Как найти хорду вписанной окружности в треугольник

Формула длины хорды окружности

Хорда – отрезок соединяющий любые две точки окружности. Диаметр окружности, самая большая хорда.

L – хорда

R – радиус окружности

O – центр окружности

α – центральный угол

Формула длины хорды, ( L ):

Калькулятор для расчета длины хорды окружности :

Дополнительные формулы для окружности:

Треугольник вписанный в окружность

Определение

Треугольник, вписанный в окружность — это треугольник, который
находится внутри окружности и соприкасается с ней всеми тремя вершинами.

На рисунке 1 изображена окружность, описанная около
треугольника
и окружность, вписанная в треугольник.

ВD = FC = AE — диаметры описанной около треугольника окружности.

O — центр вписанной в треугольник окружности.

Формулы

Радиус вписанной окружности в треугольник

r — радиус вписанной окружности.

  1. Радиус вписанной окружности в треугольник,
    если известна площадь и все стороны:

Радиус вписанной окружности в треугольник,
если известны площадь и периметр:

Радиус вписанной окружности в треугольник,
если известны полупериметр и все стороны:

Радиус описанной окружности около треугольника

R — радиус описанной окружности.

  1. Радиус описанной окружности около треугольника,
    если известна одна из сторон и синус противолежащего стороне угла:

Радиус описанной окружности около треугольника,
если известны все стороны и площадь:

Радиус описанной окружности около треугольника,
если известны все стороны и полупериметр:

Площадь треугольника

S — площадь треугольника.

  1. Площадь треугольника вписанного в окружность,
    если известен полупериметр и радиус вписанной окружности:

Площадь треугольника вписанного в окружность,
если известен полупериметр:

Площадь треугольника вписанного в окружность,
если известен высота и основание:

Площадь треугольника вписанного в окружность,
если известна сторона и два прилежащих к ней угла:

Площадь треугольника вписанного в окружность,
если известны две стороны и синус угла между ними:

[ S = frac<1><2>ab cdot sin angle C ]

Периметр треугольника

P — периметр треугольника.

  1. Периметр треугольника вписанного в окружность,
    если известны все стороны:

Периметр треугольника вписанного в окружность,
если известна площадь и радиус вписанной окружности:

Периметр треугольника вписанного в окружность,
если известны две стороны и угол между ними:

Сторона треугольника

a — сторона треугольника.

  1. Сторона треугольника вписанного в окружность,
    если известны две стороны и косинус угла между ними:

Сторона треугольника вписанного в
окружность, если известна сторона и два угла:

Средняя линия треугольника

l — средняя линия треугольника.

  1. Средняя линия треугольника вписанного
    в окружность, если известно основание:

Средняя линия треугольника вписанного в окружность,
если известныдве стороны, ни одна из них не является
основанием, и косинус угламежду ними:

Высота треугольника

h — высота треугольника.

  1. Высота треугольника вписанного в окружность,
    если известна площадь и основание:

Высота треугольника вписанного в окружность,
если известен сторона и синус угла прилежащего
к этой стороне, и находящегося напротив высоты:

[ h = b cdot sin alpha ]

Высота треугольника вписанного в окружность,
если известен радиус описанной окружности и
две стороны, ни одна из которых не является основанием:

Свойства

  • Центр вписанной в треугольник окружности
    находится на пересечении биссектрис.
  • В треугольник, вписанный в окружность,
    можно вписать окружность, причем только одну.
  • Для треугольника, вписанного в окружность,
    справедлива Теорема Синусов, Теорема Косинусов
    и Теорема Пифагора.
  • Центр описанной около треугольника окружности
    находится на пересечении серединных перпендикуляров.
  • Все вершины треугольника, вписанного
    в окружность, лежат на окружности.
  • Сумма всех углов треугольника — 180 градусов.
  • Площадь треугольника вокруг которого описана окружность, и
    треугольника, в который вписана окружность, можно найти по
    формуле Герона.

Доказательство

Около любого треугольника, можно
описать окружность притом только одну.

окружность и треугольник,
которые изображены на рисунке 2.

окружность описана
около треугольника.

  1. Проведем серединные
    перпендикуляры — HO, FO, EO.
  2. O — точка пересечения серединных
    перпендикуляров равноудалена от
    всех вершин треугольника.
  3. Центр окружности — точка пересечения
    серединных перпендикуляров — около
    треугольника описана окружность — O,
    от центра окружности к вершинам можно
    провести равные отрезки — радиусы — OB, OA, OC.

окружность описана около треугольника,
что и требовалось доказать.

Подводя итог, можно сказать, что треугольник,
вписанный в окружность
— это треугольник,
в котором все серединные перпендикуляры
пересекаются в одной точке, и эта точка
равноудалена от всех вершин треугольника.

Как найти хорду вписанной окружности в треугольник

Учебный курс Решаем задачи по геометрии

Определение хорды


Хорда – это отрезок, который соединяет две точки заданной кривой. Хорда может быть у дуги, окружности, эллипса и т.д.
На рисунке хорда обозначена как отрезок AB красного цвета . Оба его конца находятся на окружности

Часть кривой, заключенной между двумя точками хорды, называется дугой.
На рисунке дуга хорды AB обозначена зеленым цветом .

Плоская фигура, заключенная между дугой и ее хордой называется сегментом.
Сегмент на рисунке ограничен красным отрезком AB с одной стороны, и зеленой дугой – с другой стороны.

Хорда, проходящая через центр окружности, называется диаметром окружности. Диаметр окружности – самая длинная хорда окружности.

Свойства хорды к окружности

  • Если расстояния от центра окружности до хорд равны, то эти хорды равны. Верно и обратное – если хорды равны, то расстояния от центра окружности до этих хорд равны
  • Если хорда больше, то расстояние от центра окружности до этой хорды меньше. Если хорда меньше, то расстояние от центра окружности до этой хорды больше. Верно и обратное
  • Наибольшая возможная хорда является диаметром
  • Серединный перпендикуляр к хорде проходит через центр окружности
  • Если диаметр делит хорду, не являющуюся диаметром, пополам, то этот диаметр перпендикулярен этой хорде. Верно и обратное – если диаметр перпендикулярен хорде, то этот диаметр делит эту хорду пополам
  • Если диаметр делит хорду, не являющуюся диаметром, пополам, то этот диаметр делит дуги, стягиваемые этой хордой, пополам. Верно и обратное – если диаметр делит дугу пополам, то этот диаметр делит пополам хорду, стягивающую эту дугу
  • Если радиус делит хорду, не являющуюся диаметром, пополам, то этот радиус перпендикулярен этой хорде. Верно и обратное – если радиус перпендикулярен хорде, то этот радиус делит эту хорду пополам
  • Если радиус делит хорду, не являющуюся диаметром, пополам, то этот радиус делит дугу, стягиваемую этой хордой, пополам. Верно и обратное – если радиус делит дугу пополам, то этот радиус делит пополам хорду, стягивающую эту дугу.
  • Если радиус перпендикулярен хорде, то этот радиус делит дугу, стягиваемую этой хордой, пополам. Верно и обратное – если радиус делит дугу пополам, то этот радиус перпендикулярен хорде, стягивающей эту дугу.

Свойства хорды и вписанного угла

Свойства хорды и центрального угла

Формулы нахождения хорды

Обозначения в формулах:
l – длина хорды
α – величина центрального угла
R – радиус окружности
d – длина перпендикуляра, проведенного от центра окружности к хорде

Длина хорды окружности равна удвоенному радиусу данной окружности, умноженному на синус половины центрального угла.
Сумма квадрата половины длины хорды и квадрата перпендикуляра, проведенного к этой хорде, равна квадрату радиуса окружности. Данная формула следует из теоремы Пифагора.

Решение задач

Примечание. Если Вы не нашли решение подходящей задачи, пишите об этом в форуме. Наверняка, курс геометрии будет дополнен.

Задача.

Хорды АВ и СD пересекаются в точке S, при чем AS:SB = 2:3, DS = 12см, SC = 5см, найти АВ.

Решение.

Поскольку соотношение AS:SB = 2:3 , то пусть длина AS = 2x, SB = 3x

Согласно свойству хорд AS x SB = CS x SD, тогда

2х * 3х = 5 * 12
6х 2 = 60
х 2 = 10
x = √10

Откуда
AB = AS + SB
AB = 2√10 + 3√10= 5√10

Окружность разделена на части, которые относятся как 3,5:5,5:3 и точки деления соединены между собой. Определить величину углов образовавшегося треугольника.

Решение.
Обозначим коэффициент пропорциональности дуг окружности, как х. Соединим центры окружности с концами дуг. Поскольку центральный угол равен градусной мере дуги, на которую опирается, то соотношение центральных углов окружности будет равно соотношению ее частей (дуг).
Поскольку градусная мера окружности равна 360 градусам, то

3,5х + 5,5х + 3х = 360
12х = 360
х = 30

Откуда градусные величины центральных углов равны:
3 * 30 = 90
3,5 *30 = 105
5,5 *30 = 165

Углы образовавшегося треугольника являются углами, вписанными в окружность. Вписанный угол равен половине градусной меры дуги, на которую опирается.
Откуда углы треугольника равны:

90 / 2 = 45
105 / 2 = 52,5
165 / 2 = 82,5

Ответ: Величина углов треугольника равна 45 ; 52,5 ; 82,5 ;

[spoiler title=”источники:”]

http://colibrus.ru/treugolnik-vpisannyy-v-okruzhnost/

http://profmeter.com.ua/communication/learning/course/course7/lesson318/

[/spoiler]

Окружность — это множество точек, которое располагается на одинаковом расстоянии от ее центра, представленного точкой.

Для любой точки L, лежащей на окружности, действует равенство OL=R. (Длина отрезка OL равняется радиусу окружности).

Окружность. Длина окружности. Касательная, дуга

Что называется хордой окружности в математике и геометрии: определение, основные свойства

Отрезок, который соединяет две точки окружности, является ее хордой. Хорда, проходящая прямо через центр окружности, является диаметром этой окружности (D). Диаметр можно вычислить по формуле: D=2R

Длина окружности вычисляется по формуле: C=2pi R

Площадь круга: S=pi R^{2}

Дугой окружности называется та ее часть, которая располагается между двух ее точек. Эти две точки и определяют две дуги окружности. Хорда CD стягивает две дуги: CMD и CLD. Одинаковые хорды стягивают одинаковые дуги.

Что называется хордой окружности в математике и геометрии: определение, основные свойства

Центральным углом называется такой угол, который находится между двух радиусов.

Что называется хордой окружности в математике и геометрии: определение, основные свойства

Длину дуги можно найти по формуле:

  1. Используя градусную меру: CD = frac{pi R alpha ^{circ}}{180^{circ}}
  2. Используя радианную меру: CD = alpha R

Диаметр, что перпендикулярен хорде, делит хорду и стянутые ею дуги пополам.

Что называется хордой окружности в математике и геометрии: определение, основные свойства

В случае, если хорды AB и CD окружности имеют пересечение в точке N, то произведения отрезков хорд, разделенные точкой N, равны между собой.

ANcdot NB = CN cdot ND

Что называется хордой окружности в математике и геометрии: определение, основные свойства

Касательная к окружности

Касательной к окружности принято называть прямую, у которой имеется одна общая точка с окружностью. Если же у прямой есть две общие точки, ее называют секущей.

Если провести радиус в точку касания, он будет перпендикулярен касательной к окружности.

Что называется хордой окружности в математике и геометрии: определение, основные свойства

Проведем две касательные из этой точки к нашей окружности. Получится, что отрезки касательных сравняются один с другим, а центр окружности расположится на биссектрисе угла с вершиной в этой точке.

AC = CB

Что называется хордой окружности в математике и геометрии: определение, основные свойства

Теперь к окружности из нашей точки проведем касательную и секущую. Получим, что квадрат длины отрезка касательной будет равен произведению всего отрезка секущей на его внешнюю часть.

AC^{2} = CD cdot BC

Что называется хордой окружности в математике и геометрии: определение, основные свойства

Можно сделать вывод: произведение целого отрезка первой секущей на его внешнюю часть равняется произведению целого отрезка второй секущей на его внешнюю часть.

AC cdot BC = EC cdot DC

Что называется хордой окружности в математике и геометрии: определение, основные свойства

Углы в окружности

Градусные меры центрального угла и дуги, на которую тот опирается, равны.

angle COD = cup CD = alpha ^{circ}

Что называется хордой окружности в математике и геометрии: определение, основные свойства

Вписанный угол — это угол, вершина которого находится на окружности, а стороны содержат хорды.

Вычислить его можно, узнав величину дуги, так как он равен половине этой дуги.

angle AOB = 2 angle ADB

Опирающийся на диаметр, вписанный угол, прямой.

angle CBD = angle CED = angle CAD = 90^ {circ}

Вписанные углы, которые опираются на одну дугу, тождественны.

angle ADB = angle AEB = angle AFB

Опирающиеся на одну хорду вписанные углы тождественны или их сумма равняется 180^ {circ}.

angle ADB + angle AKB = 180^ {circ}

angle ADB = angle AEB = angle AFB

На одной окружности находятся вершины треугольников с тождественными углами и заданным основанием.

Угол с вершиной внутри окружности и расположенный между двумя хордами тождественен половине суммы угловых величин дуг окружности, которые заключаются внутри данного и вертикального углов.

angle DMC = angle ADM + angle DAM = frac{1}{2} left ( cup DmC + cup AlB ight )

Угол с вершиной вне окружности и расположенный между двумя секущими тождественен половине разности угловых величин дуг окружности, которые заключаются внутри угла.

angle M = angle CBD — angle ACB = frac{1}{2} left ( cup DmC — cup AlB ight )

Вписанная окружность

Вписанная окружность — это окружность, касающаяся сторон многоугольника.

В точке, где пересекаются биссектрисы углов многоугольника, располагается ее центр.

Окружность может быть вписанной не в каждый многоугольник.

Площадь многоугольника с вписанной окружностью находится по формуле:

  • S = pr,

где:

p — полупериметр многоугольника,

r — радиус вписанной окружности.

Отсюда следует, что радиус вписанной окружности равен:

  • r = frac{S}{p}

Суммы длин противоположных сторон будут тождественны, если окружность вписана в выпуклый четырехугольник. И наоборот: в выпуклый четырехугольник вписывается окружность, если в нем суммы длин противоположных сторон тождественны.

AB + DC = AD + BC

В любой из треугольников возможно вписать окружность. Только одну единственную. В точке, где пересекаются биссектрисы внутренних углов фигуры, будет лежать центр этой вписанной окружности.

Радиус вписанной окружности вычисляется по формуле:

  1. r = frac{S}{p},

где p = frac{a + b + c}{2}

Описанная окружность

Если окружность проходит через каждую вершину многоугольника, то такую окружность принято называть описанной около многоугольника.

В точке пересечения серединных перпендикуляров сторон этой фигуры будет находиться центр описанной окружности.

Радиус можно найти, вычислив его как радиус окружности, которая описана около треугольника, определенного любыми 3-мя вершинами многоугольника.

Есть следующее условие: окружность возможно описать около четырехугольника только, если сумма его противоположных углов равна 180^{ circ}.

angle A + angle C = angle B + angle D = 180^ {circ}

Около любого треугольника можно описать окружность, причем одну-единственную. Центр такой окружности будет расположен в точке, где пересекаются серединные перпендикуляры сторон треугольника.

Радиус описанной окружности можно вычислить по формулам:

  1. R = frac{a}{2 sin A} = frac{b}{2 sin B} = frac{c}{2 sin C}
  2. R = frac{abc}{4 S}

где:

  • a, b, c — длины сторон треугольника,
  • S — площадь треугольника.

Теорема Птолемея

Под конец, рассмотрим теорему Птолемея.

Теорема Птолемея гласит, что произведение диагоналей тождественно сумме произведений противоположных сторон вписанного четырехугольника.

AC cdot BD = AB cdot CD + BC cdot AD

Источник: https://academyege.ru/page/okruzhnost-i-krug.html

Вписанная окружность — это окружность, которая вписана
в геометрическую фигуру и касается всех его сторон.

Окружность, точно можно вписать в такие геометрические фигуры, как:

  • Треугольник
  • Выпуклый, правильный многоугольник
  • Квадрат
  • Равнобедренная трапеция
  • Ромб

В четырехугольник, можно вписать окружность,
только при условии, что суммы длин
противоположных сторон равны.

Во все вышеперечисленные фигуры
окружность, может быть вписана, только один раз.

Окружность невозможно вписать в прямоугольник
и параллелограмм, так как окружность не будет
соприкасаться со всеми сторонам этих фигур.

Геометрические фигуры, в которые вписана окружность,
называются описанными около окружности.

Описанный треугольник — это треугольник, который описан
около окружности и все три его стороны соприкасаются с окружностью.

Описанный четырехугольник — это четырехугольник, который описан
около окружности и все четыре его стороны соприкасаются с окружностью.


Содержание

  1. Свойства вписанной окружности
  2. В треугольник
  3. В четырехугольник
  4. Примеры вписанной окружности
  5. Верные и неверные утверждения
  6. Окружность вписанная в угол

Свойства вписанной окружности

В треугольник

  1.  В любой треугольник может быть вписана окружность, причем только один раз.
  2.  Центр вписанной окружности — точка пересечения биссектрис треугольника.
  3.  Вписанная окружность касается всех сторон треугольника.
  4.  Площадь треугольника, в который вписана окружность, можно рассчитать по такой формуле:

    [ S = frac{1}{2}(a+b+c) cdot r = pr ]

    p —  полупериметр четырехугольника.
    r — радиус вписанной окружности четырехугольника.

  5.  Центр окружности вписанной в треугольник равноудален от всех сторон.
  6.  Точка касания — это точка, в которой соприкасается
    окружность и любая из сторон треугольника.
  7.  От центра вписанной окружности можно провести
    перпендикуляры к любой точке касания.
  8.  Вписанная в треугольник окружность делит стороны
    треугольника на 3 пары равных отрезков.
  9.  Вписанная и описанная около треугольника окружность тесно взаимосвязаны.
    Поэтому, расстояние между центрами этих окружностей можно найти с помощью формулы Эйлера:

    [ с = sqrt{R^2 — 2Rr} ]

    с — расстояние между центрами вписанной и описанной окружностей треугольника.
    R — радиус описанной около треугольника.
    r — радиус вписанной окружности треугольника.

В четырехугольник

  1. Не во всякий четырехугольник можно вписать окружность.
  2. Если у четырехугольника суммы длин его противолежащих
    сторон равны, то окружность, может быть, вписана (Теорема Пито).
  3. Центр вписанной окружности и середины двух
    диагоналей лежат на одной прямой (Теорема Ньютона, прямая Ньютона).
  4. Точка пересечения биссектрис — это центр вписанной окружности.
  5. Точка касания — это точка, в которой соприкасается
    окружность и любая из сторон четырехугольника.
  6. Площадь четырехугольника, в который вписана окружность, можно рассчитать по такой формуле:

    [ S = frac{1}{2}(a+b+c+d)cdot r = pr ]

    p —  полупериметр четырехугольника.
    r — радиус вписанной окружности четырехугольника.

  7. Точка касания вписанной окружности, которая лежит на любой из сторон,
    равноудалены от этой конца и начала этой стороны, то есть от его вершин.

Примеры вписанной окружности

Примеры описанного четырехугольника:
равнобедренная трапеция, ромбквадрат.

Примеры описанного треугольника:
равносторонний
, равнобедренный,
прямоугольный треугольники.


Верные и неверные утверждения

  1. Радиус вписанной окружности в треугольник и радиус вписанной
    в четырехугольник вычисляется по одной и той же формуле. Верное утверждение.
  2. Любой параллелограмм можно вписать в окружность. Неверное утверждение.
  3. В любой четырехугольник можно вписать окружность. Неверное утверждение.
  4. В любой ромб можно вписать окружность. Верное утверждение.
  5. Центр вписанной окружности треугольника это точка пересечения биссектрис. Верное утверждение.
  6. Окружность вписанная в треугольник касается всех его сторон. Верное утверждение.
  7. Угол вписанный в окружность равен соответствующему центральному
    углу опирающемуся на ту же дугу. Неверное утверждение.
  8. Радиус вписанной окружности в прямоугольный треугольник равен
    половине разности суммы катетов и гипотенузы. Верное утверждение.
  9. Вписанные углы опирающиеся на одну и ту же хорду окружности равны. Неверное утверждение.
  10. Вписанная окружность в треугольник имеет в общем
    три общие точки со всеми сторонами треугольника. Верное утверждение.

Окружность вписанная в угол

Окружность вписанная в угол — это окружность, которая
лежит внутри этого угла и касается его сторон.

Центр окружности, которая вписана в угол,
расположен на биссектрисе этого угла.

К центру окружности вписанной в угол, можно провести,
в общей сложности два перпендикуляра со смежных сторон.


Центральный угол вписанной окружности – это угол, вершина
которого лежит в центре вписанной окружности.

Вписанный угол вписанной окружности – это угол,
вершина которого лежит на вписанной окружности.

Длина диаметра, радиуса, хорды, дуги вписанной окружности
измеряется в км, м, см, мм и других единицах измерения.

Так-же читайте статью про треугольник вписанный в окружность.

Содержание:

Окружность, которая касается стороны треугольника и продолжений двух других его сторон, называется вневписанной окружностью треугольника. На рисунке 146 изображен треугольник АВС и три его вневписанные окружности с центрами Описанные и вписанные окружности - формулы, свойства и определение с примерами решения

Описанные и вписанные окружности - формулы, свойства и определение с примерами решения

Вневписанные окружности обладают рядом интересных свойств:

1. Центры вписанной и вневписанной окружностей лежат на биссектрисе соответствующего внутреннего угла треугольника.

2. Описанные и вписанные окружности - формулы, свойства и определение с примерами решения где Описанные и вписанные окружности - формулы, свойства и определение с примерами решения — радиус вписанной окружности треугольника,

3. Описанные и вписанные окружности - формулы, свойства и определение с примерами решения где R — радиус описанной окружности Описанные и вписанные окружности - формулы, свойства и определение с примерами решения
Попробуйте доказать некоторые из этих свойств.

Описанные и вписанные окружности - формулы, свойства и определение с примерами решения

Найдем радиус Описанные и вписанные окружности - формулы, свойства и определение с примерами решения вневписанной окружности треугольника АВС со сторонами а, b и с (рис. 147). Для этого проведем радиусы Описанные и вписанные окружности - формулы, свойства и определение с примерами решения По свойству касательной Описанные и вписанные окружности - формулы, свойства и определение с примерами решения Из подо­бия прямоугольных треугольников АОЕ и Описанные и вписанные окружности - формулы, свойства и определение с примерами решения(по острому углу) следуетОписанные и вписанные окружности - формулы, свойства и определение с примерами решенияТак как Описанные и вписанные окружности - формулы, свойства и определение с примерами решения то Описанные и вписанные окружности - формулы, свойства и определение с примерами решения откуда Описанные и вписанные окружности - формулы, свойства и определение с примерами решения

Описанные и вписанные окружности - формулы, свойства и определение с примерами решения

Пример:

Вычислим, используя данную формулу, радиус вневписанной окружности прямоугольного треугольника с катетами 3 и 4, которая касается гипотенузы: Описанные и вписанные окружности - формулы, свойства и определение с примерами решения

Описанная и вписанная окружности треугольника

Определение. Окружность называется описанной около треугольника, если она проходит через все его вершины.

Описанные и вписанные окружности - формулы, свойства и определение с примерами решения

На рисунке 90 изображена окружность с ради­усом R и центром Описанные и вписанные окружности - формулы, свойства и определение с примерами решения описанная около треугольни ка АВС.

Так как ОА = ОВ = ОС = R, то центр описанной окружности равноудален от вершин треугольника.

Вместо слов «окружность, описанная около треугольника АВС», также говорят «окружность, описанная вокруг треугольника АВС», или «описанная окружность треугольника АВС».
 

Теорема (об окружности, описанной около треугольника).
Около любого треугольника можно описать окружность, причем только одну, ее центр находится в точке пересечения серединных перпендикуляров к сторонам треугольника.

Описанные и вписанные окружности - формулы, свойства и определение с примерами решения

Доказательство:

Рассмотрим произвольный треугольник АВС (рис. 91). Пусть О — точка пересечения серединных перпендикуляров к его сторонам. Проведем отрезки ОА, ОВ и ОС. По свойству серединного перпендикуляра ОА = ОС, ОС = ОВ. Так как точка О равноудалена от всех вершин треугольника АВС, то окружность с центром в точке О и радиусом ОА проходит через все вершины треугольника АВС, т. е. является его описанной окружностью. Единственность описанной окружности докажите самостоятельно.

Замечание. Так как все три серединных перпендикуляра к сторонам треугольника пересекаются в одной точке, то для нахождения центра описанной окружности достаточно построить точку пересечения любых двух из них.

Определение. Окружность называется вписанной в треугольник, если она касается всех его сторон.

Описанные и вписанные окружности - формулы, свойства и определение с примерами решения

На рисунке 92 изображена окружность с цент­ром О и радиусом Описанные и вписанные окружности - формулы, свойства и определение с примерами решения вписанная в треугольник АВС; К, М и N — точки ее касания со сторонами треугольника АВС.
Так как Описанные и вписанные окружности - формулы, свойства и определение с примерами решения и по свойству касательной к окружности Описанные и вписанные окружности - формулы, свойства и определение с примерами решенияОписанные и вписанные окружности - формулы, свойства и определение с примерами решения то центр вписанной окружности равно­удален от сторон треугольника.

Вместо слов «окружность, вписанная в треугольник АВС», также говорят «вписанная окружность треугольника АВС».
 

Теорема (об окружности, вписанной в треугольник).
В любой треугольник можно вписать окружность, причем только одну, ее центр находится в точке пересечения биссектрис треугольника.

Описанные и вписанные окружности - формулы, свойства и определение с примерами решения

Доказательство:

Рассмотрим произвольный треугольник АВС (рис. 93). Пусть О — точка пересечения его биссектрис. Проведем из точки О перпендикуляры ОК, ОМ и ON соответственно к сторонам АВ, ВС и АС. По свойству биссектрисы угла ОК = ON, ON = ОМ. Окружность с центром в точке О и радиусом ОК будет проходить через точки К, М и N и касаться сторон АВ, ВС и АС в указанных точках по признаку касательной.

Следовательно, эта окружность является вписанной в треугольник АВС. Единственность вписанной окружности докажите самостоятельно.

Замечание. Так как все три биссектрисы треугольника пересекаются в одной точке, то для нахождения центра вписанной окружности достаточно построить точ­ку пересечения любых двух из них.

Теорема. Площадь треугольника можно найти по формуле Описанные и вписанные окружности - формулы, свойства и определение с примерами решения где Описанные и вписанные окружности - формулы, свойства и определение с примерами решения — полупериметр треугольника, Описанные и вписанные окружности - формулы, свойства и определение с примерами решения — радиус окружности, вписанной в этот треугольник.

Описанные и вписанные окружности - формулы, свойства и определение с примерами решения

Доказательство:

Пусть дан треугольник АВС со сторонами Описанные и вписанные окружности - формулы, свойства и определение с примерами решения — центр его вписанной окружности (рис. 94). Соединим отрезками точ­ку О с вершинами А, В и С. Треугольник АВС разобьется на три треугольника: Описанные и вписанные окружности - формулы, свойства и определение с примерами решения Радиусы Описанные и вписанные окружности - формулы, свойства и определение с примерами решения проведенные в точки касания, будут высотами этих тре­угольников. Площадь треугольника АВС равна сумме площадей указанных треугольников:

Описанные и вписанные окружности - формулы, свойства и определение с примерами решения

Теорема доказана.

Следствие:

Радиус окружности, вписанной в треугольник, можно найти по формуле

Описанные и вписанные окружности - формулы, свойства и определение с примерами решения

Одной из важнейших задач данной темы является задача нахождения радиуса описанной и радиуса вписанной окружностей данного треугольника.

Пример:

Найти радиус окружности, описанной около равнобедренного треугольника АВС, у которого АВ = ВС = 26 см, высота ВК = 24 см
(рис. 95).

Описанные и вписанные окружности - формулы, свойства и определение с примерами решения

Решение:

Способ 1 (метод подобия). Центр описанной окружности лежит на пересечении серединных перпендикуляров к сторонам треугольника. Проведем серединные перпендикуляры к сторонам АС и ВС, которые пересекутся в точке О — центре описанной окружности. Так как в равнобедренном треугольнике высота, проведенная к основанию, является медианой, то ВК — серединный перпендикуляр к стороне АС. Пусть МО — серединный перпендикуляр к стороне ВС. Тогда ВМ = 13 см, ВО = R -— иско­мый радиус. Поскольку Описанные и вписанные окружности - формулы, свойства и определение с примерами решения (как прямо­угольные с общим острым углом СВК), то , Описанные и вписанные окружности - формулы, свойства и определение с примерами решения
Описанные и вписанные окружности - формулы, свойства и определение с примерами решения  откуда Описанные и вписанные окружности - формулы, свойства и определение с примерами решения
Способ 2 (тригонометрический метод). Из Описанные и вписанные окружности - формулы, свойства и определение с примерами решения (см. рис. 95) Описанные и вписанные окружности - формулы, свойства и определение с примерами решения из Описанные и вписанные окружности - формулы, свойства и определение с примерами решения откуда Описанные и вписанные окружности - формулы, свойства и определение с примерами решенияДальнейшее решение совпадает с приведенным в способе 1.

Описанные и вписанные окружности - формулы, свойства и определение с примерами решения

Способ 3* (среднее пропорциональное). Продлим высоту ВК до пересечения с описанной окружностью в точке D (рис. 96). Так как центр описанной окружности равнобедренного треугольника лежит на прямой ВК (см. способ 1), то BD = 2R — диаметр данной окружности. В прямоугольном треугольнике BCD Описанные и вписанные окружности - формулы, свойства и определение с примерами решения как вписанный, опирающийся на диаметр) катет ВС есть среднее пропорциональное меж­ду гипотенузой BD и проекцией ВК катета ВС на гипотенузу. Поэтому Описанные и вписанные окружности - формулы, свойства и определение с примерами решения откуда Описанные и вписанные окружности - формулы, свойства и определение с примерами решения
Ответ: Описанные и вписанные окружности - формулы, свойства и определение с примерами решения см.
Замечание. Из решения ключевой задачи 1 следует свойство: «Центр окружно­сти, описанной около равнобедренного треугольника, лежит на его высоте, про­веденной к основанию, или на ее продолжении».

Верно и обратное утверждение: «Если центр окружности, описанной около треугольника, лежит на высоте треугольника или на ее продолжении, то этот треугольник равнобедренный».
Обратное утверждение докажите самостоятельно.

Полезно запомнить!
Если в ключевой задаче 1 боковую сторону обозначить Описанные и вписанные окружности - формулы, свойства и определение с примерами решения а высоту, проведенную к основанию, — Описанные и вписанные окружности - формулы, свойства и определение с примерами решения то получится пропорция Описанные и вписанные окружности - формулы, свойства и определение с примерами решения.
Отсюда следует удобная формула для нахождения радиуса окруж­ности, описанной около равнобедренного треугольника:

Описанные и вписанные окружности - формулы, свойства и определение с примерами решения

Пример:

Найти радиус окружности, вписанной в равнобедренный тре­угольник АВС, у которого АВ = ВС = 10 см, АС = 12 см.

Описанные и вписанные окружности - формулы, свойства и определение с примерами решения

Решение:

Способ 1 (метод подобия). Центр вписанной окружности находится в точке пересечения биссектрис треугольника. Проведем в треугольнике АВС биссектрисы из вершин В и С, которые пересекутся в точке О — центре вписанной окружности (рис. 97). Биссектриса ВМ, проведенная к основанию равнобедренного треугольника АВС, будет его высотой и медианой, луч СО — биссектриса угла С, Описанные и вписанные окружности - формулы, свойства и определение с примерами решения — искомый радиус вписанной окружности. Так как AM = МС = 6 см, то из Описанные и вписанные окружности - формулы, свойства и определение с примерами решения по теореме Пифагора Описанные и вписанные окружности - формулы, свойства и определение с примерами решения (см), откуда Описанные и вписанные окружности - формулы, свойства и определение с примерами решения (см). Проведем радиус ОК в точку касания окружности со стороной Описанные и вписанные окружности - формулы, свойства и определение с примерами решения. Из подобия прямоугольных треугольников ВКО и ВМС (Описанные и вписанные окружности - формулы, свойства и определение с примерами решения — общий) следует:Описанные и вписанные окружности - формулы, свойства и определение с примерами решения. Тогда Описанные и вписанные окружности - формулы, свойства и определение с примерами решенияОписанные и вписанные окружности - формулы, свойства и определение с примерами решения(см).
Способ 2 (тригонометрический метод). Из Описанные и вписанные окружности - формулы, свойства и определение с примерами решения (см. рис. 97) Описанные и вписанные окружности - формулы, свойства и определение с примерами решения, из Описанные и вписанные окружности - формулы, свойства и определение с примерами решенияОписанные и вписанные окружности - формулы, свойства и определение с примерами решения откуда Описанные и вписанные окружности - формулы, свойства и определение с примерами решения. Дальнейшее решение совпадает с приведенным в способе 1.

Способ 3 (свойство биссектрисы треугольника). СО — биссектриса Описанные и вписанные окружности - формулы, свойства и определение с примерами решения. Известно, что биссектриса треугольника делит противолежащую сторону на части, пропорциональные прилежащим сторонам. Поэтому Описанные и вписанные окружности - формулы, свойства и определение с примерами решения‘ откуда Описанные и вписанные окружности - формулы, свойства и определение с примерами решения = 3 (см).

Способ 4 (формула Описанные и вписанные окружности - формулы, свойства и определение с примерами решения). Описанные и вписанные окружности - формулы, свойства и определение с примерами решения

Описанные и вписанные окружности - формулы, свойства и определение с примерами решения Из формулы площади треугольника Описанные и вписанные окружности - формулы, свойства и определение с примерами решения следует: Описанные и вписанные окружности - формулы, свойства и определение с примерами решения
Ответ: 3 см.

Замечание. Из решения ключевой задачи 2 следует свойство: «Центр окружности, вписанной в равнобедренный треугольник, лежит на его высоте, проведенной к основанию».

Верно и обратное утверждение: «Если центр окружности, вписанной в тре­угольник, лежит на высоте треугольника, то этот треугольник равнобедренный».

Обратное утверждение докажите самостоятельно.

Пример:

Дан равносторонний треугольник со стороной а. Найти радиус R его описанной окружности и радиус Описанные и вписанные окружности - формулы, свойства и определение с примерами решения его вписанной окружности.

Описанные и вписанные окружности - формулы, свойства и определение с примерами решения

Решение:

Способ 1 (тригонометрический метод).Так как в равностороннем треугольнике биссектрисы являются и высотами, и медианами, то его биссектрисы лежат на серединных перпендикулярах к сторонам треугольника. Поэтому в равностороннем треугольнике центры описанной и вписанной окружностей совпадают.

Рассмотрим равносторонний треугольник АВС со стороной а, у которого высоты AM и ВК пересекаются в точке О — центре описанной и вписанной окружностей (рис. 98). Тогда ОА = OB = R — радиусы описанной, Описанные и вписанные окружности - формулы, свойства и определение с примерами решения — радиусы вписанной окружности. Так как AM — бис­сектриса и Описанные и вписанные окружности - формулы, свойства и определение с примерами решения Поскольку ВК — высота и медиана, то Описанные и вписанные окружности - формулы, свойства и определение с примерами решения Из Описанные и вписанные окружности - формулы, свойства и определение с примерами решения , откуда Описанные и вписанные окружности - формулы, свойства и определение с примерами решения.
В Описанные и вписанные окружности - формулы, свойства и определение с примерами решения катет ОК лежит против угла в 30°, поэтому Описанные и вписанные окружности - формулы, свойства и определение с примерами решенияОписанные и вписанные окружности - формулы, свойства и определение с примерами решения

Способ 2 (свойство медиан). Поскольку AM и ВК — медианы треугольника АВС (см. рис. 98), то по свойству медиан Описанные и вписанные окружности - формулы, свойства и определение с примерами решения Высоту равностороннего треугольника можно найти по формуле Описанные и вписанные окружности - формулы, свойства и определение с примерами решения. Откуда

Описанные и вписанные окружности - формулы, свойства и определение с примерами решения

Описанные и вписанные окружности - формулы, свойства и определение с примерами решения

Ответ: Описанные и вписанные окружности - формулы, свойства и определение с примерами решения

Полезно запомнить!

Поскольку радиус описанной окружности равностороннего треугольникаОписанные и вписанные окружности - формулы, свойства и определение с примерами решения то Описанные и вписанные окружности - формулы, свойства и определение с примерами решения Значит, сторона равностороннего
треугольника в Описанные и вписанные окружности - формулы, свойства и определение с примерами решения раз больше радиуса его описанной окружности.
Чтобы найти радиус R описанной окружности равностороннего треугольника, нужно сторону Описанные и вписанные окружности - формулы, свойства и определение с примерами решения разделить на Описанные и вписанные окружности - формулы, свойства и определение с примерами решения, а чтобы найти его сторону а, нужно радиус R умножить на Описанные и вписанные окружности - формулы, свойства и определение с примерами решения. Радиус вписанной окружности равностороннего треугольника Описанные и вписанные окружности - формулы, свойства и определение с примерами решения

Прямоугольный треугольник и его описанная и вписанная окружности

Теорема. Центр окружности, описанной около прямоугольного тре­угольника, лежит на середине гипотенузы, а ее радиус равен половине гипотенузы, т. е. Описанные и вписанные окружности - формулы, свойства и определение с примерами решения где с — гипотенуза.

Описанные и вписанные окружности - формулы, свойства и определение с примерами решения

Доказательство:

Проведем в прямоугольном треугольнике АВС медиану СО к гипотенузе АВ (рис. 111). Так как медиана прямоугольного треугольника, проведенная к гипотенузе, равна половине гипотенузы, то ОС = ОА = ОВ.
Тогда середина гипотенузы — точка О — равноудалена от точек А, В и С и поэтому является центром описанной окружности треугольника АВС. Радиус этой окружности Описанные и вписанные окружности - формулы, свойства и определение с примерами решения где с — гипотенуза.
Теорема доказана.

Замечание. Также можно доказать, что серединные перпендикуляры к катетам прямоугольного треугольника пересекаются на середине гипотенузы.

Отметим, что у остроугольного треугольника центр описанной окружности лежит внутри треугольника (рис. 112, а), у тупоугольного — вне треугольника (рис. 112, б), у прямоугольного — на середине гипотенузы (рис. 112, в). Обоснуйте первые два утверждения самостоятельно.

Описанные и вписанные окружности - формулы, свойства и определение с примерами решения

Теорема. Радиус окружности, вписанной в прямоугольный треугольник, можно найти по формуле Описанные и вписанные окружности - формулы, свойства и определение с примерами решения, где Описанные и вписанные окружности - формулы, свойства и определение с примерами решения — искомый радиус, Описанные и вписанные окружности - формулы, свойства и определение с примерами решения и Описанные и вписанные окружности - формулы, свойства и определение с примерами решения — катеты, Описанные и вписанные окружности - формулы, свойства и определение с примерами решения — гипотенуза треугольника.

Описанные и вписанные окружности - формулы, свойства и определение с примерами решения

Доказательство:

Рассмотрим прямоугольный треуголь­ник АВС с катетами Описанные и вписанные окружности - формулы, свойства и определение с примерами решения и гипотенузой Описанные и вписанные окружности - формулы, свойства и определение с примерами решения. Пусть вписанная в треугольник окружность с центром О и радиусом Описанные и вписанные окружности - формулы, свойства и определение с примерами решения касается сторон треугольника в точках М, N и К (рис. 113).
Проведем радиусы в точки касания и получим: Описанные и вписанные окружности - формулы, свойства и определение с примерами решенияОписанные и вписанные окружности - формулы, свойства и определение с примерами решения Четырехугольник CMON — квадрат, так как у него все углы прямые и Описанные и вписанные окружности - формулы, свойства и определение с примерами решения. Тогда Описанные и вписанные окружности - формулы, свойства и определение с примерами решенияОписанные и вписанные окружности - формулы, свойства и определение с примерами решения Так как отрезки касательных, проведенных из одной точки к окружности, равны между собой, то Описанные и вписанные окружности - формулы, свойства и определение с примерами решения Но Описанные и вписанные окружности - формулы, свойства и определение с примерами решения, т. е. Описанные и вписанные окружности - формулы, свойства и определение с примерами решения, откуда Описанные и вписанные окружности - формулы, свойства и определение с примерами решения

 Теорема доказана.

Следствие: Описанные и вписанные окружности - формулы, свойства и определение с примерами решения где р — полупериметр треугольника.

Доказательство:

Преобразуем формулу радиуса вписанной окружности:

Описанные и вписанные окружности - формулы, свойства и определение с примерами решения

Формула Описанные и вписанные окружности - формулы, свойства и определение с примерами решения в сочетании с формулами Описанные и вписанные окружности - формулы, свойства и определение с примерами решения и Описанные и вписанные окружности - формулы, свойства и определение с примерами решения дает возможность решать многие задачи, связанные с прямоугольным треугольником, алгебраическим методом.
 

Пример. Дан прямоугольный треугольник, Описанные и вписанные окружности - формулы, свойства и определение с примерами решения Найти Описанные и вписанные окружности - формулы, свойства и определение с примерами решения.

Решение:

Так как Описанные и вписанные окружности - формулы, свойства и определение с примерами решения то Описанные и вписанные окружности - формулы, свойства и определение с примерами решения
Из формулы Описанные и вписанные окружности - формулы, свойства и определение с примерами решения следует Описанные и вписанные окружности - формулы, свойства и определение с примерами решения. По теореме Виета (обратной) Описанные и вписанные окружности - формулы, свойства и определение с примерами решения — посторонний корень.
Ответ:Описанные и вписанные окружности - формулы, свойства и определение с примерами решения = 2.

Пример:

Найти радиус окружности, описанной около прямоугольного треугольника, у которого один из катетов равен 6, а радиус вписанной окружности равен 2.

Описанные и вписанные окружности - формулы, свойства и определение с примерами решения

Решение:

Способ 1 (геометрический). Пусть в треугольнике АВС, где Описанные и вписанные окружности - формулы, свойства и определение с примерами решения — радиус вписанной окружности (рис. 114). Проведем из центра О вписанной окружности перпендикуляры ОК, ОМ и ON к сторонам треугольника, которые будут радиусами вписанной окружности. Так как Описанные и вписанные окружности - формулы, свойства и определение с примерами решения— квадрат, то Описанные и вписанные окружности - формулы, свойства и определение с примерами решения
По свойству касательных Описанные и вписанные окружности - формулы, свойства и определение с примерами решения
Тогда Описанные и вписанные окружности - формулы, свойства и определение с примерами решенияПо теореме Пифагора

Описанные и вписанные окружности - формулы, свойства и определение с примерами решения

Описанные и вписанные окружности - формулы, свойства и определение с примерами решения

Следовательно, Описанные и вписанные окружности - формулы, свойства и определение с примерами решения
Радиус описанной окружности Описанные и вписанные окружности - формулы, свойства и определение с примерами решения
Способ 2 (алгебраический). Подставив в формулу Описанные и вписанные окружности - формулы, свойства и определение с примерами решениязначения Описанные и вписанные окружности - формулы, свойства и определение с примерами решения получим Описанные и вписанные окружности - формулы, свойства и определение с примерами решения По теореме Пифагора Описанные и вписанные окружности - формулы, свойства и определение с примерами решения, т. е. Описанные и вписанные окружности - формулы, свойства и определение с примерами решения Тогда Описанные и вписанные окружности - формулы, свойства и определение с примерами решения
Ответ: 5.

Пример:

Гипотенуза прямоугольного треугольника Описанные и вписанные окружности - формулы, свойства и определение с примерами решения радиус вписанной в него окружности Описанные и вписанные окружности - формулы, свойства и определение с примерами решения Найти площадь треугольника.

Решение:

Способ 1 (геометрический). Пусть в Описанные и вписанные окружности - формулы, свойства и определение с примерами решения гипотенуза АВ – = с = 18,0 — центр вписанной окружности, ОК, ОМ, ON — ее радиусы, проведенные в точки касания (рис. 115). Так как Описанные и вписанные окружности - формулы, свойства и определение с примерами решения

Описанные и вписанные окружности - формулы, свойства и определение с примерами решения

Описанные и вписанные окружности - формулы, свойства и определение с примерами решения, то CMON — квадрат co стороной, равной радиусу Описанные и вписанные окружности - формулы, свойства и определение с примерами решения вписанной окружности, Описанные и вписанные окружности - формулы, свойства и определение с примерами решения — высота Описанные и вписанные окружности - формулы, свойства и определение с примерами решения. Поскольку отрезки касательных, проведенных из одной точки к окруж­ности, равны между собой, то АК = AM, ВК = BN.
Отсюда Описанные и вписанные окружности - формулы, свойства и определение с примерами решения по катету и гипотенузе.
Площадь Описанные и вписанные окружности - формулы, свойства и определение с примерами решения равна сумме удвоенной площади Описанные и вписанные окружности - формулы, свойства и определение с примерами решения и площади квадрата CMON, т. е.

Описанные и вписанные окружности - формулы, свойства и определение с примерами решения

Способ 2 (алгебраический). Из формулы Описанные и вписанные окружности - формулы, свойства и определение с примерами решения следует Описанные и вписанные окружности - формулы, свойства и определение с примерами решенияОписанные и вписанные окружности - формулы, свойства и определение с примерами решенияВозведем части равенства в квадрат: Описанные и вписанные окружности - формулы, свойства и определение с примерами решенияОписанные и вписанные окружности - формулы, свойства и определение с примерами решения Так как Описанные и вписанные окружности - формулы, свойства и определение с примерами решения и Описанные и вписанные окружности - формулы, свойства и определение с примерами решенияОписанные и вписанные окружности - формулы, свойства и определение с примерами решения

Способ 3 (алгебраический). Из формулы Описанные и вписанные окружности - формулы, свойства и определение с примерами решения следует, что Описанные и вписанные окружности - формулы, свойства и определение с примерами решения Из формулы Описанные и вписанные окружности - формулы, свойства и определение с примерами решения следует, что Описанные и вписанные окружности - формулы, свойства и определение с примерами решения
Ответ: 40.

Реальная геометрия:

Есть два листа ДСП (древесно-стружечной плиты). Один из них имеет форму равностороннего треугольника со сторо­ной 1 м, другой — форму прямоугольного равнобедренного треугольника с катетами, равными 1 м (рис. 120). Из каждого листа необходимо вырезать по одному кругу наибольшего диаметра. Определите, из какого листа будет вырезан круг большего диаметра и каким в этом случае будет процент отходов, если известно, что площадь круга можно найти по формуле Описанные и вписанные окружности - формулы, свойства и определение с примерами решения

Описанные и вписанные окружности - формулы, свойства и определение с примерами решения

Описанные и вписанные окружности - формулы, свойства и определение с примерами решения

Вписанные и описанные четырехугольники

Определение. Окружность называется описанной около многоуголь­ника, если она проходит через все его вершины. При этом многоугольник называется вписанным в окружность.

Окружность называется вписанной в многоугольник, если она касается всех его сторон. При этом много угольник называется описанным около окружности.
Пятиугольник ABCDE (рис. 121, а) является вписанным в окружность а четырехугольник MNPK (рис. 121, б) — описанным около окружности.

Описанные и вписанные окружности - формулы, свойства и определение с примерами решения

Центр описанной окружности многоугольника находится в точке пересечения серединных перпендикуляров к его сторонам, а центр вписанной — в точке пересечения биссектрис его углов.
Обоснуйте эти утверждения самостоятельно.

Теорема (свойство вписанного четырехугольника).
Сумма противоположных углов четырехугольника, вписанного в окружность, равна 180°.

Описанные и вписанные окружности - формулы, свойства и определение с примерами решения

Доказательство:

Пусть ABCD — четырехугольник, вписанный в окружность (рис. 122). Его углы А, В, С и D являются вписанными в окружность. Так как вписанный угол равен половине дуги, на которую он опирается, то Описанные и вписанные окружности - формулы, свойства и определение с примерами решения Дуги BCD и BAD дополняют друг друга до окружности, и поэтому сумма их градусных мер равна 360°. Отсюда Описанные и вписанные окружности - формулы, свойства и определение с примерами решения

Описанные и вписанные окружности - формулы, свойства и определение с примерами решения Аналогично доказывается, что Описанные и вписанные окружности - формулы, свойства и определение с примерами решения 180°. Теорема доказана.

Теорема (признак вписанного четырехугольника).
Если сумма противоположных углов четырехугольника равна Описанные и вписанные окружности - формулы, свойства и определение с примерами решения то около него можно описать окружность.

Описанные и вписанные окружности - формулы, свойства и определение с примерами решения

Доказательство:

Рассмотрим четырехугольник ABCD, у которого Описанные и вписанные окружности - формулы, свойства и определение с примерами решения (рис. 123). Через вершины А, В и D проведем окружность (около любого треугольника можно описать окружность). Если бы вершина С не лежала на данной окружности, а находилась вне ее в положении Описанные и вписанные окружности - формулы, свойства и определение с примерами решения или внутри нее в положении Описанные и вписанные окружности - формулы, свойства и определение с примерами решения то в первом случае угол С был бы меньше, а во втором — больше поло­вины градусной меры дуги BAD (по свойству угла между секущими и угла между пересекающимися хордами).
Тогда сумма Описанные и вписанные окружности - формулы, свойства и определение с примерами решенияне была бы равна 180°. Следовательно, вершина С лежит на данной окружности. Теорема доказана.

Замечание. Так как сумма углов четырехугольника равна 360°, то для того что­бы около четырехугольника можно было описать окружность, достаточно, чтобы сумма любой пары его противоположных углов была равна 180°.

Следствия.

1. Около параллелограмма можно описать окружность, только если этот параллелограмм — прямоугольник (рис. 124, а). Центр этой окружности лежит в точке пересечения диагоналей прямоугольника.

2. Около ромба можно описать окружность, только если этот ромб — квадрат (рис. 124, б).

3. Около трапеции можно описать окружность, только если она равнобедренная (рис. 124, в).

Описанные и вписанные окружности - формулы, свойства и определение с примерами решения

Докажите эти следствия самостоятельно.

Теорема (свойство описанного четырехугольника ).
Суммы противоположных сторон описанного четырехугольника равны между собой.

Описанные и вписанные окружности - формулы, свойства и определение с примерами решения

Доказательство:

Пусть ABCD — описанный четырех­угольник, М, N, Р и К — точки касания его сторон с окружностью (рис. 125). Так как отрезки касательных, проведенных к окружности из одной точки, равны меж­ду собой, то AM = АК = а, ВМ = BN = b, СР = CN = с, DP = DK = d. Тогда

Описанные и вписанные окружности - формулы, свойства и определение с примерами решения

откуда AD + ВС = AB + CD.
Теорема доказана.

Следствие:

Периметр описанного четырехугольника равен удвоенной сумме длин любой пары его противоположных сторон:

Описанные и вписанные окружности - формулы, свойства и определение с примерами решения

Теорема (признак описанного четырехугольника).
Если суммы противоположных сторон выпуклого четырехугольника равны, то в него можно вписать окружность.

Описанные и вписанные окружности - формулы, свойства и определение с примерами решения

Доказательство:

Пусть для выпуклого четырехугольника ABCD справедливо, что 

Описанные и вписанные окружности - формулы, свойства и определение с примерами решения                             (1)
Проведем окружность, которая касается прямых AD, АВ и ВС (рис. 126). Такая окружность существует, ее центр находится в точке пересечения биссектрис углов А и В. Если окружность не касается стороны CD, то либо прямая CD не имеет с окружностью общих точек, либо является секущей. Рассмотрим первый случай. Проведем отрезок Описанные и вписанные окружности - формулы, свойства и определение с примерами решения который касается окружности. По свойству описанного четырехугольника 

Описанные и вписанные окружности - формулы, свойства и определение с примерами решения                                     (2)

Отняв почленно от равенства (1) равенство (2), получим Описанные и вписанные окружности - формулы, свойства и определение с примерами решенияОписанные и вписанные окружности - формулы, свойства и определение с примерами решения что противоречит неравенству треугольника.
Рассмотрев случай, когда прямая DC — секущая, также придем к противоре­чию (сделайте это самостоятельно). Следовательно, данная окружность касается стороны CD и в четырехугольник ABCD можно вписать окружность. Теорема доказана.
 

Следствия.

1. В параллелограмм можно вписать окружность, только если этот параллелограмм — ромб. Центр этой окружности лежит в точке пересечения диагоналей ромба, а ее диаметр равен высоте ромба (рис. 127, а).

2. В прямоугольник можно вписать окружность, только если этот прямоугольник — квадрат (рис. 127, б).

3. Диаметр окружности, вписанной в трапецию, равен ее высоте (рис. 127, в).
Докажите эти следствия самостоятельно.

Описанные и вписанные окружности - формулы, свойства и определение с примерами решения

Для описанного многоугольника справедлива формула Описанные и вписанные окружности - формулы, свойства и определение с примерами решения, где S — его площадь, р — полупериметр, Описанные и вписанные окружности - формулы, свойства и определение с примерами решения — радиус вписанной окружности.

Доказательство аналогично приведенному в § 8 для треугольника. Выполните его самостоятельно, используя рисунок 128.

Описанные и вписанные окружности - формулы, свойства и определение с примерами решения

Пример:

Найти радиус окружности, вписанной в ромб с периметром 24 см и острым углом, равным 45°.

Описанные и вписанные окружности - формулы, свойства и определение с примерами решения

Решение:

Способ 1 (решение прямоугольного треугольника). Пусть ABCD — ромб (рис. 129), О — центр вписанной в ромб окружности. Известно, что высота ВК ромба равна диаметру EF вписанной окружности, т. е. Описанные и вписанные окружности - формулы, свойства и определение с примерами решения Так как у ромба все стороны равны , то Описанные и вписанные окружности - формулы, свойства и определение с примерами решения(см).
Из прямоугольного треугольника АВК находим. что Описанные и вписанные окружности - формулы, свойства и определение с примерами решения откуда Описанные и вписанные окружности - формулы, свойства и определение с примерами решения Искомый радиус вписанной окружности Описанные и вписанные окружности - формулы, свойства и определение с примерами решения (см).
Способ 2 (метод площадей). Ромб — параллелограмм. По формуле площади параллелограмма Описанные и вписанные окружности - формулы, свойства и определение с примерами решения найдем площадь данного ромба: Описанные и вписанные окружности - формулы, свойства и определение с примерами решения С другой стороны , площадь ромба можно найти по формуле площади описанного многоугольника Описанные и вписанные окружности - формулы, свойства и определение с примерами решения Поскольку Описанные и вписанные окружности - формулы, свойства и определение с примерами решения (см), то Описанные и вписанные окружности - формулы, свойства и определение с примерами решения Отсюда Описанные и вписанные окружности - формулы, свойства и определение с примерами решенияОписанные и вписанные окружности - формулы, свойства и определение с примерами решения (см).

Ответ: Описанные и вписанные окружности - формулы, свойства и определение с примерами решения см.

Пример:

Окружность, вписанная в прямоугольную трапецию ABCD, где Описанные и вписанные окружности - формулы, свойства и определение с примерами решения делит точкой касания большую боковую сторону CD на отрезки СК = 1, KD = 4. Найти площадь трапеции (рис. 130).
Описанные и вписанные окружности - формулы, свойства и определение с примерами решения

Решение:

Способ 1. Площадь трапеции находится по формуле Описанные и вписанные окружности - формулы, свойства и определение с примерами решения Необходимо найти сумму оснований и высоту трапеции. Проведем высоту Описанные и вписанные окружности - формулы, свойства и определение с примерами решения трапеции, проходящую через центр О вписанной окружности. По свойству касательных, проведенных из одной точки к окружности, CF = СК = 1, DH = DK = 4. Проведем вы­соту СМ. Так как HFCM — прямоугольник (все углы прямые), то НМ = FC = 1, MD = 3. В прямо­угольном треугольнике CMD по теореме Пифагора  Описанные и вписанные окружности - формулы, свойства и определение с примерами решенияТогда Описанные и вписанные окружности - формулы, свойства и определение с примерами решения По свойству описанного четырехугольника Описанные и вписанные окружности - формулы, свойства и определение с примерами решения Отсюда Описанные и вписанные окружности - формулы, свойства и определение с примерами решения

Описанные и вписанные окружности - формулы, свойства и определение с примерами решения

Способ 2*. Центр О вписанной окружности лежит на пересечении биссектрис углов Описанные и вписанные окружности - формулы, свойства и определение с примерами решения и Описанные и вписанные окружности - формулы, свойства и определение с примерами решения Так как Описанные и вписанные окружности - формулы, свойства и определение с примерами решениякак внутренние односторонние углы при Описанные и вписанные окружности - формулы, свойства и определение с примерами решенияи секущей CD, то Описанные и вписанные окружности - формулы, свойства и определение с примерами решения (рис. 131). Тогда Описанные и вписанные окружности - формулы, свойства и определение с примерами решения— прямоугольный, радиус Описанные и вписанные окружности - формулы, свойства и определение с примерами решения является его высотой, проведенной к гипотенузе CD. Высота прямоугольного треугольника, проведенная к гипотенузе, — есть среднее пропорциональное между проекциями катетов на гипотенузу. Поэто­му Описанные и вписанные окружности - формулы, свойства и определение с примерами решения или Описанные и вписанные окружности - формулы, свойства и определение с примерами решения Высота Описанные и вписанные окружности - формулы, свойства и определение с примерами решения описанной трапеции равна диаметру вписанной окружности, откуда Описанные и вписанные окружности - формулы, свойства и определение с примерами решения Так как по свой­ству описанного четырехугольника Описанные и вписанные окружности - формулы, свойства и определение с примерами решения то Описанные и вписанные окружности - формулы, свойства и определение с примерами решенияОписанные и вписанные окружности - формулы, свойства и определение с примерами решения
Ответ: 18.
Замечание. Полезно запомнить свойство: «Боковая сторона описанной трапеции видна из центра вписанной окружности под углом 90°».

Пример:

Внутри острого угла А взята точка М, из которой опущены перпендикуляры МВ и МС на стороны угла А, Описанные и вписанные окружности - формулы, свойства и определение с примерами решенияОписанные и вписанные окружности - формулы, свойства и определение с примерами решения Найти величину угла ВАС (рис. 132, а).
Описанные и вписанные окружности - формулы, свойства и определение с примерами решения

Решение:

Так как в четырехугольнике АВМС сумма углов В и С равна 180°, то около него можно описать окружность. Проведем в ней хорду AM (рис. 132, б). Поскольку Описанные и вписанные окружности - формулы, свойства и определение с примерами решения как вписанные углы, опирающиеся на одну и ту же дугу МС, то Описанные и вписанные окружности - формулы, свойства и определение с примерами решения и прямоугольный треугольник АМС является равнобедренным, Описанные и вписанные окружности - формулы, свойства и определение с примерами решенияВ прямоугольном треугольнике ABM Описанные и вписанные окружности - формулы, свойства и определение с примерами решения откуда Описанные и вписанные окружности - формулы, свойства и определение с примерами решения

Ответ: 75°.

Окружность, вписанная в треугольник

Пример:

Окружность вписана в треугольник АВС со сторонами ВС = а, АС = Ь, АВ = с. Вывести формулу для нахождения длин отрезков, на которые точки касания окружности со сторонами делят каждую сторону треугольника.

Описанные и вписанные окружности - формулы, свойства и определение с примерами решения

Решение:

Пусть К, М и N — точки касания вписанной окружности соответственно со сторонами АС, АВ и ВС треугольника АВС (рис. 140). Известно, что отрезки касательных, проведенных из одной точки к окружности, равны между собой.
Тогда, если Описанные и вписанные окружности - формулы, свойства и определение с примерами решения то Описанные и вписанные окружности - формулы, свойства и определение с примерами решенияОписанные и вписанные окружности - формулы, свойства и определение с примерами решения Так как АВ = AM + МВ, то Описанные и вписанные окружности - формулы, свойства и определение с примерами решения откуда Описанные и вписанные окружности - формулы, свойства и определение с примерами решения т. е. Описанные и вписанные окружности - формулы, свойства и определение с примерами решения. После преобразований получим: Описанные и вписанные окружности - формулы, свойства и определение с примерами решения Аналогично: Описанные и вписанные окружности - формулы, свойства и определение с примерами решенияОписанные и вписанные окружности - формулы, свойства и определение с примерами решенияОписанные и вписанные окружности - формулы, свойства и определение с примерами решения
Ответ: Описанные и вписанные окружности - формулы, свойства и определение с примерами решенияОписанные и вписанные окружности - формулы, свойства и определение с примерами решенияОписанные и вписанные окружности - формулы, свойства и определение с примерами решения

Описанные и вписанные окружности - формулы, свойства и определение с примерами решения

Замечание. Если Описанные и вписанные окружности - формулы, свойства и определение с примерами решения (рис. 141), то Описанные и вписанные окружности - формулы, свойства и определение с примерами решенияОписанные и вписанные окружности - формулы, свойства и определение с примерами решения (см. c. 69). Формула радиуса окружности, вписанной в прямоугольный треугольник, Описанные и вписанные окружности - формулы, свойства и определение с примерами решения — частный случай результата задачи 1.

Описанная трапеция

Пример:

Найти площадь описанной равнобедренной трапеции с основа­ниями а и Ь.

Описанные и вписанные окружности - формулы, свойства и определение с примерами решения

Решение:

Площадь трапеции можно найти по формуле Описанные и вписанные окружности - формулы, свойства и определение с примерами решения Пусть в трапеции ABCD основания Описанные и вписанные окружности - формулы, свойства и определение с примерами решения — боковые стороны, Описанные и вписанные окружности - формулы, свойства и определение с примерами решения — высота (рис. 142). По свойству описанного четырехугольника АВ + CD = AD + ВС, откуда Описанные и вписанные окружности - формулы, свойства и определение с примерами решения . Известно, что в равнобедренной трапеции Описанные и вписанные окружности - формулы, свойства и определение с примерами решения (можно опустить высоту СК и убедиться в этом). Из прямоугольного треугольника АНВ получаем: Описанные и вписанные окружности - формулы, свойства и определение с примерами решенияОписанные и вписанные окружности - формулы, свойства и определение с примерами решенияОтсюда Описанные и вписанные окружности - формулы, свойства и определение с примерами решенияОтвет: Описанные и вписанные окружности - формулы, свойства и определение с примерами решения
Замечание. Площадь описанной равнобедренной трапеции равна произведению среднего арифметического и среднего геометрического ее оснований.

Полезно запомнить!

Для описанной равнобедренной трапеции с основаниями Описанные и вписанные окружности - формулы, свойства и определение с примерами решения боковой стороной с, высотой h, средней линией Описанные и вписанные окружности - формулы, свойства и определение с примерами решения и радиусом Описанные и вписанные окружности - формулы, свойства и определение с примерами решения вписанной окружности (см. рис. 142) справедливы равенства:

Описанные и вписанные окружности - формулы, свойства и определение с примерами решения

Дополнительные свойства и признаки вписанного четырехугольника

Теорема.
Около четырехугольника можно описать окружность тогда и только тогда, когда угол между его стороной и диагональю равен углу между противоположной стороной и другой диагональю.
Рис. 143
Описанные и вписанные окружности - формулы, свойства и определение с примерами решения

Доказательство:

1. Если четырехугольник ABCD вписан в окружность (рис. 143), то Описанные и вписанные окружности - формулы, свойства и определение с примерами решения как вписанные углы, опирающиеся на одну и ту же дугу.

2. Докажем, что если в некотором четырехугольнике ABCD Описанные и вписанные окружности - формулы, свойства и определение с примерами решения то около него можно описать окружность.
Опишем около треугольника ABD окружность.
В 8-м классе (В. В. Казаков. «Геометрия, 8», с. 186) было доказано свойство:

«Геометрическим местом точек плоскости, из которых данный отрезок AD виден под углом а, является объединение двух дуг окружностей: дуги ABD и ей симметричной относительно прямой AD, исключая точки Описанные и вписанные окружности - формулы, свойства и определение с примерами решения » . Данное свойство гарантирует, что вершины всех углов, равных углу ABD и лежащих по одну сторону от прямой AD, расположены на дуге ABD окружности. Поэтому окружность, описанная около треугольника ABD, пройдет и через вершину С. Теорема доказана.

 Обобщенная теорема Пифагора

В прямоугольном треугольнике Описанные и вписанные окружности - формулы, свойства и определение с примерами решения проведена высота СН, которая делит его на треугольники АСН и СВН, подобные между собой и подобные треугольнику Описанные и вписанные окружности - формулы, свойства и определение с примерами решения (рис. 148). Тогда теорема Пифагора Описанные и вписанные окружности - формулы, свойства и определение с примерами решения может звучать так: сумма квадратов гипотенуз Описанные и вписанные окружности - формулы, свойства и определение с примерами решениятреугольников СВН и АСН равна квадрату гипотенузы треугольника АВС. И вообще, если Описанные и вписанные окружности - формулы, свойства и определение с примерами решения– соответствующие линейные элемен­ты Описанные и вписанные окружности - формулы, свойства и определение с примерами решения то можно сформулировать обобщенную теорему Пифагора:
Описанные и вписанные окружности - формулы, свойства и определение с примерами решения

Описанные и вписанные окружности - формулы, свойства и определение с примерами решения

Действительно, из подобия указанных треугольников Описанные и вписанные окружности - формулы, свойства и определение с примерами решения откуда Описанные и вписанные окружности - формулы, свойства и определение с примерами решения

Описанные и вписанные окружности - формулы, свойства и определение с примерами решения

Пример:

Пусть Описанные и вписанные окружности - формулы, свойства и определение с примерами решения (см. рис. 148). Найдем Описанные и вписанные окружности - формулы, свойства и определение с примерами решения По обобщенной теореме Пифагора Описанные и вписанные окружности - формулы, свойства и определение с примерами решения отсюда Описанные и вписанные окружности - формулы, свойства и определение с примерами решения
Ответ: Описанные и вписанные окружности - формулы, свойства и определение с примерами решения = 39.

Формула Эйлера для окружностей

Для вписанной и описанной окружностей треугольника с радиусами Описанные и вписанные окружности - формулы, свойства и определение с примерами решения и расстоянием d между их центрами (рис. 149) справедлива формула Эйлера

Описанные и вписанные окружности - формулы, свойства и определение с примерами решения

Описанные и вписанные окружности - формулы, свойства и определение с примерами решения

Проверим справедливость этой формулы на примере равнобедренного треугольника АВС, у которого АВ = ВС = 10, АС = 12 (рис. 150).

Описанные и вписанные окружности - формулы, свойства и определение с примерами решения

Вначале найдем расстояние между центрами указанных окружностей традиционным способом.

Проведем высоту ВН, длина которой будет равна 8 (пифагорова тройка 6, 8, 10). Центры описанной и вписанной окружностей — соответственно точки Описанные и вписанные окружности - формулы, свойства и определение с примерами решения, и Описанные и вписанные окружности - формулы, свойства и определение с примерами решения — лежат на прямой ВН (свойство равнобедренного треугольника). ТогдаОписанные и вписанные окружности - формулы, свойства и определение с примерами решения— расстояние между указанными центрами. Для нахождения радиуса описанной окружности воспользуемся формулой Описанные и вписанные окружности - формулы, свойства и определение с примерами решения где b — боковая сторона, Описанные и вписанные окружности - формулы, свойства и определение с примерами решения — высота, проведенная к основанию равнобедренного треугольника. Получим Описанные и вписанные окружности - формулы, свойства и определение с примерами решения Радиус вписанной окружности Описанные и вписанные окружности - формулы, свойства и определение с примерами решения Так как Описанные и вписанные окружности - формулы, свойства и определение с примерами решения то Описанные и вписанные окружности - формулы, свойства и определение с примерами решения Искомое расстояние Описанные и вписанные окружности - формулы, свойства и определение с примерами решения
А теперь найдем d по формуле Эйлера: Описанные и вписанные окружности - формулы, свойства и определение с примерами решения

Описанные и вписанные окружности - формулы, свойства и определение с примерами решения откуда Описанные и вписанные окружности - формулы, свойства и определение с примерами решения Как видим, формула Эйлера достаточно эффективна.

Запомнить:

  1. Центр описанной окружности треугольника (многоугольника) лежит в точке пересечения серединных перпендикуляров к его сторонам.
  2. Центр вписанной окружности треугольника (многоугольника) лежит в точке пересечения биссектрис его углов.
  3. Центр описанной окружности прямоугольного треугольника лежит на середине гипотенузы, а ее радиус равен половине гипотенузы: Описанные и вписанные окружности - формулы, свойства и определение с примерами решения
  4. Радиус вписанной окружности прямоугольного треугольника находится по формуле Описанные и вписанные окружности - формулы, свойства и определение с примерами решения
  5. Если четырехугольник вписан в окружность, то суммы его противополож­ных углов равны 180°. И обратно.
  6. Если четырехугольник описан около окружности, то суммы его противопо­ложных сторон равны между собой. И обратно.
  7. Площадь треугольника и описанного многоугольника можно найти по формуле Описанные и вписанные окружности - формулы, свойства и определение с примерами решения где Описанные и вписанные окружности - формулы, свойства и определение с примерами решения — полупериметр, Описанные и вписанные окружности - формулы, свойства и определение с примерами решения — радиус вписанной окружности.

Справочная информация по описанной и вписанной окружности треугольника

Определение. Окружность называют описанной около треугольника, если она проходит через все вершины этого треугольника.

Описанные и вписанные окружности - формулы, свойства и определение с примерами решения

На рисунке 298 изображена окружность, описанная около треугольника. В этом случае также говорят, что треугольник вписан в окружность. Очевидно, что центр описанной окружности треугольника равноудален от всех его вершин. На рисунке 298 точка Описанные и вписанные окружности - формулы, свойства и определение с примерами решения — центр окружности, описанной около треугольника Описанные и вписанные окружности - формулы, свойства и определение с примерами решения, поэтому Описанные и вписанные окружности - формулы, свойства и определение с примерами решения.

Теорема 21.1. Вокруг любого треугольника можно описать окружность.

Доказательство: Для доказательства достаточно показать, что для любого треугольника Описанные и вписанные окружности - формулы, свойства и определение с примерами решения существует точка Описанные и вписанные окружности - формулы, свойства и определение с примерами решения, равноудаленная от всех его вершин. Тогда точка Описанные и вписанные окружности - формулы, свойства и определение с примерами решения будет центром описанной окружности, а отрезки Описанные и вписанные окружности - формулы, свойства и определение с примерами решения, Описанные и вписанные окружности - формулы, свойства и определение с примерами решения и Описанные и вписанные окружности - формулы, свойства и определение с примерами решения — ее радиусами.

Описанные и вписанные окружности - формулы, свойства и определение с примерами решения

На рисунке 299 изображен произвольный треугольник Описанные и вписанные окружности - формулы, свойства и определение с примерами решения. Проведем серединные перпендикуляры Описанные и вписанные окружности - формулы, свойства и определение с примерами решения и Описанные и вписанные окружности - формулы, свойства и определение с примерами решения сторон Описанные и вписанные окружности - формулы, свойства и определение с примерами решения и Описанные и вписанные окружности - формулы, свойства и определение с примерами решения соответственно. Пусть точка Описанные и вписанные окружности - формулы, свойства и определение с примерами решения — точка пересечения этих прямых. Поскольку точка Описанные и вписанные окружности - формулы, свойства и определение с примерами решения принадлежит серединному перпендикуляру Описанные и вписанные окружности - формулы, свойства и определение с примерами решения, то Описанные и вписанные окружности - формулы, свойства и определение с примерами решения. Так как точка Описанные и вписанные окружности - формулы, свойства и определение с примерами решения принадлежит серединному перпендикуляру Описанные и вписанные окружности - формулы, свойства и определение с примерами решения, то Описанные и вписанные окружности - формулы, свойства и определение с примерами решения. Значит, Описанные и вписанные окружности - формулы, свойства и определение с примерами решенияОписанные и вписанные окружности - формулы, свойства и определение с примерами решения, т. е. точка Описанные и вписанные окружности - формулы, свойства и определение с примерами решения равноудалена от всех вершин треугольника.

Заметим, что вокруг треугольника можно описать только одну окружность. Это следует из того, что серединные перпендикуляры Описанные и вписанные окружности - формулы, свойства и определение с примерами решения и Описанные и вписанные окружности - формулы, свойства и определение с примерами решения (рис. 299) имеют только одну точку пересечения. Следовательно, существует только одна точка, равноудаленная от всех вершин треугольника.

Следствие 1. Три серединных перпендикуляра сторон треугольника пересекаются в одной точке.

Следствие 2. Центр описанной окружности треугольника — это точка пересечения серединных перпендикуляров его сторон.

Определение. Окружность называют вписанной в треугольник, если она касается всех его сторон.

Описанные и вписанные окружности - формулы, свойства и определение с примерами решения

На рисунке 300 изображена окружность, вписанная в треугольник. В этом случае также говорят, что треугольник описан около окружности.

Точка Описанные и вписанные окружности - формулы, свойства и определение с примерами решения (рис. 300) — центр вписанной окружности треугольника Описанные и вписанные окружности - формулы, свойства и определение с примерами решения, отрезки Описанные и вписанные окружности - формулы, свойства и определение с примерами решения, Описанные и вписанные окружности - формулы, свойства и определение с примерами решения, Описанные и вписанные окружности - формулы, свойства и определение с примерами решения — радиусы, проведенные в точки касания, Описанные и вписанные окружности - формулы, свойства и определение с примерами решения. Понятно, что центр вписанной окружности треугольника равноудален от всех его сторон.

Теорема 21.2. В любой треугольник можно вписать окружность.

Доказательство: Для доказательства достаточно показать, что для любого треугольника Описанные и вписанные окружности - формулы, свойства и определение с примерами решения существует точка Описанные и вписанные окружности - формулы, свойства и определение с примерами решения, удаленная от каждой его стороны на некоторое расстояние г. Тогда в силу следствия из теоремы 20.4 точка Описанные и вписанные окружности - формулы, свойства и определение с примерами решения будет центром окружности радиуса г, которая касается сторон Описанные и вписанные окружности - формулы, свойства и определение с примерами решения.

Описанные и вписанные окружности - формулы, свойства и определение с примерами решения

На рисунке 301 изображен произвольный треугольник Описанные и вписанные окружности - формулы, свойства и определение с примерами решения. Проведем биссектрисы углов Описанные и вписанные окружности - формулы, свойства и определение с примерами решения и Описанные и вписанные окружности - формулы, свойства и определение с примерами решения, Описанные и вписанные окружности - формулы, свойства и определение с примерами решения — точка их пересечения. Так как точка Описанные и вписанные окружности - формулы, свойства и определение с примерами решения принадлежит биссектрисе угла Описанные и вписанные окружности - формулы, свойства и определение с примерами решения, то она равноудалена от сторон Описанные и вписанные окружности - формулы, свойства и определение с примерами решения и Описанные и вписанные окружности - формулы, свойства и определение с примерами решения (теорема 19.2). Аналогично, так как точка Описанные и вписанные окружности - формулы, свойства и определение с примерами решения принадлежит биссектрисе угла Описанные и вписанные окружности - формулы, свойства и определение с примерами решения, то она равноудалена от сторон Описанные и вписанные окружности - формулы, свойства и определение с примерами решения и Описанные и вписанные окружности - формулы, свойства и определение с примерами решения. Следовательно, точка Описанные и вписанные окружности - формулы, свойства и определение с примерами решения равноудалена от всех сторон треугольника.

Заметим, что в треугольник можно вписать только одну окружность. Это следует из того, что биссектрисы углов Описанные и вписанные окружности - формулы, свойства и определение с примерами решения и Описанные и вписанные окружности - формулы, свойства и определение с примерами решения (рис. 301) пересекаются только в одной точке. Следовательно, существует только одна точка, равноудаленная от сторон треугольника.

Следствие 1. Биссектрисы углов треугольника пересекаются в одной точке.

Следствие 2. Центр вписанной окружности треугольника — это точка пересечения его биссектрис.

Пример:

Докажите, что радиус окружности, вписанной в прямоугольный треугольник, определяется по формуле Описанные и вписанные окружности - формулы, свойства и определение с примерами решения, где Описанные и вписанные окружности - формулы, свойства и определение с примерами решения — радиус вписанной окружности, Описанные и вписанные окружности - формулы, свойства и определение с примерами решения и Описанные и вписанные окружности - формулы, свойства и определение с примерами решения — катеты, Описанные и вписанные окружности - формулы, свойства и определение с примерами решения — гипотенуза.

Описанные и вписанные окружности - формулы, свойства и определение с примерами решения

Решение:

В треугольнике Описанные и вписанные окружности - формулы, свойства и определение с примерами решения (рис. 302) Описанные и вписанные окружности - формулы, свойства и определение с примерами решения, Описанные и вписанные окружности - формулы, свойства и определение с примерами решения, Описанные и вписанные окружности - формулы, свойства и определение с примерами решения, Описанные и вписанные окружности - формулы, свойства и определение с примерами решения, точка Описанные и вписанные окружности - формулы, свойства и определение с примерами решения — центр вписанной окружности, Описанные и вписанные окружности - формулы, свойства и определение с примерами решения, Описанные и вписанные окружности - формулы, свойства и определение с примерами решения и Описанные и вписанные окружности - формулы, свойства и определение с примерами решения — точки касания вписанной окружности со сторонами Описанные и вписанные окружности - формулы, свойства и определение с примерами решения, Описанные и вписанные окружности - формулы, свойства и определение с примерами решения и Описанные и вписанные окружности - формулы, свойства и определение с примерами решения соответственно.

Отрезок Описанные и вписанные окружности - формулы, свойства и определение с примерами решения — радиус окружности, проведенный в точку касания. Тогда Описанные и вписанные окружности - формулы, свойства и определение с примерами решения.

Так как точка Описанные и вписанные окружности - формулы, свойства и определение с примерами решения — центр вписанной окружности, то Описанные и вписанные окружности - формулы, свойства и определение с примерами решения — биссектриса угла Описанные и вписанные окружности - формулы, свойства и определение с примерами решения и Описанные и вписанные окружности - формулы, свойства и определение с примерами решения. Тогда Описанные и вписанные окружности - формулы, свойства и определение с примерами решения — равнобедренный прямоугольный, Описанные и вписанные окружности - формулы, свойства и определение с примерами решения. Используя свойство отрезков касательных, проведенных к окружности из одной точки, получаем:

Описанные и вписанные окружности - формулы, свойства и определение с примерами решения

  • Плоские и пространственные фигуры
  • Взаимное расположение точек и прямых
  • Сравнение и измерение отрезков и углов
  • Первый признак равенства треугольников
  • Треугольники и окружность
  • Площадь треугольника
  • Соотношения между сторонами и углами произвольного треугольника
  • Окружность и круг

Вписанный угол, теория задачи. Друзья! В этой статье речь пойдёт о заданиях, для решения которых необходимо знать свойства вписанного угла. Это целая группа задач, они включены в ЕГЭ. Большинство из них решаются очень просто, в одно действие.

Есть задачи посложнее, но и они большой трудности для вас не представят, необходимо знать свойства вписанного угла. Постепенно мы разберём все прототипы задач, приглашаю вас на блог!

Теперь необходимая теория. Вспомним, что такое центральный и вписанный угол, хорда, дуга, на которые опираются эти углы:

Центральным углом в окружности называется плоский угол с вершиной в ее центре.

Часть окружности, расположенная внутри плоского угла, называется дугой окружности.

Градусной мерой дуги окружности называется градусная мера соответствующего центрального угла.

Угол, называется вписанным в окружность, если вершина угла лежит на окружности, а стороны угла пересекают эту окружность.

Вписанный угол

Отрезок соединяющий две точки окружности называется хордой. Самая большая хорда проходит через центр окружности и называется диаметр.

Для решения задач на вписанные в окружность углы, вам необходимо знать следующие свойства:

1. Вписанный угол равен половине центрального, опирающегося на ту же дугу.

2. Все вписанные углы, опирающиеся на одну и ту же дугу, равны. 

3. Все вписанные углы, опирающиеся на одну и ту же хорду, вершины которых лежат по одну сторону от этой хорды, равны.

4. Любая пара углов, опирающихся на одну и ту же хорду, вершины которых лежат по разные стороны хорды, составляют в сумме 180°.

Следствие: противолежащие углы четырёхугольника вписанного в окружность в сумме составляют 180 градусов.

5. Все вписанные углы, опирающиеся на диаметр, прямые.

Вообще, это свойство является следствием из свойства (1), это его частный случай. Посмотрите – центральный угол равен 180 градусам (и этот развёрнутый угол есть не что иное, как диаметр), значит по первому свойству вписанный угол С равен его половине, то есть 90 градусам.

Знание данного свойства помогает в решении многих задач и часто позволяет избежать лишних расчётов. Хорошо усвоив его — вы более половины задач такого типа сможете решать устно. Два следствие, которые можно сделать:

Следствие 1: если в окружность вписан треугольник и одна его сторона совпадает с диаметром этой окружности, то треугольник является прямоугольным (вершина прямого угла лежит на окружности).

Следствие 2: центр описанной около прямоугольного треугольника окружности совпадает с серединой его гипотенузы.

Многие прототипы стереометрических задач также решаются благодаря использованию этого свойства и данных следствий. Запомните сам факт: если диаметр окружности является стороной вписанного треугольника, то этот треугольник прямоугольный (угол лежащий против диаметра равен 90 градусов). Все остальные выводы и следствия вы сможете сделать сами, учить их не надо.

Как правило, половина  задач на вписанный угол даётся с эскизом, но без обозначений. Для понимания процесса рассуждения при решении задач (ниже в статье) введены обозначения вершин (углов). На ЕГЭ вы можете этого не делать. Рассмотрим задачи:

Чему равен острый вписанный угол, опирающийся на хорду, равную радиусу окружности? Ответ дайте в градусах.

Построим центральный угол для заданного вписанного угла, обозначим вершины:

По свойству вписанного в окружность угла:

Угол АОВ равен 600, так как треугольник АОВ равносторонний, а в равностороннем треугольнике все углы равны по 600. Стороны треугольника равны, так как в условии сказано, что хорда равна радиусу.

Таким образом, вписанный угол АСВ равен 300.

Ответ: 30 

Найдите хорду, на которую опирается угол 300, вписанный в окружность радиуса 3.

Это по сути обратная задача (предыдущей). Построим центральный угол.

Он в два раза больше вписанного, то есть угол АОВ равен 600. От сюда можно сделать вывод, что треугольник АОВ равносторонний. Таким образом, хорда равна радиусу, то есть трём.

Ответ: 3

Радиус окружности равен 1. Найдите величину тупого вписанного угла, опирающегося на хорду, равную корню из двух. Ответ дайте в градусах.

Построим центральный угол:

Зная радиус и хорду мы можем найти центральный угол  АСВ. Это можно сделать по теореме косинусов. Зная центральный угол мы без труда найдём вписанный угол АСВ.

Теорема косинусов: квадрат любой стороны треугольника равен сумме квадратов двух других сторон, без удвоенного произведения этих сторон на косинус  угла между ними.

Следовательно, второй центральный угол равен 3600 – 900 = 2700.

Угол АСВ по свойству вписанного угла равен его половине, то есть 135 градусам.

Ответ: 135

Найдите хорду, на которую опирается угол 120 градусов, вписанный в окружность радиуса  корень из трёх.

Соединим точки А и В с центром окружности. Обозначим её как О:

Нам известен радиус и вписанный угол АСВ. Мы можем найти центральный угол АОВ (больший 180 градусов), затем найти угол АОВ в треугольнике АОВ. А далее по теореме косинусов вычислить АВ.

По свойству вписанного угла центральный угол АОВ (который больше 180 градусов) будет равен вдвое больше  вписанного, то есть 240 градусам. Значит, угол АОВ в треугольнике АОВ равен  3600 – 2400 = 1200.

По теореме косинусов:

Ответ:3

Найдите вписанный угол, опирающийся на дугу, которая составляет 20% окружности. Ответ дайте в градусах.

По свойству вписанного угла он вдвое меньше центрального угла, опирающегося на ту же дугу, в данном случае речь идёт о дуге АВ.

Сказано, дуга АВ составляет 20 процентов от окружности. Это означает, что центральный угол АОВ составляет так же 20 процентов от 3600*Окружность это угол в 360 градусов. Значит,

Таким образом, вписанный угол АСВ равен 36 градусам.

Ответ: 36

Дуга окружности AC, не содержащая точки B, составляет 200 градусов. А дуга окружности BC, не содержащая точки A, составляет 80 градусов. Найдите вписанный угол ACB. Ответ дайте в градусах.

Обозначим для наглядности дуги, угловые меры которых даны. Дуга соответствующая 200 градусам – синий цвет, дуга соответствующая 80 градусам – красный цвет, оставшаяся часть окружности – жёлтый цвет.

Таким образом, градусная мера дуги АВ (жёлтый цвет), а значит и центральный угол АОВ составляет:  3600 – 2000 – 800 = 800.

Вписанный угол АСВ вдвое меньше центрального угла АОВ,то есть равен 40 градусам.

Ответ: 40

Чему равен вписанный угол, опирающийся на диаметр окружности? Ответ дайте в градусах.

Посмотреть решение

Найдите хорду, на которую опирается угол 900, вписанный в окружность радиуса 1.

Посмотреть решение

Чему равен тупой вписанный угол, опирающийся на хорду, равную радиусу окружности? Ответ дайте в градусах.

Посмотреть решение

Радиус окружности равен 1. Найдите величину острого вписанного угла, опирающегося на хорду, равную корню из двух. Ответ дайте в градусах.

Посмотреть решение

Центральный угол на 360 больше острого вписанного угла, опирающегося на ту же дугу окружности. Найдите вписанный угол. Ответ дайте в градусах.

Посмотреть решение

Найдите вписанный угол, опирающийся на дугу АВ, которая составляет  0,2 окружности. Ответ дайте в градусах.

Посмотреть решение

Хорда делит окружность на две части, градусные величины которых относятся как 5:7. Под каким углом видна эта хорда из точки, принадлежащей меньшей дуге окружности? Ответ дайте в градусах.

Посмотреть решение

Точки А, В, С, расположенные на окружности, делят ее на три дуги, градусные величины которых относятся как 1:3:5. Найдите больший угол треугольника АВС. Ответ дайте в градусах.

Посмотреть решение

На что обратить внимание при решении подобных задач?

Необходимо знать свойство вписанного угла; понимать, когда и как необходимо использовать теорему косинусов, подробнее о ней посмотрите здесь.

На этом всё! Успехов Вам!

С уважением, Александр Крутицких

Учительница математики в школе в третьем классе:
— Дети, а скажите мне, сколько будет 6*6?
Дети дружно хором отвечают:
— Семьдесят шесть!
— Ну, что вы, такое говорите детки! Шесть на шесть будет тридцать шесть… ну может быть еще 37, 38, 39… ну максимум 40… но никак не семьдесят шесть!

P.S: Буду благодарен Вам, если расскажете о сайте в социальных сетях.

Добавить комментарий