Как найти характеристики динамика

Хочется собрать сабвуфер, да не простой, а грамотно рассчитанный. В этих расчетах уже все поднаторели: и установщики, и любители, и программ тоже вроде хватает, например JBL SpeakerShop. Одно только «но» — без параметров Тиля-Смолла далеко не уедешь.

К сожалению, недорогие и тем особенно интересные динамики часто попадают в руки вообще без каких-либо цифр. Бывает и так, что характеристики вроде есть, но разные, в зависимости от года выпуска. Это встречается даже у известных производителей.
В общем, умение измерять эти величины лишним не будет.

Традиционные методы измерения описаны во многих источниках и секрета не представляют. Более того, в упомянутой выше программе JBL SpeakerShop есть удобный «мастер», который избавляет от необходимости вручную рассчитывать промежуточные и окончательные значения напряжений, частот и добротностей: нужно собрать приведенную там схему и действовать в соответствии с указаниями программы.

Я сам неоднократно пользовался этой методикой, все здорово, только для измерений требуются:
а) генератор,
б) частотомер,
в) вольтметр переменного тока,
г) усилитель низкой частоты.

Думаю, что где-нибудь к пункту в) из этого списка исследовательский пыл у многих уже малость поугас. Но это еще не все. Сам процесс измерений, постоянная «ловля» требуемых значений частот и напряжений способны утомить даже флегматика: на один динамик уходит в лучшем случае полчаса. Обидно тратить время на такую рутину, поэтому, когда я наткнулся на программу SpeakerWorkShop, радости не было предела.

Замечательно, нужны только компьютер со звуковой платой и элементарные кабели. Первые несколько дней я честно пытался делать все так, как велит инструкция. Тут меня ждало разочарование. То есть сама по себе программа хорошая, но вот ее help — это что-то. Прочитал его, наверное, раз двадцать, пробовал и так, и этак, но так ничего и не получилось. Что поделать — бесплатный софт сродни сыру той же цены.

Несколько месяцев я продолжал измерять «три цифры» обычными способами, пока на сайте, на котором находится сама программа, не появилась новая ссылка. Спасибо чемпиону РАСКА среди любителей Косте Никифорову за то, что сказал о ней. Предлагаемое ниже описание — мой собственный, упрощенный вариант приставки и краткая инструкция по работе с программой.

Бывает в жизни — как приклеится к человеку прозвище, так и преследует до конца дней его. Вот и с прибором, который буду ниже описывать, тоже такое случилось — «коробочка», да и все тут. Как я ни пытался выдумать более наукообразное название, ничего не вышло. Схема приведена на рис. 1

рис. 1

Некоторые комментарии по поводу применяемых элементов.
X1 — разъем, подключаемый к выходу усилителя мощности (Spkr Out) звуковой карты, обычно «мини-джек». Сигнал правого и левого канала с усилителя одинаков, поэтому можно использовать любой контакт разъема. При использовании внешнего усилителя подключать одновременно этот разъем к выходу звуковой платы НЕЛЬЗЯ!

X2, X3 понадобятся, если вы будете использовать внешний усилитель мощности. Это более предпочтительный вариант, правда, чуть более громоздкий. Подойдут «колоночные» клеммы, желательно винтовые. Кроме того, в случае использования внешнего усилителя потребуется дополнительный кабель «мини-джек — два тюльпана».

X4, X5 — клеммы, аналогичные X2, X3. К ним будет присоединяться объект исследования. Очень полезно продублировать эти клеммы парой «крокодилов».

X6 — «мини-джек», который будет подключен ко входу Line-In звуковой платы. Распайку правого и левого канала я не привожу — пока соедините как получится, уточним позднее. Провод к разъему нужно брать экранированный.

R1, R2 — резисторы, используемые в качестве эталонных при калибровке программы. Номиналы особой роли не играют и могут быть от 7,5 до 12 Ом, например типа МЛТ-2.
R3 — это резистор, с величиной которого программа «сравнивает» неизвестный импеданс. Поэтому номинал этого резистора должен быть соизмерим с исследуемым. Если в основном предполагается измерять автомобильные динамики, величину R3 можно взять около 4 Ом. Мощность можно выбрать такую же, как для R1.

R4, R5, R6, R7 — любой мощности. Сопротивления могут несколько отличаться от указанных, важно лишь, чтобы R4/R6 = R5/R7 = 10…15. Это делитель, который ослабляет сигнал на входе звуковой карты.

SA1 служит для выбора между двумя эталонными сопротивлениями. Он используется только при калибровке. Можно использовать тумблер, я поставил П2К, соединив параллельно несколько секций.

SA2, пожалуй, самый ответственный. Важно, чтобы он обеспечивал надежный и стабильный контакт, от этого во многом зависит точность результатов.

Итак, «коробочка» собрана. Теперь потребуется омметр, причем максимально возможной точности, желательно измерительный мост. Необходимо установить переключатели во все положения согласно таблице и измерить указанные сопротивления.

  положение
переключателя
положение
переключателя
сопротивление сопротивление
  SA1 SA2 X4-X5 X2-X4
CAL1 Верхнее Нижнее 10 4
CAL2 Нижнее Нижнее 5 4
LOOP Любое Верхнее Бесконечность 0
IMP Любое Среднее Бесконечность 4

Обращаю внимание на то, что при работе потребуются именно реально измеренные значения сопротивлений. Их, а также назначение всех переключателей и входов-выходов лучше всего написать прямо на корпусе — на память надеяться не советую.

Принцип работы системы очень прост. Шумовой сигнал, формируемый программой, подается через усилитель на исследуемый объект через резистор R3 известного сопротивления. Программа сравнивает напряжение на одном канале (верхний вывод R3) с напряжением на другом (нижний вывод R3 и верхний — измеряемого объекта). Гениальная простота идеи состоит в том, что для расчета неизвестного импеданса используются не абсолютные величины напряжений, а их отношение. Благодаря предварительной калибровке по заведомо известным сопротивлениям (R2 и R2-R1) достигается вполне приемлемая точность измерений.

Теперь можно присоединить «коробочку» к звуковой плате. Для первого раза не стоит использовать внешний усилитель: чтобы понять принцип работы, он особо не нужен. А когда принцип станет ясен, его подключение вопросов уже не вызовет.

Настройка программы
Возможно, кому-то описание настройки покажется излишне подробным, но, как показывает практика, удобно, когда весь процесс описан по порядку, а не по принципу «это вы и так знаете, здесь все очевидно, в общем, умные — сами разберетесь».

После первого запуска программы нужно проверить, поддерживает ли ваша звуковая плата «полностью дуплексный режим», т. е. позволяет ли одновременно воспроизводить и записывать звук. Для проверки нужно выбрать пункт меню Options-Wizard-Check sound card. Дальнейшие действия программа проделает самостоятельно. Если результат отрицательный, придется искать другую плату или обновлять драйвер.

Если все в порядке, откройте Volume Control (Регулятор уровня). Выбрав Options-Properties, установите Mute на все регуляторы, кроме Volume Control и Wave. Необходимо отключить все «лишние» опции, вроде Enhanced Stereo и темброблока. Регулятор громкости установите в среднее положение. В завершение переместите окно Volume Control, как показано на рисунке 2.

рис. 2

рис. 3

Теперь откройте еще одну копию Volume Control. Выберите Options-Properties, установите режим записи (Recording). Имя окна изменится на Recording Control (Уровень). Аналогично вышеописанному поставьте Mute на все регуляторы, кроме Recording и Line-In. Регулятор уровня поставьте в положение максимума. Потом, возможно, уровень потребуется изменить, но об этом позже. Переместите окно Recording согласно рисунку.

Один из самых ответственных этапов настройки — правильно выбрать входные и выходные уровни сигналов. Для этого создайте новый сигнал, выбрав пункт Resource-New-Signal. Дайте ему какое-нибудь имя, например sign1. По умолчанию будет выбран синусоидальный тип сигнала (Sine), что нас вполне устраивает. Имя нового сигнала должно появиться в окне проекта (то, что слева).

Для того чтобы что-то сделать с сигналом или динамиком, его нужно обязательно открыть. Думаете, для этого достаточно двойного щелчка? Вот тут таится одна из особенностей интерфейса программы: для открытия ресурса требуется сначала щелкнуть на имени ресурса левой кнопкой мыши, затем либо выбрать пункт Open из меню, появляющегося при нажатии правой кнопки, либо нажать F2 на клавиатуре. Вновь нажмите правую кнопку и войдите в Properties. Там нужно выбрать закладку Sine и ввести значение частоты 500 Гц. Фаза сигнала — 0. OK.

Установите переключатели «коробочки» в положение LOOP (согласно таблице). Убедившись в том, что сигнал открыт, войдите в меню Sound-Record — появится диалог Record Data. Введите туда те значения, которые приведены на рис. 3. Нажмите OK; если к клеммам Test подключен динамик, раздастся кратковременный «шип».

Посмотрим на дерево проекта. Там появится несколько новых объектов с именами, начинающимися с sign1. Откройте ресурс с именем sing1.in.l. На появившемся справа графике нажмите правую кнопку мыши и выберите Chart properties. Выберите закладку X Axis и установите в разделе Scale максимальное значение, равное 10. Затем выберите Y Axis и установите диапазон значения Minimum и Maximum — 32 K и 32 K соответственно. Нажмите OK. График должен выглядеть как 4,5 периода синусоидальных колебаний. Проделайте все то же самое с ресурсом sing1.in.r.

Теперь нужно выяснить уровень выходного сигнала, при котором наступает ограничение. Для этого понемногу увеличивайте уровень регулятором громкости, повторяя каждый раз процедуру записи (пункт меню Sound-Record Again) и анализируя графики sign1.in.r и sign1.in.l. Как только появится видимое ограничение амплитуды (обычно при уровнях ~20 K), нужно немного уменьшить уровень сигнала. На этом процесс установки уровня можно считать законченным.

В оригинальной методике автор предлагает проверить теперь соответствие левого и правого каналов. Я это делал, но впоследствии оказалось, что их пришлось поменять местами. Так что лучше перейти сразу к калибровке программы по известным сопротивлениям — там «правый-левый» заодно и проверим.

Для начала убедитесь в том, что к тестовым клеммам (X4, X5) ничего не подключено. Затем откройте меню Option-Preferences и выберите там закладку Measurements. Установите Sample Rate в крайнее правое положение, а Sample Size — равным 8192. Громкость надо сделать равной 100. В дальнейшем при реальных измерениях для большей точности нужно устанавливать больший Sample Size. Правда, при этом возрастает размер файла. Точность можно повысить, уменьшив Sample Rate, — при этом снизится верхняя граничная частота измерений, но для сабвуферов это совершенно неважно.

Теперь надо проверить разбаланс каналов. Для этого выберите пункт Option — Calibrate-Channel Difference и нажмите кнопку Test. Дальнейшие действия подскажет программа. Результаты проверки будут находиться в разделе Measurement.Calib папки System (в окне проекта). Какие точно значения должны получаться, я не знаю, на практике разбаланс выходит порядка десятых долей (в безразмерных единицах), а уровень сигнала на выходе каждого из каналов при этом — в районе 20000 этих же единиц. Думаю, такое соотношение можно считать приемлемым.

Дальше — самое интересное. Мы будем измерять заведомо известные сопротивления. Войдите в пункт Options-Preferences и выберите закладку Impedance. В поле Reference resistor введите измеренную величину сопротивления между клеммами X2 и X4. В соседнее поле (Series resistor) можно ввести значение, например 0,2, программа потом сама подставит туда то, что сочтет нужным. Теперь нажмите кнопку Test. Установите переключатели «коробочки» в режим CAL1 и введите измеренное на клеммах значение эталонного сопротивления R2. (Вы его уже забыли? А я ведь советовал записать.) Нажимаем кнопку Next и повторяем то же самое, но в режиме CAL2. Кстати, советую при калибровке и измерениях постоянно следить за индикатором, который находится возле регулятора уровня. При появлении там «красных делений» я слегка уменьшаю уровень громкости. После этого нужно повторить калибровку. Поначалу процесс освоения длится долго, но через пару сеансов работы с программой все настройки нужно будет в основном контролировать. Это занимает всего несколько минут.

Итак, программа выдала, каковы, на ее взгляд, значения Reference и Series резисторов. Если отличия от введенных нами величин небольшие (например, 4,2 ома вместо 3,9) — все замечательно. Можно пройти для верности процесс еще разок и приступить к реальным измерениям. Если программа выдает явный бред (например, отрицательные значения) — значит, надо поменять местами правый и левый каналы в разъеме X6 и повторить настройку заново. После этого, как правило, все становится нормально, хотя у некоторых коллег наблюдалось устойчивое нежелание программы настраиваться. То ли звуковая карта какая-то не такая, то ли еще что — не знаю. О встретившихся сложностях и найденных путях их преодоления сообщайте, оформим в виде FAQ (чувствую — придется).

Вроде настроились. Можно начать пожинать плоды своего труда. Берем какой-нибудь конденсатор или катушку индуктивности, щелкаем тумблер в положение IMP, выбираем созданный ранее сигнал sign1, пункт меню Measure-Passive Component… Есть результат? Должен быть. Не знаю, кто как, а я испытываю какую-то первобытную радость, когда вижу, что программа сама распознала, что за компонент я подключил, и выдала его значение «в простой письменной форме».

Точность измерений пассивных компонентов, по скромным оценкам, составляет 10—15%. Для изготовления кроссоверов этого, на мой взгляд, вполне достаточно.

Теперь переходим к динамикам. Здесь все так же легко и просто. Создаем новый динамик (Resource-NewDriver), указываем ему имя, открываем (напоминаю, клавиша F2). Теперь изучаем меню Measure. В принципе программа (ее подсказка) советует получить импедансы динамика в свободном состоянии (Fre — Air), затем в закрытом ящике, ввести значение объема ящика в Properties этого динамика, а затем рассчитать параметры Тиэле — Смолла (для этого, открыв динамик, нужно войти в меню Driver Estimate Parameters). Тут, однако, я встретил еще один подводный камень, поскольку значение эквивалентного объема программа считать отказывается (остается значение по умолчанию, 1000 л). Не беда, из двух графиков импеданса берем значения резонансных частот Fs и Fc и считаем Vas вручную по известной формуле: Vas=Vb•((Fc/Fs)2-1). Кто-то уже, наверное, ворчит, дескать, вот еще, самому что-то считать приходится — советую вспомнить, сколько вычислений производится при полностью «ручном» методе определения параметров. Вообще-то я надеюсь, что в последующих версиях программы эта и другие досадные ошибки будут устранены.

Заодно и ссылку даю на сайт программы

. Посетите, там же, кстати, и оригинальное описание «коробочки» находится.

Приведу результат еще одного эксперимента, который я придумал, чтобы проверить «собственную АЧХ» всего измерительного комплекса. Для этого я взял постоянный резистор, но обманул программу, указав ей, что это якобы динамик. После этого попросил снять характеристику импеданса этого резистора (см. рис. 4). По графику видно, что даже при использовании усилителя звуковой карты погрешности, зависящие от частоты сигнала, небольшие. Что касается практического использования программы для измерения характеристик саб- и просто вуферов, хочу поделиться небольшими секретами. Дело в том, что к измерению собственно параметров Т-С я подхожу не слишком серьезно. Основной упор же делаю потом, когда снимаю характеристики готовых ящиков. В случае оформления «закрытый ящик» из зависимости импеданса от частоты можно узнать реальную добротность и резонансную частоту. Кроме того, если ящик негерметичен, на графике появится дополнительный пик на собственной резонансной частоте динамика (Fs). Еще интереснее настраивать фазоинвертор. Когда это делаешь вручную, точно определить Fb бывает непросто — «впадина» на графике очень пологая, поэтому точность получается порядка 1—2 Гц. С помощью программы следить за настройкой порта на нужную частоту проще. Взгляните на рис. 2. Там как раз изображен график импеданса динамика в фазоинверторе. Очень хорошо видны все нужные частоты, фазоинвертор «настроился» на 40 Гц.

Хочу надеяться, что описанный мной простой и недорогой инструмент облегчит труд творчески мыслящего установщика. Конечно, конкуренции «Брюль&Къеру» он не составит, но ведь и вложения требуются совсем небольшие.

Повторите — не пожалеете.
Автор: О. Леонов

Любой динамик предназначен для установки в корпус определенных размеров и конструкции (точнее сказать, акустического оформления). Если динамик установить в несоответствующий ему корпус (например, слишком малого объема или неподходящего акустического оформления), то играть такая колонка будет плохо. Будет глухой и плоский звук, отсутствие басов и/или верхов, искажения и призвуки, бубнение на одной частоте и т.п. Какое оформление требуется для конкретного динамика, определяют его параметры Тиля-Смолла (T/S параметры). Но проблема в том, что даже брендовые производители не всегда их указывают для всех моделей своих динамиков, не говоря уже о безродных китайских динамиках с Али. В обзоре будет показано, как самостоятельно их измерить с помощью простого кабеля и компьютера, а также рассчитать по полученным T/S параметрам правильные размеры и конструкцию корпуса под динамик.

Для измерения параметров Тиля-Смолла я подготовил следующие динамики (для всех из них T/S параметры производителем не указаны):

JBL CS760C ru.jbl.com/CS760C.html
6-1/2″, 50W RMS/150W max., 55 Гц– 20 кГц, 4 ом, 92 дБ (2,83 В на 1 м)
Эти динамики стоят сейчас у меня в дверях машины. Один из них когда-то сломался (внутренний обрыв катушки) и я купил еще один комплект для замены. Если из такого неисправного динамика снять магнитную систему, из него можно сделать пассивный излучатель (ПИ) для повышения отдачи АС в области низких частот. Снятый магнит тоже пойдет в дело, о чем будет рассказано ниже.

JVC CS-J420X ru.jvc.com/mobile-entertainment/speakers/CS-J420X/
4′, 21W RMS/210W max., 45 Гц– 22 кГц, 4 ом, 90 дБ/мВт
Это бюджетные брендовые автодинамики, купленные для экспериментов.

2 динамика 5W 8Ohm, один из которых уже установлен в свое акустическое оформление.

Измерения параметров Тиля-Смолла будем проводить с помощью программы AudioTester.

Также можно использовать программу Limp из пакета Arta Software, кабель в обоих случаях используется один и тот же, и результаты измерений обеих программ должны практически полностью совпадать — за подсказку благодарю Vairon и yopopt.

Программа AudioTester дает повторяемый результат. Я измерял один и тот же динамик на основном ПК, дополнительном ПК и ноутбуке. Все эти измерения показывают очень схожие результаты. Также результаты измерений AudioTester признаются Роспатентом, например, вот патент RU 2707905 (акустическая система с щелевым настраиваемым резонатором Гельмгольца).

Для измерений с помощью AudioTester требуется сделать несложный кабель с одним резистором. Готовим 2 куска экранированного кабеля (т.е. кабеля, состоящего из 2-х отдельных многожильных проводов с общей медной оплеткой, типа кабеля для наушников), 2 разъёма «джек» 3.5мм для подключения к ПК, резистор 10 ом, провода с крокодилами и/или с автоклеммами для подключения к динамикам. Для изготовления таких проводов лучше использовать акустический кабель достаточного сечения (я сделал их из кабеля 2х1.5мм2).

Схема кабеля:
Паяем такой кабель, фиксируем провода стяжками, затем закрываем этот узел термоусадкой. Чтобы не перепутать, на штекер для подключения к аудиовыходу ПК надеваем зеленую термоусадку:

Скачиваем программу с официального сайта www.audiotester.de/ и устанавливаем. На компьютере ставим громкость динамиков и микрофона 100% и отключаем все улучшайзеры, если включены (типа объемный звук, тонкомпенсация и т.д.). Полностью убираем усиление микрофона. Подключаем кабель к компьютеру. В программе нажимаем кнопку TSP.

Но прежде чем измерять динамики, нужно сделать калибровку для учета сопротивления изготовленного кабеля. Вместо динамика к другому концу кабеля подключаем резистор с сопротивлением, близким к динамику. Я использовал для калибровки резистор 6.6 ом. Нажимаем Start и смотрим по зеленой кривой, насколько правильно AudioTester измеряет сопротивление резистора. При необходимости изменяем значение в поле Impedance, пока не получим максимально точного соответствия:

Теперь можно приступать к измерению динамика. Насчет того, как это правильно делать, встречаются 2 противоположные точки зрения. Одни утверждают, что динамик нужно подвешивать за люстру в центре большой комнаты со стенами завешенными коврами). Другие доказывают, что динамик нужно наоборот зажимать в тиски. На мой взгляд, правильно делать так, как рекомендует сам автор AudioTester — динамик при измерении нужно положить на мягкую подушку диффузором вверх.

В видео ниже показано, как сделать настройки с учетом измеряемого динамика и выполнить процедуру измерений:

Итак, мы измерили параметры Тиля-Смолла нашего динамика. Что с ними делать дальше?

Сохраняем результаты в текстовый файл кнопкой List / Print и затем вбиваем эти значения в одну из программ расчета корпусов, например JBL SpeakerShop, Bassbox Pro, UniBox и т.п. Там выбираем желаемый тип корпуса под этот динамик и программа сама рассчитывает размеры выбранного корпуса.

Программу расчета корпусов мы запустим позже, а сейчас попробуем бегло проанализировать полученные T/S параметры нашего динамика JBL CS760C.

Самых главных параметров Тиля-Смолла всего три: Fs, Qts и Vas.

Fs — это собственная резонансная частота динамика (без корпуса). Частоты ниже Fs динамик воспроизводит плохо.

Qts — это полная добротность динамика. Значение Qts может определить тип акустического оформления, наиболее подходящего для динамика, а также склонность динамика к бубнению на своей резонансной частоте (чем выше добротность, тем больше будет бубнить, при некоторых условиях).

Есть разные классификации предназначения динамиков в зависимости от Qts, до сих пор к единому знаменателю по этому вопросу так и не пришли. Например, вот одна из таких классификаций:

Qts > 1,2 —динамики для открытых ящиков, оптимально 2,4;
0,6 < Qts < 1,2 — динамики для закрытых ящиков, оптимально 0,7–0,8;
0,4 < Qts< 0.6 — динамики для фазоинверторов, оптимум — 0,4;
0,2 < Qts< 0.8 — динамики для систем с пассивным излучателем;
Qts < 0.4 — динамики для рупоров.

Vas — это эквивалентный объём, по нему можно примерно прикинуть минимальный объем корпуса для установки динамика. Например, если Vas равен объему корпуса, то Fс и Qtс увеличится в 1.4 раза. А если объем корпуса будет больше Vas в 3-5 раз, это практически не ухудшит звучания акустики.

Итак, динамик JBL CS760C имеет T/S параметры: Fs=75.5 Гц, Qts=1.02, Vas=10.37 л.
Этот динамик автомобильный, предназначен для установки в двери. Высокая добротность этого динамика вполне уместна, т.к. внутренний объем двери не является полностью закрытым из-за щелей и технологических отверстий. Vas=10.37 л говорит о том, что, если ставить такой динамик в закрытый ящик, его объем должен быть от 30 литров минимум (например, куб с размерами 31х31х31см), что немало.

А есть ли способы еще сильнее уменьшить размеры корпуса без заметного изменения качества звучания АС?

Да, есть. Их как минимум три:

Панель акустического сопротивления (ПАС), позволяет снизить добротность динамика в корпусе, конструкция ПАС подбирается опытным путем;

Набивка корпуса демпфирующим материалом типа ваты или синтепона с плотностью до 24 г на литр объема, позволяет получить виртуальную прибавку объема корпуса до 40%;

Обратный магнит, позволяет снизить электрическую добротность динамика. Попробуем на практике проверить его эффективность. Приклеим снятый с неисправного динамика магнит к рабочему динамику. Магниты должны отталкиваться, а не притягиваться!

Измерим динамик с прикрепленным обратным магнитом:

Видим, что добротность динамика JBL CS760C уменьшилась с 1.02 до 0.84. Насколько существенно это позволит уменьшить объем корпуса, будет показано чуть ниже.

А пока продолжим наши измерения.

Динамик JVC CS-J420X

T/S параметры: Fs=135,9 Гц, Qts=2.39, Vas=1.57 л.

Да уж…. Кроме автомобиля, такой динамик можно поставить только в открытый ящик. Добротность 2.39 ни обратный магнит, ни ПАС до приемлемого уровня не понизит.

Noname динамик SJ H9053201, 8Ohm 5W

T/S параметры: Fs=420,5 Гц, Qts=4.96, Vas=0.13 л.

Этот динамик стоял в телевизоре, качеством звучания не блистал)

Noname динамик 55085-010, 8Ohm 5W (в корпусе)

Этот динамик я измерил просто из интереса). Он тоже из телевизора, имеет собственный корпус, который я снимать не стал. Корпус интересен тем, что имеет вибродемпфирующий элемент в форме конуса, перераспределяющий звуковые волны в закругленные углы корпуса:

Такое решение уменьшает вибрации и резонансы корпуса. Звучал этот динамик, в отличие от такого же по мощности и импедансу собрата выше, гораздо приятнее. Даже какие-то низы можно было услышать.

Расчет корпуса под динамик на основе параметров Тиля-Смолла

Имея на руках T/S параметры интересующего динамика, можно приступать к расчету корпуса для него. Программ расчета корпусов достаточно много: JBL SpeakerShop, Bassbox Pro, UniBox и т.п. Эти программы, а также дополнительные материалы по теме можно скачать например здесь doctorbass.ru/zagruzki/

Попробуем просчитать корпус для динамика JBL CS760C в программе JBL SpeakerShop.

Создаем новый проект, копируем T/S параметры из текстового файла AudioTester в SpeakerShop. Программа просчитывает по ним оптимальный корпус в вариантах фазоинвертора (Vented Box) и закрытого ящика (Closed Box) и строит расчетную АЧХ (амплитудно-частотную характеристику) для каждого варианта. Нажимаем Ctrl-D и появляется окно с объемом и размерами корпуса. Всего в SpeakerShop 21 вариант корпусов на выбор: прямоугольный, куб, призмы разной формы, эллипсоид, сфера, конус, цилиндр и т.д. Как видим ниже, для динамика JBL CS760C размеры получаются немалыми:

Попробуем их уменьшить с помощью заполнения корпуса демпфирующим материалом. Выбираем заполнение “normal” и объем закрытого ящика уменьшается почти в полтора раза, АЧХ при этом практически не меняется:

Теперь проверяем эффективность обратного магнита для дальнейшего уменьшения объема корпуса. Создаем новый проект, копируем в него T/S параметры динамика с обратным магнитом и смотрим:

Объем закрытого ящика уменьшается еще в два раза, АЧХ при этом также существенно не меняется.

Таким образом, в нашем примере с динамиком JBL CS760C, использование заполнения и обратного магнита позволяет снизить объем корпуса почти в 3 раза, с 43.2 литров до 14.9 литров, без существенного изменения АЧХ. При этом добротность в корпусе будет 0.96.

Магниту из неисправного динамика мы нашли применение, теперь попробуем найти применение и оставшейся части этого динамика, т.е. корзине с диффузором.

Из нее можно сделать пассивный излучатель (Passive Radiator). Такой ПИ устанавливается в одном корпусе с основным динамиком и оба диффузора работают синфазно, но диффузор ПИ настраивается на более низкую резонансную частоту, что повышает отдачу АС в области низких частот:

Для расчета такого пассивного излучателя в SpeakerShop нужно ввести 3 параметра: объем ящика Vb, эквивалентный объем Vap (его значение такое же как Vas) и резонансную частоту Fp. Ранее при измерении T/S параметров с помощью AudioTester мы уже настраивали этот динамик на более низкую резонансную частоту 45 Гц добавлением груза 20 г. Поэтому вводим Fp=45 Гц и смотрим, какая АЧХ пассивного излучателя у нас получается:

Поднятая в области НЧ АЧХ фазоинвертора и пассивного излучателя дает мощный жесткий бас (то самое «мясо»). А равномерно падающая АЧХ закрытого ящика делает басы чистыми и прозрачными, но относительно слабыми. Такое звучание больше понравится музыкальным веганам).

Подводя итог, программа JBL SpeakerShop позволяет на основе T/S параметров рассчитать размеры корпуса под динамик в нескольких акустических оформлениях и показать в виде АЧХ звучание каждого из вариантов.

Резюме обзора

Какое оформление и размеры корпуса требуются для конкретного динамика, определяют его параметры Тиля-Смолла (T/S параметры). Если эти параметры неизвестны, их можно определить самостоятельно с помощью самодельного кабеля и компьютера. В обзоре подробно описана процедура измерений T/S параметров при помощи программы AudioTester, измерено 4 разных динамика, показано как влияют значения T/S параметров на конструкцию и размеры корпуса динамика. Рассмотрен расчет корпуса для динамика на основе T/S параметров в программе JBL SpeakerShop, приведены способы уменьшения размеров корпуса (заполнение демпфирующим материалом, обратный магнит) и показана их эффективность. Также описан расчет пассивного излучателя, который можно сделать из динамика без магнита.

Спасибо за просмотр этого обзора! Буду рад, если какая-то информация окажется вам полезной.

Параметры Тиля-Смолла позволяют понять, как будет звучать динамик в том или ином корпусе без покупки, прослушивания и сравнительных тестов. Особенно это пригодится любителям автозвука, ведь именно им приходится иметь дело с голыми динамиками, которые монтируются в двери и багажники. Кто-то с помощью этих параметров рассчитывает подходящий объем и тип пространства для громкоговорителя, кто-то любит подбирать динамики от разных производителей и проверяет их совместимость друг с другом. Эта статья простым языком объяснит, кто такие Тиль, Смолл, что за параметры они придумали и что теперь с ними делать.

С кого все началось

Слева Тиль, справа Смолл

  • Альберт Невил Тиль — австралийский инженер, в детстве, которое выпало на тридцатые, выступил со школьным хором на радио и заинтересовался акустикой, получил инженерное образование, исследовал трансляцию звука и картинки на заре телевещания, дослужился до главного инженера в крупных телераидокомпаниях. В 1961 году он выпустил научную статью, в которой предложил описывать характеристики любых динамиков одним набором параметров: «резонансной частотой, объемом воздуха, эквивалентного акустической гибкости громкоговорителя и отношением электрического сопротивления к сопротивлению движения на резонансной частоте». И, обращаясь к компаниям-производителям акустики, призвал «публиковать эти параметры как часть основных сведений об их изделиях».
  • Ричард Смолл — электроакустик из Калифорнии, в детстве с отцом-пианистом крафтил усилители и колонки, получил степень магистра наук в MIT. Работал с Тиллем в семидесятых, вместе они довели набор параметров до ума. В частности, Смолл добавил понятие механической добротности. Любопытно, что в дальнейшем он долгое время работал в компании Harman-Becker главным инженером отдела автомобильной аудиотехники.

Что дают эти параметры

  • Если в руки попал динамик без имени и маркировки, но с виду неплохой. Измерив параметры Тиля-Смолла можно об этом динамике многое узнать: на каких частотах он играет, сколько будет баса, в каком объеме его лучше разместить и т.п.
  • Если есть акустическая система, но не нравится, как она звучит. Можно вытащить из нее динамики и, замерив, выяснить, соответствуют ли они вообще тому корпусу, в котором установлены. Часто бывает так, что нет шанса подружить громкоговорители с коробкой, в которую их поселил производитель, и тогда придется менять либо одно, либо другое.
  • Если нужно подобрать акустическое оформление к низкочастотнику: вуферу, сабвуферу, мидбасу. Параметры Тиля-Смолла расскажут, как их установить, чтобы добиться наилучшего результата. 
  • Если нужно подобрать кроссоверы и настроить фильтры для твитеров таким образом, чтобы во время их работы они держались подальше от собственной резонансной частоты — так звук будет лучше, а всяких шумов, гула и артефактов будет меньше. 
  • Если нужно подобрать сабвуфер. Чем больше низких частот играет динамик, тем больше нужно учитывать параметры Тиля-Смолла, поскольку они описывают, в том числе, взаимодействие динамика с окружающей средой, а ведь именно басы заставляют дрожать стекла соседних домов от дабстепа из проезжающей мимо тачки с двумя 18 дюймовыми сабами. 
  • Если нужно построить сабвуфер. Некоторые покупают голые динамики для саба и с помощью параметров Тиля-Смолла и специальных калькуляторов рассчитывают подходящее акустическое оформление. Если пила и молоток не чужды умелым рукам, то получаются очень приличные сабвуферы за смешные для своего качества деньги. 
  • Если хочется скрафтить акустическую систему. Конструкторские эксперименты с сабами нередко вдохновляют и на более серьезные свершения в области акустической инженерии. Некоторые начинают строить собственные домашние АС и находят в этом новое хобби, а то и ремесло.

Основные параметры Тиля-Смолла

Чтобы понять их суть, нужно вспомнить, что динамик состоит из двух частей:

  1. Неподвижной: жесткий каркас с магнитом.
  2. Подвижной: катушка с обмоткой, которая при подаче электрического сигнала производит магнитное поле, взаимодействующее с постоянным магнитом. Это приводит катушку в движение, и та толкает прикрепленный к ней диффузор, размещающийся на гибком подвесе. А чтобы эту конструкцию не шатало влево-вправо, она поддерживается эластичной центрирующей шайбой.

Таким образом, подвижная часть динамика движется только вверх и вниз, подобно поршню. Это движение сжимает и расширяет воздух, создавая звуковые волны. Если налить в динамик жидкость, можно увидеть, как образуются эти волны:

Как раз работа такого поршня и описывается параметрами Тиля-Смолла. Фундаментальных параметров три.

1. Эквивалентный объем (Vas, м3)

У подвеса и центрирующей шайбы есть некоторая упругость, которая мешает всей системе двигаться свободно. Ее можно представить как пружину. Если взять такой объем воздуха, который по своей упругости равен этой пружине, то как раз и получится эквивалентный объем.

Чем эквивалентный объем меньше, тем подвижная система у динамика жестче.

Этот параметр относится скорее к желаемой характеристике корпуса, а не самого динамика. Однако это ни в коем случае не тот объем корпуса, в который нужно поместить динамик. Если такое провернуть, то чересчур вырастет добротность и резонансная частота. Подушка из воздуха поднимет резонанс и будет работать как пружина, мешая торможению динамика.

Эквивалентный объем рассчитывается путем умножения жесткости подвеса, диаметра диффузора (потому что эта поверхность взаимодействует с другой пружиной — воздухом), плотности окружающего воздуха и скорости звука в нем. Соответственно, чем жестче подвес, тем меньше будет тот объем воздуха, который будет влиять на динамик фактом своего существования. Аналогично с диффузором — чем больше мембрана, тем сильнее она сжимает воздух внутри корпуса колонки или саба, а следовательно и ответная сила противостоящего ему воздуха будет выше.

Именно Vas часто играет решающую роль при выборе динамика под определенный объем. Особенно это касается сабвуферов — большим диффузорам нужны большие объемы. Обычно советуют прицеливаться на саб с Vas в районе 30–50 л.

2. Резонансная частота (Fs, Гц)

Если флешбеки со школьных уроков физики еще не начались, то тут они точно появятся. Есть колеблющаяся система — например, качели. Если отвести их в сторону и отпустить, то они будут качаться с определенной собственной частотой. Это и будет резонансная частота. Если вдобавок толкать качели с ней в такт, это позволит раскачать их быстрее и сильнее, чем применив любую другую частоту. 

Это имеет самое прямое отношение к динамику: подвижная система (прежде всего подвес) — это качели, а электричество — тот парень, который их толкает. Если подать на динамик сигнал на его резонансной частоте, то обе эти частоты сложатся и образуют резонанс. На графике импеданса, и даже графике АЧХ в этом месте будет пик. 

Чем мягче подвес и больше масса, тем резонансная частота ниже.

Fs — один из важнейших параметров, поскольку ниже нее звуковое давление динамика заметно падает. Поэтому для сабвуферов нужна максимально низкая резонансная частота, так как после нее обычно идет серьезный спад АЧХ. Это значит, что чем резонансная частота ниже, тем глубже будет бас.

Важно также отметить, что резонансная частота измеряется у динамика без корпуса. При размещении громкоговорителя в корпусе на Fs влияет объем последнего. Если нужно, чтобы резонансная частота (и полная добротность, о которой ниже) остались прежними, тогда следует установить динамик в такой багажник, объем которого превышает Vas минимум втрое.

Резонансная частота поможет определить роль динамика в АС. К примеру, если Fs более 50 Гц, то сабвуфер с таким динамиком не построишь, ему лучше всего подойдет роль мидбаса. Если же Fs выше 100 Гц, то такой динамик лучше всего использовать для воспроизведения средних частот. Для саба же подходящим будет Fs в районе 21–35 Гц.

3. Полная добротность (Qts)

После того, как диффузор динамика воспроизвел звук, он возвращается в исходное положение, причем не мгновенно, а плавно затухая на резонансной частоте — подобно качелям, которые перестали раскачивать. То, как быстро диффузор вернется на место, и есть полная добротность. 

Чем быстрее диффузор встанет в исходную позицию после излучения сигнала, тем добротность ниже.

Чем добротность ниже — тем лучше. Если диффузор будет долго возвращаться в исходное положение, из-за колебаний на резонансной частоте появятся посторонние шумы, гул и артефакты.

Полная добротность состоит из двух «неполных»:

  1. Механическая добротность (Qms), которая зависит от массы подвижной системы (чем тяжелее, тем дольше будет останавливаться диффузор, тем добротность выше) и жесткости подвеса (жестче — выше).
  2. Электрическая добротность (Qes). Именно ее добавил Ричард Смолл, выяснив, что катушка динамика при возвращении в исходное положение работает как электрогенератор. Движение обмотки напротив магнита дает электрический ток, который идет по обмотке и сталкивается с сигналом усилителя. Получается что-то типа короткого замыкания, которое мешает движению диффузора, причем гораздо сильнее, чем Qms. Электрическая добротность зависит от мощности магнита — чем мощнее, тем она ниже.

Любопытно, что добротность — параметр безразмерный. К примеру, если он равен единице, это означает, что для остановки диффузора последний должен совершить ровно один цикл колебаний (т.е. пропал сигнал, мембрана идет вверх-вниз, затем останавливается).

Считается, что наилучшая добротность для акустической системы равняется примерно 0,5-0,7 для обычной музыки и 0,8-0,9 для тех, кто любит жанры с преобладанием резкого баса. Чем она меньше этих значений, тем выше по графику АЧХ ползет спад басовых частот, лишая их слушателя. При больших значениях Qts на графике АЧХ случается горб в районе резонанса, а остальные характеристики ухудшаются. 

Также важно соотношение резонансной частоты к полной добротности. Если результат деления обоих значений равен 50, то динамик стоит использовать лишь в закрытом объеме. Если же он достигает 100, тогда в конструкцию можно добавить фазоинвертор.

Второстепенные параметры

Три приведенных выше параметра — фундаментальные, но не единственные. Иногда в паспортах на динамик или АС встречаются и другие характеристики, однако не все они имеют значение и применимость. Обычно встречаются следующие:

  • Sd (кв. м.) — эффективная площадь диффузора, требуется для расчета основных параметров.
  • Mms (кг) — масса подвижной системы, при измерении которой берется во внимание даже масса движущегося вместе с мембраной воздуха. Нужна для расчета основных параметров.
  • Xmax (мм) — максимальное смещение диффузора в одну из сторон, при котором сохраняется линейность хода (то есть не будет искажений звука).
  • Bl, (Тл*м) — коэффициент электромеханической связи, произведение длины провода в зазоре между магнитом на силу магнитного потока. Чем выше Bl, тем сильнее «двигатель» динамика, тем лучше.
  • Sensitivity (дб) — показатель чувствительности динамика, не относится к параметрам ТС, но очень важна, поскольку показывает будущую громкость АС. Чувствительность — это громкость, которую выдает динамик при определенной мощности. Грубо говоря, если взять два динамика и подать на них сигнал одинаковой мощности, то тот, который заорет громче, и будет чувствительнее.

Где найти эти параметры

Фундаментальные параметры Тиля-Смолла позволяют смоделировать как минимум среднюю громкость и импеданс будущей акустической системы. Также они помогут рассчитать конструкцию и объем корпуса, в который будет заключен громкоговоритель.

Но чтобы воспользоваться этими параметрами, нужно их для начала узнать. Иногда это просто, как с JBL STAGE3 607C. Достаточно открыть руководство по установке и вуаля!

Но часто они спрятаны глубоко под маркетинговыми лозунгами. К примеру, чтобы узнать искомые характеристики АС Morel Tempo Ultra 572, нужно найти в дебрях официального сайта pdf с презентацией линейки динамиков и отмотать в самый низ. Наградой станет здоровенная таблица со всеми параметрами всех динамиков в линейке производителя:

Есть и другие способы. Например, в одном из онлайн-калькуляторов можно найти базу моделей популярных динамиков. К примеру, нужно выяснить характеристики Ural АК-74.С. При выборе нужной модели в приложении открывается ее профиль с основными характеристиками, включая параметры ТС. А, кликнув на расчет короба, можно увидеть графики импеданса и Spl:

Как измерить самостоятельно

Из-под завалов хлама в гараже были извлечены пара ноунейм динамиков. С виду неплохие, но кто их сделал и для каких задач — тайна, покрытая мраком. Измерив их параметры, можно понять, что это за звери и на что сгодятся. Сделать это несложно, но понадобится несколько девайсов:

  • звуковая карта;
  • любой усилитель;
  • самодельный аттенюатор из четырех резисторов, чтобы не спалить преамп звуковой карты;
  • грузик для измерения эквивалентного объема методом добавочной массы. Нужно узнать точный вес этого груза, например, взвесить ювелирными весами медную монетку — важно, чтобы грузик не магнитился;
  • программа Room Eq Wizard. Она бесплатная, можно скачать с официального сайта. В ней нужно будет провести всего два измерения — с грузиком и без.

Процедура несложная, но требует определенной подготовки, поэтому описание заняло бы самостоятельностью статью. Благо, на официальном сайте Room Eq Wizard есть такая статья на английском, а на ютубе — русскоязычные видео с подробным описанием процесса: 

Параметры Тиля-Смолла очень полезно знать, работая с голыми динамиками. Они позволяют сконструировать объем для громкоговорителя, руководствуясь не только эстетическими предпочтениями, но также формулами и математикой. Научный подход позволит добиться максимально качественного звука в любых условиях.

Всем привет. Те, кто занимался расчетом акустического оформления, встечались с параметами Тиля-Смолла. Чтобы, например, рассчитать акустическое оформление для динамика, необходимо знать минимум 3 основных парметра: Vas – эквивалентный объем, Qts – полная добротность и Fs – резонансная частота. Большинство производителей не указывают эти параметры, а пишут на коробках всякие красивые цифры и прочую «ерунду», мало относящуюся к динамику ( типа 1300ватт и т.д.).
Есть замечательная программа AudioTester, которая может многое, в том числе и измерять параметры НЧ динамиков. Скачать бесплатно программу можно на офф. сайте, но она постоянно будет напоминать нам, чтобы мы приобрели полную версии, и после нескольких измерений закрывается, но функционал полный. Скачиваем файл (около 30мб), жмем Download в левом верхнем углу сайта, устанавливаем программу.
Нам нужно собрать вот такую простенькую схему, прикупить пару штекеров и пару резисторов на 10ом.

Схема шнурка

Тестер, шнурок, 25ГДН и резистор 15ом.

Запускаем программу, слева нажимаем TSP, настройки делаем как у меня, в настройках звуковой карты убираем эквалайзеры и прочее, уровень входов-выходов ставим 60-80%.
Сначала нужно откалибровать сопротивление, для этого находим резистор 10-20ом, измеряем его сопротивление тестером, либо ищем резистор с малой погрешностью.

Измерение сопротивление показало 15,9 ома, но это не совсем так.

У меня валялся вот такой керамический резистор 15ом, и чтобы измерить его сопротивление максимально точно, нужно вычесть показания на тестере (приборе) при подключенном резисторе и показания при короткозамкнутых щупах (15,9-0,9=15ом), совпало с номиналом, но такое бывает редко.

При замкнутых щупах сопротивление 0,9 ом

Щупы и внутренняя схема тестера тоже имеет сопротивление, и не стоит этим пренебрегать.

Подключаем шнурок к звуковой карте

Подключаем шнукок ко входу и выходу звуковой карты компьютера (у меня это line out и line in, с микрофонным входом почему-то не работает) подсоединяем к шнурку резистор 15 ом, запускаем программу, жмем Start и добиваемся (изменением значения эталонного сопротивления) того, чтобы на графике линия совпадала со шкалой 15ом, заодно мы проверим пригодность и линейность звуковой карты( у меня она вышла просто идеальной, см. на фото синюю линию)

Первый запуск и калибровка.

Итак, мы откалибровали наш шнурок, теперь можно смело измерять параметры динамиков. Для примера я взял советский 25ГДН 86г.в. Диапазон частот выбираем от 5Гц до 120гц (Fs=78Гц), для сабвуферов верхнюю частоту можно уменьшить до 100гц, но нижнюю частоту измерения лучше не поднимать, так как будет страдать точность (Rdc станет выше). Динамик располагаем вертикально, подвешиваем, либо держим в руках во время измерения, в программе выставляем соответствующие настройки, нажимаем старт, ждем, пока программа построит график. Теперь перетаскиваем график в окошечко (1. Measurement), и программа мгновенно посчитает параметры.

Замер параметров 25 ГДН

Самое сложное — определения эквивалентного объема. Для этого линейкой измеряем диаметр диффузора от середины до середины подвеса, приклеиваем на двусторонний скотч монеты исходя примерно из соотношения: масса монет = массе подвижной системы (5дюймов-10гр, 6,5 – 20гр, 8 – 40гр, 10 – 90гр, 12 – 120гр, 15 – 180гр), но зависит от конструкции НЧ динамика. Массу монет можно узнать тут, лучше брать те, которые не магнитятся. Переключаемся на второй график, в настройках указываем массу монет и диаметр динамика, жмем Start и строим зависимость сопротивления с дополнительным грузом, перетаскиваем его в окошко (2. Measurement). Все, программа выдает нам оставшиеся Vas и прочее. Можно сохранить данные, нажав Print/List.

Дополнительный груз — 2 монеты по 10р.

Также с помощью данного шнурка можно узнать сопротивление динамика на определенной частоте (частоте раздела фильтров, например), что поможет при расчете пассивных фильтров. На высоких частотах сопротивление будет уже далеко не 4 ома (сказывается большая индуктивность катушки НЧ динамиков).

Зависимость сопротивления от частоты 25ГДН

Можно очень точно определить частоту настройки порта фазоинвертора. Для этого шнурок подключаем к собранному коробу ФИ и аналогично замеряем сопротивление, минимальное его значение будет соответствовать настройке порта, нужно только увеличить график.

Определяем частоту настройки ФИ

С готовым шнурком и настроенной программой измерение параметров динамика занимает не более 10 минут. Для новых динамиков рекомендуется размять подвес и шайбу, погоняв на синусе ниже резонанса динамика несколько часов. Исходя из небольшого опыта, точность измерений зависит от калибровки, точности массы добавочного груза, и от измеренного значения Rdc (сопротивление постоянному току), поэтому я выбрал нижнюю частоту измерений 5 Гц( у моего динамика при 5Гц R=3,5ом а при 20Гц уже 4,2 ома). Значение Rdc, измеренное тестером оказалось 3,5 ом (4,4- 0,9 с учетом сопротивления щупов), то же самое что и насчитала программа.
Предложения и замечание пишите в комментариях, если что не так, исправлю.

(В помощь начинающим басовикам)

Глава А – Измерения

Сразу оговорюсь, что удобнейший способ измерения параметров НЧ динамиков изложен в методе JBL SpeakerShop. Владельцам программы предлагаю воспользоваться этим методом (сам я его не проверял, но думаю, там глюков нет). Для тех же, у кого этой программы нет или не хватает измерительного оборудования, я опишу способ подчерпнутый мной из журналов “РАДИО” прошлых лет. Я этот способ использовал и при определенной степени аккуратности и усидчивости с его помощью можно получить довольно точные (уж точнее, чем в справочнике или в инструкции пользователя) параметры.

Итак начнем:

1)  Соберем схему.

dinamic57-1.gif

Где на схеме испытуемый динамик, я думаю, ясно. Остальные элементы схемы требуют развернутого пояснения.

Генератор – либо генератор звуковой частоты способный выдавать напряжение 10-20 В, либо сочетание генератор-усилитель, удовлетворяющее тому же требованию.

1000 Ом – резистор 1000 Ом, стабилизирующий ток через динамик. Номинал резистора можно брать меньше, но это будет снижать точность вычисления Qts. (Правда при использовании резистора всего 200 Ом погрешность измерения вряд ли превысит 10%, но, как говориться, береженного … ).

 а, в, с – точки для подсоединения вольтметра.

Сам вольтметр на рисунке не указан, но он должен быть: – во-первых, переменного тока; – во-вторых, уметь измерять напряжения порядка 100 мВ. При отсутствии у вольтметра такого предела измерений, его можно подключить через усилитель. А так как современные усилители обычно “стерео” и более, особых проблем с этим нет.

Схема собрана.

2)  Размещаем динамик вдали от стен, потолка и пола (часто рекомендуют подвешивать).

3)  Подключаем вольтметр к точкам а и с, и устанавливаем напряжение равным 10-20 В на частоте 500-1000 Гц. 

4)  Подключаем вольтметр к точкам в и с, и изменяя частоту генератора находим частоту, на которой показания вольтметра максимальны, см. рисунок ниже по тексту. Это и есть Fs. Записываем Fs и Us-показания вольтметра.

5)  Изменяя частоту вверх относительно Fs, находим частоты, на которых показания вольтметра постоянны и значительно меньше Us (при дальнейшем повышении частоты напряжение опять начнет увеличиваться, пропорционально увеличению импеданса динамика). Запишем это значение, Um.

График импеданса динамика в свободном пространстве и в закрытом ящике выглядит приблизительно так.

dinamic57-2.gif

6) Находим по графику (если мы его строили) или измеряем частоты среза F1 и F2 по уровню U12=(Us*Um)^0.5;

7) Вычисляем акустическую добротность Qa=(Us/Um)^0.5*Fs/(F2-F1), и

8) Электрическую добротность Qe=Qa*Um/(Us-Um);

9) И, на конец, полную добротность Qts=Qa*Qe/(Qa+Qe).

Чтобы узнать Vas нам потребуется ящик (хороший герметичный ящик, ни в коем случае не картонный, а с толстыми стенками) с круглой дыркой совпадающей по размеру с диаметром диффузора динамика. Объем ящика, V, лучше выбрать ближе к тому, в котором мы потом собираемся этот динамик слушать.

10) Устанавливаем динамик в ящик и герметизируем все щели;

11) Проводим все измерения и вычисления по пунктам 1)-6) и получаем значения Fs'(на самом деле это Fc) и Qts’ (Qtc);

12) Вычисляем Vas=((Fs’/Fs)^2-1)*V;

13) Вычисляем Qtc=Qts*(1+Vas/V)^0.5, если измеренная Qts’=Qtc, ну или почти равна, значит – все сделано правильно, и можно переходить к проектированию акустической системы.

Глава B – Настройка ФИ

Предлагаемая методика настройки тоже списана из Литературы, но достаточно проста, что бы стать достоянием любопытных масс. Единственная оговорка (ее я сам придумал) в том, что эта методика позволяет легко настраивать ФИ, изготовленные на базе динамиков с добротностью Qts=0.3…0.5. Для прочих ФИ придется дополнительно применять природную смекалку. Итак.

 В основе методики лежит зависимость, существующая между параметрами ФИ и ЗЯ (закрытого ящика). Если в ФИ с гладкой АЧХ (по spl) закрыть отверстие туннеля, то полная добротность системы, Qtc, окажется равной 0.6, а резонансная частота, Fc, будет связана с частотой настройки ФИ зависимостью: Fb=0.61…0.65*Fc. Если допустить погрешность определения частоты настройки ФИ в 5%, то отношение Fb/Fc для реальных конструкций можно принять равным 0.63.

 Настройка:

14) Закрываем герметично отверстие туннеля, и собираем схему для измерения Fc (см. главу А).

15) Подбираем количество звукопоглащающего материала и добиваемся минимального значения Fc;

16) Закрепляем материал внутри ящика и измеряем Fc;

17) Вычисляем Fb=0.63*Fc;

18) Вычисляем длину туннеля: Lv=31*10^3*S/(Fb^2*V)-1,7*(S/ПИ)^0.5, где S – площадь отверстия порта ФИ в кв.см., V – объем ящика в литрах;

19) Делаем туннель, вставляем его внутрь ящика (именно внутрь, если в готовой конструкции он предполагается внутри) и измеряем Fb’.

Должно получится, что-то вроде:

dinamic57-3.gif

20) Полученное значение Fb’ подставляем в формулу 18) и вычисляем уточненное значение V’;

21) Подставляем V’ в ф-лу 18) и вычисляем Lv’ для расчетного значения Fb (кто забыл, это произошло в п.17);

22) Укорачиваем (удлинить его невозможно, поэтому меры лучше принять заранее) туннель и снова измеряем;

23) По методике определения Qtc (глава А) определяем добротность системы и, если она меньше 1, успокаиваемся. Если она больше, то вероятно, что-то где-то было сделано не так, но переделывать уже поздно. Послушаем, если действительно бубнит (что совсем необязательно), будем принимать меры.

Возможные меры:

24) Задемпфировать частично-акустически-прозрачным материалом туннель ФИ. Другими словами – закрыть туннель синтепоном, ватой, карпетом и т.д;

25) Задемпфировать сам динамик, наклеив на окна диффузородержателя перечисленные выше материалы (только не все сразу).

Эти меры снизят общую добротность системы, Qtc.

Литература:
Салтыков О.,Расчет характеристик громкоговорителя, Радио 1981
Жбанов В., Настройка фазоинвертора, Радио 8/1986
Алдошина И. Там, где живут басы, АМ 2/1999
Фрунзе, О повышении качества звучания АС, Радио 9/1992

Добавить комментарий