Гравитационное поле Земли — поле силы тяжести, обусловленное тяготением Земли и центробежной силой, вызванной её суточным вращением. Характеризуется пространственным распределением силы тяжести и гравитационного потенциала.
Для решения практических задач потенциал земного притяжения (без учёта центробежной силы и влияния других небесных тел) выражается в виде ряда[1]
- где
- — полярные координаты, — гравитационная постоянная, — масса Земли, = 398 603⋅109 м3·с−2, — большая полуось Земли.
Ускорение свободного падения[править | править код]
В неинерциальных системах отсчёта ускорение свободного падения численно равно силе тяжести, воздействующей на объект единичной массы.
Ускорение свободного падения на поверхности Земли g (обычно произносится как «Же») варьируется от 9,780 м/с² на экваторе до 9,832 м/с² на полюсах[2]. Стандартное («нормальное») значение, принятое при построении систем единиц, составляет g = 9,80665 м/с²[3][4]. Стандартное значение (англ.) (рус. g было определено как «среднее» в каком-то смысле на всей Земле, оно примерно равно ускорению свободного падения на широте 45,5° на уровне моря. В приблизительных расчётах его обычно принимают равным 9,81; 9,8 или 10 м/с².
В СМИ и научно-популярной литературе g нередко используется как внесистемная единица силы тяжести, применяемая, например, для оценки величины перегрузок при тренировках лётчиков и космонавтов, а также силы тяготения на других небесных телах (см. раздел Сравнение силы тяготения на Земле с другими небесными телами).
Получение значения g из закона всемирного тяготения[править | править код]
Согласно закону всемирного тяготения, сила земной гравитации, действующая на тело, определяется формулой
- ,
где r — расстояние между центром Земли и телом (см. ниже), m1 — масса Земли и m2 — масса тела.
Кроме того, согласно второму закону Ньютона, F = ma, где m — масса и a — ускорение,
Из сопоставления двух формул видно, что
Таким образом, чтобы найти получить значение ускорения силы тяжести g на уровне моря, необходимо в формулу подставить значения гравитационной постоянной G, массы Земли (в килограммах) m1 и радиуса Земли (в метрах) r :
Следует отметить, что эта формула правомерна для сферического тела при допущении, что вся его масса сосредоточена в его центре. Это позволяет нам использовать величину радиуса Земли для r.
Существуют значительные неопределенности значений r и m1, а также значения гравитационной постоянной G, которую трудно точно измерить.
Если G,g и r известны, то решение обратной задачи позволит получить величину массы Земли.
Гравитационные аномалии[править | править код]
Гравитационные аномалии применительно к геофизике — отклонения величины гравитационного поля от расчётной, вычисленной на основе той или иной математической модели. Гравитационный потенциал земной поверхности, или геоида, обычно описывается на основании математических теорий с использованием гармонических функций[6]. Эти отклонения могут быть вызваны различными факторами, в том числе:
- Земля не является однородной, её плотность различна на разных участках;
- Земля не является идеальной сферой, и в формуле используется среднее значение величины её радиуса;
- Расчётное значение g учитывает только силу тяжести и не учитывает центробежную силу, возникающую за счёт вращения Земли;
- При подъёме тела над поверхностью Земли значение g уменьшается («высотная поправка» (см. ниже), аномалия Бугера);
- На Землю воздействуют гравитационные поля других космических тел, в частности, приливные силы Солнца и Луны.
Высотная поправка[править | править код]
Первая поправка для стандартных математических моделей, так называемая высотная аномалия (англ.) (рус., позволяет учесть изменение величины g в зависимости от высоты над уровнем моря[7]. Используем значения массы и радиуса Земли:
Поправочный коэффициент (Δg) может быть получены из соотношения между ускорением силы тяжести g и гравитационной постоянной G:
- , где:
- .
На высоте h над поверхностью Земли gh рассчитывается по формуле:
Так, высотная поправка для высоты h может быть выражена:
- .
Это выражение может быть легко использовано для программирования или включения в таблицу. Упрощая и пренебрегая малыми величинами (h<<rEarth), получаем хорошее приближение:
- .
Используя приведённые выше численные значения выше, и высоту h в метрах, получим:
Учитывая широту местности и высотную поправку, получаем:
- ,
где — ускорение свободного падения на широте и высоте h. Это выражение можно также представить в следующем виде:
- .
Сравнение силы тяготения на Земле с другими небесными телами[править | править код]
В таблице приведены значения величин ускорения свободного падения на поверхности Земли, Солнца, Луны, планет Солнечной системы, ряда спутников и астероидов. Для планет — гигантов под «поверхностью» понимается видимая поверхность, а для Солнца — верхняя граница фотосферы. Данные в таблице не учитывают эффекта центробежной силы от вращения планет и фактически означают значения искомых величин вблизи полюсов планет. Справочно указано время падения объекта на данное небесное тело со 100-метровой высоты и максимальная скорость, достигаемая при этом (сопротивление воздуха не учтено).
Небесное тело | Сила тяжести по сравнению с земной |
Ускорение свободного падения на поверхности, м/с2 |
Примечания | Время падения со 100-метровой высоты/ Достигаемая при этом скорость |
|
---|---|---|---|---|---|
Солнце | 27,90 | 274,1 | 0,85 сек | 843 км/ч | |
Меркурий | 0,3770 | 3,7 | 7,4 сек | 98 км/ч | |
Венера | 0,905 | 8,872 | 4,8 сек | 152 км/ч | |
Земля | 1 | 9,80665 | [8] |
4,5 сек | 159 км/ч |
Луна | 0,1657 | 1,625 | 11,1 сек | 65 км/ч | |
Марс | 0,3795 | 3,728 | 7,3 сек | 98 км/ч | |
Церера | 0,028 | 0,27 | 26,7 сек | 27 км/ч | |
Юпитер | 2,640 | 25,93 | 2,8 сек | 259 км/ч | |
Ио | 0,182 | 1,789 | 10,6 сек | 68 км/ч | |
Европа | 0,134 | 1,314 | 12,3 сек | 58 км/ч | |
Ганимед | 0,145 | 1.426 | 11,8 сек | 61 км/ч | |
Каллисто | 0,126 | 1,24 | 12,7 сек | 57 км/ч | |
Сатурн | 1,139 | 11,19 | 4,2 сек | 170 км/ч | |
Титан | 0,138 | 1,352 | 12,2 сек | 59 км/ч | |
Уран | 0,917 | 9,01 | 4,7 сек | 153 км/ч | |
Титания | 0,039 | 0,379 | 23,0 сек | 31 км/ч | |
Оберон | 0,035 | 0,347 | 24,0 сек | 30 км/ч | |
Нептун | 1,148 | 11,28 | 4,2 сек | 171 км/ч | |
Тритон | 0,079 | 0,779 | 16,0 сек | 45 км/ч | |
Плутон | 0,063 | 0,62 | 18,1 сек | 40 км/ч | |
Эрида | 0,0814 | 0,8 | (приблизит.) | 15,8 сек | 46 км/ч |
См. также[править | править код]
- Аномалия Бугера
- Гравиметрия (геодезия)
- Гравитационная аномалия
- Гравитация
- Закон всемирного тяготения
- Ускорение свободного падения
- GOCE
- GRACE
Примечания[править | править код]
- ↑ Миронов, 1980, с. 52-56.
- ↑ «Свободное падение тел. Ускорение свободного падения». Дата обращения: 30 июля 2015. Архивировано 4 сентября 2019 года.
- ↑ Declaration on the unit of mass and on the definition of weight; conventional value of gn (англ.). Resolution of the 3rd CGPM (1901). BIPM. Дата обращения: 11 ноября 2015. Архивировано 25 июня 2013 года.
- ↑ В. М. Деньгуб, В. Г. Смирнов. Единицы величин. Словарь — справочник. М.: Изд-во стандартов, 1990, с. 237.
- ↑ NASA/JPL/University of Texas Center for Space Research PIA12146: GRACE Global Gravity Animation. Photojournal. NASA Jet Propulsion Laboratory. Дата обращения: 30 декабря 2013. Архивировано 30 декабря 2013 года.
- ↑ В.Л.Пантелеев. “Теория фигуры Земли” (курс лекций). Дата обращения: 31 июля 2015. Архивировано 12 января 2006 года.
- ↑ Fowler, C.M.R. The Solid Earth: An Introduction to Global Geophysics (англ.). — 2. — Cambridge: Cambridge University Press, 2005. — P. 205—206. — ISBN 0-521-89307-0.
- ↑ Это значение исключает влияние центробежной силы из-за вращения Земли и, следовательно, больше, чем стандартное значение 9,80665 м/сек2.
Ссылки[править | править код]
- Altitude gravity calculator
- GRACE — Gravity Recovery and Climate Experiment
- GGMplus high resolution data (2013)
Литература[править | править код]
- Миронов В.С. Курс гравиразведки. — Л.: Недра, 1980. — 543 с.
Она зависит от массы и радиуса и часто определяется как “сила”, которая тянет объект к центру планеты. Именно так мы рассчитали гравитационное ускорение здесь, на Земле.
Если вы изучаете физику или просто любите астрономию, вы наверняка слышали о гравитации – ускорении, которое действует на тело, когда оно попадает в гравитационное поле. Как мы уже неоднократно говорили в наших статьях, гравитация – это следствие искривления пространства-времени, а не реальная сила. Чтобы рассчитать ее, мы должны вернуться к понятиям массы (понимаемой как плотность материи), радиуса и гравитационной постоянной.
Гравитация, что такое 9,8 м/с² в физике
Краткий обзор универсальной гравитационной постоянной Ньютона. Это та физическая постоянная (G), которая фигурирует в законе всемирного тяготения Ньютона и которая гласит, что два тела притягиваются друг к другу прямо пропорционально произведению их масс и обратно пропорционально квадрату расстояния между ними. Кстати, эта же постоянная была взята на вооружение Эйнштейном в уравнении поля его общей теории относительности.
Ускорение силы тяжести связано с весом тела, выраженным в Ньютонах, и его массой, выраженной в килограммах. Таким образом, P = mg (P — вес тела [Н], m — масса [кг], g — ускорение свободного падения [м/с²]). На Земле она измеряется в метрах на квадратную секунду и меняется в зависимости от местоположения (море или горы), но условно введено значение 9,8 м/с². Это среднее значение между ускорением силы тяжести на уровне моря и в горах. Но почему это число увеличивается с широтой? Во-первых, потому что Земля вращается, во-вторых, потому что она сжимается на полюсах.
А на Луне или Марсе? Для расчета нам нужны масса, радиус и постоянная G (постоянная Ньютона, равная 6,67 ⋅ 10¹¹ N⋅M²/кг²). Масса Луны составляет примерно 7,342 ⋅ 10²² кг, радиус – 1738 км, а G равен 6,67 ⋅ 10¹ N⋅M²/кг². На основании этих данных рассчитаем формулу g = G ⋅ M / R², при этом g на Луне составляет примерно 1,62 м/с². Масса Марса составляет 6,4 ⋅ 10²³ кг, радиус 3386 км, поэтому g будет равно 3,72 м/с².
Earth’s gravity measured by NASA GRACE mission, showing deviations from the theoretical gravity of an idealized, smooth Earth, the so-called Earth ellipsoid. Red shows the areas where gravity is stronger than the smooth, standard value, and blue reveals areas where gravity is weaker. (Animated version.)[1]
The gravity of Earth, denoted by g, is the net acceleration that is imparted to objects due to the combined effect of gravitation (from mass distribution within Earth) and the centrifugal force (from the Earth’s rotation).[2][3]
It is a vector quantity, whose direction coincides with a plumb bob and strength or magnitude is given by the norm .
In SI units this acceleration is expressed in metres per second squared (in symbols, m/s2 or m·s−2) or equivalently in newtons per kilogram (N/kg or N·kg−1). Near Earth’s surface, the gravity acceleration is approximately 9.81 m/s2 (32.2 ft/s2), which means that, ignoring the effects of air resistance, the speed of an object falling freely will increase by about 9.81 metres (32.2 ft) per second every second. This quantity is sometimes referred to informally as little g (in contrast, the gravitational constant G is referred to as big G).
The precise strength of Earth’s gravity varies depending on the location. The nominal “average” value at Earth’s surface, known as standard gravity is, by definition, 9.80665 m/s2 (32.1740 ft/s2).[4] This quantity is denoted variously as gn, ge (though this sometimes means the normal equatorial value on Earth, 9.78033 m/s2 (32.0877 ft/s2)), g0, or simply g (which is also used for the variable local value).
The weight of an object on Earth’s surface is the downwards force on that object, given by Newton’s second law of motion, or F = m a (force = mass × acceleration). Gravitational acceleration contributes to the total gravity acceleration, but other factors, such as the rotation of Earth, also contribute, and, therefore, affect the weight of the object. Gravity does not normally include the gravitational pull of the Moon and Sun, which are accounted for in terms of tidal effects.
Variation in magnitude[edit]
A non-rotating perfect sphere of uniform mass density, or whose density varies solely with distance from the centre (spherical symmetry), would produce a gravitational field of uniform magnitude at all points on its surface. The Earth is rotating and is also not spherically symmetric; rather, it is slightly flatter at the poles while bulging at the Equator: an oblate spheroid. There are consequently slight deviations in the magnitude of gravity across its surface.
Gravity on the Earth’s surface varies by around 0.7%, from 9.7639 m/s2 on the Nevado Huascarán mountain in Peru to 9.8337 m/s2 at the surface of the Arctic Ocean.[5] In large cities, it ranges from 9.7806[6] in Kuala Lumpur, Mexico City, and Singapore to 9.825 in Oslo and Helsinki.
Conventional value[edit]
In 1901 the third General Conference on Weights and Measures defined a standard gravitational acceleration for the surface of the Earth: gn = 9.80665 m/s2. It was based on measurements done at the Pavillon de Breteuil near Paris in 1888, with a theoretical correction applied in order to convert to a latitude of 45° at sea level.[7] This definition is thus not a value of any particular place or carefully worked out average, but an agreement for a value to use if a better actual local value is not known or not important.[8] It is also used to define the units kilogram force and pound force.
Calculating the gravity at Earth’s surface using the average radius of Earth (6,371 kilometres (3,959 mi)),[9] the experimentally determined value of the gravitational constant, and the Earth mass of 5.9722 ×1024 kg gives an acceleration of 9.8203 m/s2,[10] slightly greater than the standard gravity of 9.80665 m/s2. The value of standard gravity corresponds to the gravity on Earth at a radius of 6,375.4 kilometres (3,961.5 mi).[10]
Latitude[edit]
The differences of Earth’s gravity around the Antarctic continent.
The surface of the Earth is rotating, so it is not an inertial frame of reference. At latitudes nearer the Equator, the outward centrifugal force produced by Earth’s rotation is larger than at polar latitudes. This counteracts the Earth’s gravity to a small degree – up to a maximum of 0.3% at the Equator – and reduces the apparent downward acceleration of falling objects.
The second major reason for the difference in gravity at different latitudes is that the Earth’s equatorial bulge (itself also caused by centrifugal force from rotation) causes objects at the Equator to be further from the planet’s center than objects at the poles. Because the force due to gravitational attraction between two bodies (the Earth and the object being weighed) varies inversely with the square of the distance between them, an object at the Equator experiences a weaker gravitational pull than an object on one of the poles.
In combination, the equatorial bulge and the effects of the surface centrifugal force due to rotation mean that sea-level gravity increases from about 9.780 m/s2 at the Equator to about 9.832 m/s2 at the poles, so an object will weigh approximately 0.5% more at the poles than at the Equator.[2][11]
Altitude[edit]
The graph shows the variation in gravity relative to the height of an object above the surface
Gravity decreases with altitude as one rises above the Earth’s surface because greater altitude means greater distance from the Earth’s centre. All other things being equal, an increase in altitude from sea level to 9,000 metres (30,000 ft) causes a weight decrease of about 0.29%. (An additional factor affecting apparent weight is the decrease in air density at altitude, which lessens an object’s buoyancy.[12] This would increase a person’s apparent weight at an altitude of 9,000 metres by about 0.08%)
It is a common misconception that astronauts in orbit are weightless because they have flown high enough to escape the Earth’s gravity. In fact, at an altitude of 400 kilometres (250 mi), equivalent to a typical orbit of the ISS, gravity is still nearly 90% as strong as at the Earth’s surface. Weightlessness actually occurs because orbiting objects are in free-fall.[13]
The effect of ground elevation depends on the density of the ground (see Slab correction section). A person flying at 9,100 m (30,000 ft) above sea level over mountains will feel more gravity than someone at the same elevation but over the sea. However, a person standing on the Earth’s surface feels less gravity when the elevation is higher.
The following formula approximates the Earth’s gravity variation with altitude:
Where
- gh is the gravitational acceleration at height h above sea level.
- Re is the Earth’s mean radius.
- g0 is the standard gravitational acceleration.
The formula treats the Earth as a perfect sphere with a radially symmetric distribution of mass; a more accurate mathematical treatment is discussed below.
Depth[edit]
Gravity at different internal layers of Earth (1 = continental crust, 2 = oceanic crust, 3 = upper mantle, 4 = lower mantle, 5+6 = core, A = crust-mantle boundary)
Earth’s gravity according to the Preliminary Reference Earth Model (PREM).[14] Two models for a spherically symmetric Earth are included for comparison. The dark green straight line is for a constant density equal to the Earth’s average density. The light green curved line is for a density that decreases linearly from center to surface. The density at the center is the same as in the PREM, but the surface density is chosen so that the mass of the sphere equals the mass of the real Earth.
An approximate value for gravity at a distance r from the center of the Earth can be obtained by assuming that the Earth’s density is spherically symmetric. The gravity depends only on the mass inside the sphere of radius r. All the contributions from outside cancel out as a consequence of the inverse-square law of gravitation. Another consequence is that the gravity is the same as if all the mass were concentrated at the center. Thus, the gravitational acceleration at this radius is[15]
where G is the gravitational constant and M(r) is the total mass enclosed within radius r. If the Earth had a constant density ρ, the mass would be M(r) = (4/3)πρr3 and the dependence of gravity on depth would be
The gravity g′ at depth d is given by g′ = g(1 − d/R) where g is acceleration due to gravity on the surface of the Earth, d is depth and R is the radius of the Earth.
If the density decreased linearly with increasing radius from a density ρ0 at the center to ρ1 at the surface, then ρ(r) = ρ0 − (ρ0 − ρ1) r / re, and the dependence would be
The actual depth dependence of density and gravity, inferred from seismic travel times (see Adams–Williamson equation), is shown in the graphs below.
Local topography and geology[edit]
Local differences in topography (such as the presence of mountains), geology (such as the density of rocks in the vicinity), and deeper tectonic structure cause local and regional differences in the Earth’s gravitational field, known as gravitational anomalies.[16] Some of these anomalies can be very extensive, resulting in bulges in sea level, and throwing pendulum clocks out of synchronisation.
The study of these anomalies forms the basis of gravitational geophysics. The fluctuations are measured with highly sensitive gravimeters, the effect of topography and other known factors is subtracted, and from the resulting data conclusions are drawn. Such techniques are now used by prospectors to find oil and mineral deposits. Denser rocks (often containing mineral ores) cause higher than normal local gravitational fields on the Earth’s surface. Less dense sedimentary rocks cause the opposite.
A map of recent volcanic activity and ridge spreading. The areas where NASA GRACE measured gravity to be stronger than the theoretical gravity have a strong correlation with the positions of the volcanic activity and ridge spreading.
There is a strong correlation between the gravity derivation map of earth from NASA GRACE with positions of recent volcanic activity, ridge spreading and volcanos: these regions have a stronger gravitation than theoretical predictions.
Other factors[edit]
In air or water, objects experience a supporting buoyancy force which reduces the apparent strength of gravity (as measured by an object’s weight). The magnitude of the effect depends on the air density (and hence air pressure) or the water density respectively; see Apparent weight for details.
The gravitational effects of the Moon and the Sun (also the cause of the tides) have a very small effect on the apparent strength of Earth’s gravity, depending on their relative positions; typical variations are 2 µm/s2 (0.2 mGal) over the course of a day.
Direction[edit]
A plumb bob determines the local vertical direction
Gravity acceleration is a vector quantity, with direction in addition to magnitude. In a spherically symmetric Earth, gravity would point directly towards the sphere’s centre. As the Earth’s figure is slightly flatter, there are consequently significant deviations in the direction of gravity: essentially the difference between geodetic latitude and geocentric latitude. Smaller deviations, called vertical deflection, are caused by local mass anomalies, such as mountains.
Comparative values worldwide[edit]
Tools exist for calculating the strength of gravity at various cities around the world.[17] The effect of latitude can be clearly seen with gravity in high-latitude cities: Anchorage (9.826 m/s2), Helsinki (9.825 m/s2), being about 0.5% greater than that in cities near the equator: Kuala Lumpur (9.776 m/s2). The effect of altitude can be seen in Mexico City (9.776 m/s2; altitude 2,240 metres (7,350 ft)), and by comparing Denver (9.798 m/s2; 1,616 metres (5,302 ft)) with Washington, D.C. (9.801 m/s2; 30 metres (98 ft)), both of which are near 39° N. Measured values can be obtained from Physical and Mathematical Tables by T.M. Yarwood and F. Castle, Macmillan, revised edition 1970.[18]
Location | m/s2 | ft/s2 | Location | m/s2 | ft/s2 | Location | m/s2 | ft/s2 | Location | m/s2 | ft/s2 | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Amsterdam | 9.817 | 32.21 | Kotagiri | 9.817 | 32.21 | Jakarta | 9.777 | 32.08 | Ottawa | 9.806 | 32.17 | |||
Anchorage | 9.826 | 32.24 | Kandy | 9.775 | 32.07 | Paris | 9.809 | 32.18 | Athens | 9.800 | 32.15 | |||
Kolkata | 9.785 | 32.10 | Perth | 9.794 | 32.13 | Auckland | 9.799 | 32.15 | Kuala Lumpur | 9.776 | 32.07 | |||
Rio de Janeiro | 9.788 | 32.11 | Bangkok | 9.780 | 32.09 | Kuwait City | 9.792 | 32.13 | Rome | 9.803 | 32.16 | |||
Birmingham | 9.817 | 32.21 | Lisbon | 9.801 | 32.16 | Seattle | 9.811 | 32.19 | Brussels | 9.815 | 32.20 | |||
London | 9.816 | 32.20 | Singapore | 9.776 | 32.07 | Buenos Aires | 9.797 | 32.14 | Los Angeles | 9.796 | 32.14 | |||
Skopje | 9.804 | 32.17 | Cape Town | 9.796 | 32.14 | Madrid | 9.800 | 32.15 | Stockholm | 9.818 | 32.21 | |||
Chicago | 9.804 | 32.17 | Manchester | 9.818 | 32.21 | Sydney | 9.797 | 32.14 | Copenhagen | 9.821 | 32.22 | |||
Manila | 9.780 | 32.09 | Taipei | 9.790 | 32.12 | Denver | 9.798 | 32.15 | Melbourne | 9.800 | 32.15 | |||
Tokyo | 9.798 | 32.15 | Frankfurt | 9.814 | 32.20 | Mexico City | 9.776 | 32.07 | Toronto | 9.807 | 32.18 | |||
Havana | 9.786 | 32.11 | Montréal | 9.809 | 32.18 | Vancouver | 9.809 | 32.18 | Helsinki | 9.825 | 32.23 | |||
New York City | 9.802 | 32.16 | Washington, D.C. | 9.801 | 32.16 | Hong Kong | 9.785 | 32.10 | Nicosia | 9.797 | 32.14 | |||
Wellington | 9.803 | 32.16 | Istanbul | 9.808 | 32.18 | Oslo | 9.825 | 32.23 | Zurich | 9.807 | 32.18 |
Mathematical models[edit]
If the terrain is at sea level, we can estimate, for the Geodetic Reference System 1980, , the acceleration at latitude :
This is the International Gravity Formula 1967, the 1967 Geodetic Reference System Formula, Helmert’s equation or Clairaut’s formula.[19]
An alternative formula for g as a function of latitude is the WGS (World Geodetic System) 84 Ellipsoidal Gravity Formula:[20]
where,
then, where ,[20]
- .
where the semi-axes of the earth are:
The difference between the WGS-84 formula and Helmert’s equation is less than 0.68 μm·s−2.
Further reductions are applied to obtain gravity anomalies (see: Gravity anomaly#Computation).
Estimating g from the law of universal gravitation[edit]
From the law of universal gravitation, the force on a body acted upon by Earth’s gravitational force is given by
where r is the distance between the centre of the Earth and the body (see below), and here we take to be the mass of the Earth and m to be the mass of the body.
Additionally, Newton’s second law, F = ma, where m is mass and a is acceleration, here tells us that
Comparing the two formulas it is seen that:
So, to find the acceleration due to gravity at sea level, substitute the values of the gravitational constant, G, the Earth’s mass (in kilograms), m1, and the Earth’s radius (in metres), r, to obtain the value of g:[21]
This formula only works because of the mathematical fact that the gravity of a uniform spherical body, as measured on or above its surface, is the same as if all its mass were concentrated at a point at its centre. This is what allows us to use the Earth’s radius for r.
The value obtained agrees approximately with the measured value of g. The difference may be attributed to several factors, mentioned above under “Variations”:
- The Earth is not homogeneous
- The Earth is not a perfect sphere, and an average value must be used for its radius
- This calculated value of g only includes true gravity. It does not include the reduction of constraint force that we perceive as a reduction of gravity due to the rotation of Earth, and some of gravity being counteracted by centrifugal force.
There are significant uncertainties in the values of r and m1 as used in this calculation, and the value of G is also rather difficult to measure precisely.
If G, g and r are known then a reverse calculation will give an estimate of the mass of the Earth. This method was used by Henry Cavendish.
Measurement[edit]
The measurement of Earth’s gravity is called gravimetry.
Satellite measurements[edit]
Gravity anomaly map from GRACE
Currently, the static and time-variable Earth’s gravity field parameters are being determined using modern satellite missions, such as GOCE, CHAMP, Swarm, GRACE and GRACE-FO.[22][23] The lowest-degree parameters, including the Earth’s oblateness and geocenter motion are best determined from Satellite laser ranging.[24]
Large-scale gravity anomalies can be detected from space, as a by-product of satellite gravity missions, e.g., GOCE. These satellite missions aim at the recovery of a detailed gravity field model of the Earth, typically presented in the form of a spherical-harmonic expansion of the Earth’s gravitational potential, but alternative presentations, such as maps of geoid undulations or gravity anomalies, are also produced.
The Gravity Recovery and Climate Experiment (GRACE) consists of two satellites that can detect gravitational changes across the Earth. Also these changes can be presented as gravity anomaly temporal variations. The Gravity Recovery and Interior Laboratory (GRAIL) also consisted of two spacecraft orbiting the Moon, which orbited for three years before their deorbit in 2015.
See also[edit]
- Escape velocity – Concept in celestial mechanics
- Atmospheric escape – Loss of planetary atmospheric gases to outer space
- Figure of the Earth – Size and shape used to model the Earth for geodesy
- Geopotential – Energy related to Earth’s gravity
- Geopotential model – Theoretical description of Earth’s gravimetric shape
- Bouguer anomaly – Type of gravity anomaly
- Gravitation of the Moon
- Gravitational acceleration – Change in speed due only to gravity
- Gravity – Attraction of masses and energy
- Gravity anomaly – Difference between ideal and observed gravitational acceleration at a location
- Gravity of Mars – Gravitational force exerted by the planet Mars
- Newton’s law of universal gravitation – Classical mechanics physical law
- Vertical deflection – Measure of the downward gravitational force’s shift due to nearby mass
References[edit]
- ^ NASA/JPL/University of Texas Center for Space Research. “PIA12146: GRACE Global Gravity Animation”. Photojournal. NASA Jet Propulsion Laboratory. Retrieved 30 December 2013.
- ^ a b Boynton, Richard (2001). “Precise Measurement of Mass” (PDF). Sawe Paper No. 3147. Arlington, Texas: S.A.W.E., Inc. Archived from the original (PDF) on 2007-02-27. Retrieved 2007-01-21.
- ^ Hofmann-Wellenhof, B.; Moritz, H. (2006). Physical Geodesy (2nd ed.). Springer. ISBN 978-3-211-33544-4. § 2.1: “The total force acting on a body at rest on the earth’s surface is the resultant of gravitational force and the centrifugal force of the earth’s rotation and is called gravity.”
{{cite book}}
: CS1 maint: postscript (link) - ^ Taylor, Barry N.; Thompson, Ambler, eds. (March 2008). The international system of units (SI) (PDF) (Report). National Institute of Standards and Technology. p. 52. NIST special publication 330, 2008 edition.
- ^ Hirt, Christian; Claessens, Sten; Fecher, Thomas; Kuhn, Michael; Pail, Roland; Rexer, Moritz (August 28, 2013). “New ultrahigh-resolution picture of Earth’s gravity field”. Geophysical Research Letters. 40 (16): 4279–4283. Bibcode:2013GeoRL..40.4279H. doi:10.1002/grl.50838. hdl:20.500.11937/46786. S2CID 54867946.
- ^ “Wolfram|Alpha Gravity in Kuala Lumpur”, Wolfram Alpha, accessed November 2020
- ^ Terry Quinn (2011). From Artefacts to Atoms: The BIPM and the Search for Ultimate Measurement Standards. Oxford University Press. p. 127. ISBN 978-0-19-530786-3.
- ^ Resolution of the 3rd CGPM (1901), page 70 (in cm/s2). BIPM – Resolution of the 3rd CGPM
- ^ “GEODETIC REFERENCE SYSTEM 1980” (PDF). International Association of Geodesy. Retrieved 2022-05-31.
- ^ a b “Gravitational Acceleration Calculator”. sanjaysplanet.com. Retrieved 2022-05-31.
- ^ “Curious About Astronomy?”, Cornell University, retrieved June 2007
- ^ “I feel ‘lighter’ when up a mountain but am I?”, National Physical Laboratory FAQ
- ^ “The G’s in the Machine”, NASA, see “Editor’s note #2”
- ^ a b A. M. Dziewonski, D. L. Anderson (1981). “Preliminary reference Earth model” (PDF). Physics of the Earth and Planetary Interiors. 25 (4): 297–356. Bibcode:1981PEPI…25..297D. doi:10.1016/0031-9201(81)90046-7. ISSN 0031-9201.
- ^ Tipler, Paul A. (1999). Physics for scientists and engineers (4th ed.). New York: W.H. Freeman/Worth Publishers. pp. 336–337. ISBN 9781572594913.
- ^ Watts, A. B.; Daly, S. F. (May 1981). “Long wavelength gravity and topography anomalies”. Annual Review of Earth and Planetary Sciences. 9: 415–418. Bibcode:1981AREPS…9..415W. doi:10.1146/annurev.ea.09.050181.002215.
- ^ Gravitational Fields Widget as of Oct 25th, 2012 – WolframAlpha
- ^ T.M. Yarwood and F. Castle, Physical and Mathematical Tables, revised edition, Macmillan and Co LTD, London and Basingstoke, Printed in Great Britain by The University Press, Glasgow, 1970, pp 22 & 23.
- ^ International Gravity formula Archived 2008-08-20 at the Wayback Machine
- ^ a b “Department of Defense World Geodetic System 1984 ― Its Definition and Relationships with Local Geodetic Systems,NIMA TR8350.2, 3rd ed., Tbl. 3.4, Eq. 4-1″ (PDF). Archived from the original (PDF) on 2014-04-11. Retrieved 2015-10-15.
- ^ “Gravitation”. www.ncert.nic. Retrieved 2022-01-25.
{{cite web}}
: CS1 maint: url-status (link) - ^ Meyer, Ulrich; Sosnica, Krzysztof; Arnold, Daniel; Dahle, Christoph; Thaller, Daniela; Dach, Rolf; Jäggi, Adrian (22 April 2019). “SLR, GRACE and Swarm Gravity Field Determination and Combination”. Remote Sensing. 11 (8): 956. Bibcode:2019RemS…11..956M. doi:10.3390/rs11080956.
- ^ Tapley, Byron D.; Watkins, Michael M.; Flechtner, Frank; Reigber, Christoph; Bettadpur, Srinivas; Rodell, Matthew; Sasgen, Ingo; Famiglietti, James S.; Landerer, Felix W.; Chambers, Don P.; Reager, John T.; Gardner, Alex S.; Save, Himanshu; Ivins, Erik R.; Swenson, Sean C.; Boening, Carmen; Dahle, Christoph; Wiese, David N.; Dobslaw, Henryk; Tamisiea, Mark E.; Velicogna, Isabella (May 2019). “Contributions of GRACE to understanding climate change”. Nature Climate Change. 9 (5): 358–369. Bibcode:2019NatCC…9..358T. doi:10.1038/s41558-019-0456-2. PMC 6750016. PMID 31534490.
- ^ Sośnica, Krzysztof; Jäggi, Adrian; Meyer, Ulrich; Thaller, Daniela; Beutler, Gerhard; Arnold, Daniel; Dach, Rolf (October 2015). “Time variable Earth’s gravity field from SLR satellites”. Journal of Geodesy. 89 (10): 945–960. Bibcode:2015JGeod..89..945S. doi:10.1007/s00190-015-0825-1.
External links[edit]
- Altitude gravity calculator
- GRACE – Gravity Recovery and Climate Experiment
- GGMplus high resolution data (2013)
- Geoid 2011 model Potsdam Gravity Potato
Характер и особенности расчета силы притяжения известны еще с древних времен. На основании имеющихся знаний, переданных современному научному сообществу великими исследователями, человек познает не только его окружающий мир, но и Вселенную.
Формула силы притяжения
Со времен Древней Греции философов интересовали явления притяжения тел к земле и свободного падения. К примеру, по утверждениям Аристотеля, из двух камней, брошенных с одинаковой высоты, быстрее достигнет земной поверхности тот, чья масса больше. В IV веке до нашей эры единственными методами научных изысканий служили наблюдения и анализ. К проверке гипотез опытным путем великие мыслители не прибегали. По истечению столетий физик из Италии Галилео Галилей проверил утверждения Аристотеля, используя практические методы исследований.
Итоги проведенных Галилеем опытов были опубликованы в «Беседах и математических доказательствах, касающихся двух новых наук». Ученый использовал псевдоним Сагредо: «пушечное ядро не опередит мушкетной пули при падении с высоты двухсот локтей». Формулировка закона всемирного тяготения была представлена в 1666 году Исааком Ньютоном. В ней фиксировались основные тезисы теоремы Галилея.
Смысл заключался в том, что тела, которые обладают разными массами, падают на землю с одинаковыми ускорениями. Одно тело притягивает другое и, наоборот, с силой, которая прямо пропорциональна их массам и обратно пропорциональна отрезку пути между ними. Согласно определению гравитации от Ньютона, тела, характеризующиеся массой, обладают свойством, благодаря которому притягиваются друг к другу.
Понятие и определение
Силы взаимного притяжения – это силы, которые притягивают любые тела, обладающие массами.
Корректность выводов Ньютона неоднократно подтверждалась путем практических испытаний. Но в начале ХХ века перед учеными-физиками остро стоял вопрос о природе и характере взаимодействия крупных астрономических тел, включая разные виды планетарных систем и галактик в вакууме. Ньютоновского закона уже было недостаточно, чтобы решить эти задачи. Исключить недочеты позволила новая теория, разработанная Альбертом Эйнштейном в начале ХХ столетия. Общая теория относительности объясняет гравитацию не в качестве силы, а представляет ее в виде искривления пространства и времени в четырех измерениях, которое зависит от массы тел, создающих его.
Гравитация представляет собой свойство тел, которые характеризуются массой, притягивать друг друга. Данное физическое явление можно объяснить, как поле, оказывающее дистанционное воздействие на предметы, не связанные между собой никаким другим способом.
Достижение Эйнштейна не противоречит теоретическому объяснению гравитации от Ньютона. Общая теория относительности рассматривает закон всемирного тяготения, как частный случай, применимый для сравнительно небольших расстояний. Данная закономерность в настоящее время также активно используется для поиска решений задач на практике.
Единицы измерения силы притяжения
В разных системах измерений можно встретить несколько отличающиеся обозначения. Единицы измерения силы притяжения следующие:
- система СИ: ([F]=H);
- система СГС: ([F]=дин).
Формула силы притяжения между телами в космосе
Закономерность гравитации, которую обнаружил Ньютон, можно представить в виде математической формулы. Вычисления выглядят следующим образом:
(F=(Gtimes m1times m2times r)/2),
где (m1,m2) – массы объектов, которые притягиваются друг к другу под действием силы (F),
(r) – расстояние, на которое удалены тела,
(G) – т.н. гравитационная постоянная величина, константа, равная 6,67.
Гравитационное взаимодействие объектов будет слабеть, если тела удаляются друг относительно друга. Сила гравитации пропорциональна величине расстояния в квадрате. При этом для нахождения искомой величины расстояние измеряется от центров тяжести тел, а не от поверхностей.
Гравитация в определенных моментах напоминает другие физические явления. Исходя из зависимости интенсивности силы от расстояния в квадрате, гравитацию можно сравнить с электромагнитным взаимодействием сильного и слабого характера.
Формула силы гравитационного притяжения между двумя телами
Квадратичная связь силы, с которой тела притягиваются друг к другу, с расстоянием между ними объясняет тот факт, что люди, находящиеся на поверхности планеты Земля не притягиваются к Солнцу, хотя масса его велика и превышает земную в миллион раз. Земля и центр Солнечной системы удалены примерно на 150 миллионов километров. Дистанция достаточно велика, чтобы ощущаться человеком. Однако эту силу можно зарегистрировать, используя высокоточные приборы. В рамках планеты Земля сила, с которой тела к ней притягиваются, то есть их вес, измеряется следующим образом:
(P=mtimes g),
где (m) – масса тела, на которое воздействует сила притяжение,
(g) – ускорение свободного падения около Земли (если рассматривать систему в условиях любой другой планеты, данная величина будет отличаться).
На разных географических широтах величина ускорения свободного падения может незначительно отличаться. Производя расчеты, данный показатель принимается за 9,81 метров в секунду в квадрате.
В физике понятия массы и веса тел отличаются. Весом называется сила, определяющее притяжение объекта к планете. Масса представляет собой меру инертности вещества. На нее не влияют другие тела, расположенные рядом.
Формула для силы притяжения тел произвольной формы
Расчеты определяются некоторыми условиями. К ним относятся характеристики исследуемых объектов.
Если сила притяжения измеряется между телами, которые обладают произвольной формой, их считают материальными точками:
(dtimes m1=rho1times dV1)
(dtimes m2=rho2times dV2)
где (rho1, rho2) – обозначают плотность веществ материальных точек, характерных для первого и второго объектов,
(dV1 ,dV2) – элементарные объемы выделенных материальных точек.
Исходя из этого, сила притяжения (doverline F), с которой взаимодействуют объекты, равна:
(doverline F=-Gtimes frac{rho _{1}timesrho _{2}times dtimes V_{1}times dtimes V_{2}}{r_{12}^{3}} bar{r_{12}})
Таким образом, сила притяжения первого тела вторым рассчитывается следующим образом:
(bar{F}_{12}=-Gtimesint_{V_{1}}^{rho _{1}times dtimes V_{1}}int_{V_{2}}^{frac{rho _{2}}{r_{12}^{3}}times bar{r}_{12}times dtimes V_{2}})
где интегрирование выполняется по всему объему первого ((V1)) и второго ((V2)) тел. Если тела обладают однородностью, то формула корректируется, таким образом:
(bar{F}_{12}=-Gtimesrho1timesrho2timesint_{V_{1}}^{dtimes V_{1}}int_{V_{2}}^{frac{bar{r}_{12}}{r_{12}^{3}}times dtimes V_{2}})
Формула для силы притяжения твердых тел шарообразной формы
В условиях, когда сила притяжения измеряется между телами, представленных в форме шара или близкой к нему, с плотностью, зависящей лишь от удаленности их центров тяжести, применяется следующая формула:
(bar{F}_{12}=-Gtimes(m1times m2)/R^3times R12)
где (m1,m2) – массы шаров, (R )– радиус – вектор, соединяющий центры шаров.
Пример применения формулы для расчета
Задача. Необходимо рассчитать силу притяжения между двумя идентичными однородными шарами, масса которых составляет по 1 килограмму. При этом их центры тяжести удалены на 1 метр друг от друга.
Решение будет выглядеть следующим образом:
Используя формулу для подсчета силы притяжения между двумя объектами шарообразной формы, получается:
(F_g=6.67times 10^{-11}times frac{1times 1}{1^{2}})
Ответ: (F_g=6.67times 10^{-11})
Выполнить расчет силы притяжения достаточно просто, если правильно выбрать формулу, подходящую под конкретные условия, в которых находятся тела. Если в процессе решения задач по физике или другим дисциплинам возникают проблемы, всегда можно обратиться за помощью к компетентным специалистам портала Феникс.Хелп.
Все тела взаимодействуют друг с другом. Так, две материальные точки, обладающие массой, притягиваются друг к другу с некоторой силой, которую называют гравитационной, или силой всемирного тяготения.
Сила всемирного тяготения — сила, с которой все тела притягиваются друг к другу.
Закон всемирного тяготения
Сила взаимного притяжения двух тел прямо пропорциональна произведению масс этих тел и обратно пропорциональна квадрату расстояния между ними.
F — сила всемирного тяготения, m1 и m2 — массы двух притягивающихся друг к другу тел, R — расстояние между этими телами, G — гравитационная постоянная (G = 6,67∙10–11 Н ∙ м2/кг2).
Сила всемирного тяготения направлена по линии, соединяющей центры двух тел.
Гравитационная постоянная численно равна силе притяжения между двумя точечными телами массой 1 кг каждое, если расстояние между ними равно 1 м. Если R = 1 м, m1 = 1 кг и m2 = 1 кг, то F = G.
G = 6,67∙10–11 Н ∙ м2/кг2.
Сила тяжести
Согласно закону всемирного тяготения, все тела притягиваются между собой. Так, Земля притягивает к себе падающий на нее мяч, а мяч притягивает к себе Землю.
Сила тяжести — сила, с которой Земля притягивает к себе тела.
Сила тяжести действует на все тела, находящиеся в поле притяжения Земли. Она всегда направлена к центру нашей планеты.
Расчет силы тяжести на Земле
Силу тяжести можно рассчитать с помощью закона всемирного тяготения. Тогда одна из масс будет равна массе земли. Обозначим ее большой буквой M. Вторая масса будет принадлежать телу, притягивающемуся к Земли. Обозначим его m. В качестве R будет служить радиус Земли. В таком случае сила тяжести будет определяться формулой:
Вывод формулы ускорения свободного падения
Согласно второму закону Ньютона, сила, которая действует на тело, сообщает ему ускорение. Поэтому силу тяжести также можно выразить через это ускорение. Обозначим его g — ускорение свободного падения.
Пример №1. Мальчик массой 50 кг прыгнул под углом 45 градусов к горизонту. Найти силу тяжести, действующую на него во время прыжка.
Сила тяжести зависит только от массы тела и ускорения свободного падения. Направлена она всегда к центру Земли, и от характера движения тела не зависит. Поэтому:
Мы получили две формулы для вычисления силы тяжести: одну — исходя из закона всемирного тяготения, вторую — исходя из второго закона Ньютона. Приравняем правые части формул и получим:
Отсюда:
Формула расчета ускорения свободного падения
Вместо массы и радиуса Земли можно взять массы и радиусы любых планет. Так можно рассчитать ускорение свободного падения для любого космического тела.
Пример №2. Рассчитать ускорение свободного падения на Луне. Считать, что радиус Луны равен 1736 км, а ее масса — 7,35∙1022 кг.
Переведем километры в метры: 1736 км = 1736000 м.
Первая космическая скорость
Исаак Ньютон смог доказать, что причиной падения тел на Землю, движения Луны вокруг Земли и движения Земли вокруг Солнца является сила тяготения. Если камень бросить в горизонтальном направлении, его траектория будет отклонена от прямой линии под действием земной силы тяжести. Если же придать этому камню большую скорость, камень приземлится на большем расстоянии. Значит, существует такая скорость, при которой камень не приземлится, а начнет бесконечно вращаться вокруг Земли.
ОпределениеПервая космическая скорость — минимальная (для заданной высоты над поверхностью планеты) горизонтальная скорость, которую необходимо придать объекту, чтобы он совершал движение по круговой орбите вокруг планеты.
Вывод формулы первой космической скорости
Когда тело массой m вращается на некоторой высоте h, расстояние между ним и центром Земли равно сумме этой высоты и радиуса Земли. Поэтому сила тяготения между этим телом и Землей будет равна:
Движение тела вокруг планеты — частный случай движения тела по окружности с постоянной по модулю скоростью. Мы уже знаем, что такое тело движется с центростремительным ускорением, направленным к центру окружности. В данном случае центростремительное ускорение будет направлено к центру Земли. Это ускорение сообщает телу сила тяготения.
Так как тело движется на некоторой высоте h от поверхности Земли, центростремительное ускорение будет определяться формулой:
Подставив это ускорение в формулу второго закона Ньютона, получим силу, с которой Земля притягивает к себе тело массой m:
Приравняем правые части формул, следующих из закона всемирного тяготения и второго закона Ньютона, и получим:
Отсюда скорость, с которой должно тело массой m бесконечно вращаться вокруг Земли на высоте h, равна:
Скорость бесконечно вращающегося вокруг Земли тела не зависит от его массы. Она зависит только от высоты, на которой оно находится. Чем выше высота, тем меньше скорость его вращения.
Тело, вращающееся вокруг планеты, называется ее спутником. Чтобы любое тело стало спутником Земли, нужно сообщить ему некоторую скорость на поверхности планеты в горизонтальном направлении. Высота h в этом случае равна 0. Тогда эта скорость будет равна:
8 км/с — первая космическая скорость Земли.
Пример №3. Рассчитать первую космическую скорость для Венеры. Считать, что масса Венеры равна 4,87∙1024 кг, а ее радиус равен 6052 км.
Задание EF18521
Сила гравитационного притяжения между двумя шарами, находящимися на расстоянии 2 м друг от друга, равна 9 нН. Какова будет сила притяжения между ними, если расстояние увеличить до 6 м? Ответ выразите в наноньютонах (нН).
Алгоритм решения
- Записать исходные данные.
- Записать закон всемирного тяготения.
- Установить зависимость между силой гравитационного притяжения и расстоянием между телами.
- На основании вывода о зависимости двух величин вычислить гравитационное притяжение между двумя шарами при изменении расстояния между ними.
Решение
Запишем исходные данные:
- Расстояние между двумя шарами в первом случае: R1 = 2 м.
- Расстояние между двумя шарами во втором случае: R2 = 6 м.
- Сила гравитационного притяжения между двумя шарами в первом случае: F1 = 9 нН.
Запишем закон всемирного тяготения:
Из формулы видно, что сила гравитационного притяжения обратно пропорционально квадрату расстояния между телами массами m1 и m2.
R2 больше R1 втрое (6 больше 2 в 3 раза). Следовательно, расстояние между шарами тоже увеличилось втрое. В таком случае сила гравитационного притяжения между ними уменьшится в 32 раз, или в 9 раз. Так как в первом случае эта сила была равна 1 нН, то во втором она составит в 9 раз меньше, или 1 нН.
Ответ: 1
pазбирался: Алиса Никитина | обсудить разбор
Задание EF17569
Две звезды одинаковой массы m притягиваются друг к другу с силами, равными по модулю F. Чему равен модуль сил притяжения между другими двумя звёздами, если расстояние между их центрами такое же, как и в первом случае, а массы звёзд равны 3m и 4m?
а) 7F
б) 9F
в) 12F
г) 16F
Алгоритм решения
1.Записать закон всемирного тяготения.
2.Применить закон всемирного тяготения для первой и второй пары звезд.
3.Из каждого выражения выразить расстояние между звездами.
4.Приравнять правые части уравнений и вычислить силу притяжения между второй парой звезд.
Решение
Закон всемирного тяготения выглядит так:
Примерим этот закон для первой и второй пары звезд:
Выразим квадраты радиусов, так как они в обоих случаях одинаковые:
Приравняем правые части выражений и выразим силу притяжения во втором случае:
Ответ: в
pазбирался: Алиса Никитина | обсудить разбор
Задание EF18678
Высота полёта искусственного спутника над Землёй увеличилась с 400 до 500 км. Как изменились в результате этого скорость спутника и его потенциальная энергия?
Для каждой величины определите соответствующий характер изменения:
1) | увеличилась |
2) | уменьшилась |
3) | не изменилась |
Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.
Скорость
спутника |
Потенциальная энергия спутника |
Алгоритм решения
1.Записать закон всемирного тяготения и формулу центростремительного ускорения для движения тела по окружности с постоянной по модулю скоростью.
2.Установить зависимость скорости от высоты спутника над поверхностью Земли.
3.Записать формулу потенциальной энергии и установить, как она зависит от высоты.
Решение
На спутник действует сила притяжения Земли, которая сообщает ему центростремительное ускорение:
F=maц=GmM(R+h)2
Отсюда центростремительное ускорение равно:
aц=GM(R+h)2
Но центростремительное ускорение также равно:
aц=v2(R+h)
Приравняем правые части выражений и получим:
GM(R+h)2=v2(R+h)
v2=MG(R+h)(R+h)2=MG(R+h)
Квадрат скорости спутника обратно пропорционален радиусу вращения. Следовательно, при увеличении высоты увеличивается радиус вращения, а скорость уменьшается.
Потенциальная энергия спутника определяется формулой:
Ep = mgh
Видно, что потенциальная энергия зависит от высоты прямо пропорционально. Следовательно, при увеличении высоты потенциальная энергия спутника тоже увеличивается.
Верная последовательность цифр в ответе: 21.
Ответ: 21
pазбирался: Алиса Никитина | обсудить разбор
Задание EF17578
Искусственный спутник обращается вокруг планеты по круговой орбите радиусом 4000 км со скоростью 3,4 км/с. Ускорение свободного падения на поверхности планеты равно 4 м/с2. Чему равен радиус планеты? Ответ запишите в километрах.
Алгоритм решения
1.Записать исходные данные. Перевести единицы измерения в СИ.
2.Записать формулу ускорения свободного падения и выразить через нее радиус планеты.
3.Записать формулу, раскрывающая взаимосвязь между линейной скоростью и радиусом окружности, по которой движется тело.
4.Записать закон всемирного тяготения применительно к спутнику.
5.Вывести формулу для расчета радиуса планеты.
6.Подставить известные данные и произвести вычисление.
Решение
Запишем исходные данные:
• Линейная скорость спутника: v = 3,4 км/с, или 3,4∙103 м/с.
• Радиус орбиты спутника: Rо = 4000 км, или 4∙106 м.
• Ускорение свободного падения у поверхности планеты: g = 4 м/с2.
Ускорение свободного падения определяется формулой:
Отсюда радиус равен:
Линейная скорость и радиус орбиты связываются формулой:
Используя закон всемирного тяготения, запишем силы, с которой притягивается спутник к планете:
Согласно второму закону Ньютона, сила — это произведение массы на ускорение тела. Следовательно:
Отсюда:
Поделим обе части выражения на массу спутника и радиус его орбиты. Получим:
Из этой формулы выразим массу планеты:
Подставим массу планеты в формулу для нахождения ее радиуса:
Подставляем известные данные и вычисляем:
Этот радиус соответствует 3400 км.
Ответ: 3400
pазбирался: Алиса Никитина | обсудить разбор
Алиса Никитина | Просмотров: 18k