Как найти hod чисел

Наибольшим общим делителем (НОД) двух целых чисел называется наибольший из их общих делителей. К примеру для чисел 12 и 8, наибольшим общим делителем будет 4.

Как найти НОД?

Способов найти НОД несколько. Мы рассмотрим один из часто используемых в математике — это нахождение НОД при помощи разложения чисел на простые множители. В общем случае алгоритм будет выглядеть следующим образом:

  1. разложить оба числа на простые множители (подробнее о разложении чисел на простые множители смотрите тут);
  2. выбрать одинаковые множители, входящие в оба разложения;
  3. найти их произведение.

Примеры нахождения наибольшего общего делителя

Рассмотрим приведенный алгоритм на конкретных примерах:

Пример 1: найти НОД 12 и 8

1. Раскладываем 12 и 8 на простые множители:

2. Выбираем одинаковые множители, которые есть в обоих разложениях. Это: 2 и 2

3. Перемножаем эти множители и получаем: 2 · 2 = 4

Ответ: НОД (8; 12) = 2 · 2 = 4.

Пример 2: найти НОД 75 и 150

Этот пример, как и предыдущий с легкостью можно высчитать в уме и вывести ответ 75, но для лучшего понимания работы алгоритма, проделаем все шаги:

1. Раскладываем 75 и 150 на простые множители:

2. Выбираем одинаковые множители, которые есть в обоих разложениях. Это: 3, 5 и 5

3. Перемножаем эти множители и получаем: 3 · 5 · 5 = 75

Ответ: НОД (75; 150) = 3 · 5 · 5 = 75.

Частный случай или взаимно простые числа

Нередко встречаются ситуации, когда оба числа взаимно простые, т.е. общий делитель равен единице. В этом случае, алгоритм будет выглядеть следующим образом:

Пример 3: найти НОД 9 и 5

1. Раскладываем 5 и 9 на простые множители:

Видим, что одинаковых множителей нет, а значит, что это частный случай (взаимно простые числа). Общий делитель — единица.

Наибольший общий делитель


Наибольший общий делитель

4.3

Средняя оценка: 4.3

Всего получено оценок: 223.

4.3

Средняя оценка: 4.3

Всего получено оценок: 223.

Наибольший общий делитель – это еще один показатель, позволяющий упростить работу с дробями. Очень часто в результате вычислений получаются дроби с очень большими значениями числителя и знаменателя. Сокращать поэтапно такие числа можно, но это крайне долго, поэтому проще сразу найти НОД и сократить на него. Разберемся в теме подробнее.

Что такое НОД?

Наибольший общий делитель (НОД) ряда чисел – это наибольшее число, на которое можно без остатка разделить каждое из чисел ряда.

Это значение чаще всего используется для ряда из двух чисел. Просто потому, что сокращаются обычно два числа: числитель и знаменатель дроби. Нахождение НОД для большего количества значений не всегда оправдано, но вырабатывает навык.

Как найти НОД?

Для того, чтобы найти НОД необходимо каждое из чисел разложить на простые множители и выделить общую часть.

Специальной формулы для этого не придумали, зато есть алгоритм вычисления.

Приведем пример нахождения наибольшего общего делителя двух натуральных чисел: 540 и 252. Разложим 640 на простые множители. Последовательность действий такова:

  • Делим число на наименьший из возможных простых чисел. То есть, если число можно разделить на 2, 3 или 5, то сначала нужно делить на 5. Просто, чтобы не запутаться.
  • Получившийся результат делим на наименьшее из возможных простых чисел.
  • Повторяем деление каждого полученного результата, пока не получим простое число.

Теперь проведем ту же процедуру на практике.

  • 540 : 2=270
  • 270:2=135
  • 135 : 3 =45
  • 45 : 3=15
  • 15 : 5 = 3

Запишем результат в виде равенства 540=2*2*3*3*3*5. Для того, чтобы записать результат, нужно последнее получившееся число умножить на все делители.

Аналогично поступим с числом 252:

  • 252 : 2=126
  • 126: 2=63
  • 63 : 3=21
  • 21 : 3 = 7

Запишем результат: 252=2*2*3*3*7.

В каждом разложении есть одинаковые числа. Найдем их, это два числа 2 и два числа 3. Отличаются только 7 и 3*5.

Для того, чтобы найти НОД нужно перемножить общие множетели. То есть в произведении будет две двойки и две тройки.

НОД=2*2*3*3=36

Как можно это использовать?

Задача: сократить дробь $$252over540$$.

НОД для двух этих чисел мы уже находили, теперь просто воспользуемся уже посчитанным значением.

НОД = 36

Сократим числитель и знаменатель дроби на 36 и получим ответ.

$${252over540} ={7over15}$$ – чтобы быстро сократить, достаточно посмотреть на разложение чисел.

Если 540=2*2*3*3*3*5, а НОД=36=2*2*3*3, то 540 = 36*3*5. И если мы поделим 540 на 36, то получим 3*5=15.

Без НОД нам пришлось бы в одну длинную строку писать сокращения. К тому же, бывают случаи, когда непонятно, можно ли сократить дробь вообще. Для таких ситуаций в математике и придумали разложение чисел на простые множители и НОД.

Заключение

Что мы узнали?

Мы узнали, что такое наибольший общий делитель пары чисел, разобрались, как можно использовать показатель на практике, решили задачу на нахождение НОД и применение НОД для сокращения дробей. Поняли, что с использованием НОД можно проще и быстрее сократить громоздкие дроби, найдя НОД для числителя и знаменателя.

Тест по теме

Доска почёта

Доска почёта

Чтобы попасть сюда – пройдите тест.

    Пока никого нет. Будьте первым!

Оценка статьи

4.3

Средняя оценка: 4.3

Всего получено оценок: 223.


А какая ваша оценка?

���������� ����� �������� ���������� ����������� �����

����� ���� ����� 48 � 60. ������� ��� �������� ����� 48: 1, 2, 3, 4, 6, 8, 12, 16, 24, 48. ����� ������� ��� �������� ����� 60: 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60. ����� ���������� ����� ���� ����������: 1, 2, 3, 4, 6, 12. ��� ��� ����� ����������� ������ ����������� ����� 48 � 60, ���������� ����� ��� ����� 12 ���������� ���������� ����� ���������.

��� ����� �������� ����������� ����� ab ����� ����� ���������� ����� ��������. �� ������������ HOD(a,b) � ��������: “HOD �� a � b” . ��������, HOD(a,b ) = HOD(48,60) = 12.

������� ������� �����. ���� ����� ab ������, ��� HOD(a,b) = 1, �� ����� ����� �������� ������� �������.

������: ����� 26 � 35 �������� ������� ��������, ���� ���� ��� ���������. ��� ��� $$
26 = 2 cdot 13$$ � $$35 = 5 cdot 7
$$ , �� HOD(26,35) = 1.

����� ����� ���������� ����� �������� ���������� �����, ���� �������� �� �� ������� ���������, ����� ����� ������� ��������� � ��������� ������������ ����� ������� ����������, ���� ������ �� ��� � ����������, �� ���������, �����������.

������: $$
quad quad
$$����� HOD(56,84,96)

�������:

$$ 56 = 2 cdot 2 cdot 2 cdot 7 = 2^3 cdot 7 $$

$$ 96 = 2 cdot 2 cdot 2 cdot 2 cdot 2 cdot 3 = 2^5 cdot 3 $$

$$ 84 = 2 cdot 2 cdot 3 cdot 7 = 2^2 cdot 3 cdot 7 $$

� ����� HOD(56,84,96) = $$ 2^2 $$ = 4

Для этого термина существует аббревиатура «НОД», которая имеет и другие значения, см. Нод.

Наибольшим общим делителем (НОД) для двух целых чисел m и n называется наибольший из их общих делителей[1]. Пример: для чисел 54 и 24 наибольший общий делитель равен 6.

Наибольший общий делитель существует и однозначно определён, если хотя бы одно из чисел m или n не равно нулю.

Возможные обозначения наибольшего общего делителя чисел m и n:

Понятие наибольшего общего делителя естественным образом обобщается на наборы из более чем двух целых чисел.

Связанные определения[править | править код]

Наименьшее общее кратное[править | править код]

Наименьшее общее кратное (НОК) двух целых чисел m и n — это наименьшее натуральное число, которое делится на m и n (без остатка). Обозначается НОК(m,n) или [m,n], а в английской литературе {mathrm  {lcm}}(m,n).

НОК для ненулевых чисел m и n всегда существует и связан с НОД следующим соотношением:

(m,n)cdot [m,n]=mcdot n

Это частный случай более общей теоремы: если a_{1},a_{2},dots ,a_{n} — ненулевые числа, D — какое-либо их общее кратное, то имеет место формула:

D=[a_{1},a_{2},dots ,a_{n}]cdot left({frac  {D}{a_{1}}},{frac  {D}{a_{2}}},dots ,{frac  {D}{a_{n}}}right)

Взаимно простые числа[править | править код]

Числа m и n называются взаимно простыми, если у них нет общих делителей, кроме pm 1. Для таких чисел НОД{displaystyle (m,n)=1}. Обратно, если НОД{displaystyle (m,n)=1,} то числа взаимно просты.

Аналогично, целые числа a_{1},a_{2},dots a_{k}, где kgeq 2, называются взаимно простыми, если их наибольший общий делитель равен единице.

Следует различать понятия взаимной простоты, когда НОД набора чисел равен 1, и попарной взаимной простоты, когда НОД равен 1 для каждой пары чисел из набора. Из попарной простоты вытекает взаимная простота, но не наоборот. Например, НОД(6,10,15) = 1, но любые пары из этого набора не взаимно просты.

Способы вычисления[править | править код]

Эффективными способами вычисления НОД двух чисел являются алгоритм Евклида и бинарный алгоритм.

Кроме того, значение НОД(m,n) можно легко вычислить, если известно каноническое разложение чисел m и n на простые множители:

n=p_{1}^{{d_{1}}}cdot dots cdot p_{k}^{{d_{k}}},
m=p_{1}^{{e_{1}}}cdot dots cdot p_{k}^{{e_{k}}},

где p_{1},dots ,p_{k} — различные простые числа, а d_{1},dots ,d_{k} и e_{1},dots ,e_{k} — неотрицательные целые числа (они могут быть нулями, если соответствующее простое отсутствует в разложении). Тогда НОД(n,m) и НОК[n,m] выражаются формулами:

(n,m)=p_{1}^{{min(d_{1},e_{1})}}cdot dots cdot p_{k}^{{min(d_{k},e_{k})}},
[n,m]=p_{1}^{{max(d_{1},e_{1})}}cdot dots cdot p_{k}^{{max(d_{k},e_{k})}}.

Если чисел более двух: a_{1},a_{2},dots a_{n}, их НОД находится по следующему алгоритму:

d_{2}=(a_{1},a_{2})
d_{3}=(d_{2},a_{3})

………
d_{n}=(d_{{n-1}},a_{n}) — это и есть искомый НОД.

Свойства[править | править код]

  • Основное свойство: наибольший общий делитель m и n делится на любой общий делитель этих чисел. Пример: для чисел 12 и 18 наибольший общий делитель равен 6; он делится на все общие делители этих чисел: 1, 2, 3, 6.
  • Если m делится на n, то НОД(m, n) = n. В частности, НОД(n, n) = n.
  • {displaystyle (a,b)=(a-b,b)}. В общем случае, если {displaystyle a=b*q+c}, где {displaystyle a,b,c,q} – целые числа, то {displaystyle (a,b)=(b,c)}.
  • (acdot m,acdot n)=|a|cdot (m,n) — общий множитель можно выносить за знак НОД.
  • Если D=(m,n), то после деления на D числа становятся взаимно простыми, то есть, left({{frac  {m}{D}},{frac  {n}{D}}}right)=1. Это означает, в частности, что для приведения дроби к несократимому виду надо разделить её числитель и знаменатель на их НОД.
  • Мультипликативность: если a_{1},a_{2} взаимно просты, то:
(a_{1}cdot a_{2},b)=(a_{1},b)cdot (a_{2},b)
left{acdot m+bcdot nmid a,bin mathbb{Z } right}
и поэтому (m,n) представим в виде линейной комбинации чисел m и n:

(m,n)=ucdot m+vcdot n.
Это соотношение называется соотношением Безу, а коэффициенты u и v — коэффициентами Безу. Коэффициенты Безу эффективно вычисляются расширенным алгоритмом Евклида. Это утверждение обобщается на наборы натуральных чисел — его смысл в том, что подгруппа группы mathbb {Z} , порождённая набором {a_{1},a_{2},dots ,a_{n}}, — циклическая и порождается одним элементом: НОД(a1, a2, … , an).

Вариации и обобщения[править | править код]

Понятие делимости целых чисел естественно обобщается на произвольные коммутативные кольца, такие, как кольцо многочленов или гауссовы целые числа. Однако, определить НОД(a, b) как наибольший из общих делителей a, b нельзя, так как в таких кольцах, вообще говоря, не определено отношение порядка. Поэтому в качестве определения НОД берётся его основное свойство:

Наибольшим общим делителем НОД(a, b) называется тот общий делитель, который делится на все остальные общие делители a и b.

Для натуральных чисел новое определение эквивалентно старому. Для целых чисел НОД в новом смысле уже не однозначен: противоположное ему число тоже будет НОД. Для гауссовых чисел число различных НОД возрастает до 4.

НОД двух элементов коммутативного кольца, вообще говоря, не обязан существовать. Например, для нижеследующих элементов a и b кольца {mathbb  {Z}}left[{sqrt  {-3}}right] не существует наибольшего общего делителя:

a=4=2cdot 2=left(1+{sqrt  {-3}}right)left(1-{sqrt  {-3}}right),qquad b=left(1+{sqrt  {-3}}right)cdot 2.

В евклидовых кольцах наибольший общий делитель всегда существует и определён с точностью до делителей единицы, то есть количество НОД равно числу делителей единицы в кольце.

См. также[править | править код]

  • Бинарный алгоритм вычисления НОД
  • Делимость
  • Алгоритм Евклида
  • Наименьшее общее кратное

Литература[править | править код]

  • Виноградов И. М. Основы теории чисел. М.-Л.: Гос. изд. технико-теоретической литературы, 1952, 180 с.

Примечания[править | править код]

  1. Математическая энциклопедия (в 5 томах). — М.: Советская Энциклопедия, 1982. — Т. 3. страница 857

Доримедонт

29 ноября, 13:28


-1

Для начала числа раскладывают на простые множители

рассмотрим на примере 420 и 882

420 = 2 * 2 * 3 * 5 * 7

882 = 2 * 3 * 3 * 7 * 7

Далее

для НОД выбирают общие делители в числа

НОД (420, 882) = 2 * 3 * 7 = 42

для НОК одно из чисел умножают на недостающие делители второго числа

НОК (420, 882) = 420 * 3 * 7 = 882 * 2 * 5 = 8820

  • Комментировать
  • Жалоба
  • Ссылка

Добавить комментарий