограничивается. Например, тело, брошенное под углом к горизонту. В таких задачах необходимо учитывать движение сразу по двум осям:

 система выражений x=x_0 плюс nu_0x t плюс дробь: числитель: a_x t в квадрате , знаменатель: 2 конец дроби ,y=y_0 плюс nu_0y t плюс дробь: числитель: a_y t в квадрате , знаменатель: 2 конец дроби . конец системы .

Или в векторном виде:

overrightarrowr левая круглая скобка t правая круглая скобка =overrightarrowr_0 плюс overrightarrownu_0t плюс дробь: числитель: vec at в квадрате , знаменатель: 2 конец дроби .

И изменение проекции скорости на обе оси:

 система выражений nu_x=nu_0x плюс a_x t,nu_y=nu_0y плюс a_y t. конец системы .

3.5. Применение понятия производной и интеграла

Мы не будем приводить здесь подробное определение производной и интеграла. Для решения задач нам понадобятся лишь небольшой набор формул.

Производная:

 левая круглая скобка C правая круглая скобка '=0,		 левая круглая скобка x в степени n правая круглая скобка '=nx в степени левая круглая скобка n минус 1 правая круглая скобка ,			 левая круглая скобка Ax в степени n плюс Bx в степени m правая круглая скобка '=Anx в степени левая круглая скобка n минус 1 правая круглая скобка плюс Bmx в степени левая круглая скобка m минус 1 правая круглая скобка .

где A, B и C=Const, то есть постоянные величины.

Интеграл:

 принадлежит tAdx=Ax плюс C,		 интеграл x в степени n dx= дробь: числитель: x в степени левая круглая скобка n плюс 1 правая круглая скобка , знаменатель: n плюс 1 конец дроби плюс C,  интеграл левая круглая скобка Ax в степени n плюс Bx в степени m правая круглая скобка dx= дробь: числитель: A, знаменатель: n плюс 1 конец дроби x в степени левая круглая скобка n плюс 1 правая круглая скобка плюс дробь: числитель: B, знаменатель: m плюс 1 конец дроби x в степени левая круглая скобка m плюс 1 правая круглая скобка плюс C,

Теперь посмотрим, как понятие производной и интеграла применимо к физическим величинам. В математике производная обозначается «’», в физике производная по времени обозначается «∙» над функцией.

Скорость:

vecnu=dotoverrightarrowr левая круглая скобка t правая круглая скобка ,

то есть скорость является производной от радиус-вектора.

Для проекции скорости:

 система выражений nu_x=dot x левая круглая скобка t правая круглая скобка ,nu_y=dot y левая круглая скобка t правая круглая скобка . конец системы .

Ускорение:

vec a=dotoverrightarrownu левая круглая скобка t правая круглая скобка ,

то есть ускорение является производной от скорости.

Для проекции ускорения:

 система выражений a_x=dotoverrightarrownu_x левая круглая скобка t правая круглая скобка ,a_y=dotoverrightarrownu_y левая круглая скобка t правая круглая скобка . конец системы .

Таким образом, если известен закон движения vecr=overrightarrowr левая круглая скобка t правая круглая скобка , то легко можем найти и скорость и ускорение тела.

Теперь воспользуемся понятием интеграла.

Скорость:

 принадлежит toverrightarrowa левая круглая скобка t правая круглая скобка dt=overrightarrownu левая круглая скобка t правая круглая скобка плюс C,

то есть, скорость можно найти как интеграл по времени от ускорения.

 система выражений nu_x левая круглая скобка t правая круглая скобка = интеграл a_x левая круглая скобка t правая круглая скобка dt плюс C_1,nu_y левая круглая скобка t правая круглая скобка = интеграл a_y левая круглая скобка t правая круглая скобка dt плюс C_2. конец системы .

Радиус-вектор:

 интеграл overrightarrownu левая круглая скобка t правая круглая скобка dt=overrightarrowr левая круглая скобка t правая круглая скобка плюс C,

то есть, радиус-вектор можно найти, взяв интеграл от функции скорости.

 система выражений x левая круглая скобка t правая круглая скобка = принадлежит tnu_x левая круглая скобка t правая круглая скобка dt плюс C_1,y левая круглая скобка t правая круглая скобка = принадлежит tnu_y левая круглая скобка t правая круглая скобка dt плюс C_2. конец системы .

Таким образом, если известна функция vec a=overrightarrowa левая круглая скобка t правая круглая скобка , то легко можем найти и скорость, и закон движения тела.

Константы в формулах определяются из начальных условий — значения x_0, y_0 и nu_0x, nu_0y в момент времени t_0.

3.6. Треугольник скоростей и треугольник перемещений

3.6.1. Треугольник скоростей

В векторном виде при постоянном ускорении закон изменения скорости имеет вид (3.5):

vecnu=overrightarrownu_0 плюс vec at.

Эта формула означает, что вектор vecnu равен векторной сумме векторов overrightarrownu_0 и vec at. Векторную сумму всегда можно изобразить на рисунке (см. рис.).

В каждой задаче, в зависимости от условий, треугольник скоростей будет иметь свой вид. Такое представление позволяет использовать при решении геометрические соображения, что часто упрощает решение задачи.

3.6.2. Треугольник перемещений

В векторном виде закон движения при постоянном ускорении имеет вид:

overrightarrowr левая круглая скобка t правая круглая скобка =overrightarrowr_0 плюс overrightarrownu_0t плюс дробь: числитель: vec at в квадрате , знаменатель: 2 конец дроби .

При решении задачи можно выбирать систему отсчета наиболее удобным образом, поэтому не теряя общности, можем выбрать систему отсчета так, что overrightarrowr_0=0, то есть начало системы координат помещаем в точку, где в начальный момент находится тело. Тогда

overrightarrowr левая круглая скобка t правая круглая скобка =overrightarrownu_0t плюс дробь: числитель: vec at в квадрате , знаменатель: 2 конец дроби ,

то есть вектор overrightarrowr левая круглая скобка t правая круглая скобка равен векторной сумме векторов overrightarrownu_0t и  дробь: числитель: vec at в квадрате , знаменатель: 2 конец дроби . Изобразим на рисунке (см. рис.).

Как и в предыдущем случае в зависимости от условий треугольник перемещений будет иметь свой вид. Такое представление позволяет использовать при решении геометрические соображения, что часто упрощает решение задачи.

Проекции скорости и ускорения

Для выполнения
расчетов скоростей и ускорений необходимо
переходить от записи уравнений в
векторной форме к записи уравнений в
алгебраической форме.

Векторы начальной
скорости
и ускорениямогут иметь различные направления,
поэтому переход от векторной записи
уравнений к алгебраической может
оказаться весьма трудоемким.

Известно, что
проекция суммы двух векторов на какую-либо
координатную ось равна сумме проекций
слагаемых векторов на ту же ось.

Поэтому для
нахождения проекции
вектора скоростина произвольную ось OX нужно найти
алгебраическую сумму проекций векторовина ту же ось.

Проекцию
вектора на ось считают положительной,
если от проекции начала к проекции
конца вектора нужно идти по направлению
оси, и отрицательной в противоположном
случае.

График скорости

Из уравнения
следует, что графиком зависимости
проекции скорости равноускоренного
движения от времени является прямая.
Если проекция начальной скорости на
ось OX равна нулю, то прямая проходит
через начало координат.

Основные
виды движения

  1. аn
    = 0, a
    = 0

    прямолинейное равномерное движение;

  2. аn
    = 0, a
    =
    const
    – прямолинейное равнопеременное
    движение;

  3. аn
    = 0, a

    0 –
    прямолинейное
    с переменным ускорением;

  4. аn
    = const,
    a
    = 0 –
    равномерное
    по окружности

  5. аn
    = const,
    a
    =
    const
    – равнопеременное по окружности

  6. аn

    const,
    a

    const
    – криволинейное с переменным ускорением.

Вращательное движение твердого тела.

Вращательное
движение твердого тела относительно
неподвижной оси

– движение, при котором все точки
твердого тела описывают окружности,
центры которых лежат на одной прямой,
называемой осью
вращения.

Равномерное движение по окружности

Рассмотрим наиболее
простой вид вращательного движения, и
уделим особое внимание центростремительному
ускорению.

При равномерном
движении по окружности значение скорости
остается постоянным, а направление
вектора скорости
изменяется в процессе движения.

За
интервал времени t
тело проходит путь
.
Этот путь равен длине дугиAB.
Векторы скоростей
ив точкахA
и B направлены
по касательным к окружности в этих
точках, а угол
между векторами
иравен углу между радиусамиOA
и OB.
Найдем разность векторов
и определим отношение изменения
скорости кt:

Из подобия
треугольников OAB и BCD следует

Если интервал
времени ∆t
мал, то мал и угол .
При малых значениях угла 
длина хорды AB примерно равна длине дуги
AB, т.е.
.
Т.к.,,
то получаем

.

Поскольку
,
то получаем

Период и частота

Промежуток времени,
за который тело совершает полный оборот
при движении по окружности, называется
периодам
обращения

(Т).
Т.к. длина окружности равна 2R,
период обращения при равномерном
движении тела со скоростью v
по окружности радиусом R
равняется:

Величина, обратная
периоду обращения, называется частотой.
Частота показывает, сколько оборотов
по окружности совершает тело в единицу
времени:

-1)

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #

    01.06.2015304.13 Кб31KP.doc

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

График зависимости проекции скорости от времени

Зависимость проекции скорости от времени является линейной, так как описывается следующим законом:

 

Из курса математики нам известно похожее уравнение:

 

Это уравнение прямой, следовательно, график зависимости проекции скорости от времени также будет иметь вид прямой. Нарисуем эту прямую на координатной сетке (рис. 1). Для этого выбираем произвольное значение  и строим произвольную прямую.

Рис. 1. График зависимости проекции скорости от времени

Проанализируем полученный график.

Видно, что скорость тела возрастала и в какой-то момент времени  была равна . Это говорит о том, что проекция ускорения .

Рассмотрим прямоугольный треугольник (выделенный красным цветом). Длина катета 1 в этом треугольнике равна  , а длина катета 2 равна . С помощью этих катетов найдем тангенс угла , то есть тангенс угла наклона построенной прямой:

 

Нам известно, что отношение изменения скорости ко времени, за которое оно произошло – это ускорение, следовательно:

 

Проанализируем график  на рисунке 2.

Рис. 2. График зависимости проекции скорости от времени

Видно, что скорость тела не менялась и всегда оставалась равной , следовательно, проекция ускорения этого тела равно нулю . Такое движение является равномерным.

Проанализируем график  на рисунке 3.

Рис. 3. График зависимости проекции скорости от времени

Видно, что проекция ускорения имеет знак минус . До момента времени  модуль скорости уменьшался (тело тормозило), а далее модуль скорости увеличивался (тело разгонялось в противоположную сторону), следовательно, момент времени  – это точка поворота (рис. 4).

Рис. 4. Точка поворота

Задача 1

На рисунке 5 представлен график зависимости проекции скорости от времени для движущегося тела. По данному рисунку запишите эту зависимость аналитически.

Рис. 5. Иллюстрация к задаче

Решение

Зависимость является прямой, то есть тело двигалось равноускоренно. Зависимость скорости от времени при равноускоренном движении выглядит следующим образом:

 

Для того чтобы записать эту зависимость для данного тела, необходимо найти проекцию начальной скорости  и проекцию ускорения .

Начальная скорость – это скорость в начальный момент времени, то есть при . На данном графике видно, что начальная скорость равна  (цена одного деления на оси проекции скорости ).

Формула для нахождения проекции ускорения:

 

Начальная скорость  нам известна, а  определим в произвольный момент времени. В данном случае удобно определить скорость  в точке пересечения прямой с осью времени. Скорость в этой точке равна нулю . Время, за которое скорость изменилась с  до  определим по графику. Это время равно  (цена одного деления на оси времени ).

Подставляем полученные данные в формулу проекции ускорения:

 

Подставляем значение проекции начальной скорости и ускорения в закон изменения проекции скорости со временем:

 

Ответ.

График зависимости проекции перемещения от времени

Зависимость проекции перемещения от времени имеет следующий вид:

 

Множитель t в этой зависимости стоит как в первой степени, так и во второй. С точки зрения математики такая зависимость называется квадратичной, а график ее – парабола.

 


Рис. 6. Графики зависимости проекции перемещения от времени

На рисунке 6 изображены параболы.

Ветви параболы 1 направлены вверх, следовательно, коэффициент , то есть проекция ускорения положительная .

Для параболы 2 проекция ускорения также будет положительной . До момента времени  тело двигалось в противоположную выбранной оси сторону;  – точка поворота.

Ветви параболы 3 направлены вниз, следовательно, проекция ускорения меньше нуля .  – точка поворота.

График зависимости координаты от времени

Зависимость координаты от времени имеет следующий вид:

 

Данная зависимость отличается от уравнения зависимости проекции перемещения от времени только слагаемым . Поэтому график  также будет иметь вид параболы, которая сдвинута по оси ординат на величину начальной координаты () (рис. 7).

Рис. 7. Сдвиг графика

На рисунке 8 изображены графики зависимости координаты от времени.

Рис. 8. Графики зависимости координаты от времени

Парабола 1 имеет отрицательную начальную координату. Ветви этой параболы направлены вверх, следовательно, проекция ускорения будет больше нуля, .

У параболы 2 начальная координата больше нуля. Ветви этой параболы направлены вниз, следовательно, проекция ускорения будет меньше нуля, .

Модуль проекции ускорения будет больше во втором случае, так как координата (x) менялась быстрее.

Задача 2

На рисунке 9 представлен график зависимости  для равноускоренно движущегося тела. Известно, что начальная координата тела составляла . По этим данным запишите аналитически зависимость ,  и , а также постройте график зависимости .

Рис. 9. Иллюстрация к задаче

Решение

1. Общий вид закона :

 

На графике видно, что проекция начальной скорости равна:

 

Формула для нахождения проекции ускорения:

 

В данном случае удобно определить скорость  в точке пересечения прямой с осью времени. Скорость в этой точке равна нулю . Время, за которое скорость изменилась от начального значения до значения , определим по графику. Это время равно .

 

Подставляем значение проекции начальной скорости и ускорения в уравнение :

 

2. Общий вид закона :

 

Значение проекции начальной скорости и ускорения нам известны, поэтому подставляем их в уравнение:

 

 

3. Общий вид закона :

 

Значение проекции начальной скорости и ускорения, а также начальной координаты нам известны, поэтому подставляем их в уравнение:

 

 

4. По имеющейся зависимости  построим график.

Для того чтобы построить график параболы, необходимо определить координаты вершины.

Координаты вершины  параболы  находятся по формулам:

;

Тогда,  

Ординату вершины найдем, подставив значение абсциссы () в уравнение зависимости :

 

Также необходимо найти точки пересечения параболы с осями.

Из условия известна начальная координата. То есть при , . Вторую точку найдем, подставив 0 вместо  в уравнение зависимости координаты от времени.

 

При решении данного квадратного уравнения получаем два корня  и . Нам подходит положительный корень , так как мы считаем, что тело начало двигаться в момент времени .  – момент времени за 2 с до начала наблюдения.

Следовательно, вторая точка имеет абсциссу , ординату .

По известным точкам строим параболу. Ветви данной параболы направлены вверх, так как в уравнении перед  стоит знак плюс (рис. 10).

Рис. 10. Иллюстрация к задаче

Список литературы

  1. М. М. Балашов, А. И. Гомонова, А. Б. Долицкий. Физика: механика. 10. – М.: Дрофа, 2004.
  2. А. П. Рымкевич. Физика. Задачник 10-11. – М.: Дрофа, 2006.
  3. В. А. Касьянов. Физика 10 кл. – М.: Дрофа, 2000.
  4. А. В. Перышкин, В. В. Крауклис. Курс физики. Т. 1. – М.: Гос. уч.-пед. изд. мин. просвещения РСФСР, 1957.

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

  1. Интернет-портал «ru.solverbook.com» (Источник)
  2. Интернет-портал «msk.edu.ua» (Источник)
  3. Интернет-портал «festival.1september.ru» (Источник)

Домашнее задание

  1. Задача 57, 58 (стр. 15) – А. П. Рымкевич. Физика. Задачник 10-11
  2. Нарисуйте график зависимости координаты от времени для прямолинейного движения, удовлетворяющего одновременно двум условиям: а) средняя скорость в промежутке времени от 2 до 6 с равна 5 м/с; б) максимальная скорость в том же промежутке равна 15 м/с.
  3. По графикам зависимости проекции скорости от времени (рис. 11) определите для каждого тела:

а) проекцию начальной скорости;

б) проекцию скорости через 2 с;

в) проекцию ускорения;

г) уравнение проекции скорости;

д) когда проекция скорости тел будет равна 6 м/с.

Рис. 11. Иллюстрация к задаче

Рассмотрим поступательное движение. Когда тело движется поступательно, его координаты изменяются.

Прямолинейное движение – это когда тело движется по прямой. Прямую, вдоль которой движется тело, назовем осью Ox.

Будем отдельно рассматривать:

  • движение без ускорения (равномерное), и
  • движение с ускорением (неравномерное).

1). Равномерное движение — скорость тела остается одной и той же (т. е. не изменяется). При таком движении ускорения нет: (vec{a} =0).

2). Неравномерное движение — скорость меняется и появляется ускорение.

Пусть ускорение есть и, оно не изменяется: (vec{a} =const). Такое неравномерное движение называют равнопеременным. Чтобы уточнить, увеличивается ли скорость, или уменьшается, вместо слова «равнопеременное» говорят:

  • Равноускоренное движение — скорость тела увеличивается.
  • Равнозамедленное движение — скорость уменьшается.

Примечание: Когда изменяется скорость, всегда появляется ускорение!

Движение будем изображать графически, используя две перпендикулярные оси.

На графиках будем откладывать:

  • по горизонтали — время в секундах.
  • по вертикали — координаты тела, или проекции скорости и ускорения.

Для каждого вида движения получим три графика. Графики будем называть так:

  1. x(t) – зависимость координаты от времени;
  2. v(t) – зависимость проекции скорости от времени;
  3. a(t) – зависимость проекции ускорения от времени.

Прочитайте вначале, что такое проекция вектора на ось, это поможет лучше усвоить материал.

Тело покоится, его координата не меняется, а скорость и ускорение отсутствуют

Пусть тело покоится на оси Ox – (рис 1а).
Точкой (x_{0}) обозначена координата этого тела. Когда тело неподвижно, его координата не меняется. На графике неизменную координату обозначают горизонтальной линией, расположенной параллельно оси времени (рис. 1б).
[x=x_{0}]

Случаю, когда тело покоится – рис. а), соответствует горизонтальный график координаты x(t) – рис. б), скорость «v» – рис. в) и ускорение «a» – рис. г) лежат на оси времени

Рис.1. Тело покоится, график координаты x(t) — горизонтальная прямая рис. б).
Скорость «v» и ускорение «a» — это прямые, лежащие на оси Ox. График скорости – рис. в). График ускорения – рис. г)

Скорость и ускорение неподвижного тела равны нулю:

[vec{v}=0]

[vec{a}=0]

Из-за этого, графики скорости (рис. 1в) и ускорения (рис. 1г) – это горизонтальные линии, лежащие на оси t времени.

Скорость не меняется — движение равномерное

Разберём равномерное движение в направлении оси (рис. 2а).

Начальная координата тела – это точка (x_{0}), а конечная координата — точка (x) на  оси Ox. В точку «x» тело переместится к конечному времени «t».

Красной стрелкой обозначено направление, в котором тело движется.

 Примечание: Тело движется туда, куда направлен вектор его скорости.

Движению с постоянной скоростью вдоль оси Ox соответствует возрастающая прямая x(t) – рис а). Скорость не изменяется, поэтому график v(t) – горизонтальная прямая, а ускорение нулевое, его график г) лежит на оси времени

Рис.2. Тело движется равномерно в направлении оси Ox – рис а). Зависимость координаты от времени – это возрастающая прямая x(t) – рис. б). График скорости в) – это горизонтальная прямая, а график ускорения г) лежит на оси времени, так как ускорение равно нулю

Координата возрастает со временем, так как тело движется туда же, куда указывает ось. Поэтому график координаты от времени — это возрастающая прямая x(t) – рис. б).

Уравнение, описывающее изменение координаты выглядят так:

[ x  = x_{0} + v cdot t ]

Скорость на графике рис. в) изображена горизонтальной прямой линией, потому, что скорость остается одной и той же (не изменяется). Уравнение скорости записывается так:

[ v  = v_{0} = const ]

Ускорение рис. г) изображается прямой, лежащей на оси времени, так как ускорения нет. Математики посмотрят на такой график и скажут: «Ускорение равно нулю и не изменяется». Эту фразу они запишут формулой:

[ a = 0 ]

Равномерное движение в направлении противоположном оси

Пусть теперь тело движется с одной и той же скоростью в направлении, противоположном оси (рис. 3а).

Случаю, когда тело движется равномерно против оси Ox – рис. а), соответствуют убывающая зависимость координаты от времени – рис б), отрицательная проекция скорости на ось – рис. в) и, нулевое ускорение – рис. г)

Рис.3. Тело движется равномерно противоположно направлению оси Ox – рис. а). Такому движению соответствуют: убывающая зависимость координаты от времени – рис б), отрицательная проекция скорости на ось – рис. в) и, нулевое ускорение – рис. г)

Так как тело теперь движется против направления оси, то координата тела будет уменьшаться. График (рис 3б) координаты x(t) выглядит, как убывающая прямая линия.

Так как скорость не изменяется, то график v(t) – это горизонтальная прямая.

Тело движется против оси, его вектор скорости направлен противоположно оси Ox. Поэтому проекция скорости будет отрицательной (рис 3в) и на графике v(t) скорость — это горизонтальная прямая, лежащая ниже оси времени.

А график ускорения (рис 3г) лежит на оси времени, так как ускорение нулевое.

Равноускоренное движение в направлении оси, скорость увеличивается

Следующий набор графиков – это случай, когда тело движется вдоль оси Ox с возрастающей скоростью (рис. 4). То есть, мы рассматриваем равноускоренное движение.

Когда тело движется равноускорено по направлению оси Ox – рис. а), его координата изменяется параболически – рис. б), график скорости изображается возрастающей наклонной прямой – рис. в), проекция ускорения на ось Ox – это горизонтальный график рис. г)

Рис.4. Тело движется равноускорено – рис. а) по направлению оси Ox. Изменение координаты от времени x(t) описывается правой ветвью параболы – рис. б), график v(t) скорости изображен наклонной возрастающей прямой – рис. в), а график неизменного ускорения a(t) – рис. г) изображается горизонтальной прямой, лежащей выше оси времени

Координата «x» теперь изменяется не по линейному, а по квадратичному закону. На графике квадратичное изменение выглядит, как ветвь параболы (рис. 4б). Тело движется по оси и скорость его растет. Такое движение описывается правой ветвью параболы, направленной вверх.

Уравнение, которое описывает квадратичное изменение координаты, выглядит так:

[ x = frac{a}{2}cdot t^{2} + v_{0} cdot t + x_{0} ]

Скорость, так же, растет (рис. 4в). Рост скорости описан наклонной прямой линией – то есть, линейной зависимостью:

[ v  = v_{0} + a cdot t ]

Ускорение есть (рис. 4г) и оно не меняется:

[ a = const ]

Скорость и ускорение сонаправлены с осью Ox, поэтому их проекции на ось положительны, а их графики лежат выше оси времени.

Примечания:

1). Координата «x» будет изменяться:

  • по линейному закону, когда скорость не меняется — остается одной и той же.
  • по квадратичному закону, когда скорость будет изменяться (расти, или убывать).

2). Линейный закон – это уравнение первой степени, на графике – наклонная прямая линия.

3). Квадратичный закон – это уравнение второй степени, на графике — парабола.

4). Когда скорость увеличивается, для графика координаты x(t) выбираем правую ветвь параболы, а когда скорость уменьшается – то левую ветвь.

Равноускоренное движение против оси

Если тело будет увеличивать свою скорость, двигаясь в направлении, противоположном оси (рис. 5а), то ветвь параболы, описывающая изменение координаты тела, будет направлена вниз (рис. 5б).

Скорость направлена против оси и увеличивается в отрицательную область. Такое изменение скорости изображаем прямой, направленной вниз (рис. 5в).

Когда тело движется равноускорено против оси Ox – рис. а), его координата изменяется по правой ветви параболы – рис. б), график скорости - возрастающая в отрицательную область наклонная прямая – рис. в), горизонтальный график ускорения - рис. г) лежит ниже оси Ox

Рис.5. Тело движется равноускорено противоположно оси Ox – рис. а). Координата меняется параболически – рис. б), ветвь правая, так как скорость растет. Скорость — рис. в), и ускорение — рис. г), направлены против оси Ox, их графики лежат ниже оси времени

Примечание: Чтобы скорость увеличивалась (по модулю), нужно, чтобы векторы скорости и ускорения были сонаправленными (ссылка).

Так как скорость увеличивается, то векторы скорости и ускорения сонаправлены. Но при этом, они направлены против оси, поэтому проекции векторов (vec{v}) и (vec{a}) на ось Ox будут отрицательными. Значит, графики скорости и ускорения будут лежать ниже горизонтальной оси времени.

Ускорение (рис. 5г) не изменяется, поэтому изображается горизонтальной прямой. Но эта прямая будет лежать ниже горизонтальной оси времени, так как ускорение имеет отрицательную проекцию на ось Ox.

Скорость уменьшается — движение равнозамедленное

Когда скорость тела уменьшается с постоянным ускорением, движение называют равнозамедленным. Координата в этом случае изменяется по квадратичному закону. График координаты – это ветвь параболы. Когда скорость уменьшается, координату описываем с помощью левой ветви параболы, с вершиной вверху (рис. 6б).

Равнозамедленное движение по оси Ox – рис. а), координата тела изменяется по левой ветви параболы – рис. б), график скорости - убывающая наклонная прямая – рис. в), ускорение направлено против оси Ox, горизонтальный график ускорения - рис. г) лежит ниже оси времени

Рис.6. Тело движется равнозамедленно по оси Ox – рис. а), его координата растет по левой ветви параболы – рис. б), график скорости — убывающая наклонная прямая – рис. в), ускорение направлено против оси Ox, горизонтальный график ускорения — рис. г) лежит ниже оси времени

Примечание: Чтобы скорость уменьшалась по модулю, нужно, чтобы векторы скорости и ускорения были направлены в противоположные стороны (ссылка).

Скорость уменьшается, при этом, скорость направлена по оси. Поэтому, график скорости – это убывающая прямая линия, лежащая выше оси времени (рис. 6в).

А ускорение есть, оно не изменяется и направлено против оси. Поэтому, ускорение отрицательное, его график – это горизонтальная прямая, лежащая ниже оси времени (рис. 6г).

Равнозамедленное движение против оси

Если тело будет двигаться против оси, замедляясь, то график координаты — это левая ветвь параболы, вершиной вниз (рис. 7б).

Скорость вначале была большой, но так как тело замедляется, она падает до нуля. Но тело двигается против оси Ox, поэтому график скорости лежит ниже оси времени (рис. 7в).

Равнозамедленное движение против оси. Координата убывает по левой ветви параболы – рис. б), отрицательная скорость падает к нулю, график скорости - наклонная прямая – рис. в), ускорение направлено по оси Ox, горизонтальный график ускорения - рис. г) лежит выше оси времени

Рис.7. Тело движется равнозамедлено против оси Ox – рис. а), его координата убывает по левой ветви параболы – рис. б), скорость отрицательная и уменьшается к нулю, график скорости — наклонная прямая – рис. в), ускорение направлено по оси Ox, горизонтальный график ускорения — рис. г) лежит выше оси времени

Скорость отрицательная. А чтобы она уменьшалась, нужно, чтобы ускорение было направлено противоположно скорости. Поэтому ускорение будет положительным. Значит, график ускорения будет лежать выше оси времени. Так как ускорение не меняется, то его график изображен горизонтальной прямой линией (рис. 7г).

Примечание: Можно вычислить перемещение тела по графику скорости v(t), не пользуясь для этого графиком функции x(t) для координат тела.

Выводы

1). Все, что лежит:

  • выше оси t – положительное;
  • ниже оси t – отрицательное;
  • на горизонтальной оси t – равно нулю.

2). Когда ускорение, или скорость направлены против оси, они будут отрицательными, т. е. будут лежать ниже горизонтальной оси t. Если график ускорения лежит на горизонтальной оси, то ускорение отсутствует (т. е. равно нулю, нулевое).

3). Если скорость не меняется, ускорения нет.

  • График x(t) координаты – это прямая линия.
  • График v(t) скорости – горизонтальная прямая.
  • График a(t) ускорения лежит на оси t.

4). Если скорость растет, ускорение и скорость направлены в одну и ту же сторону.

  • График x(t) координаты – это правая ветвь параболы.
  • График v(t) скорости – наклонная прямая.
  • График a(t) ускорения – горизонтальная прямая.

5). Если скорость уменьшается, ускорение и скорость направлены в противоположные стороны.

  • График x(t) координаты – это левая ветвь параболы.
  • График v(t) скорости – наклонная прямая.
  • График a(t) ускорения – горизонтальная прямая.

Добавить комментарий