Функция натурального логарифма (синяя кривая) обратна к экспоненте (красная кривая)
График функции натурального логарифма. Функция медленно приближается к положительной бесконечности при увеличении x и быстро приближается к отрицательной бесконечности, когда x стремится к 0
Натуральный логарифм — логарифм по основанию e, где — трансцендентная константа, равная приблизительно 2,72. Он обозначается как , или иногда просто , если основание подразумевается[1]. Обычно число под знаком логарифма вещественное, но можно расширить это понятие и на комплексные числа.
Из определения следует, что логарифмическая зависимость есть обратная функция для экспоненты , поэтому их графики симметричны относительно биссектрисы первого и третьего квадрантов (см. рисунок справа). Как и экспонента, логарифмическая функция относится к категории трансцендентных функций.
Натуральные логарифмы полезны для решения алгебраических уравнений, в которых неизвестная присутствует в качестве показателя степени, они незаменимы в математическом анализе. В приложениях натуральный логарифм участвует в математическом описании таких процессов, в которых скорость изменения некоторого количества в каждый момент обратно пропорциональна самому количеству. Например, логарифмы используются для нахождения постоянной распада для известного периода полураспада радиоактивного вещества: чем больше атомов распадается, тем меньше их становится и тем медленнее идет дальнейший процесс. Натуральные логарифмы играют важную роль во многих областях математики и прикладных наук, применяются в сфере финансов для решения различных задач, (например, нахождение сложных процентов).
Определение[править | править код]
Натуральный логарифм числа — это показатель степени, в которую нужно возвести число e, чтобы получить . Другими словами, натуральный логарифм есть решение уравнения
Примеры:
- , потому что ;
- , потому что .
Вещественный натуральный логарифм[править | править код]
определяется как площадь под кривой от до .
Натуральный логарифм для вещественного числа определён и однозначен для любого положительного числа
Натуральный логарифм может быть также определён геометрически для любого положительного вещественного числа a как площадь под кривой на промежутке . Простота этого определения, которое согласуется со многими другими формулами, в которых применяется данный логарифм, объясняет происхождение названия «натуральный».
Свойства[править | править код]
Из определения логарифма следует основное логарифмическое тождество[2]:
Приведём сводку формул в предположении, что все значения положительны[3]:
Формула | Пример | |
---|---|---|
Произведение | ||
Частное | ||
Степень | ||
Корень |
Другие свойства:
Связь с логарифмами по другому основанию[править | править код]
Логарифм может быть определён для любого положительного основания, отличного от , а не только для , но логарифмы для других оснований отличаются от натурального логарифма только постоянным множителем.
Логарифм по основанию можно преобразовать[4] в натуральный логарифм и обратно:
Связь десятичного () и натурального логарифмов[5]:
Связь двоичного () и натурального логарифмов:
Логарифмическая функция[править | править код]
Если рассматривать логарифмируемое число как переменную, мы получим логарифмическую функцию . Она определена при . Область значений: . Эта кривая часто называется логарифмикой[6]. Из формулы замены основания логарифма видно, что графики логарифмических функций с разными основаниями, бо́льшими единицы, отличаются один от другого только масштабом по оси ; графики для оснований, меньших единицы, являются их зеркальным отражением относительно горизонтальной оси.
Функция является строго возрастающей, она непрерывна и неограниченно дифференцируема всюду в своей области определения.
Ось ординат () является вертикальной асимптотой, поскольку:
Производная натуральной логарифмической функции равна:
Простота этой формулы — одна из причин широкого использования именно натурального логарифма в анализе и при решении дифференциальных уравнений.
Проинтегрировав формулу для производной в интервале от до , мы получаем:
Другими словами, натуральный логарифм равен площади под гиперболой для указанного интервала .
С точки зрения общей алгебры, логарифмическая функция осуществляет (единственно возможный) изоморфизм мультипликативной группы положительных вещественных чисел и аддитивной группы всех вещественных чисел. Другими словами, логарифмическая функция есть единственное (определённое для всех положительных значений аргумента) непрерывное решение функционального уравнения[7]:
Аналитические свойства функции[править | править код]
Из формулы для производной натурального логарифма следует, что первообразная для гиперболы имеет вид:
где — произвольная константа интегрирования. Поскольку функция состоит из двух ветвей (одна для положительных, другая для отрицательных ), семейство первообразных для тоже состоит из двух подсемейств, причём константы интегрирования у них независимы одна от другой.
Неопределённый интеграл от натурального логарифма легко найти интегрированием по частям:
В математическом анализе и теории дифференциальных уравнений большую роль играет понятие логарифмической производной функции :
Методы вычисления логарифма[править | править код]
Разложим натуральный логарифм в ряд Тейлора вблизи единицы:
(Ряд 1) |
Этот ряд, называемый «рядом Меркатора», сходится при . В частности:
Формула ряда 1 непригодна для практического расчёта логарифмов из-за того, что ряд сходится очень медленно и только в узком интервале. Однако нетрудно получить из неё более удобную формулу:
(Ряд 2) |
Этот ряд сходится быстрее, а кроме того, левая часть формулы теперь может выразить логарифм любого положительного числа , ибо тогда по абсолютной величине меньше единицы. Данный алгоритм уже пригоден для реальных численных расчётов значений логарифмов, однако не является наилучшим с точки зрения трудоёмкости.
Для вычисления натурального логарифма с большим количеством цифр точности ряд Тейлора не является эффективным, поскольку его сходимость медленная. Альтернативой является использование метода Ньютона, чтобы инвертировать в экспоненциальную функцию, ряд которой сходится быстрее.
Альтернативой для очень высокой точности расчёта является формула:[8][9]:
где обозначает арифметико-геометрическое среднее 1 и 4/s, и
m выбрано так, что p знаков точности достигается. (В большинстве случаев значение 8 для m вполне достаточно.) В самом деле, если используется этот метод, может быть применена инверсия Ньютона натурального логарифма для эффективного вычисления экспоненциальной функции. Константы ln 2 и пи могут быть предварительно вычислены до желаемой точности, используя любой из известных быстро сходящихся рядов.
Вычислительная сложность натуральных логарифмов (с помощью арифметико-геометрического среднего) равна O(M(n) ln n). Здесь n — число цифр точности, для которой натуральный логарифм должен быть оценен, а M(n) — вычислительная сложность умножения двух n-значных чисел.
Полезные пределы[править | править код]
Приведём несколько полезных пределов, связанных с логарифмами[10]:
Трансцендентность[править | править код]
Из теоремы Линдемана — Вейерштрасса (1885) вытекает следующее следствие: если аргумент есть алгебраическое число, отличное от единицы, то значение есть не только иррациональное, но и трансцендентное число[11].
Непрерывные дроби[править | править код]
Хотя для представления логарифма отсутствуют классические непрерывные дроби, но можно использовать несколько «обобщённых непрерывных дробей», в том числе:
История[править | править код]
Впервые натуральные логарифмы в современном понимании появились в 1619 году, когда лондонский учитель математики Джон Спейдель переиздал логарифмические таблицы Непера, исправленные и дополненные так, что они фактически стали таблицами натуральных логарифмов[12]. В 1649 году бельгийский математик Грегуар де Сен-Венсан показал, что площадь под гиперболой меняется по логарифмическому закону, и предложил называть этот вид логарифмов «гиперболическим»[13].
Термин «натуральный логарифм» ввели в употребление Пьетро Менголи (1659 год) и Николас Меркатор в фундаментальном труде «Logarithmotechnia» (1668)[14][15]. Там же Меркатор описал разложение натурального логарифма в «ряд Меркатора».
Первые попытки распространить логарифмы на комплексные числа предпринимали на рубеже XVII—XVIII веков Лейбниц и Иоганн Бернулли, однако создать целостную теорию им не удалось — в первую очередь по той причине, что тогда ещё не было ясно определено само понятие логарифма[16]. Дискуссия по этому поводу велась сначала между Лейбницем и Бернулли, а в середине XVIII века — между Д’Аламбером и Эйлером. Бернулли и Д’Аламбер считали, что следует определить , в то время как Лейбниц доказывал, что логарифм отрицательного числа есть мнимое число[16]. Полная теория логарифмов отрицательных и комплексных чисел была опубликована Эйлером в 1747—1751 годах и по существу ничем не отличается от современной[17].
Комплексные логарифмы[править | править код]
Комплексный логарифм — аналитическая функция, получаемая распространением вещественного логарифма на всю комплексную плоскость (кроме нуля). В отличие от вещественного случая, функция комплексного логарифма многозначна.
Определение. Натуральный логарифм комплексного числа представляет собой[6] решение уравнения
Ненулевое число можно представить в показательной форме:
- где — произвольное целое число
Тогда находится по формуле[18]:
Здесь — вещественный логарифм. Отсюда вытекает:
Из формулы видно, что у одного и только одного из значений мнимая часть находится в интервале . Это значение называется главным значением комплексного натурального логарифма[6]. Соответствующая (уже однозначная) функция называется главной ветвью логарифма и обозначается . Если — вещественное число, то главное значение его логарифма совпадает с обычным вещественным логарифмом.
Логарифм отрицательного числа находится по формуле[18]:
Примеры:
Следует быть осторожным при преобразованиях комплексных логарифмов, принимая во внимание, что они многозначны, и поэтому из равенства логарифмов каких-либо выражений не следует равенство этих выражений. Пример ошибочного рассуждения:
- — явная ошибка.
Отметим, что слева стоит главное значение логарифма, а справа — значение из нижележащей ветви (). Причина ошибки — неосторожное использование свойства , которое, вообще говоря, подразумевает в комплексном случае весь бесконечный набор значений логарифма, а не только главное значение.
- Функции натурального логарифма на комплексной плоскости (главная ветвь)
-
-
-
-
Суперпозиция трёх предыдущих графиков
Функция натурального логарифма комплексного числа может быть также определена как аналитическое продолжение вещественного логарифма на всю комплексную плоскость, кроме нуля. Пусть кривая начинается в единице, заканчивается в z, не проходит через нуль и не пересекает отрицательную часть вещественной оси. Тогда главное значение логарифма в конечной точке кривой можно определить по формуле[19]:
Некоторые применения[править | править код]
Теория чисел[править | править код]
Распределение простых чисел асимптотически подчиняется простым законам[20]:
- Число простых чисел в интервале от 1 до приблизительно равно .
- k-е простое число приблизительно равно .
Математический анализ[править | править код]
Логарифмы нередко возникают при нахождении интегралов и при решении дифференциальных уравнений. Примеры:
Теория вероятностей и статистика[править | править код]
В статистике и теории вероятностей логарифм входит в ряд практически важных вероятностных распределений. Например, логарифмическое распределение[21] используется в генетике и физике. Логнормальное распределение часто встречается в ситуациях, когда исследуемая величина есть произведение нескольких независимых положительных случайных переменных[22].
Для оценки неизвестного параметра широко применяются метод максимального правдоподобия и связанная с ним логарифмическая функция правдоподобия[23].
Флуктуации при случайном блуждании описывает закон Хинчина-Колмогорова.
Фракталы и размерность[править | править код]
Логарифмы помогают выразить размерность Хаусдорфа для фрактала[24]. Например, рассмотрим треугольник Серпинского, который получается из равностороннего треугольника последовательным удалением аналогичных треугольников, линейный размер каждого из которых на каждом этапе уменьшается вдвое (см. рисунок). Размерность результата определяется по формуле:
Механика и физика[править | править код]
Принцип Больцмана в статистической термодинамике — одна из важнейших функций состояния термодинамической системы, характеризующая степень её хаотичности.
Формула Циолковского применяется для расчёта скорости ракеты.
Химия и физическая химия[править | править код]
Уравнение Нернста связывает окислительно-восстановительный потенциал системы с активностями веществ, входящих в электрохимическое уравнение, а также со стандартными электродными потенциалами окислительно-восстановительных пар.
Логарифм используется в определениях таких величин, как показатель константы автопротолиза (самоионизации молекулы) и водородный показатель (кислотности раствора).
Психология и физиология[править | править код]
Человеческое восприятие многих явлений хорошо описывается логарифмическим законом.
Закон Вебера — Фехнера — эмпирический психофизиологический закон, заключающийся в том, что интенсивность ощущения пропорциональна логарифму интенсивности стимула[25] — громкости звука[26], яркости света.
Закон Фиттса: чем дальше или точнее выполняется движение организма, тем больше коррекции необходимо для его выполнения и тем дольше эта коррекция исполняется[27].
Время на принятие решения при наличии выбора можно оценить по закону Хика[en][28].
Примечания[править | править код]
- ↑ Mortimer, Robert G. Mathematics for physical chemistry (неопр.). — 3rd. — Academic Press, 2005. — С. 9. — ISBN 0-125-08347-5., Extract of page 9 Архивная копия от 24 июня 2016 на Wayback Machine
- ↑ Алгебра и начала анализа. Учебник для 10-11 классов. 12-е издание, М.: Просвещение, 2002. Стр. 233.
- ↑ Выгодский М. Я. Справочник по элементарной математике, 1978, с. 187.
- ↑ Корн Г., Корн Т. Справочник по математике, 1973, с. 34.
- ↑ Выгодский М. Я. Справочник по элементарной математике, 1978, с. 189..
- ↑ 1 2 3 Логарифмическая функция. // Математическая энциклопедия (в 5 томах). — М.: Советская Энциклопедия, 1982. — Т. 3.
- ↑ Фихтенгольц Г. М. Курс дифференциального и интегрального исчисления, 1966, Том I, стр. 159-160.
- ↑ Sasaki T., Kanada Y. Practically fast multiple-precision evaluation of log(x) (англ.) // Journal of Information Processing. — 1982. — Vol. 5, iss. 4. — P. 247—250.
- ↑ Ahrendt, Timm. Fast computations of the exponential function. Lecture notes in computer science (неопр.). — 1999. — Т. 1564. — С. 302—312. — doi:10.1007/3-540-49116-3_28.
- ↑ Фихтенгольц Г. М. Курс дифференциального и интегрального исчисления, 1966, Том I, стр. 164.
- ↑ Рудио Ф. О квадратуре круга (Архимед, Гюйгенс, Ламберт, Лежандр). — Изд. 3-е. — М.—Л.: ОГИЗ, 1936. — С. 89. — 237 с. — (Классики естествознания).
- ↑ Cajori, Florian. A History of Mathematics, 5th ed (неопр.). — AMS Bookstore, 1991. — С. 152. — ISBN 0821821024.
- ↑ Flashman, Martin. Estimating Integrals using Polynomials. Дата обращения: 30 июня 2011. Архивировано 11 февраля 2012 года.
- ↑ Математика XVII столетия // История математики / Под редакцией А. П. Юшкевича, в трёх томах. — М.: Наука, 1970. — Т. II. — С. 63.
- ↑ J J O’Connor and E F Robertson. The number e. The MacTutor History of Mathematics archive (сентябрь 2001). Дата обращения: 30 июня 2011. Архивировано 11 февраля 2012 года.
- ↑ 1 2 История математики, том III, 1972, с. 325-328..
- ↑ Рыбников К. А. История математики. В двух томах. — М.: Изд. МГУ, 1963. — Т. II. — С. 27, 230—231..
- ↑ 1 2 Корн Г., Корн Т. Справочник по математике, 1973, с. 623..
- ↑ Свешников А. Г., Тихонов А. Н. Теория функций комплексной переменной, 1967, с. 45-46, 99-100..
- ↑ Дербишир, Джон. Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. — Астрель, 2010. — 464 с. — ISBN 978-5-271-25422-2.
- ↑ Weisstein, Eric W. Log-Series Distribution (англ.). MathWorld. Дата обращения: 26 апреля 2012. Архивировано 11 мая 2012 года.
- ↑ Логарифмически нормальное распределение // Математическая энциклопедия (в 5 томах). — М.: Советская Энциклопедия, 1982. — Т. 3.
- ↑ Максимального правдоподобия метод // Математическая энциклопедия (в 5 томах). — М.: Советская Энциклопедия, 1982. — Т. 3.
- ↑ Иванов М. Г. Размер и размерность // «Потенциал», август 2006.
- ↑ Головин С. Ю. ЗАКОН ВЕБЕРА-ФЕХНЕРА // Словарь практического психолога. Дата обращения: 17 апреля 2012. Архивировано 11 июня 2013 года.
- ↑ Ирина Алдошина. Основы психоакустики // Звукорежиссёр. — 1999. — Вып. 6. Архивировано 24 апреля 2012 года.
- ↑ Закон Фиттса // Психологическая энциклопедия (недоступная ссылка — история). Дата обращения: 17 апреля 2012. Архивировано 27 мая 2012 года.
- ↑ Welford, A. T. Fundamentals of skill. — London: Methuen, 1968. — P. 61. — ISBN 978-0-416-03000-6.
Литература[править | править код]
- Выгодский М. Я. Справочник по элементарной математике. — М.: Наука, 1978.
- Переиздание: АСТ, 2003, ISBN 5-17-009554-6.
- Математика XVIII столетия // История математики / Под редакцией А. П. Юшкевича, в трёх томах. — М.: Наука, 1972. — Т. III.
- Корн Г., Корн Т. Справочник по математике (для научных работников и инженеров). — М.: Наука, 1973. — 720 с.
- Свешников А. Г., Тихонов А. Н. Теория функций комплексной переменной. — М.: Наука, 1967. — 304 с.
- Фихтенгольц Г. М. Курс дифференциального и интегрального исчисления. — изд. 6-е. — М.: Наука, 1966. — 680 с.
Ссылки[править | править код]
- “Разбираемся с натуральным логарифмом Архивная копия от 26 сентября 2013 на Wayback Machine” — перевод статьи Demystifying the Natural Logarithm (ln) | BetterExplained (англ.)
Логарифмом положительного числа (c) по основанию (a) ((a>0, aneq1)) называется показатель степени (b), в которую надо возвести основание (a), чтобы получить число (c) ((c>0)), т.е.
(a^{b}=c) (Leftrightarrow) (log_{a}{c}=b)
Объясним проще. Например, (log_{2}{8}) равен степени, в которую надо возвести (2), чтоб получить (8). Отсюда понятно, что (log_{2}{8}=3).
Примеры: |
(log_{5}{25}=2) |
т.к. (5^{2}=25) |
||
(log_{3}{81}=4) |
т.к. (3^{4}=81) |
|||
(log_{2})(frac{1}{32})(=-5) |
т.к. (2^{-5}=)(frac{1}{32}) |
Аргумент и основание логарифма
Любой логарифм имеет следующую «анатомию»:
Аргумент логарифма обычно пишется на его уровне, а основание – подстрочным шрифтом ближе к знаку логарифма. А читается эта запись так: «логарифм двадцати пяти по основанию пять».
Как вычислить логарифм?
Чтобы вычислить логарифм – нужно ответить на вопрос: в какую степень следует возвести основание, чтобы получить аргумент?
Например, вычислите логарифм: а) (log_{4}{16}) б) (log_{3})(frac{1}{3}) в) (log_{sqrt{5}}{1}) г) (log_{sqrt{7}}{sqrt{7}}) д) (log_{3}{sqrt{3}})
а) В какую степень надо возвести (4), чтобы получить (16)? Очевидно во вторую. Поэтому:
(log_{4}{16}=2)
б) В какую степень надо возвести (3), чтобы получить (frac{1}{3})? В минус первую, так как именно отрицательная степень «переворачивает дробь» (здесь и далее пользуемся свойствами степени).
(log_{3})(frac{1}{3})(=-1)
в) В какую степень надо возвести (sqrt{5}), чтобы получить (1)? А какая степень делает любое число единицей? Ноль, конечно!
(log_{sqrt{5}}{1}=0)
г) В какую степень надо возвести (sqrt{7}), чтобы получить (sqrt{7})? В первую – любое число в первой степени равно самому себе.
(log_{sqrt{7}}{sqrt{7}}=1)
д) В какую степень надо возвести (3), чтобы получить (sqrt{3})? Из свойств степени мы знаем, что корень – это дробная степень, и значит квадратный корень – это степень (frac{1}{2}).
(log_{3}{sqrt{3}}=)(frac{1}{2})
Пример: Вычислить логарифм (log_{4sqrt{2}}{8})
Решение:
(log_{4sqrt{2}}{8}=x) |
Нам надо найти значение логарифма, обозначим его за икс. Теперь воспользуемся определением логарифма: |
|
((4sqrt{2})^{x}=8) |
Что связывает (4sqrt{2}) и (8)? Двойка, потому что и то, и другое число можно представить степенью двойки: |
|
({(2^{2}cdot2^{frac{1}{2}})}^{x}=2^{3}) |
Слева воспользуемся свойствами степени: (a^{m}cdot a^{n}=a^{m+n}) и ((a^{m})^{n}=a^{mcdot n}) |
|
(2^{frac{5}{2}x}=2^{3}) |
Основания равны, переходим к равенству показателей |
|
(frac{5x}{2})(=3) |
Умножим обе части уравнения на (frac{2}{5}) |
|
(x=1,2) |
Получившийся корень и есть значение логарифма |
Ответ: (log_{4sqrt{2}}{8}=1,2)
Зачем придумали логарифм?
Чтобы это понять, давайте решим уравнение: (3^{x}=9). Просто подберите (x), чтобы равенство сработало. Конечно, (x=2).
А теперь решите уравнение: (3^{x}=8).Чему равен икс? Вот в том-то и дело.
Самые догадливые скажут: «икс чуть меньше двух». А как точно записать это число? Для ответа на этот вопрос и придумали логарифм. Благодаря ему, ответ здесь можно записать как (x=log_{3}{8}).
Хочу подчеркнуть, что (log_{3}{8}), как и любой логарифм – это просто число. Да, выглядит непривычно, но зато коротко. Потому что, если бы мы захотели записать его в виде десятичной дроби, то оно выглядело бы вот так: (1,892789260714…..)
Пример: Решите уравнение (4^{5x-4}=10)
Решение:
(4^{5x-4}=10) |
(4^{5x-4}) и (10) никак к одному основанию не привести. Значит тут не обойтись без логарифма.
Воспользуемся определением логарифма: |
|
(log_{4}{10}=5x-4) |
Зеркально перевернем уравнение, чтобы икс был слева |
|
(5x-4=log_{4}{10}) |
Перед нами линейное уравнение. Перенесем (4) вправо. И не пугайтесь логарифма, относитесь к нему как к обычному числу. |
|
(5x=log_{4}{10}+4) |
Поделим уравнение на 5 |
|
(x=)(frac{log_{4}{10}+4}{5}) |
Вот наш корень. Да, выглядит непривычно, но ответ не выбирают. |
Ответ: (frac{log_{4}{10}+4}{5})
Десятичный и натуральный логарифмы
Как указано в определении логарифма, его основанием может быть любое положительное число, кроме единицы ((a>0, aneq1)). И среди всех возможных оснований есть два встречающихся настолько часто, что для логарифмов с ними придумали особую короткую запись:
Натуральный логарифм: логарифм, у которого основание – число Эйлера (e) (равное примерно (2,7182818…)), и записывается такой логарифм как (ln{a}).
То есть, (ln{a}) это то же самое, что и (log_{e}{a}), где (a) – некоторое число.
Десятичный логарифм: логарифм, у которого основание равно 10, записывается (lg{a}).
То есть, (lg{a}) это то же самое, что и (log_{10}{a}), где (a) – некоторое число.
Основное логарифмическое тождество
У логарифмов есть множество свойств. Одно из них носит название «Основное логарифмическое тождество» и выглядит вот так:
Это свойство вытекает напрямую из определения. Посмотрим как именно эта формула появилась.
Вспомним краткую запись определения логарифма:
если (a^{b}=c), то (log_{a}{c}=b)
То есть, (b) – это тоже самое, что (log_{a}{c}). Тогда мы можем в формуле (a^{b}=c) написать (log_{a}{c}) вместо (b). Получилось (a^{log_{a}{c}}=c) – основное логарифмическое тождество.
Остальные свойства логарифмов вы можете найти здесь. С их помощью можно упрощать и вычислять значения выражений с логарифмами, которые «в лоб» посчитать сложно.
Пример: Найдите значение выражения (36^{log_{6}{5}})
Решение:
(36^{log_{6}{5}}=) |
Сразу пользоваться свойством (a^{log_{a}{c}}=c) мы не можем, так как в основании степени и в основании логарифма – разные числа. Однако мы знаем, что (36=6^{2}) |
|
(=(6^{2})^{log_{6}{5}}=) |
Зная формулу ((a^{m})^{n}=a^{mcdot n}), а так же то, что множители можно менять местами, преобразовываем выражение |
|
(=6^{2cdotlog_{6}{5}}=6^{log_{6}{5}cdot2}=(6^{log_{6}{5}})^{2}=) |
Вот теперь спокойно пользуемся основным логарифмическим тождеством. |
|
(=5^{2}=25) |
Ответ готов. |
Ответ: (25)
Как число записать в виде логарифма?
Как уже было сказано выше – любой логарифм это просто число. Верно и обратное: любое число может быть записано как логарифм. Например, мы знаем, что (log_{2}{4}) равен двум. Тогда можно вместо двойки писать (log_{2}{4}).
Но (log_{3}{9}) тоже равен (2), значит, также можно записать (2=log_{3}{9}) . Аналогично и с (log_{5}{25}), и с (log_{9}{81}), и т.д. То есть, получается
(2=log_{2}{4}=log_{3}{9}=log_{4}{16}=log_{5}{25}=log_{6}{36}=log_{7}{49}…)
Таким образом, если нам нужно, мы можем где угодно (хоть в уравнении, хоть в выражении, хоть в неравенстве) записывать двойку как логарифм с любым основанием – просто в качестве аргумента пишем основание в квадрате.
Точно также и с тройкой – ее можно записать как (log_{2}{8}), или как (log_{3}{27}), или как (log_{4}{64})… Здесь мы как аргумент пишем основание в кубе:
(3=log_{2}{8}=log_{3}{27}=log_{4}{64}=log_{5}{125}=log_{6}{216}=log_{7}{343}…)
И с четверкой:
(4=log_{2}{16}=log_{3}{81}=log_{4}{256}=log_{5}{625}=log_{6}{1296}=log_{7}{2401}…)
И с минус единицей:
(-1=) (log_{2})(frac{1}{2})(=) (log_{3})(frac{1}{3})(=) (log_{4})(frac{1}{4})(=) (log_{5})(frac{1}{5})(=) (log_{6})(frac{1}{6})(=) (log_{7})(frac{1}{7})(…)
И с одной третьей:
(frac{1}{3})(=log_{2}{sqrt[3]{2}}=log_{3}{sqrt[3]{3}}=log_{4}{sqrt[3]{4}}=log_{5}{sqrt[3]{5}}=log_{6}{sqrt[3]{6}}=log_{7}{sqrt[3]{7}}…)
И так далее.
Любое число (a) может быть представлено как логарифм с основанием (b): (a=log_{b}{b^{a}})
Пример: Найдите значение выражения (frac{log_{2}{14}}{1+log_{2}{7}})
Решение:
(frac{log_{2}{14}}{1+log_{2}{7}})(=) |
Превращаем единицу в логарифм с основанием (2): (1=log_{2}{2}) |
|
(=)(frac{log_{2}{14}}{log_{2}{2}+log_{2}{7}})(=) |
Теперь пользуемся свойством логарифмов: |
|
(=)(frac{log_{2}{14}}{log_{2}{(2cdot7)}})(=)(frac{log_{2}{14}}{log_{2}{14}})(=) |
В числителе и знаменателе одинаковые числа – их можно сократить. |
|
(=1) |
Ответ готов. |
Ответ: (1)
Смотрите также:
Логарифмические уравнения
Логарифмические неравенства
Интеграл от натурального логарифма
Интеграл натурального логарифма выводится из формулы интегрирования по частям и равен:
$$ int ln x dx = xln x – x + C $$
Пример 1 |
Найти интеграл от натурального логарифма икс: $$ int ln x dx $$ |
Решение |
Для взятия этого интеграла используем формулу интегрирования по частям: $ int udv = uv – vdu $: $$ int ln x dx = begin{vmatrix} u = ln x & du = frac{dx}{x} \ dv = dx & v = x end{vmatrix} = $$ $$ = xln x – int dx = xln x – x + C $$ Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение онлайн. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя! |
Ответ |
$$ int ln x dx = xln x – x + C $$ |
Пример 2 |
Взять интеграл от натурального логарифма в квадрате: $$ int ln^2 x dx $$ |
Решение |
Используем интегрирование по частям: $$ int ln^2 x dx = begin{vmatrix} u = ln^2 x & du = 2ln x cdot frac{dx}{x} \ dv = dx & v = x end{vmatrix} = $$ $$ = xln^2 x – int 2ln x dx = xln^2 x – 2int ln x dx = $$ Снова используем формулу интегрирования по частям: $$ = xln^2 x – 2begin{vmatrix} u = ln x & du = frac{dx}{x} \ dv = dx & v = x end{vmatrix} = $$ $$ = xln^2 x – 2(xln x – int dx) = xln^2 x – 2xln x + 2int dx = $$ $$ = xln^2 x – 2xln x + 2x + C $$ |
Ответ |
$$ int ln^2 x dx = xln^2 x – 2xln x + 2x + C $$ |
Натуральный логарифм, функция ln x
Определение
Натуральный логарифм широко используется в математике, поскольку его производная имеет наиболее простой вид: (ln x )′ = 1/ x .
Исходя из определения, основанием натурального логарифма является число е:
е ≅ 2,718281828459045. ;
.
График натурального логарифма ln x
График натурального логарифма (функции y = ln x ) получается из графика экспоненты зеркальным отражением относительно прямой y = x .
Натуральный логарифм определен при положительных значениях переменной x . Он монотонно возрастает на своей области определения.
При x → 0 пределом натурального логарифма является минус бесконечность ( – ∞ ).
При x → + ∞ пределом натурального логарифма является плюс бесконечность ( + ∞ ). При больших x логарифм возрастает довольно медленно. Любая степенная функция x a с положительным показателем степени a растет быстрее логарифма.
Свойства натурального логарифма
Область определения, множество значений, экстремумы, возрастание, убывание
Натуральный логарифм является монотонно возрастающей функцией, поэтому экстремумов не имеет. Основные свойства натурального логарифма представлены в таблице.
Область определения | 0 |
Область значений | – ∞ |
Монотонность | монотонно возрастает |
Нули, y = 0 | x = 1 |
Точки пересечения с осью ординат, x = 0 | нет |
+ ∞ | |
– ∞ |
Значения ln x
Основные формулы натуральных логарифмов
Формулы, вытекающие из определения обратной функции:
Основное свойство логарифмов и его следствия
Формула замены основания
Любой логарифм можно выразить через натуральные логарифмы с помощью формулы замены основания:
Доказательства этих формул представлены в разделе «Логарифм».
Обратная функция
Обратной для натурального логарифма является экспонента.
Если 0)» style=»width:132px;height:20px;vertical-align:-11px;background-position:-296px -320px»> , то
Производная ln x
Производная натурального логарифма:
.
Производная натурального логарифма от модуля x :
.
Производная n-го порядка:
.
Вывод формул > > >
Интеграл
Выражения через комплексные числа
Рассмотрим функцию комплексной переменной z :
.
Выразим комплексную переменную z через модуль r и аргумент φ:
.
Используя свойства логарифма, имеем:
.
Или
.
Аргумент φ определен не однозначно. Если положить
, где n – целое,
то будет одним и тем же числом при различных n .
Поэтому натуральный логарифм, как функция от комплексного переменного, является не однозначной функцией.
Разложение в степенной ряд
При имеет место разложение:
Использованная литература:
И.Н. Бронштейн, К.А. Семендяев, Справочник по математике для инженеров и учащихся втузов, «Лань», 2009.
Автор: Олег Одинцов . Опубликовано: 05-04-2014 Изменено: 20-03-2017
Свойства натуральных логарифмов: график, основание, функции, предел, формулы и область определения
Логарифмом числа b по основанию а называется показатель степени, в который нужно возвести число а чтобы получить число b.
Если , то .
Логарифм крайне важная математическая величина, поскольку логарифмическое исчисление позволяет не только решать показательные уравнения, но и оперировать с показателями, дифференцировать показательные и логарифмические функции, интегрировать их и приводить к более приемлемому виду, подлежащему расчету….
Свойства логарифмов
Все свойства логарифмов связаны напрямую со свойствами показательных функций. Например, тот факт, что означает, что:
.
Следует заметить, что при решении конкретных задач, свойства логарифмов могут оказаться более важными и полезными, чем правила работы со степенями.
Приведем некоторые тождества:
,
,
.
Приведем основные алгебраические выражения:
,
,
,
.
Внимание! может существовать только при x>,0, x≠1, y>,0.
Постараемся разобраться с вопросом, что такое натуральные логарифмы. Отдельный интерес в математике представляют два вида первый имеет в основании число 10, и носит название десятичный логарифм. Второй называется натуральным. Основание натурального логарифма число е. Именно о нем мы и будем детально говорить в этой статье.
- lg x десятичный,
- ln x натуральный.
Используя тождество можно увидеть, что ln e = 1, как и то, что lg 10=1.
График натурального логарифма
Построим график натурального логарифма стандартным классическим способом по точкам. При желании, проверить правильно ли мы строим функцию, можно при помощи исследования функции. Однако, есть смысл научится строить его вручную, чтобы знать, как правильно посчитать логарифм.
Функция: y = ln x. Запишем таблицу точек, через которые пройдет график:
х | у |
1 | |
е | 1 |
е2≈7,34 | 2 |
0,5 | |
e-1≈0.36 | -1 |
Поясним, почему мы выбрали именно такие значения аргумента х. Всё дело в тождестве: . Для натурального логарифма это тождество будет выглядеть таким образом:
.
Для удобства мы можем взять пять опорных точек:
,
,
,
,
.
Как посчитать логарифмы от этих пяти значений? Очень просто, ведь:
,
,
,
,
,
.
Таким образом, подсчет натуральных логарифмов довольно несложное занятие, более того, он упрощает подсчеты операций со степенями, превращая их в обычное умножение.
Построив по точкам график, получаем приблизительный график:
Область определения натурального логарифма (т.е. все допустимые значения аргумента Х) все числа больше нуля.
Внимание! В область определения натурального логарифма входят только положительные числа! В область определения не входит х=0. Это невозможно исходя из условий существования логарифма .
Область значений (т.е. все допустимые значения функции y = ln x) все числа в интервале .
Предел натурального log
Изучая график, возникает вопрос как ведет себя функция при y<,0.
Очевидно, что график функции стремится пересечь ось у, но не сможет этого сделать, поскольку натуральный логарифм при х<,0 не существует.
Внимание! При стремлении к нулю аргументу, функция y = ln x стремится к (минус бесконечности).
Предел натурального log можно записать таким образом:
Это интересно! Азы геометрии: правильная пирамида — это
Формула замены основания логарифма
Иметь дело с натуральным логарифмом намного проще, чем с логарифмом, имеющим произвольное основание. Именно поэтому попробуем научиться приводить любой логарифм к натуральному, либо выражать его по произвольному основанию через натуральные логарифмы.
Начнем с логарифмического тождества:
.
Тогда любое число, либо переменную у можно представить в виде:
,
где х любое число (положительное согласно свойствам логарифма).
Данное выражение можно прологарифмировать с обеих сторон. Произведем это при помощи произвольного основания z:
.
Воспользуемся свойством (только вместо с у нас выражение ):
Отсюда получаем универсальную формулу:
.
В частности, если z=e, то тогда:
.
Нам удалось представить логарифм по произвольному основанию через отношение двух натуральных логарифмов.
Это интересно! Уравнение по трем точкам: как найти вершину параболы, формула
Решаем задачи
Для того чтобы лучше ориентироваться в натуральных логарифмах, рассмотрим примеры нескольких задач.
Задача 1. Необходимо решить уравнение ln x = 3.
Решение: Используя определение логарифма: если , то , получаем:
.
Задача 2. Решите уравнение (5 + 3 * ln (x 3)) = 3.
Решение: Используя определение логарифма: если , то , получаем:
.
.
.
Еще раз применим определение логарифма:
.
.
Можно приближенно вычислить ответ, а можно оставить его и в таком виде.
Задача 3. Решите уравнение .
Решение: Произведем подстановку: t = ln x. Тогда уравнение примет следующий вид:
.
Перед нами квадратное уравнение. Найдем его дискриминант:
.
Первый корень уравнения:
.
Второй корень уравнения:
.
Вспоминая о том, что мы производили подстановку t = ln x, получаем:
.
Используя определение логарифма: если , то , получаем оба корня:
.
Вспомним, что область определения: . Оба корня больше нуля, так что оба решения верны и подходят.
Внимание! Когда в логарифмических уравнениях у вас получается два корня или больше, не забывайте про область определения. Аргумент, стоящий под логарифмом никогда не может быть меньше нуля. Если одно из решений делает выражение под логарифмом меньше либо равным нулю такой корень вам не подходит, исключите его.
Интересные сведения
Логарифмы (особенно натуральные и десятичные) широко применимы почти во всех сферах деятельности.
Например, в теории простых чисел, количество простых чисел в интервале от 0 до n будет равно приблизительно: , при этом s-ое простое число приблизительно будет равно .
В математическом анализе, как мы уже убедились ранее, натуральные логарифмы встречаются сплошь и рядом, при этом они объединяют тригонометрические и логарифмические функции при помощи интегралов, например интеграл от тангенса:
.
В статистике и теории вероятности логарифмические величины встречаются очень часто. Это неудивительно, ведь число е зачастую отражает темп роста экспоненциальных величин.
В информатике, программировании и теории вычислительных машин, логарифмы встречаются довольно часто, например для того чтобы сохранить в памяти натуральное число N понадобится битов.
В теориях фракталов и размерностях логарифмы используются постоянно, поскольку размерности фракталов определяются только с их помощью.
В механике и физике нет такого раздела, где не использовались логарифмы. Барометрическое распределение, все принципы статистической термодинамики, уравнение Циолковского и прочее процессы, которые математически можно описать только при помощи логарифмирования.
В химии логарифмирование используют в уравнениях Нернста, описаниях окислительно-восстановительных процессов.
Поразительно, но даже в музыке, с целью узнать количество частей октавы, используют логарифмы.
Натуральный логарифм Функция y=ln x ее свойства
Доказательство основного свойства натурального логарифма
Натуральный логарифм. y = ln x. Свойства натурального логарифма. График натурального логарифма
Что такое натуральный логарифм?
Логарифм икс по основанию «e»
т.е. логарифм икс по основанию «e».
Логарифм икс по основанию «e», является частным случаем обычного логарифма.
Функция натуральный логарифм является обратной по отношению к функции y = e x , т.е. игрек равно «е» в степени икс. Подробнее см. статью Функция y = e x .
Но вернемся к натуральному логарифму.
Свойства натурального логарифма
График натурального логарифма
График функции y = ln x:
График функции y = ln x построить вы можете сами прямо сейчас с помощью построителя графиков. Выберете в нём вид функции «Натуральный логарифм: y = k * ln x + b», и нажмите кнопку «Построить график».
источники:
http://tvercult.ru/nauka/svoystva-naturalnyih-logarifmov-grafik-osnovanie-funktsii-predel-formulyi-i-oblast-opredeleniya
http://sbp-program.ru/shkolnaya-algebra/logarithm-natural-function.htm