Форма урока: объяснение нового
материала.
Цели урока:
- Обучающая: выработать навыки учащихся
умножать и делить обыкновенные дроби, решать и
оформлять задачи на уравнения. - Воспитательная: воспитывать
самостоятельность, аккуратность - Развивающая: развивать внимание,
математическую речь, вычислительные навыки
учащихся, интерес к математике.
Ожидаемые результаты: дети научаться
решать задачи и уравнения на дроби.
Этапы урока |
Время (мин) |
Слайды |
Организационный момент. | 2 | Слайд 1 |
Устная работа и повторение ранее изученного | 8 | Слайды 2, 3, 4, 5,6 |
Формирование новых знаний и умений | 10 | Слайды 7, 8 |
Физкультминутка | 2 | Слайды 9, 10 |
Закрепление нового материала | 5 | Слайд 11 |
Проверка знаний (с/р) | 10 | Слайд 12 |
Постановка домашнего задания | 1 | Слайд 13 |
Подведение итогов урока | 2 |
ХОД УРОКА
I. Организационный этап
– Здравствуйте, мы проведем сегодня урок по
теме «Деление дробей в уравнених». Откройте
тетради, запишите число, классная работа и тему
урока.
Целью нашего урока является закрепление и
проверка умений умножать и делить обыкновенные
дроби, а также повторить навыки решения задач и
уравнений.
II. Устный опрос учащихся
Чтобы умным в жизни стать
Надо дроби изучать
1) Переведите смешанную дробь в неправильную (Приложение 1, слайд 3)
2) Выделите целую часть (Приложение
1, слайд 4)
3) Умножьте дроби (Приложение 1,
слайд 5)
– Повторим правило умножения двух дробей:
Чтобы умножить дробь на дробь нужно перемножить
их числители и знаменатели и первое произведение
записать числителем, а второе знаменателем.
4) Выполните деление (в тетрадях с последующей
взаимопроверкой, сосед у соседа) (Приложение
1, слайд 6)
– Повторим правило деления двух дробей: Чтобы
разделить одну дробь на другую, нужно первую
дробь умножить на дробь, обратную второй.
III. Формирование новых знаний и умений
– При изучении темы деление большое значение
имеет умение решать уравнения. Рассмотрим пример
и запишем его в тетрадь. (Приложение
1, слайд 7)
– Чтобы решить уравнение необходимо
определить какой компонент в уравнении является
неизвестным.
– Какой?
– 1 множитель
– Правильно! Чтобы найти неизвестный множитель,
что нужно сделать?
– Чтобы найти неизвестный множитель необходимо
произведение разделить на известный множитель.
– Находим корень уравнения, выполняя деление.
Выполним проверку и запишем ответ.
– А теперь давайте проверим ваше умение решать
задачи.
№ 597 (Приложение 1,
слайд 7)
– Сколько всего прошел лыжник ? (26 км)
– Сколько километров прошел в первый день?
(неизвестно)
– Сколько километров прошел во второй день?
(неизвестно)
– Какую величину, с какой сравнивают?
– Что возьмем за х?
– Как найти дробь от числа?
– Сколько километров прошел за два дня?
– Как найти?
– Составим уравнение.
– 14 км лыжник прошел во второй день
26 – 14 = 12 км лыжник прошел в первый день.
№ 598 (Приложение 1,
слайд 8)
– Вспомним что такое 1% (одна сотая)
– Какой дробью запишем 75% (75/100 = 3/4)
– Сколько грибов собрала белка? (неизвестно)
– Сколько грибов собрал бельчонок? (неизвестно)
– Какую величину, с какой сравнивают?
– Что обозначим за икс?
– Как найти дробь от числа?
– Сколько собрали вместе белка и бельчонок?
– Составим уравнение.
200 грибов собрала белка
350 – 200 = 150 грибов собрал бельчонок
IV. Физкультминутка
– Встаем и выполняем несколько упражнений.
А теперь, ребята, встали,
Быстро руки вверх подняли,
В стороны, вперёд, назад
Повернулись вправо, влево,
Тихо сели, вновь за дело.
V. Закрепление нового материала
№ 594
– Сколько собрал Митя?
– Сколько собрал Коля?
– Какую величину, с какой сравнивают?
– Что обозначим за икс?
– Как найти дробь от числа?
– Сколько собрали вместе мальчики?
28 грибов собрал Митя
64 – 28 = 36 грибов собрал Коля
VI. «Математический выбор»
Уравнения, оцениваемые в 3
балла:
Уравнения, оцениваемые в 5 баллов:
1) 1)
2) 2)
3)
3)
4) 4)
Уравнения, оцениваемые в 6 баллов:
1)
2)
3)
4)
Оценки: 5 – 12 баллов; 4 – 9 баллов; 3 – 6 баллов.
Каждый выбирает себе уравнения по «плечу».
Учитель во время работы оценивает учеников.
VII. Итог урока
– С каким настроением вы сегодня работали на
уроке?
– Какая задача для вас была самой интересной?
– Ребята чему мы научились на сегодняшнем уроке?
– Как найти часть от числа?
– Как найти неизвестный множитель?
Оценки за урок.
VIII. Домашнее задание
– С листов решить любые три уравнения, из тех
которые не решали в классе.
Итак, друзья, продолжаем осваивать решение основных типов алгебраических уравнений. Мы с вами уже хорошо (надеюсь) знаем, как именно надо решать линейные и квадратные уравнения. Осталось разобрать ещё одним основным типом уравнений — дробными уравнениями.
Иногда их называют более научно и солидно – дробные рациональные уравнения. Или дробно-рациональные уравнения. Это сути не меняет.)
Дробные уравнения — незаменимая вещь во многих других темах математики. Особенно — в текстовых задачах. Но для успешного их решения жизненно необходимо ориентироваться в трёх смежных темах:
1. Дроби и действия с дробями и дробными выражениями.
2. Тождественные преобразования уравнений.
3. Решение линейных и квадратных уравнений.
Без этих трёх китов браться за решение дробных уравнений слишком уж самонадеянно, я бы сказал. Почему? Да потому, что непонимание, как, скажем, работать с дробями (сокращать, приводить к общему знаменателю и т.д.) автоматически будет приводить к полному провалу и в дробных уравнениях. Намёк понятен?)
Так что тем, у кого проблемы хотя бы по одной из вышеперечисленных тем — настоятельно рекомендую освежить их в памяти, да и по ссылочкам пройтись.
Итак, вперёд!
Что такое дробное уравнение? Примеры.
Дробное уравнение, как следует непосредственно из названия, – это уравнение, в котором есть дроби. Обязательно. Причём (важно!) не просто дроби, а дроби, у которых есть икс в знаменателе. Хотя бы в одном.
Например, вот такое уравнение:
Или такое:
Или вот такое:
И так далее.) Напоминаю, что, если в знаменателях сидят только числа, то такие уравнения к дробным не относятся. Либо это линейные уравнения, либо квадратные.
Например:
Это линейное уравнение, хотя тут тоже есть дроби. Почему? Да потому, что знаменатели дробей — четвёрка и пятёрка. Т.е. просто числа. И ни один из знаменателей не содержит иксов.
Или такое уравнение:
Это обычное квадратное уравнение, несмотря на двойку в знаменателе. Опять же, по причине того, что двойка — не икс, и деления на неизвестное в дроби нету.
В общем, вы поняли.
Как решать дробные уравнения? Убираем дроби!
Как это ни странно, дробные уравнения в большинстве своём решаются довольно просто. По чётким и несложным правилам. Каким же именно образом?
Первым делом надо избавиться от дробей! Это ключевой шаг в решении любого дробного уравнения, который должен быть освоен идеально. Ибо после того, как все дроби исчезли, уравнение, чаще всего, превращается в линейное или квадратное. А дальше мы уже с вами знаем, что делать.)
Но… Как же нам избавиться от дробей?! Легко! Применяя всё те же старые добрые тождественные преобразования! В чём же суть?
Вникаем. Нам надо помножить обе части уравнения на одно и то же выражение. Но не на какое попало, а на такое, чтобы все знаменатели посокращались! Одним махом.) Ибо дальше, без знаменателей, жизнь становится гораздо проще и приятнее.)
Это только на конкретном примере показать можно. Итак, решаем первое уравнение из нашего списка:
Первое, что приходит на ум — перенести всё в одну сторону, привести всё к общему знаменателю и т.д. Забудьте, как кошмарный сон! Так делают только в одном случае — при решении дробно-рациональных неравенств методом интервалов. Это отдельная большая тема.
А в уравнениях нам надо сразу умножить обе части на такое выражение, которое нам позволит сократить все знаменатели. И какое же это выражение?
Давайте его конструировать.) Смотрим ещё раз на уравнение:
Понятно, что в левой части для ликвидации знаменателя нам необходимо умножение на (х+3), а в правой — на 3. Но математика позволяет умножать обе части уравнения только на одно и то же выражение! На разные — не катит. Ничего не поделать, так уж она устроена…)
Значит, нам надо скомбинировать такое выражение, которое одновременно делилось бы как на (х+3), так и на тройку. Причём очень важно — только с помощью умножения! И какое же это выражение? Очевидно, это 3(х+3). То есть, по сути, общий знаменатель обеих дробей.
Итак, для ликвидации всех дробей наше уравнение надо умножать на выражение 3(х+3).
Умножаем:
Это самое обычное умножение дробных выражений, но, так уж и быть, расписываю детально:
Прошу обратить внимание: скобки (х+3) я не раскрываю! Прямо так, целиком, их и пишу, как будто бы это одна буква. Ибо наша основная на данный момент задача — дроби убрать. Чего без произведения никак не сделаешь… И зачем же нам тогда париться с раскрытием скобок?!
А вот теперь мы видим, что в левой части сокращается целиком (х+3), а в правой 3. Чего мы и добивались! И теперь с чувством глубокого удовлетворения производим сокращение:
Вот и отлично. Дроби исчезли. После сокращения получилось безобидное линейное уравнение:
2∙3 = х+3
А его (надеюсь) уже решит каждый:
х = 3
Решаем следующий примерчик:
И опять избавляемся от того, что нам не нравится. В данном примере это дробь 20/х. Одна единственная. Для её ликвидации правую часть надо домножить на знаменатель. То есть, просто на х. Но тогда и левую часть тоже надо домножить на х: так уж второе тождественное преобразование требует.
Вот и домножаем! Всю левую часть и всю правую часть:
Напоминаю, что эта вертикальная чёрточка с умножением всего лишь означает, что обе части нашего уравнения мы умножаем на “х”.
Вперёд!
А вот теперь — снова внимание! Очередные грабли. Заметьте, что при умножении левой части на икс, выражение (9 — х) я взял в скобки! Почему? Потому, что мы умножаем на икс всю левую часть целиком, а не отдельные её кусочки!
Дело всё в том, что частенько после умножения народ записывает левую часть вот так:
Это категорически неверно. Дальше можно уже не решать, да…)
Но у нас всё хорошо, будем дорешивать.
С чистой совестью сокращаем икс справа и получаем уравнение уже безо всяких дробей, в одну строчку.
(9 — х)∙х = 20
Вот и отлично. Все дроби исчезли напрочь, теперь можно и скобки раскрыть:
9х — х2 = 20
Переносим всё влево и приводим к стандартному виду:
Получили классическое квадратное уравнение. Но минус перед квадратом икса — нехорош. Забыть его проще простого! От него всегда можно избавиться умножением (или делением) уравнения на (-1). Проще говоря, меняем в левой части все знаки на противоположные. А справа как был ноль, так ноль же и останется:
Решаем через дискриминант (или подбираем по теореме Виета) и получаем два корня:
х1 = 4
х2 = 5
И все дела.)
Как вы видите, в первом случае уравнение после преобразований стало линейным, а здесь — квадратным.
А бывает и так, что после ликвидации дробей вообще все иксы сокращаются и остаётся чистая правда. Что-нибудь типа 3=3. Это означает, что икс может быть любым. Какой икс ни возьми — всё равно всё посокращается и останется железное равенство 3=3.
Или наоборот, может получиться какая-нибудь белиберда, типа 3=4. А это будет означать, что корней нет. Какой икс ни возьми — всё сократится и останется бред…
Надеюсь, такие сюрпризы вас уже нисколько не удивят.) Если всё же удивят, то прогуляйтесь по ссылочке: Линейные уравнения. Как решать линейные уравнения? А чуть конкретнее — особые случаи при решении линейных уравнений. Эти сюрпризы (полная пропажа иксов после преобразований) — они ко всем видам уравнений относятся. И дробные — не исключение.)
Разумеется, при попытке ликвидации дробей встречаются и неожиданности. И одну из них мы рассмотрим прямо сейчас.
Раскладываем на множители!
Решаем третье уравнение по списку:
А вот тут некоторые могут и зависнуть. На что же такое надо домножить всё уравнение, чтобы за один шаг сократились все знаменатели? Можно, конечно, взять и тупо перемножить все три знаменателя, получить
x(x2+2x)(x+2)
и домножить на эту конструкцию всё уравнение. Математика не возражает.) Но… Может быть, есть выражение попроще?
Что ж, вскрою тайну: да, всё гораздо проще! Если в совершенстве владеть таким мощным приёмом, как разложение на множители. Привет седьмому классу!)
А попробуем-ка разложить на множители каждый из знаменателей? Ну, с х и х+2 точно ничего не сделать, а вот х2+2х вполне себе раскладывается! Выносим один икс за скобку и получаем:
х2+2х = х(х+2)
Отлично. Вставим наше разложение в исходное уравнение:
Вот теперь всё и прояснилось.) Теперь уже отчётливо видно, что гораздо проще будет умножать обе части уравнения на х(х+2). Это выражение гораздо короче и прекрасно делится на каждый из знаменателей: и на x, и на (х+2), и само на себя — на х(х+2).
Вот на х(х+2) и умножаем:
И снова расписываю подробно, дабы не запутаться. В левой части я буду использовать скобки: там сумма дробей. В правой части скобки не нужны: там одна дробь. Вот и пишем:
А теперь производим умножение. В левой части большие скобки умножаем на наше выражение х(х+2). Разумеется, по правилу раскрытия скобок, сначала первую дробь, затем — вторую. Ну, а в правой части, по правилу умножения дробей, просто умножаем числитель:
Я уж не стал здесь рисовать единички в знаменателях, несолидно… И, опять же, малые скобки в числителях я не раскрываю! Они нам сейчас для сокращения понадобятся! И да… Откуда появились скобки (х — 3) в числителе первой дроби — думаю, уже не стоит объяснять?)
С удовольствием сокращаем все дроби:
(x-3)(x+2) + 3 = x
Раскрываем оставшиеся скобки, приводим подобные и собираем всё слева:
x2 + 2x — 3x — 6 + 3 — х = 0
x2 — 2x — 3 = 0
И снова получили квадратное уравнение.) Решаем и получаем два корня:
x1 = -1
x2 = 3
Вот и всё. Это и есть ответ.)
Из этого примера можно сделать важный вывод:
Если знаменатели дробей можно разложить на простые множители — обязательно делаем это! Пригодится при ликвидации дробей. Причём раскладываем всё до упора, используя все возможные способы из алгебры седьмого класса!
Как вы видите, всё просто и логично. Мы меняем исходное уравнение так, чтобы после наших преобразований из примера исчезло всё то, что нам не нравится. Или мешает. В данном случае это — дроби. И точно так же мы будем поступать и со всякими логарифмами, синусами, показателями и прочей жестью.) Мы всегда будем от всего этого избавляться.)
Ну что, порешаем?)
Решить уравнения:
Ответы (как обычно, вразброс):
x = 3
x1 = 0,5; x2 = 3
x = 2
х = 6
x = 2,6
x1 = 2; x2 = 5
Последнее задание не решается? Что ж, формулы сокращённого умножения всяко помнить надо, да…)
Всё решилось? Что ж, здорово! Значит, полпути в решении дробных уравнений мы с вами уже преодолели. Эта первая часть пути — избавление от дробей. Осталась вторая. Не менее важная!
Всё просто, но… Пришло время открыть вам горькую правду. Успешное решение дробных уравнений этого урока вовсе не гарантирует успех в решении всех остальных примеров этой темы. Даже очень простых, подобных этим. К сожалению…
Но об этом — дальше.)
Иногда линейные уравнения принимают вид, когда неизвестное оказывается в числителе одной или нескольких дробей.
Как, например, в уравнении ниже.
В таких случаях подобные уравнения можно решить двумя способами.
I способ решения
Сведение уравнения к пропорции
Запомните!
При решении уравнений способом пропорции необходимо выполнить следующие действия:
- привести все дроби к общему знаменателю и сложить их как алгебраические дроби
(в левой и правой части должно остаться только по одной дроби); - полученное уравнение решить по правилу пропорции.
Итак, вернемся к нашему уравнению. В левой части у нас и так стоит только одна дробь, поэтому в ней не нужны
никакие преобразования.
Будем работать с правой частью уравнения.
Упростим правую часть уравнения так, чтобы там осталась только одна дробь.
Для этого вспомним правила сложения числа с алгебраической дробью.
Теперь используем правило пропорции и решим уравнение до конца.
II способ решения
Сведение к линейному уравнению без дробей
Рассмотрим уравнение выше еще раз и решим его другим способом.
Мы видим, что в уравнении присутствуют две дроби
«» и
«».
Наша задача сделать так, чтобы в уравнении не осталось ни одной дроби.
Другими словами, необходимо свести уравнение к обычному
линейному уравнению без неизвестного в дроби.
Запомните!
Чтобы избавиться от дробей в уравнении нужно:
- найти число, которое без остатка будет делиться на каждый из знаменателей;
- умножить каждый член уравнения на это число.
Давайте зададим себе вопрос: «Какое число без остатка делится на каждый из знаменателей дробей, то есть и на
«5», и на «9» ?».
Таким ближайшим наименьшим числом будет число «45».
Умножим каждый член уравнения на «45».
Важно!
При умножении уравнения на число нужно каждый член уравнения
умножить на это число.
Другие примеры решения уравнений с неизвестным в дроби
Решение уравнения I способом (через пропорцию)
-
+=
+
=
+
=
=
=
(49 − 23y) · 2 = 15 · (y + 6)
98 − 46y = 15y + 90
−46y − 15y = 90 − 98
−61y = −8 | :(−61)
y =
Ответ: y =
Решение уравнения II способом
(сведение к уравнению без дробей)
-
2 − +
= 0 | ·202 · 20 − +
= 0 · 2040 − 5 ·(3x − 7) + 4 · (x + 17) = 0
40 − 15x + 35 + 4x + 68 = 0
−15x + 4x + 40 + 35 + 68 = 0
−11x + 75 + 68 = 0
−11x + 143 = 0
−11x = −143 | :(−11)
x = 13
Ответ: x = 13
Ваши комментарии
Важно!
Чтобы оставить комментарий, вам нужно войти на наш сайт при помощи
«ВКонтакте».
Оставить комментарий:
25 августа 2016 в 13:08
Виктория Лебеденко
Профиль
Благодарили: 0
Сообщений: 1
Виктория Лебеденко
Профиль
Благодарили: 0
Сообщений: 1
0
Спасибо
Ответить
3 сентября 2016 в 19:36
Ответ для Виктория Лебеденко
Юлия Анарметова
Профиль
Благодарили: 0
Сообщений: 11
Юлия Анарметова
Профиль
Благодарили: 0
Сообщений: 11
раскроем скобки x2+3x-x-3-x2-5=0(уничтожим x2 и-x2) получим 2x-8=0
2x=8
x=8 :2
x=4
0
Спасибо
Ответить
Загрузить PDF
Загрузить PDF
Если вам дано выражение с дробями с переменной в числителе или в знаменателе, то такое выражение называется рациональным уравнением. Рациональное уравнение — любое уравнение, которое включает в себя не менее одного рационального выражения. Решаются рациональные уравнения так же, как любые уравнения: выполняются те же операции с обеих сторон уравнения, пока переменная не обособляется на одной стороне уравнения. Тем не менее есть два метода решения рациональных уравнений.
-
1
При необходимости перепишите данное вам уравнение так, чтобы на каждой его стороне находилась одна дробь (одно рациональное выражение); только в этом случае вы сможете воспользоваться методом умножения крест-накрест.[1]
- Например, дано уравнение (x + 3)/4 – x/(-2) = 0. Перенесите дробь x/(-2) на правую сторону уравнения, чтобы записать уравнение в надлежащем виде: (x + 3)/4 = x/(-2).
- Имейте в виду, что десятичные и целые числа могут быть представлены в виде дробей, если поставить в знаменателе 1. Например, (х + 3)/4 – 2,5 = 5 можно переписать в виде (х + 3)/4 = 7,5/1; это уравнение можно решить при помощи умножения крест-накрест.
- Если вы не можете переписать уравнение в нужном виде, смотрите следующий раздел.
- Например, дано уравнение (x + 3)/4 – x/(-2) = 0. Перенесите дробь x/(-2) на правую сторону уравнения, чтобы записать уравнение в надлежащем виде: (x + 3)/4 = x/(-2).
-
2
Умножение крест-накрест. Умножьте числитель левой дроби на знаменатель правой. Повторите это с числителем правой дроби и знаменателем левой.[2]
- Умножение крест-накрест основано на основных алгебраических принципах. В рациональных выражениях и других дробях можно избавиться от числителя, соответственно перемножив числители и знаменатели двух дробей.
-
3
Приравняйте полученные выражения и упростите их.[3]
- Например, дано рациональное уравнение: (х +3 )/4 = х/(-2). После перемножения крест-накрест оно записывается в виде: -2(х +3) = 4x или -2х 2 6 = 4х
-
4
Решите полученное уравнение, то есть найдите «х». Если «х» находится с обеих сторон уравнения, обособьте его на одной стороне уравнения.[4]
- В нашем примере вы можете разделить обе стороны уравнения на (-2) и получите: х+3 = -2x . Перенесите члены с переменной «х» на одну сторону уравнения и получите: 3 = -3х. Затем разделите обе части на -3 , чтобы получить результат: х=-1.
Реклама
-
1
Наименьший общий знаменатель используется для упрощения данного уравнения. Этот метод применим в том случае, когда нельзя записать данное уравнение с одним рациональным выражением на каждой стороне уравнения (и воспользоваться методом умножения крест-накрест). Этот метод используется, когда дано рациональное уравнение с тремя или более дробями (в случае двух дробей лучше применить умножение крест-накрест).
-
2
Найдите наименьший общий знаменатель дробей (или наименьшее общее кратное). НОЗ — это наименьшее число, которое делится нацело на каждый знаменатель.[5]
- Иногда НОЗ — очевидное число. Например, если дано уравнение: х/3 + 1/2 = (3x +1)/6, то очевидно, что наименьшим общим кратным для чисел 3, 2 и 6 будет 6.
- Если НОЗ не очевиден, выпишите кратные самого большого знаменателя и найдите среди них такой, который будет кратным и для других знаменателей. Зачастую НОЗ можно найти, просто перемножив два знаменателя. Например, если дано уравнение x/8 + 2/6 = (x – 3)/9, то НОЗ = 8*9 = 72.
- Если один или несколько знаменателей содержат переменную, то процесс несколько усложняется (но не становится невозможным). В этом случае НОЗ представляет собой выражение (содержащее переменную), которое делится на каждый знаменатель. Например, в уравнении 5/(х-1) = 1/х + 2/(3x) НОЗ = 3x(х-1), потому что это выражение делится на каждый знаменатель: 3x(х-1)/(х-1) = 3x; 3x(х-1)/3х = (х-1); 3x(х-1)/х = 3(х-1).
-
3
Умножьте и числитель, и знаменатель каждой дроби на число, равное результату деления НОЗ на соответствующий знаменатель каждой дроби. Так как вы умножаете и числитель, и знаменатель на одно и то же число, то фактически вы умножаете дробь на 1 (например, 2/2 = 1 или 3/3 = 1).
- Таким образом, в нашем примере умножьте х/3 на 2/2, чтобы получить 2x/6, и 1/2 умножьте на 3/3, чтобы получить 3/6 (дробь 3x +1/6 умножать не надо, так как ее знаменатель равен 6).
- Действуйте аналогично в случае, когда переменная находится в знаменателе. В нашем втором примере НОЗ = 3x(x-1), поэтому 5/(x-1) умножьте на (3x)/(3x) и получите 5(3x)/(3x)(x-1); 1/x умножьте на 3(x-1)/3(x-1) и получите 3(x-1)/3x(x-1); 2/(3x) умножьте на (x-1)/(x-1) и получите 2(x-1)/3x(x-1).
-
4
Найдите «х». Теперь, когда вы привели дроби к общему знаменателю, вы можете избавиться от знаменателя. Для этого умножьте каждую сторону уравнения на общий знаменатель. Затем решите полученное уравнение, то есть найдите «х». Для этого обособьте переменную на одной из сторон уравнения.
- В нашем примере: 2x/6 + 3/6 = (3x +1)/6. Вы можете сложить две дроби с одинаковым знаменателем, поэтому запишите уравнение как: (2x+3)/6=(3x+1)/6. Умножьте обе части уравнения на 6 и избавьтесь от знаменателей: 2x+3 = 3x +1. Решите и получите х = 2.
- В нашем втором примере (с переменной в знаменателе) уравнение имеет вид (после приведения к общему знаменателю): 5(3x)/(3x)(x-1) = 3(x-1)/3x(x-1) + 2(x-1)/3x(x-1). Умножив обе стороны уравнения на НОЗ, вы избавитесь от знаменателя и получите: 5(3x) = 3(х-1) + 2(х-1), или 15x = 3x – 3 + 2x -2, или 15х = х – 5. Решите и получите: х = -5/14.
Реклама
Советы
- Найдя «х», проверьте свой ответ, подставив значение «х» в исходное уравнение. Если ответ правильный, вы сможете упростить исходное уравнение к простому выражению, например, 1 = 1.
- Обратите внимание, что вы можете записать любой многочлен как рациональное выражение, просто разделив его на 1. Так х +3 и (х +3 )/1 имеют одинаковое значение, но последнее выражение считается рациональным выражением, потому что записано в виде дроби.
Реклама
Об этой статье
Эту страницу просматривали 96 081 раз.
Была ли эта статья полезной?
Методы решения уравнений, содержащих дроби
В этой статье я расскажу методики решения рациональных уравнений, содержащих дроби.
Что такое рациональное уравнение? Это уравнение, которое содержит в себе такие действия как сложение, вычитание, умножение, деление, возведение в степень с целым показателем. Извлечение корня – это недопустимое действие для рационального уравнения. Корень делает уравнение иррациональным, как, собственно, и дробный показатель степени.
В свою очередь рациональные уравнения делятся на два вида: целые рациональные и дробные рациональные.
К целым рациональным уравнениям относятся линейные и квадратные уравнения. Рассмотрим пример:
Это уравнение является…попробуешь угадать?…линейным. Его можно запросто увидеть, если деление на 2 и на 6 заменить умножением на 1/2 и 1/6 соответственно. Но оно все-таки содержит в себе знаменатель, поэтому мы его и рассматриваем в данной статье.
К дробным рациональным уравнениям относятся уравнения, которые содержат икс в знаменателе. Например, это уравнение дробное рациональное:
Методика решения приведенных примеров, в принципе, одинакова. Разница состоит в том, что в дробных рациональных уравнениях знаменатель не должен равняться нулю, поэтому при их решении оговаривают ограничения для икса. По-научному говорят, что находят область допустимых значений (ОДЗ).
Но давайте начнем с простого.
Целое рациональное уравнение.
Сначала решим целое рациональное уравнение.
Если ты в уравнении видишь дроби, то надо от них избавится, ведь уравнение без дробей решается намного приятнее)
В этом уравнении находим общий знаменатель. Он равен 6. Это значит, что обе части уравнения надо умножить на 6 (одинокий икс тоже).
Обычно этот шаг пропускают и переходят к следующему, но я его все равно распишу:
Числители и знаменатели сокращаются и получается элементарное уравнение:
Приводим подобные слагаемые:
Чтобы найди икс надо -10 разделить на 10 (произведение делим на известный множитель). Получаем ответ:
Готово!
Дробное рациональное уравнение.
Теперь решим дробное рациональное уравнение.
Я уже писала о том, что в дробных рациональных уравнениях знаменатели не должны равняться нулю. Знаменатель второй дроби нас устраивает, ведь 3 не равно 0) А вот знаменатель первой дроби требует от нас, чтобы мы нашли ОДЗ.
А дальше по накатанной: надо обе части уравнения умножить на общий знаменатель. Общим знаменателем будет выражение 3(х + 9).
Снова распишу подробно, но если ты шаришь, то следующую запись можешь не писать.
В первой дроби сокращаем (х + 9), а во второй – тройки. Получаем такое уравнение:
Здесь можно раскрыть скобки, потом перенести известные в одну сторону, а неизвестные – в другую… Но делать я этого не стану, а просто обе части уравнения разделю на -2. А еще поменяю местами левую и правую части уравнения, чтобы привести его к привычному виду.
Чтобы найти неизвестное слагаемое надо из суммы вычесть известное слагаемое, т.е. из -9 вычесть 9.
Ответ таков:
Сравниваем с ОДЗ… Всё отлично. Корень уравнения подходит.
Альтернативный метод решения уравнения с дробями.
Но нельзя пройти мимо другого метода решения данного уравнения: с помощью пропорции. Помнишь, как она раскрывается? Правильно, крест-накрест. И не надо искать общий знаменатель)
Перемножаем….и о чудо! Получаем уравнение, которое мы уже решали!
Дальнейшее решение расписывать не буду, оно есть выше.
Такой способ решения уравнений хорош, когда в уравнении имеются две дроби.
В завершении решу еще одно уравнение предложенными выше способами.
Только ты решаешь какой способ выбрать.
Твой персональный препод Васильева Анна)