Как найти икс в квадратном уравнении формула

Квадра́тное уравне́ние — алгебраическое уравнение второй степени с общим видом

{displaystyle ax^{2}+bx+c=0,;aneq 0,}

в котором x — неизвестное, а коэффициенты a, b и c — вещественные или комплексные числа.

Корень уравнения ax^{2}+bx+c=0 — это значение неизвестного x, обращающее квадратный трёхчлен {displaystyle ax^{2}+bx+c} в ноль, а квадратное уравнение в верное числовое равенство. Также это значение называется корнем самого многочлена {displaystyle ax^{2}+bx+c.}

Элементы квадратного уравнения имеют собственные названия[1]:

Приведённым называют квадратное уравнение, в котором старший коэффициент равен единице[1]. Такое уравнение может быть получено делением всего выражения на старший коэффициент a:

{displaystyle x^{2}+px+q=0,quad p={dfrac {b}{a}},quad q={dfrac {c}{a}}.}

Полным называют такое квадратное уравнение, все коэффициенты которого отличны от нуля.

Неполным называется такое квадратное уравнение, в котором хотя бы один из коэффициентов, кроме старшего (либо второй коэффициент, либо свободный член), равен нулю.

Квадратное уравнение является разрешимым в радикалах, то есть его корни могут быть выражены через коэффициенты в общем виде.

Исторические сведения о квадратных уравнениях[править | править код]

Древний Вавилон[править | править код]

Уже во втором тысячелетии до нашей эры вавилоняне знали, как решать квадратные уравнения[1]. Решение их в Древнем Вавилоне было тесно связано с практическими задачами, в основном такими, как измерение площади земельных участков, земельные работы, связанные с военными нуждами; наличие этих познаний также обусловлено развитием математики и астрономии вообще. Были известны способы решения как полных, так и неполных квадратных уравнений. Приведём примеры квадратных уравнений, решавшихся в Древнем Вавилоне, используя современную алгебраическую запись:

x^{2}+x={frac {3}{4}}; x^{2}-x=14{frac {1}{2}}.

Правила решения квадратных уравнений во многом аналогичны современным, однако в вавилонских текстах не зафиксированы рассуждения, путём которых эти правила были получены.

Индия[править | править код]

Задачи, решаемые с помощью квадратных уравнений, встречаются в трактате по астрономии «Ариабхаттиам», написанным индийским астрономом и математиком Ариабхатой в 499 году нашей эры. Один из первых известных выводов формулы корней квадратного уравнения принадлежит индийскому учёному Брахмагупте (около 598 г.)[1]; Брахмагупта изложил универсальное правило решения квадратного уравнения, приведённого к каноническому виду: {displaystyle ax^{2}+bx=c;} притом предполагалось, что в нём все коэффициенты, кроме a, могут быть отрицательными. Сформулированное учёным правило по своему существу совпадает с современным.

Корни квадратного уравнения на множестве действительных чисел[править | править код]

I способ. Общая формула для вычисления корней с помощью дискриминанта[править | править код]

Дискриминантом квадратного уравнения {displaystyle ax^{2}+bx+c=0} называется величина {displaystyle {mathcal {D}}=b^{2}-4ac}.

Условие {displaystyle {mathcal {D}}>0} {displaystyle {mathcal {D}}=0} {displaystyle {mathcal {D}}<0}
Количество корней Два корня Один корень кратности 2
(другими словами, два равных корня)
Действительных корней нет
Формула {displaystyle x_{1,2}={frac {-bpm {sqrt {mathcal {D}}}}{2a}}}       (1) {displaystyle x=-{frac {b}{2a}}}

Данный метод универсальный, однако не единственный.

II способ. Корни квадратного уравнения при чётном коэффициенте b[править | править код]

Для уравнений вида ax^{2}+2kx+c=0, то есть при чётном b, где

k={frac {1}{2}}b,

вместо формулы (1) для нахождения корней существует возможность использования более простых выражений[1].

Примечание: данные ниже формулы можно получить, подставив в стандартные формулы выражение b = 2k, через несложные преобразования.

Дискриминант Корни
неприведённое приведённое D > 0 неприведённое приведённое
удобнее вычислять значение

четверти дискриминанта:

{frac {D}{4}}=k^{2}-ac

Все необходимые свойства при этом сохраняются.

{frac {D}{4}}=k^{2}-c. x_{1,2}={frac {-kpm {sqrt {k^{2}-ac}}}{a}}. x_{1,2}=-kpm {sqrt {k^{2}-c}}
D = 0 x={frac {-k}{a}} x=-k

III способ. Решение неполных квадратных уравнений[править | править код]

К решению неполных квадратных уравнений практикуется особый подход. Рассматриваются три возможных ситуации.

IV способ. Использование частных соотношений коэффициентов[править | править код]

Существуют частные случаи квадратных уравнений, в которых коэффициенты находятся в соотношениях между собой, позволяющих решать их гораздо проще.

Корни квадратного уравнения, в котором сумма старшего коэффициента и свободного члена равна второму коэффициенту[править | править код]

Если в квадратном уравнении ax^{2}+bx+c=0 сумма первого коэффициента и свободного члена равна второму коэффициенту: a+c=b, то его корнями являются -1 и число, противоположное отношению свободного члена к старшему коэффициенту (-{frac {c}{a}}).

Доказательство

Способ 1. Сначала выясним, действительно ли такое уравнение имеет два корня (в том числе, два совпадающих):

{displaystyle {mathcal {D}}=b^{2}-4ac=(a+c)^{2}-4ac=a^{2}+2ac+c^{2}-4ac=a^{2}-2ac+c^{2}=(a-c)^{2}}.

Да, это так, ведь при любых действительных значениях коэффициентов (a-c)^{2}geqslant 0, а значит и дискриминант неотрицателен. Таким образом, если anot =c, то уравнение имеет два корня, если же a=c, то оно имеет только один корень.
Найдём эти корни:

{displaystyle x_{1,2}={frac {-bpm {sqrt {mathcal {D}}}}{2a}}={frac {-(a+c)pm {sqrt {(a-c)^{2}}}}{2a}}={frac {-a-cpm |a-c|}{2a}}={frac {-a-cpm amp c}{2a}}}.
x_{1}={frac {-a-c-a+c}{2a}}={frac {-2a}{2a}}=-1;
x_{2}={frac {-a-c+a-c}{2a}}={frac {-2c}{2a}}=-{frac {c}{a}}.

В частности, если a=c, то корень будет один: -1.

Способ 2.

Геометрическая интерпретация: парабола, заданная аналитически указанной формулой, пересекает ось x в двух точках, абсциссами которых и являются корни, хотя бы один из которых равен -1

Используем геометрическую модель корней квадратного уравнения: их мы будем рассматривать как точки пересечения параболы y=ax^{2}+bx+c с осью абсцисс. Всякая парабола вне зависимости от задающего её выражения является фигурой, симметричной относительно прямой x=-{frac {b}{2a}}. Это означает, что отрезок всякой перпендикулярной к ней прямой, отсекаемый на ней параболой, делится осью симметрии пополам. Сказанное, в частности, верно и для оси абсцисс. Таким образом, для всякой параболы справедливо одно из следующих равенств: -{frac {b}{2a}}+rho (x_{1};-{frac {b}{2a}})=x_{2} (если x_{1}<x_{2}) или -{frac {b}{2a}}-rho (-{frac {b}{2a}};x_{1})=x_{2} (если верно неравенство противоположного смысла). Используя тождество rho (a;b)=|a-b|, выражающее геометрический смысл модуля, а также принимая, что x_{1}=-1 (это можно доказать, подставив равенство в квадратный трёхчлен: acdot (-1)^{2}+bcdot (-1)+c=(a+c)-b=0, поэтому -1 – корень такого уравнения) , приходим к следующему равенству: -{frac {b}{2a}}pm |-{frac {b}{2a}}-(-1)|=x_{2}. Если учитывать, что разность в том случае, когда мы прибавляем модуль, всегда положительна, а в том, когда отнимаем – отрицательна, что говорит о тождественности этих случаев, и, к тому же, помня о равенстве b-a=c, раскрываем модуль: x_{2}=-{frac {b}{2a}}-{frac {b}{2a}}+1=-{frac {2b-2a}{2a}}=-{frac {b-a}{a}}=-{frac {c}{a}}. Во втором случае,совершив аналогичные преобразования, придём к тому же результату, ч.т.д.

Отсюда следует, что перед решением какого-либо квадратного уравнения целесообразна проверка возможности применения к нему этой теоремы: сравнить сумму старшего коэффициента и свободного члена со вторым коэффициентом.

Корни квадратного уравнения, сумма всех коэффициентов которого равна нулю[править | править код]

Если в квадратном уравнении сумма всех его коэффициентов равна нулю (a+b+c=0), то корнями такого уравнения являются 1 и отношение свободного члена к старшему коэффициенту ({frac {c}{a}}).

Доказательство

Способ 1. Прежде всего заметим, что из равенства a+b+c=0 следует, что b=-(a+c)
Установим количество корней:

{displaystyle {mathcal {D}}=b^{2}-4ac=(-(a+c))^{2}-4ac=a^{2}+2ac+c^{2}-4ac=a^{2}-2ac+c^{2}=(a-c)^{2}.}

При любых значениях коэффициентов уравнение имеет хотя бы один корень: действительно, ведь при любых значениях коэффициентов (a-c)^{2}geqslant 0, а значит и дискриминант неотрицателен. Обратите внимание, что если anot =c, то уравнение имеет два корня, если же a=c, то только один.
Найдём эти корни:

{displaystyle x_{1,2}={frac {-bpm {sqrt {mathcal {D}}}}{2a}}={frac {a+cpm {sqrt {(a-c)^{2}}}}{2a}}={frac {a+cpm |a-c|}{2a}}={frac {a+cpm amp c}{2a}};}
x_{1}={frac {a+c+a-c}{2a}}={frac {2a}{2a}}=1;
x_{2}={frac {a+c-a+c}{2a}}={frac {2c}{2a}}={frac {c}{a}},

что и требовалось доказать.

В частности, если a=c, то уравнение имеет только один корень, которым является число 1.

Способ 2. Пользуясь данным выше определением корня квадратного уравнения, обнаруживаем путём подстановки, что число 1 является таковым в рассматриваемом случае: acdot 1^{2}+bcdot 1+c=0 – верное равенство, следовательно, единица – корень такого вида квадратных уравнений. Далее, по теореме Виета находим второй корень: согласно этой теореме, произведение корней уравнения равно числу, равному отношению свободного члена к старшему коэффициенту – x_{1}x_{2}={frac {c}{a}}Rightarrow x_{2}={frac {c}{ax_{1}}}={frac {c}{acdot 1}}={frac {c}{a}}, ч.т.д.

Отсюда следует, что перед решением уравнения стандартными методами целесообразна проверка применимости к нему этой теоремы, а именно сложение всех коэффициентов данного уравнения и установление, не равна ли нулю эта сумма.

V способ. Разложение квадратного трёхчлена на линейные множители[править | править код]

Если трёхчлен вида {displaystyle ax^{2}+bx+c~(anot =0)} удастся каким-либо образом представить в качестве произведения линейных множителей (kx+m)(lx+n)=0, то можно найти корни уравнения ax^{2}+bx+c=0 — ими будут -{frac {m}{k}} и -{frac {n}{l}}, действительно, ведь {displaystyle (kx+m)(lx+n)=0Longleftrightarrow {biggl [}{begin{array}{lcl}kx+m=0,\lx+n=0,end{array}}} а решив указанные линейные уравнения, получим вышеописанное. Квадратный трёхчлен не всегда раскладывается на линейные множители с действительными коэффициентами: это возможно, если соответствующее ему уравнение имеет действительные корни.

Рассматриваются некоторые частные случаи.

Использование формулы квадрата суммы (разности)[править | править код]

Если квадратный трёхчлен имеет вид (ax)^{2}+2abx+b^{2}, то применив к нему названную формулу, можно разложить его на линейные множители и, значит, найти корни:

{displaystyle (ax)^{2}+2abx+b^{2}=(ax+b)^{2},}
{displaystyle (ax+b)^{2}=0,}
x=-{frac {b}{a}}.

Выделение полного квадрата суммы (разности)[править | править код]

Также названную формулу применяют, пользуясь методом, получившим названия «выделение полного квадрата суммы (разности)». Применительно к приведённому квадратному уравнению с введёнными ранее обозначениями, это означает следующее:

  1. прибавляют и отнимают одно и то же число:
    x^{2}+px+({frac {p}{2}})^{2}-({frac {p}{2}})^{2}+q=0;.
  2. применяют формулу к полученному выражению, переносят вычитаемое и свободный член в правую часть:
    {displaystyle (x^{2}+2{frac {p}{2}}x+({frac {p}{2}})^{2})+(-({frac {p}{2}})^{2}+q)=0,}
    (x+{frac {p}{2}})^{2}={frac {p^{2}}{4}}-q;
  3. извлекают из левой и правой частей уравнения квадратный корень и выражают переменную:
    {displaystyle x+{frac {p}{2}}=pm {sqrt {{frac {p^{2}}{4}}-q}},}
    x_{1,2}=-{frac {p}{2}}pm {sqrt {{frac {p^{2}}{4}}-q}}.

Примечание: данная формула совпадает с предлагаемой в разделе «Корни приведённого квадратного уравнения», которую, в свою очередь, можно получить из общей формулы (1) путём подстановки равенства a = 1. Этот факт не просто совпадение: описанным методом, произведя, правда, некоторые дополнительные рассуждения, можно вывести и общую формулу, а также доказать свойства дискриминанта.

VI способ. Использование прямой и обратной теоремы Виета[править | править код]

Прямая теорема Виета (см. ниже) и обратная ей теорема позволяют решать приведённые квадратные уравнения устно, не прибегая к вычислениям по формуле (1).

Согласно обратной теореме, всякая пара чисел (число) x_{1},x_{2}, будучи решением системы уравнений

{displaystyle {begin{cases}x_{1}+x_{2}=-p,\x_{1}x_{2}=q,end{cases}}}
являются корнями уравнения x^{2}+px+q=0.

Подобрать устно числа, удовлетворяющие этим уравнениям, поможет прямая теорема. С её помощью можно определить знаки корней, не зная сами корни. Для этого следует руководствоваться правилом:

1) если свободный член отрицателен, то корни имеют различный знак, и наибольший по модулю из корней — знак, противоположный знаку второго коэффициента уравнения;
2) если свободный член положителен, то оба корня обладают одинаковым знаком, и это — знак, противоположный знаку второго коэффициента.

VII способ. Метод «переброски»[править | править код]

По своей сущности метод «переброски» является просто модификацией теоремы Виета.

Метод «переброски» — это сведение уравнения, которое нельзя привести так, чтобы все коэффициенты остались целыми, к приведённому уравнению с целыми коэффициентами:

1) умножаем обе части на старший коэффициент:
{displaystyle ax^{2}+bx+c=0quad mid ;cdot a,}
{displaystyle (ax)^{2}+b(ax)+ac=0;}
2) заменяем {displaystyle y=axcolon }
{displaystyle y^{2}+by+ac=0.}

Далее решаем уравнение относительно y по методу, описанному выше, и находим x = y/a.

Как можно заметить, в методе «переброски» старший коэффициент как раз «перебрасывается» к свободному члену.

Графическое решение квадратного уравнения[править | править код]

Квадратное уравнение.gif

Графиком квадратичной функции является парабола. Решениями (корнями) квадратного уравнения называют абсциссы точек пересечения параболы с осью абсцисс. Если парабола, описываемая квадратичной функцией, не пересекается с осью абсцисс, уравнение не имеет вещественных корней. Если парабола пересекается с осью абсцисс в одной точке (в вершине параболы), уравнение имеет один вещественный корень (также говорят, что уравнение имеет два совпадающих корня). Если парабола пересекает ось абсцисс в двух точках, уравнение имеет два вещественных корня (см. изображение справа.)

Если коэффициент a положительный, ветви параболы направлены вверх и наоборот. Если коэффициент b положительный (при положительном a, при отрицательном наоборот), то вершина параболы лежит в левой полуплоскости и наоборот.

Графический способ решения квадратных уравнений[править | править код]

Помимо универсального способа, описанного выше, существует так называемый графический способ. В общем виде этот способ решения рационального уравнения вида f(x)=g(x) заключается в следующем: в одной системе координат строят графики функций y=f(x) и y=g(x) и находят абсциссы общих точек этих графиков; найденные числа и будут корнями уравнения.

Есть всего пять основных способов графического решения квадратных уравнений.

Приём I[править | править код]

Для решения квадратного уравнения ax^{2}+bx+c=0 строится график функции y=ax^{2}+bx+c
и отыскиваются абсциссы точек пересечения такого графика с осью x.

Приём II[править | править код]

Для решения того же уравнения этим приёмом уравнение преобразуют к виду ax^{2}=-bx-c
и строят в одной системе координат графики квадратичной функции y=ax^{2} и линейной функции y=-bx-c, затем находят абсциссу точек их пересечения.

Приём III[править | править код]

Данный приём подразумевает преобразование исходного уравнения к виду a(x+l)^{2}+m=0, используя метод выделения полного квадрата суммы (разности) и затем в a(x+l)^{2}=-m. После этого строятся график функции y=a(x+l)^{2} (им является график функции y=ax^{2}, смещённый на |l| единиц масштаба вправо или влево в зависимости от знака) и прямую y=-m, параллельную оси абсцисс. Корнями уравнения будут абсциссы точек пересечения параболы и прямой.

Приём IV[править | править код]

Квадратное уравнение преобразуют к виду ax^{2}+c=-bx, строят график функции y=ax^{2}+c (им является график функции y=ax^{2}, смещённый на c единиц масштаба вверх, если этот коэффициент положителен, либо вниз, если он отрицателен), и y=-bx, находят абсциссы их общих точек.

Приём V[править | править код]

Квадратное уравнение преобразуют к особому виду:

{displaystyle {dfrac {ax^{2}}{x}}+{dfrac {bx}{x}}+{dfrac {c}{x}}={dfrac {0}{x}};}
{displaystyle ax+b+{dfrac {c}{x}}=0;}

затем

{displaystyle ax+b=-{dfrac {c}{x}}.}

Совершив преобразования, строят графики линейной функции y=ax+b и обратной пропорциональности y=-{frac {c}{x}}; (cnot =0), отыскивают абсциссы точек пересечения этих графиков. Этот приём имеет границу применимости: если c=0, то приём не используется.

Решение квадратных уравнений с помощью циркуля и линейки[править | править код]

Описанные выше приёмы графического решения имеют существенные недостатки: они достаточно трудоёмки, при этом точность построения кривых — парабол и гипербол — низка. Указанные проблемы не присущи предлагаемому ниже методу, предполагающему относительно более точные построения циркулем и линейкой.

Чтобы произвести такое решение, нужно выполнить нижеследующую последовательность действий.

  1. Построить в системе координат Oxy окружность с центром в точке {displaystyle Sleft(-{dfrac {b}{2a}};{dfrac {a+c}{2a}}right)}, пересекающую ось Oy в точке {displaystyle Cleft(0;,1right)}.
  2. Далее возможны три случая:

Доказательство

Иллюстрация к доказательству.

Рассматриваемый способ предполагает построение окружности, пересекающей ось ординат в точках (точке), абсциссы которых являются корнями (или корнем) решаемого уравнения. Как нужно строить такую окружность? Предположим, что она уже построена. Окружность определяется однозначно заданием трёх своих точек. Пусть в случае, если корня два, это будут точки A(x_{1};0),B(x_{2};0),C(0;1), где x_{1},x_{2}, естественно, действительные корни квадратного уравнения (подчёркиваем: если они имеются). Найдём координаты центра такой окружности. Для этого докажем, что эта окружность проходит через точку D(0;{frac {c}{a}}). Действительно, согласно теореме о секущих, в принятых обозначениях выполняется равенство OAcdot OB=OCcdot OD (см рисунок). Преобразовывая это выражение, получаем величину отрезка OD, которой и определяется искомая ордината точки D: {displaystyle OD={dfrac {OAcdot OB}{OC}}={frac {x_{1}x_{2}}{1}}={frac {c}{a}}} (в последнем преобразовании использована теорема Виета (см. ниже в одноимённом разделе)). Если же корень один, то есть ось абсцисс будет касательной к такой окружности, и окружность пересекает ось y в точке с ординатой 1, то она обязательно пересечёт её и в точке с указанной выше ординатой (в частности, если 1=c/a, это могут быть совпадающие точки), что доказывается аналогично с использованием уже теоремы о секущей и касательной, являющаяся частным случаем теоремы о секущих. В первом случае ({displaystyle {dfrac {c}{a}}not =1}), определяющими будут точка касания, точка оси y с ординатой 1, и её же точка с ординатой {displaystyle {dfrac {c}{a}}}. Если c/a и 1 – совпадающие точки, а корня два, определяющими будут эта точка и точки пересечения с осью абсцисс. В случае, когда (1=c/a) и корень один, указанных сведений достаточно для доказательства, так как такая окружность может быть только одна – её центром будет вершина квадрата, образуемого отрезками касательных и перпендикулярами, а радиус – стороне этого квадрата, составляющей 1. Пускай S – центр окружности, имеющей с осью абсцисс две общие точки. Найдём его координаты: для этого опустим от этой точки перпендикуляры к координатным осям. Концы этих перпендикуляров будут серединами отрезков AB и CD – ведь треугольники ASB и CSD равнобедренные, так как в них AS=BS=CS=DS как радиусы одной окружности, следовательно, высоты в них, проведённые к основаниям, также являются и медианами. Найдём координаты середин названных отрезков. Так как парабола симметрична относительно прямой {displaystyle x=-{dfrac {b}{2a}}}, то точка этой прямой с такой же абсциссой будет являться серединой отрезка AB. Следовательно, абсцисса точки S равна этому числу. В случае же, если уравнение имеет один корень, то ось x является касательной по отношению к окружности,поэтому, согласно её свойству, её радиус перпендикулярен оси, следовательно, и в этом случае указанное число – абсцисса центра. Её ординату найдём так: {displaystyle {dfrac {CD}{2}}={dfrac {OC+(OC+CD)}{2}}={dfrac {OC+OD}{2}}={dfrac {1+{dfrac {c}{a}}}{2}}={dfrac {a+c}{2a}}}. В третьем из возможных случаев, когда ca=1 (и, значит, a=c), то {displaystyle {dfrac {c}{a}}=1={dfrac {2a}{2a}}={dfrac {a+c}{2a}}}.

Итак, нами найдены необходимые для построения данные. Действительно, если мы построим окружность с центром в точке {displaystyle S(-{dfrac {b}{2a}};{dfrac {c+a}{2a}})}, проходящую через точку C(0;1), то она, в случаях, когда уравнение имеет действительные корни, пересечёт ось x в точках, абсциссы которых есть эти корни. Причём, если длина радиуса больше длины перпендикуляра к оси Ox, то уравнение имеет два корня (предположив обратное, мы бы получили противоречие с доказанным выше), если длины равны, то один (по той же причине), если же длина радиуса меньше длины перпендикуляра, то окружность не имеет общих точек с осью x, следовательно, и действительных корней у уравнения нет (доказывается тоже от противного: если корни есть, то окружность, проходящая через A, B, C совпадает с данной, и поэтому пересекает ось, однако она не должна пересекать ось абсцисс по условию, значит, предположение неверно).

Корни квадратного уравнения на множестве комплексных чисел[править | править код]

Уравнение с действительными коэффициентами[править | править код]

Квадратное уравнение с вещественными коэффициентами a,~b,~c всегда имеет с учётом кратности два комплексных корня, о чём гласит основная теорема алгебры. При этом, в случае неотрицательного дискриминанта корни будут вещественными, а в случае отрицательного — комплексно-сопряжёнными:

Уравнение с комплексными коэффициентами[править | править код]

В комплексном случае квадратное уравнение решается по той же формуле (1) и указанным выше её вариантам, но различимыми являются только два случая: нулевого дискриминанта (один двукратный корень) и ненулевого (два корня единичной кратности).

Корни приведённого квадратного уравнения[править | править код]

Квадратное уравнение вида x^{2}+px+q=0, в котором старший коэффициент a равен единице, называют приведённым. В этом случае формула для корней (1) упрощается до

x_{1,2}=-{frac {p}{2}}pm {sqrt {left({frac {p}{2}}right)^{2}-q}}.

Мнемонические правила:

  • Из «Радионяни»:

«Минус» напишем сначала,
Рядом с ним p пополам,
«Плюс-минус» знак радикала,
С детства знакомого нам.
Ну, а под корнем, приятель,
Сводится всё к пустяку:
p пополам и в квадрате
Минус прекрасное[2] q.

  • Из «Радионяни» (второй вариант):

p, со знаком взяв обратным,
На два мы его разделим,
И от корня аккуратно
Знаком «минус-плюс» отделим.
А под корнем очень кстати
Половина p в квадрате
Минус q — и вот решенья,
То есть корни уравненья.

  • Из «Радионяни» (третий вариант на мотив Подмосковных вечеров):

Чтобы x найти к половине p,

Взятой с минусом не забудь,
Радикал приставь с плюсом минусом,
Аккуратно, не как-нибудь.
А под ним квадрат половины p,

Ты, убавь на q и конец,
Будет формула приведенная,
Рассуждений твоих венец.
Будет формула приведенная,
Рассуждений твоих венец.

Теорема Виета [3][править | править код]

Формулировка для приведённого квадратного уравнения[править | править код]

Сумма корней приведённого квадратного уравнения x^{2}+px+q=0 (вещественных или комплексных) равна второму коэффициенту p, взятому с противоположным знаком, а произведение этих корней — свободному члену q:

x_{1}+x_{2}=-p,quad x_{1}x_{2}=q.

С его помощью приведённые уравнения можно решать устно:

Для неприведённого квадратного уравнения[править | править код]

В общем случае, то есть для неприведённого квадратного уравнения {displaystyle ax^{2}+bx+c=0colon }

{displaystyle {begin{cases}x_{1}+x_{2}=-b/a,\x_{1}x_{2}=c/a.end{cases}}}

На практике (следуя методу «переброски») для вычисления корней применяется модификация теорема Виета:

{displaystyle {begin{cases}x_{1}+x_{2}=-b/a&mid cdot a,\x_{1}x_{2}=c/a&mid cdot a^{2};end{cases}}}
{displaystyle {begin{cases}(ax_{1})+(ax_{2})=-b,\(ax_{1})(ax_{2})=ac,end{cases}}}

по которой можно устно находить ax1, ax2, а оттуда — сами корни:

Но у некоторых неприведённых уравнений корни можно устно угадать даже по стандартной теореме Виета:

Разложение квадратного трёхчлена на множители и теоремы, следующие из этого[править | править код]

Если известны оба корня квадратного трёхчлена, его можно разложить по формуле

{displaystyle ax^{2}+bx+c=a(x-x_{1})(x-x_{2})} (2)

Доказательство[править | править код]

Для доказательства этого утверждения воспользуемся теоремой Виета. Согласно этой теореме, корни x_{1} и x_{2} квадратного уравнения ax^{2}+bx+c=0 образуют соотношения с его коэффициентами: {displaystyle x_{1}+x_{2}=-{frac {b}{a}}, x_{1}x_{2}={frac {c}{a}}}. Подставим эти соотношения в квадратный трёхчлен:

{displaystyle {begin{alignedat}{2}ax^{2}+bx+c&=a(x^{2}+{frac {b}{a}}x+{frac {c}{a}})=a(x^{2}-(x_{1}+x_{2})x+x_{1}x_{2})=\&=a(x^{2}-x_{1}x-x_{2}x+x_{1}x_{2})=a(x(x-x_{1})-x_{2}(x-x_{1}))\&=a(x-x_{1})(x-x_{2}).end{alignedat}}}

В случае нулевого дискриминанта это соотношение становится одним из вариантов формулы квадрата суммы или разности.

Из формулы (2) имеются два важных следствия:

Следствие 1[править | править код]

Если квадратный трёхчлен раскладывается на линейные множители с вещественными коэффициентами, то он имеет вещественные корни.

Доказательство[править | править код]

Пусть ax^{2}+bx+c=(kx+m)(nx+l). Тогда, переписав это разложение, получим:

(kx+m)(nx+l)=k(x+{frac {m}{k}})n(x+{frac {l}{n}})=kn(x-(-{frac {m}{k}}))(x-(-{frac {l}{n}})).

Сопоставив полученное выражение с формулой (2), находим, что корнями такого трёхчлена являются -{frac {m}{k}} и -{frac {l}{n}}. Так как коэффициенты вещественны, то и числа, противоположные их отношениям также являются элементами множества mathbb {R} .

Следствие 2[править | править код]

Если квадратный трёхчлен не имеет вещественных корней, то он не раскладывается на линейные множители с вещественными коэффициентами.

Доказательство[править | править код]

Действительно, если мы предположим противное (что такой трёхчлен раскладывается на линейные множители), то, согласно следствию 1, он имеет корни в множестве mathbb {R} , что противоречит условию, а потому наше предположение неверно, и такой трёхчлен не раскладывается на линейные множители.

Для квадратичной функции:
f (x) = x2x − 2 = (x + 1)(x − 2) действительной переменной x, x — координаты точки, где график пересекает ось абсцисс, x = −1 и x = 2, являются решениями квадратного уравнения: x2x − 2 = 0.

Уравнения, сводящиеся к квадратным[править | править код]

Алгебраические[править | править код]

Уравнение вида acdot f^{2}(x)+bcdot f(x)+c=0 является уравнением, сводящимся к квадратному.

В общем случае оно решается методом введения новой переменной, то есть заменой {displaystyle f(x)=t,~tin {mathcal {E}}(f),} где {mathcal {E}} — множество значений функции f, c последующим решением квадратного уравнения acdot t^{2}+bcdot t+c=0.

Также при решении можно обойтись без замены, решив совокупность двух уравнений:

f(x)={frac {-b-{sqrt {b^{2}-4cdot acdot c}}}{2a}} и
f(x)={frac {-b+{sqrt {b^{2}-4cdot acdot c}}}{2a}}

К примеру, если f(x)=x^{2}, то уравнение принимает вид:

{displaystyle ax^{4}+bx^{2}+c=0.}

Такое уравнение 4-й степени называется биквадратным[4][1].

С помощью замены

y=x+{dfrac {k}{x}}

к квадратному уравнению сводится уравнение

ax^{4}+bx^{3}+cx^{2}+kbx+k^{2}a=0,

известное как возвратное или обобщённо-симметрическое уравнение[1].

Дифференциальные[править | править код]

Линейное однородное дифференциальное уравнение с постоянными коэффициентами второго порядка

y''+py'+qy=0

подстановкой y=e^{kx} сводится к характеристическому квадратному уравнению:

k^{2}+pk+q=0

Если решения этого уравнения k_{1} и k_{2} не равны друг другу, то общее решение имеет вид:

y=Ae^{k_{1}x}+Be^{k_{2}x}, где A и B — произвольные постоянные.

Для комплексных корней k_{1,2}=k_{r}pm k_{i}i можно переписать общее решение, используя формулу Эйлера:

{displaystyle y=e^{k_{r}x}left(Acos {k_{i}x}+Bsin {k_{i}x}right)=Ce^{k_{r}x}cos(k_{i}x+varphi ),}

где A, B, C, φ — любые постоянные. Если решения характеристического уравнения совпадают k_{1}=k_{2}=k, общее решение записывается в виде:

y=Axe^{kx}+Be^{kx}

Уравнения такого типа часто встречаются в самых разнообразных задачах математики и физики, например, в теории колебаний или теории цепей переменного тока.

Примечания[править | править код]

Литература[править | править код]

  • Квадратное уравнение; Квадратный трёхчлен // Энциклопедический словарь юного математика / Сост. А. П. Савин. — М.: Педагогика, 1985. — С. 133-136. — 352 с.

Ссылки[править | править код]

  • Weisstein, Eric W. Quadratic Equation (англ.) на сайте Wolfram MathWorld.
  • Вывод формулы корней полного квадратного уравнения. Решение приведённых квадратных уравнений и уравнений с чётным вторым коэффициентом Архивная копия от 28 января 2016 на Wayback Machine / Фестиваль педагогических идей «Открытый урок».
  • Математические методы

Квадратное уравнение

Что такое квадратное уравнение и как его решать?

Мы помним, что уравнение это равенство, содержащее в себе переменную, значение которой нужно найти.

Если переменная, входящая в уравнение, возведенá во вторую степень (в квадрат), то такое уравнение называют уравнением второй степени или квадратным уравнением.

Например, следующие уравнения являются квадратными:

Решим первое из этих уравнений, а именно x 2 − 4 = 0 .

Все тождественные преобразования, которые мы применяли при решении обычных линейных уравнений, можно применять и при решении квадратных.

Итак, в уравнении x 2 − 4 = 0 перенесем член −4 из левой части в правую часть, изменив знак:

Получили уравнение x 2 = 4 . Ранее мы говорили, что уравнение считается решённым, если в одной части переменная записана в первой степени и её коэффициент равен единице, а другая часть равна какому-нибудь числу. То есть чтобы решить уравнение, его следует привести к виду x = a , где a — корень уравнения.

У нас переменная x всё ещё во второй степени, поэтому решение необходимо продолжить.

Чтобы решить уравнение x 2 = 4 , нужно ответить на вопрос при каком значении x левая часть станет равна 4 . Очевидно, что при значениях 2 и −2 . Чтобы вывести эти значения воспользуемся определением квадратного корня.

Число b называется квадратным корнем из числа a , если b 2 = a и обозначается как

У нас сейчас похожая ситуация. Ведь, что такое x 2 = 4 ? Переменная x в данном случае это квадратный корень из числа 4, поскольку вторая степень x прирáвнена к 4.

Тогда можно записать, что . Вычисление правой части позвóлит узнать чему равно x . Квадратный корень имеет два значения: положительное и отрицательное. Тогда получаем x = 2 и x = −2 .

Обычно записывают так: перед квадратным корнем ставят знак «плюс-минус», затем находят арифметическое значение квадратного корня. В нашем случае на этапе когда записано выражение , перед следует поставить знак ±

Затем найти арифметическое значение квадратного корня

Выражение x = ± 2 означает, что x = 2 и x = −2 . То есть корнями уравнения x 2 − 4 = 0 являются числа 2 и −2 . Запишем полностью решение данного уравнения:

Выполним проверку. Подставим корни 2 и −2 в исходное уравнение и выполним соответствующие вычисления. Если при значениях 2 и −2 левая часть равна нулю, то это будет означать, что уравнение решено верно:

В обоих случаях левая часть равна нулю. Значит уравнение решено верно.

Решим ещё одно уравнение. Пусть требуется решить квадратное уравнение (x + 2) 2 = 25

Для начала проанализируем данное уравнение. Левая часть возведенá в квадрат и она равна 25 . Какое число в квадрате равно 25 ? Очевидно, что числа 5 и −5

То есть наша задача найти x, при которых выражение x + 2 будет равно числам 5 и −5 . Запишем эти два уравнения:

Решим оба уравнения. Это обычные линейные уравнения, которые решаются легко:

Значит корнями уравнения (x + 2) 2 = 25 являются числа 3 и −7 .

В данном примере как и в прошлом можно использовать определение квадратного корня. Так, в уравнения (x + 2) 2 = 25 выражение (x + 2) представляет собой квадратный корень из числа 25 . Поэтому можно cначала записать, что .

Тогда правая часть станет равна ±5 . Полýчится два уравнения: x + 2 = 5 и x + 2 = −5. Решив по отдельности каждое из этих уравнений мы придём к корням 3 и −7 .

Запишем полностью решение уравнения (x + 2) 2 = 25

Из рассмотренных примеров видно, что квадратное уравнение имеет два корня. Чтобы не забыть о найденных корнях, переменную x можно подписывать нижними индексами. Так, корень 3 можно обозначить через x1 , а корень −7 через x2

В предыдущем примере тоже можно было сделать так. Уравнение x 2 − 4 = 0 имело корни 2 и −2 . Эти корни можно было обозначить как x1 = 2 и x2 = −2.

Бывает и так, что квадратное уравнение имеет только один корень или вовсе не имеет корней. Такие уравнения мы рассмотрим позже.

Сделаем проверку для уравнения (x + 2) 2 = 25 . Подставим в него корни 3 и −7 . Если при значениях 3 и −7 левая часть равна 25 , то это будет означать, что уравнение решено верно:

В обоих случаях левая часть равна 25 . Значит уравнение решено верно.

Квадратное уравнение бывает дано в разном виде. Наиболее его распространенная форма выглядит так:

ax 2 + bx + c = 0 ,
где a, b, c — некоторые числа, x — неизвестное.

Это так называемый общий вид квадратного уравнения. В таком уравнении все члены собраны в общем месте (в одной части), а другая часть равна нулю. По другому такой вид уравнения называют нормальным видом квадратного уравнения.

Пусть дано уравнение 3x 2 + 2x = 16 . В нём переменная x возведенá во вторую степень, значит уравнение является квадратным. Приведём данное уравнение к общему виду.

Итак, нам нужно получить уравнение, которое будет похоже на уравнение ax 2 + bx + c = 0 . Для этого в уравнении 3x 2 + 2x = 16 перенесем 16 из правой части в левую часть, изменив знак:

Получили уравнение 3x 2 + 2x − 16 = 0 . В этом уравнении a = 3 , b = 2 , c = −16 .

В квадратном уравнении вида ax 2 + bx + c = 0 числа a , b и c имеют собственные названия. Так, число a называют первым или старшим коэффициентом; число b называют вторым коэффициентом; число c называют свободным членом.

В нашем случае для уравнения 3x 2 + 2x − 16 = 0 первым или старшим коэффициентом является 3 ; вторым коэффициентом является число 2 ; свободным членом является число −16 . Есть ещё другое общее название для чисел a, b и cпараметры.

Так, в уравнении 3x 2 + 2x − 16 = 0 параметрами являются числа 3 , 2 и −16 .

В квадратном уравнении желательно упорядочивать члены так, чтобы они располагались в таком же порядке как у нормального вида квадратного уравнения.

Например, если дано уравнение −5 + 4x 2 + x = 0 , то его желательно записать в нормальном виде, то есть в виде ax 2 + bx + c = 0.

В уравнении −5 + 4x 2 + x = 0 видно, что свободным членом является −5 , он должен располагаться в конце левой части. Член 4x 2 содержит старший коэффициент, он должен располагаться первым. Член x соответственно будет располагаться вторым:

Квадратное уравнение в зависимости от случая может принимать различный вид. Всё зависит от того, чему равны значения a , b и с .

Если коэффициенты a , b и c не равны нулю, то квадратное уравнение называют полным. Например, полным является квадратное уравнение 2x 2 + 6x − 8 = 0 .

Если какой-то из коэффициентов равен нулю (то есть отсутствует), то уравнение значительно уменьшается и принимает более простой вид. Такое квадратное уравнение называют неполным. Например, неполным является квадратное уравнение 2x 2 + 6x = 0, в нём имеются коэффициенты a и b (числа 2 и 6 ), но отсутствует свободный член c.

Рассмотрим каждый из этих видов уравнений, и для каждого из этих видов определим свой способ решения.

Пусть дано квадратное уравнение 2x 2 + 6x − 8 = 0 . В этом уравнении a = 2 , b = 6 , c = −8 . Если b сделать равным нулю, то уравнение примет вид:

Получилось уравнение 2x 2 − 8 = 0 . Чтобы его решить перенесем −8 в правую часть, изменив знак:

Для дальнейшего упрощения уравнения воспользуемся ранее изученными тождественными преобразованиями. В данном случае можно разделить обе части на 2

У нас получилось уравнение, которое мы решали в начале данного урока. Чтобы решить уравнение x 2 = 4 , следует воспользоваться определением квадратного корня. Если x 2 = 4 , то . Отсюда x = 2 и x = −2 .

Значит корнями уравнения 2x 2 − 8 = 0 являются числа 2 и −2 . Запишем полностью решение данного уравнения:

Выполним проверку. Подставим корни 2 и −2 в исходное уравнение и выполним соответствующие вычисления. Если при значениях 2 и −2 левая часть равна нулю, то это будет означать, что уравнение решено верно:

В обоих случаях левая часть равна нулю, значит уравнение решено верно.

Уравнение, которое мы сейчас решили, является неполным квадратным уравнением. Название говорит само за себя. Если полное квадратное уравнение выглядит как ax 2 + bx + c = 0 , то сделав коэффициент b нулём получится неполное квадратное уравнение ax 2 + c = 0 .

У нас тоже сначала было полное квадратное уравнение 2x 2 + 6x − 4 = 0 . Но мы сделали коэффициент b нулем, то есть вместо числа 6 поставили 0 . В результате уравнение обратилось в неполное квадратное уравнение 2x 2 − 4 = 0 .

В начале данного урока мы решили квадратное уравнение x 2 − 4 = 0 . Оно тоже является уравнением вида ax 2 + c = 0 , то есть неполным. В нем a = 1 , b = 0 , с = −4 .

Также, неполным будет квадратное уравнение, если коэффициент c равен нулю.

Рассмотрим полное квадратное уравнение 2x 2 + 6x − 4 = 0 . Сделаем коэффициент c нулём. То есть вместо числа 4 поставим 0

Получили квадратное уравнение 2x 2 + 6x=0 , которое является неполным. Чтобы решить такое уравнение, переменную x выносят за скобки:

Получилось уравнение x(2x + 6) = 0 в котором нужно найти x, при котором левая часть станет равна нулю. Заметим, что в этом уравнении выражения x и (2x + 6) являются сомножителями. Одно из свойств умножения говорит, что произведение равно нулю, если хотя бы один из сомножителей равен нулю (или первый сомножитель или второй).

В нашем случае равенство будет достигаться, если x будет равно нулю или (2x + 6) будет равно нулю. Так и запишем для начала:

Получилось два уравнения: x = 0 и 2x + 6 = 0 . Первое уравнение решать не нужно — оно уже решено. То есть первый корень равен нулю.

Чтобы найти второй корень, решим уравнение 2x + 6 = 0 . Это обычное линейное уравнение, которое решается легко:

Видим, что второй корень равен −3.

Значит корнями уравнения 2x 2 + 6x = 0 являются числа 0 и −3 . Запишем полностью решение данного уравнения:

Выполним проверку. Подставим корни 0 и −3 в исходное уравнение и выполним соответствующие вычисления. Если при значениях 0 и −3 левая часть равна нулю, то это будет означать, что уравнение решено верно:

Следующий случай это когда числа b и с равны нулю. Рассмотрим полное квадратное уравнение 2x 2 + 6x − 4 = 0 . Сделаем коэффициенты b и c нулями. Тогда уравнение примет вид:

Получили уравнение 2x 2 = 0 . Левая часть является произведением, а правая часть равна нулю. Произведение равно нулю, если хотя бы один из сомножителей равен нулю. Очевидно, что x = 0 . Действительно, 2 × 0 2 = 0 . Отсюда, 0 = 0 . При других значениях x равенства достигаться не будет.

Проще говоря, если в квадратном уравнении вида ax 2 + bx + c = 0 числа b и с равны нулю, то корень такого уравнения равен нулю.

Отметим, что когда употребляются словосочетания « b равно нулю » или « с равно нулю «, то подразумевается, что параметры b или c вовсе отсутствуют в уравнении.

Например, если дано уравнение 2x 2 − 32 = 0 , то мы говорим, что b = 0 . Потому что если сравнить с полным уравнением ax 2 + bx + c = 0 , то можно заметить, что в уравнении 2x 2 − 32 = 0 присутствует старший коэффициент a , равный 2; присутствует свободный член −32 ; но отсутствует коэффициент b .

Наконец, рассмотрим полное квадратное уравнение ax 2 + bx + c = 0 . В качестве примера решим квадратное уравнение x 2 − 2x + 1 = 0 .

Итак, требуется найти x , при котором левая часть станет равна нулю. Воспользуемся изученными ранее тождественными преобразованиями.

Прежде всего заметим, что левая часть уравнения представляет собой квадрат разности двух выражений. Если мы вспомним как раскладывать многочлен на множители, то получим в левой части (x − 1) 2 .

Рассуждаем дальше. Левая часть возведенá в квадрат и она равна нулю. Какое число в квадрате равно нулю? Очевидно, что только 0 . Поэтому наша задача найти x , при котором выражение x − 1 равно нулю. Решив простейшее уравнение x − 1 = 0 , можно узнать чему равно x

Этот же результат можно получить, если воспользоваться квадратным корнем. В уравнении (x − 1) 2 = 0 выражение (x − 1) представляет собой квадратный корень из нуля. Тогда можно записать, что . В этом примере записывать перед корнем знак ± не нужно, поскольку корень из нуля имеет только одно значение — ноль. Тогда получается x − 1 = 0 . Отсюда x = 1 .

Значит корнем уравнения x 2 − 2x + 1 = 0 является единица. Других корней у данного уравнения нет. В данном случае мы решили квадратное уравнение, имеющее только один корень. Такое тоже бывает.

Не всегда бывают даны простые уравнения. Рассмотрим например уравнение x 2 + 2x − 3 = 0 .

В данном случае левая часть уже не является квадратом суммы или разности. Поэтому нужно искать другие пути решения.

Заметим, что левая часть уравнения представляет собой квадратный трехчлен. Тогда можно попробовать выделить полный квадрат из этого трёхчлена и посмотреть что это нам даст.

Выделим полный квадрат из квадратного трёхчлена, располагающего в левой части уравнения:

В получившемся уравнении перенесем −4 в правую часть, изменив знак:

Теперь воспользуемся квадратным корнем. В уравнении (x + 1) 2 = 4 выражение (x + 1) представляет собой квадратный корень из числа 4 . Тогда можно записать, что . Вычисление правой части даст выражение x + 1 = ±2 . Отсюда полýчится два уравнения: x + 1 = 2 и x + 1 = −2 , корнями которых являются числа 1 и −3

Значит корнями уравнения x 2 + 2x − 3 = 0 являются числа 1 и −3 .

Пример 3. Решить уравнение x 2 − 6x + 9 = 0 , выделив полный квадрат.

Выделим полный квадрат из левой части:

Далее воспользуемся квадратным корнем и узнáем чему равно x

Значит корнем уравнения x 2 − 6x + 9 = 0 является 3. Выполним проверку:

Пример 4. Решить квадратное уравнение 4x 2 + 28x − 72 = 0 , выделив полный квадрат:

Выделим полный квадрат из левой части:

Перенесём −121 из левой части в правую часть, изменив знак:

Воспользуемся квадратным корнем:

Получили два простых уравнения: 2x + 7 = 11 и 2x + 7 = −11. Решим их:

Пример 5. Решить уравнение 2x 2 + 3x − 27 = 0

Это уравнение немного посложнее. Когда мы выделяем полный квадрат, первый член квадратного трёхчлена мы представляем в виде квадрата какого-нибудь выражения.

Так, в прошлом примере первым членом уравнения был 4x 2 . Его можно было представить в виде квадрата выражения 2x , то есть (2x) 2 = 2 2 x 2 = 4x 2 . Чтобы убедиться что это правильно, можно извлечь квадратный корень из выражения 4x 2 . Это квадратный корень из произведения — он равен произведению корней:

В уравнении 2x 2 + 3x − 27 = 0 первый член это 2x 2 . Его нельзя представить в виде квадрата какого-нибудь выражения. Потому что нет числá, квадрат которого равен 2. Если бы такое число было, то этим числом был бы квадратный корень из числа 2. Но квадратный корень из числа 2 извлекается только приближённо. А приближённое значение не годится для представления числá 2 в виде квадрата.

Если обе части исходного уравнения умножить или разделить на одно и то же число, то полýчится уравнение равносильное исходному. Это правило сохраняется и для квадратного уравнения.

Тогда можно разделить обе части нашего уравнения на 2 . Это позвóлит избавиться от двойки перед x 2 что впоследствии даст нам возможность выделить полный квадрат:

Перепишем левую часть в виде трёх дробей со знаменателем 2

Сократим первую дробь на 2. Остальные члены левой части перепишем без изменений. Правая часть по-прежнему станет равна нулю:

Выделим полный квадрат.

При представлении члена в виде удвоенного произведения, появление множителя 2 привело бы к тому, что этот множитель и знаменатель дроби сократились бы. Чтобы этого не произошло, удвоенное произведение было домножено на . При выделении полного квадрата всегда нужно стараться сделать так, чтобы значение изначального выражения не изменилось.

Свернём полученный полный квадрат:

Приведём подобные члены:

Перенесём дробь в правую часть, изменив знак:

Воспользуемся квадратным корнем. Выражение представляет собой квадратный корень из числа

Для вычисления правой части воспользуемся правилом извлечения квадратного корня из дроби:

Тогда наше уравнение примет вид:

Полýчим два уравнения:

Значит корнями уравнения 2x 2 + 3x − 27 = 0 являются числа 3 и .

Корень удобнее оставить в таком виде, не выполняя деления числителя на знаменатель. Так проще будет выполнять проверку.

Выполним проверку. Подставим найденные корни в исходное уравнение:

В обоих случаях левая часть равна нулю, значит уравнение 2x 2 + 3x − 27 = 0 решено верно.

Решая уравнение 2x 2 + 3x − 27 = 0 , в самом начале мы разделили обе его части на 2 . В результате получили квадратное уравнение, в котором коэффициент перед x 2 равен единице:

Такой вид квадратного уравнения называют приведённым квадратным уравнением.

Любое квадратное уравнение вида ax 2 + bx + c = 0 можно сделать приведённым. Для этого нужно разделить обе его части на коэффициент, который располагается перед x². В данном случае обе части уравнения ax 2 + bx + c = 0 нужно разделить на a

Пример 6. Решить квадратное уравнение 2x 2 + x + 2 = 0

Сделаем данное уравнение приведённым:

Выделим полный квадрат:

Получили уравнение , в котором квадрат выражения равен отрицательному числу . Такого быть не может, поскольку квадрат любого числа или выражения всегда положителен.

Следовательно, нет такого значения x , при котором левая часть стала бы равна . Значит уравнение не имеет корней.

А поскольку уравнение равносильно исходному уравнению 2x 2 + x + 2 = 0 , то и оно (исходное уравнение) не имеет корней.

Формулы корней квадратного уравнения

Выделять полный квадрат для каждого решаемого квадратного уравнения не очень удобно.

Можно ли создать универсальные формулы для решения квадратных уравнений? Оказывается можно. Сейчас мы этим и займёмся.

Взяв за основу буквенное уравнение ax 2 + bx + c = 0 , и выполнив некоторые тождественные преобразования, мы сможем получить формулы для вывода корней квадратного уравнения ax 2 + bx + c = 0 . В эти формулы можно будет подставлять коэффициенты a , b , с и получать готовые решения.

Итак, выделим полный квадрат из левой части уравнения ax 2 + bx + c = 0. Сначала сделаем данное уравнение приведённым. Разделим обе его части на a

Теперь в получившемся уравнении выделим полный квадрат:

Перенесем члены и в правую часть, изменив знак:

Приведём правую часть к общему знаменателю. Дроби, состоящие из букв, привóдят к общему знаменателю методом «крест-нáкрест». То есть знаменатель первой дроби станóвится дополнительным множителем второй дроби, а знаменатель второй дроби станóвится дополнительным множителем первой дроби:

В числителе правой части вынесем за скобки a

Сократим правую часть на a

Поскольку все преобразования были тождественными, то получившееся уравнение имеет те же корни, что и исходное уравнение ax 2 + bx + c = 0.

Уравнение будет иметь корни только тогда, если правая часть больше нуля или равна нулю. Это потому что в левой части выполнено возведéние в квадрат, а квадрат любого числа положителен или равен нулю (если в этот квадрат возвóдится ноль). А чему будет равна правая часть зависит от того, что будет подставлено вместо переменных a , b и c .

Поскольку при любом a не рáвным нулю, знаменатель правой части уравнения всегда будет положительным, то знак дроби будет зависеть от знака её числителя, то есть от выражения b 2 − 4ac .

Выражение b 2 − 4ac называют дискриминантом квадратного уравнения. Дискриминант это латинское слово, означающее различитель . Дискриминант квадратного уравнения обозначается через букву D

Дискриминант позволяет заранее узнать имеет ли уравнение корни или нет. Так, в предыдущем задании мы долго решали уравнение 2x 2 + x + 2 = 0 и оказалось, что оно не имеет корней. Дискриминант же позволил бы нам заранее узнать, что корней нет. В уравнении 2x 2 + x + 2 = 0 коэффициенты a , b и c равны 2, 1 и 2 соответственно. Подставим их в формулу D = b 2 −4ac

D = b 2 − 4ac = 1 2 − 4 × 2 × 2 = 1 − 16 = −15.

Видим, что D (оно же b 2 − 4ac ) является отрицательным числом. Тогда нет смысла решать уравнение 2x 2 + x + 2 = 0, выделяя в нём полный квадрат, потому что когда мы дойдем до уравнения вида , окажется что правая часть станет меньше нуля (из-за отрицательного дискриминанта). А квадрат числа не может быть отрицательным. Следовательно, корней у данного уравнения не будет.

Станóвится понятно почему древние люди считали выражение b 2 − 4ac различителем. Это выражение подобно индикатору позволяет различить уравнение имеющего корни от уравнения, не имеющего корней.

Итак, D равно b 2 − 4ac . Подставим в уравнении вместо выражения b 2 − 4ac букву D

Если дискриминант исходного уравнения окажется меньше нуля (D , то уравнение примет вид:

В этом случае говорят, что у исходного уравнения корней нет, поскольку квадрат любого числа не должен быть отрицательным.

Если дискриминант исходного уравнения окажется больше нуля (D > 0) , то уравнение примет вид:

В этом случае уравнение будет иметь два корня. Для их вывода воспользуемся квадратным корнем:

Получили уравнение . Из него полýчится два уравнения: и . Выразим x в каждом из уравнений:

Получившиеся два равенства это и есть универсальные формулы для решения квадратного уравнения ax 2 + bx + c = 0. Их называют формулами корней квадратного уравнения .

Чаще всего эти формулы обозначаются как x1 и x2 . То есть для вычисления первого корня используется формула c индексом 1; для вывода второго корня — формула с индексом 2. Обозначим свои формулы так же:

Очерёдность применения формул не важнá.

Решим например квадратное уравнение x 2 + 2x − 8 = 0 с помощью формул корней квадратного уравнения. Коэффициенты данного квадратного уравнения это числа 1 , 2 и −8 . То есть, a = 1 , b = 2 , c = −8 .

Прежде чем использовать формулы корней квадратного уравнения, нужно найти дискриминант этого уравнения.

Найдём дискриминант квадратного уравнения. Для этого воспользуемся формулой D = b 2 4 ac . Вместо переменных a, b и c у нас будут коэффициенты уравнения x 2 + 2x − 8 = 0

D = b 2 4ac = 2 2 − 4 × 1 × (−8) = 4 + 32 = 36

Дискриминант больше нуля. Значит уравнение имеет два корня. Теперь можно воспользоваться формулами корней квадратного уравнения:

Значит корнями уравнения x 2 + 2x − 8 = 0 являются числа 2 и −4 . Проверкой убеждаемся, что корни найдены верно:

Наконец, рассмотрим случай когда дискриминант квадратного уравнения равен нулю. Вернёмся к уравнению . Если дискриминант равен нулю, то правая часть уравнения примет вид:

И в этом случае квадратное уравнение будет иметь только один корень. Воспользуемся квадратным корнем:

Далее выражаем x

Это ещё одна формула для вывода корня квадратного корня. Рассмотрим её применение. Ранее мы решили уравнение x 2 − 6x + 9 = 0 , имеющее один корень 3. Решили мы его методом выделения полного квадрата. Теперь попробуем решить с помощью формул.

Найдём дискриминант квадратного уравнения. В этом уравнении a = 1 , b = −6 , c = 9 . Тогда по формуле дискриминанта имеем:

D = b 2 4ac = (−6) 2 − 4 × 1 × 9 = 36 − 36 = 0

Дискриминант равен нулю (D = 0) . Это означает, что уравнение имеет только один корень, и вычисляется он по формуле

Значит корнем уравнения x 2 − 6x + 9 = 0 является число 3.

Для квадратного уравнения, имеющего один корень также применимы формулы и . Но применение каждой из них будет давать один и тот же результат.

Применим эти две формулы для предыдущего уравнения. В обоих случаях получим один и тот же ответ 3

Если квадратное уравнение имеет только один корень, то желательно применять формулу , а не формулы и . Это позволяет сэкономить время и место.

Пример 3. Решить уравнение 5x 2 − 6x + 1 = 0

Найдём дискриминант квадратного уравнения:

Дискриминант больше нуля. Значит уравнение имеет два корня. Воспользуемся формулами корней квадратного уравнения:

Значит корнями уравнения 5x 2 − 6x + 1 = 0 являются числа 1 и .

Ответ: 1; .

Пример 4. Решить уравнение x 2 + 4x + 4 = 0

Найдём дискриминант квадратного уравнения:

Дискриминант равен нулю. Значит уравнение имеет только один корень. Он вычисляется по формуле

Значит корнем уравнения x 2 + 4x + 4 = 0 является число −2 .

Пример 5. Решить уравнение 3x 2 + 2x + 4 = 0

Найдём дискриминант квадратного уравнения:

Дискриминант меньше нуля. Значит корней у данного уравнения нет.

Ответ: корней нет.

Пример 6. Решить уравнение (x + 4) 2 = 3x + 40

Приведём данное уравнение к нормальному виду. В левой части располагается квадрата суммы двух выражений. Раскрóем его:

Перенесём все члены из правой части в левую часть, изменив их знаки. В правой части останется ноль:

Приведём подобные члены в левой части:

В получившемся уравнении найдём дискриминант:

Дискриминант больше нуля. Значит уравнение имеет два корня. Воспользуемся формулами корней квадратного уравнения:

Значит корнями уравнения (x + 4) 2 = 3x + 40 являются числа 3 и −8 .

Ответ: 3 ; −8.

Пример 7. Решить уравнение

Умнóжим обе части данного уравнения на 2 . Это позвóлит нам избавиться от дроби в левой части:

В получившемся уравнении перенесём 22 из правой части в левую часть, изменив знак. В правой части останется 0

Приведём подобные члены в левой части:

В получившемся уравнении найдём дискриминант:

Дискриминант больше нуля. Значит уравнение имеет два корня. Воспользуемся формулами корней квадратного уравнения:

Значит корнями уравнения являются числа 23 и −1 .

Ответ: 23; −1.

Пример 8. Решить уравнение

Умнóжим обе части на наименьшее общее кратное знаменателей обеих дробей. Это позвóлит избавиться от дробей в обеих частях. Наименьшее общее кратное чисел 2 и 3 это число 6 . Тогда получим:

В получившемся уравнении раскроем скобки в обеих частях:

Теперь перенесём все члены из правой части в левую часть, изменив у них знаки. В правой части останется 0

Приведём подобные члены в левой части:

В получившемся уравнении найдём дискриминант:

Дискриминант больше нуля. Значит уравнение имеет два корня. Воспользуемся формулами корней квадратного уравнения:

Значит корнями уравнения являются числа и 2.

Примеры решения квадратных уравнений

Пример 1. Решить уравнение x 2 = 81

Это простейшее квадратное уравнение, в котором надо определить число, квадрат которого равен 81. Таковыми являются числа 9 и −9. Воспользуемся квадратным корнем для их вывода:

Ответ: 9, −9 .

Пример 2. Решить уравнение x 2 − 9 = 0

Это неполное квадратное уравнение. Для его решения нужно перенести член −9 в правую часть, изменив знак. Тогда получим:

Ответ: 3, −3.

Пример 3. Решить уравнение x 2 − 9x = 0

Это неполное квадратное уравнение. Для его решения сначала нужно вынести x за скобки:

Левая часть уравнения является произведением. Произведение равно нулю, если хотя один из сомножителей равен нулю.

Левая часть станет равна нулю, если отдельно x равно нулю, или если выражение x − 9 равно нулю. Получится два уравнения, одно из которых уже решено:

Ответ: 0, 9 .

Пример 4. Решить уравнение x 2 + 4x − 5 = 0

Это полное квадратное уравнение. Его можно решить методом выделения полного квадрата или с помощью формул корней квадратного уравнения.

Решим данное уравнение с помощью формул. Сначала найдём дискриминант:

D = b 2 − 4ac = 4 2 − 4 × 1 × (−5) = 16 + 20 = 36

Дискриминант больше нуля. Значит уравнение имеет два корня. Вычислим их:

Ответ: 1, −5 .

Пример 5. Решить уравнение

Умнóжим обе части на наименьшее общее кратное чисел 5, 3 и 6. Это позвóлит избавиться от дробей в обеих частях:

В получившемся уравнении перенесём все члены из правой части в левую часть, изменив знак. В правой части останется ноль:

Приведём подобные члены:

Решим получившееся уравнение с помощью формул:

Ответ: 5 , .

Пример 6. Решить уравнение x 2 = 6

В данном примере как и в первом нужно воспользоваться квадратным корнем:

Однако, квадратный корень из числа 6 не извлекается. Он извлекается только приближённо. Корень можно извлечь с определённой точностью. Извлечём его с точностью до сотых:

Но чаще всего корень оставляют в виде радикала:

Ответ:

Пример 7. Решить уравнение (2x + 3) 2 + (x − 2) 2 = 13

Раскроем скобки в левой части уравнения:

В получившемся уравнении перенесём 13 из правой части в левую часть, изменив знак. Затем приведём подобные члены:

Получили неполное квадратное уравнение. Решим его:

Ответ: 0 , −1,6 .

Пример 8. Решить уравнение (5 + 7x)(4 − 3x) = 0

Данное уравнение можно решить двумя способами. Рассмотрим каждый из них.

Первый способ. Раскрыть скобки и получить нормальный вид квадратного уравнения.

Приведём подобные члены:

Перепишем получившееся уравнение так, чтобы член со старшим коэффициентом располагался первым, член со вторым коэффициентом — вторым, а свободный член располагался третьим:

Чтобы старший член стал положительным, умнóжим обе части уравнения на −1. Тогда все члены уравнения поменяют свои знаки на противоположные:

Решим получившееся уравнение с помощью формул корней квадратного уравнения:

Второй способ. Найти значения x , при которых сомножители левой части уравнения равны нулю. Этот способ удобнее и намного короче.

Произведение равно нулю, если хотя бы один из сомножителей равен нулю. В данном случае равенство в уравнении (5 + 7x)(4 − 3x) = 0 будет достигаться, если выражение (5 + 7x) равно нулю, или же выражение (4 − 3x) равно нулю. Наша задача выяснить при каких x это происходит:

Примеры решения задач

Предстáвим, что возникла необходимость построить небольшую комнату, площадь которой 8 м 2 . При этом длина комнаты должна быть в два раза больше её ширины. Как определить длину и ширину такой комнаты?

Сделаем примерный рисунок этой комнаты, который иллюстрирует вид сверху:

Обозначим ширину комнаты через x . А длину комнаты через 2x , потому что по условию задачи длина должна быть в два раза больше ширины. Множитель 2 и выполнит это требование:

Поверхность комнаты (её пол) является прямоугольником. Для вычисления площади прямоугольника, нужно длину данного прямоугольника умножить на его ширину. Сделаем это:

По условию задачи площадь должна быть 8 м 2 . Значит выражение 2x × x следует приравнять к 8

Получилось уравнение. Если решить его, то можно найти длину и ширину комнаты.

Первое что можно сделать это выполнить умножение в левой части уравнения:

В результате этого преобразования переменная x перешла во вторую степень. А мы говорили, что если переменная, входящая в уравнение, возведенá во вторую степень (в квадрат), то такое уравнение является уравнением второй степени или квадратным уравнением.

Для решения нашего квадратного уравнения воспользуемся изученными ранее тождественными преобразованиями. В данном случае можно разделить обе части на 2

Теперь воспользуемся квадратным корнем. Если x 2 = 4 , то . Отсюда x = 2 и x = −2 .

Через x была обозначена ширина комнаты. Ширина не должна быть отрицательной, поэтому в расчёт берём только значение 2 . Такое часто бывает при решении задачи, в которых применяется квадратное уравнение. В ответе получаются два корня, но условию задачи удовлетворяет только один из них.

А длина была обозначена через 2x . Значение x теперь известно, подставим его в выражение 2x и вычислим длину:

Значит длина равна 4 м , а ширина 2 м . Это решение удовлетворяет условию задачи, поскольку площадь комнаты равна 8 м 2

Ответ: длина комнаты составляет 4 м , а ширина 2 м .

Пример 2. Огородный участок, имеющий форму прямоугольника, одна сторона которого на 10 м больше другой, требуется обнести изгородью. Определить длину изгороди, если известно, что площадь участка равна 1200 м 2

Решение

Длина прямоугольника, как правило, больше его ширины. Пусть ширина участка x метров, а длина (x + 10) метров. Площадь участка составляет 1200 м 2 . Умножим длину участка на его ширину и приравняем к 1200 , получим уравнение:

Решим данное уравнение. Для начала раскроем скобки в левой части:

Перенесём 1200 из правой части в левую часть, изменив знак. В правой части останется 0

Решим получившееся уравнение с помощью формул:

Несмотря на то, что квадратное уравнение имеет два корня, в расчёт берём только значение 30 . Потому что ширина не может выражаться отрицательным числом.

Итак, через x была обозначена ширина участка. Она равна тридцати метрам. А длина была обозначена через выражение x + 10 . Подставим в него найденное значение x и вычислим длину:

x + 10 = 30 + 10 = 40 м

Значит длина участка составляет сорок метров, а ширина тридцать метров. Эти значения удовлетворяют условию задачи, поскольку если перемножить длину и ширину (числа 40 и 30 ) получится 1200 м 2

40 × 30 = 1200 м 2

Теперь ответим на вопрос задачи. Какова длина изгороди? Чтобы её вычислить нужно найти периметр участка.

Периметр прямоугольника это сумма всех его сторон. Тогда:

P = 2(a + b) = 2 × (40 + 30) = 2 × 70 = 140 м.

Ответ: длина изгороди огородного участка составляет 140 м.

Решение квадратных уравнений: формула корней, примеры

В продолжение темы «Решение уравнений» материал данной статьи познакомит вас с квадратными уравнениями.

Рассмотрим все подробно: суть и запись квадратного уравнения, зададим сопутствующие термины, разберем схему решения неполных и полных уравнений, познакомимся с формулой корней и дискриминантом, установим связи между корнями и коэффициентами, ну и конечно приведем наглядное решение практических примеров.

Квадратное уравнение, его виды

Квадратное уравнение – это уравнение, записанное как a · x 2 + b · x + c = 0 , где x – переменная, a , b и c – некоторые числа, при этом a не есть нуль.

Зачастую квадратные уравнения также носят название уравнений второй степени, поскольку по сути квадратное уравнение есть алгебраическое уравнение второй степени.

Приведем пример для иллюстрации заданного определения: 9 · x 2 + 16 · x + 2 = 0 ; 7 , 5 · x 2 + 3 , 1 · x + 0 , 11 = 0 и т.п. – это квадратные уравнения.

Числа a , b и c – это коэффициенты квадратного уравнения a · x 2 + b · x + c = 0 , при этом коэффициент a носит название первого, или старшего, или коэффициента при x 2 , b – второго коэффициента, или коэффициента при x , а c называют свободным членом.

К примеру, в квадратном уравнении 6 · x 2 − 2 · x − 11 = 0 старший коэффициент равен 6 , второй коэффициент есть − 2 , а свободный член равен − 11 . Обратим внимание на тот факт, что, когда коэффициенты b и/или c являются отрицательными, то используется краткая форма записи вида 6 · x 2 − 2 · x − 11 = 0 , а не 6 · x 2 + ( − 2 ) · x + ( − 11 ) = 0 .

Уточним также такой аспект: если коэффициенты a и/или b равны 1 или − 1 , то явного участия в записи квадратного уравнения они могут не принимать, что объясняется особенностями записи указанных числовых коэффициентов. К примеру, в квадратном уравнении y 2 − y + 7 = 0 старший коэффициент равен 1 , а второй коэффициент есть − 1 .

Приведенные и неприведенные квадратные уравнения

По значению первого коэффициента квадратные уравнения подразделяют на приведенные и неприведенные.

Приведенное квадратное уравнение – это квадратное уравнение, где старший коэффициент равен 1 . При иных значениях старшего коэффициента квадратное уравнение является неприведенным.

Приведем примеры: квадратные уравнения x 2 − 4 · x + 3 = 0 , x 2 − x − 4 5 = 0 являются приведенными, в каждом из которых старший коэффициент равен 1 .

9 · x 2 − x − 2 = 0 – неприведенное квадратное уравнение, где первый коэффициент отличен от 1 .

Любое неприведенное квадратное уравнение возможно преобразовать в приведенное уравнение, если разделить обе его части на первый коэффициент (равносильное преобразование). Преобразованное уравнение будет иметь такие же корни, как и заданное неприведенное уравнение или так же не иметь корней вовсе.

Рассмотрение конкретного примера позволит нам наглядно продемонстрировать выполнение перехода от неприведенного квадратного уравнения к приведенному.

Задано уравнение 6 · x 2 + 18 · x − 7 = 0 . Необходимо преобразовать исходное уравнение в приведенную форму.

Решение

Cогласно указанной выше схеме разделим обе части исходного уравнения на старший коэффициент 6 . Тогда получим: ( 6 · x 2 + 18 · x − 7 ) : 3 = 0 : 3 , и это то же самое, что: ( 6 · x 2 ) : 3 + ( 18 · x ) : 3 − 7 : 3 = 0 и далее: ( 6 : 6 ) · x 2 + ( 18 : 6 ) · x − 7 : 6 = 0 . Отсюда: x 2 + 3 · x – 1 1 6 = 0 . Таким образом, получено уравнение, равносильное заданному.

Ответ: x 2 + 3 · x – 1 1 6 = 0 .

Полные и неполные квадратные уравнения

Обратимся к определению квадратного уравнения. В нем мы уточнили, что a ≠ 0 . Подобное условие необходимо, чтобы уравнение a · x 2 + b · x + c = 0 было именно квадратным, поскольку при a = 0 оно по сути преобразуется в линейное уравнение b · x + c = 0 .

В случае же, когда коэффициенты b и c равны нулю (что возможно, как по отдельности, так и совместно), квадратное уравнение носит название неполного.

Неполное квадратное уравнение – такое квадратное уравнение a · x 2 + b · x + c = 0 , где хотя бы один из коэффициентов b и c (или оба) равен нулю.

Полное квадратное уравнение – квадратное уравнение, в котором все числовые коэффициенты не равны нулю.

Порассуждаем, почему типам квадратных уравнений даны именно такие названия.

При b = 0 квадратное уравнение примет вид a · x 2 + 0 · x + c = 0 , что то же самое, что a · x 2 + c = 0 . При c = 0 квадратное уравнение записано как a · x 2 + b · x + 0 = 0 , что равносильно a · x 2 + b · x = 0 . При b = 0 и c = 0 уравнение примет вид a · x 2 = 0 . Уравнения, которые мы получили, отличны от полного квадратного уравнения тем, что в их левых частях не содержится либо слагаемого с переменной x , либо свободного члена, либо обоих сразу. Собственно, этот факт и задал название такому типу уравнений – неполное.

Например, x 2 + 3 · x + 4 = 0 и − 7 · x 2 − 2 · x + 1 , 3 = 0 – это полные квадратные уравнения; x 2 = 0 , − 5 · x 2 = 0 ; 11 · x 2 + 2 = 0 , − x 2 − 6 · x = 0 – неполные квадратные уравнения.

Решение неполных квадратных уравнений

Заданное выше определение дает возможность выделить следующие виды неполных квадратных уравнений:

  • a · x 2 = 0 , такому уравнению соответствуют коэффициенты b = 0 и c = 0 ;
  • a · x 2 + c = 0 при b = 0 ;
  • a · x 2 + b · x = 0 при c = 0 .

Рассмотрим последовательно решение каждого вида неполного квадратного уравнения.

Решение уравнения a·x 2 =0

Как уже было указано выше, такому уравнению отвечают коэффициенты b и c , равные нулю. Уравнение a · x 2 = 0 возможно преобразовать в равносильное ему уравнение x 2 = 0 , которое мы получим, поделив обе части исходного уравнения на число a , не равное нулю. Очевидный факт, что корень уравнения x 2 = 0 это нуль, поскольку 0 2 = 0 . Иных корней это уравнение не имеет, что объяснимо свойствами степени: для любого числа p , не равного нулю, верно неравенство p 2 > 0 , из чего следует, что при p ≠ 0 равенство p 2 = 0 никогда не будет достигнуто.

Таким образом, для неполного квадратного уравнение a · x 2 = 0 существует единственный корень x = 0 .

Для примера решим неполное квадратное уравнение − 3 · x 2 = 0 . Ему равносильно уравнение x 2 = 0 , его единственным корнем является x = 0 , тогда и исходное уравнение имеет единственный корень – нуль.

Кратко решение оформляется так:

− 3 · x 2 = 0 , x 2 = 0 , x = 0 .

Решение уравнения a · x 2 + c = 0

На очереди – решение неполных квадратных уравнений, где b = 0 , c ≠ 0 , то есть уравнений вида a · x 2 + c = 0 . Преобразуем это уравнение, перенеся слагаемое из одной части уравнения в другую, сменив знак на противоположный и разделив обе части уравнения на число, не равное нулю:

  • переносим c в правую часть, что дает уравнение a · x 2 = − c ;
  • делим обе части уравнения на a , получаем в итоге x = – c a .

Наши преобразования являются равносильными, соответственно полученное уравнение также равносильно исходному, и этот факт дает возможность делать вывод о корнях уравнения. От того, каковы значения a и c зависит значение выражения – c a : оно может иметь знак минус (допустим, если a = 1 и c = 2 , тогда – c a = – 2 1 = – 2 ) или знак плюс (например, если a = − 2 и c = 6 , то – c a = – 6 – 2 = 3 ); оно не равно нулю, поскольку c ≠ 0 . Подробнее остановимся на ситуациях, когда – c a 0 и – c a > 0 .

В случае, когда – c a 0 , уравнение x 2 = – c a не будет иметь корней. Утверждая это, мы опираемся на то, что квадратом любого числа является число неотрицательное. Из сказанного следует, что при – c a 0 ни для какого числа p равенство p 2 = – c a не может быть верным.

Все иначе, когда – c a > 0 : вспомним о квадратном корне, и станет очевидно, что корнем уравнения x 2 = – c a будет число – c a , поскольку – c a 2 = – c a . Нетрудно понять, что число – – c a – также корень уравнения x 2 = – c a : действительно, – – c a 2 = – c a .

Прочих корней уравнение не будет иметь. Мы можем это продемонстрировать, используя метод от противного. Для начала зададим обозначения найденных выше корней как x 1 и − x 1 . Выскажем предположение, что уравнение x 2 = – c a имеет также корень x 2 , который отличается от корней x 1 и − x 1 . Мы знаем, что, подставив в уравнение вместо x его корни, преобразуем уравнение в справедливое числовое равенство.

Для x 1 и − x 1 запишем: x 1 2 = – c a , а для x 2 – x 2 2 = – c a . Опираясь на свойства числовых равенств, почленно вычтем одно верное равенство из другого, что даст нам: x 1 2 − x 2 2 = 0 . Используем свойства действий с числами, чтобы переписать последнее равенство как ( x 1 − x 2 ) · ( x 1 + x 2 ) = 0 . Известно, что произведение двух чисел есть нуль тогда и только тогда, когда хотя бы одно из чисел является нулем. Из сказанного следует, что x 1 − x 2 = 0 и/или x 1 + x 2 = 0 , что то же самое, x 2 = x 1 и/или x 2 = − x 1 . Возникло очевидное противоречие, ведь вначале было условлено, что корень уравнения x 2 отличается от x 1 и − x 1 . Так, мы доказали, что уравнение не имеет иных корней, кроме x = – c a и x = – – c a .

Резюмируем все рассуждения выше.

Неполное квадратное уравнение a · x 2 + c = 0 равносильно уравнению x 2 = – c a , которое:

  • не будет иметь корней при – c a 0 ;
  • будет иметь два корня x = – c a и x = – – c a при – c a > 0 .

Приведем примеры решения уравнений a · x 2 + c = 0 .

Задано квадратное уравнение 9 · x 2 + 7 = 0 . Необходимо найти его решение.

Решение

Перенесем свободный член в правую часть уравнения, тогда уравнение примет вид 9 · x 2 = − 7 .
Разделим обе части полученного уравнения на 9 , придем к x 2 = – 7 9 . В правой части мы видим число со знаком минус, что означает: у заданного уравнения нет корней. Тогда и исходное неполное квадратное уравнение 9 · x 2 + 7 = 0 не будет иметь корней.

Ответ: уравнение 9 · x 2 + 7 = 0 не имеет корней.

Необходимо решить уравнение − x 2 + 36 = 0 .

Решение

Перенесем 36 в правую часть: − x 2 = − 36 .
Разделим обе части на − 1 , получим x 2 = 36 . В правой части – положительное число, отсюда можно сделать вывод, что x = 36 или x = – 36 .
Извлечем корень и запишем окончательный итог: неполное квадратное уравнение − x 2 + 36 = 0 имеет два корня x = 6 или x = − 6 .

Ответ: x = 6 или x = − 6 .

Решение уравнения a·x 2 +b·x=0

Разберем третий вид неполных квадратных уравнений, когда c = 0 . Чтобы найти решение неполного квадратного уравнения a · x 2 + b · x = 0 , воспользуемся методом разложения на множители. Разложим на множители многочлен, который находится в левой части уравнения, вынеся за скобки общий множитель x . Этот шаг даст возможность преобразовать исходное неполное квадратное уравнение в равносильное ему x · ( a · x + b ) = 0 . А это уравнение, в свою очередь, равносильно совокупности уравнений x = 0 и a · x + b = 0 . Уравнение a · x + b = 0 линейное, и корень его: x = − b a .

Таким образом, неполное квадратное уравнение a · x 2 + b · x = 0 будет иметь два корня x = 0 и x = − b a .

Закрепим материал примером.

Необходимо найти решение уравнения 2 3 · x 2 – 2 2 7 · x = 0 .

Решение

Вынесем x за скобки и получим уравнение x · 2 3 · x – 2 2 7 = 0 . Это уравнение равносильно уравнениям x = 0 и 2 3 · x – 2 2 7 = 0 . Теперь следует решить полученное линейное уравнение: 2 3 · x = 2 2 7 , x = 2 2 7 2 3 .

Далее осуществим деление смешанного числа на обыкновенную дробь и определяем, что x = 3 3 7 . Таким образом, корни исходного уравнения это: x = 0 и x = 3 3 7 .

Кратко решение уравнения запишем так:

2 3 · x 2 – 2 2 7 · x = 0 x · 2 3 · x – 2 2 7 = 0

x = 0 или 2 3 · x – 2 2 7 = 0

x = 0 или x = 3 3 7

Ответ: x = 0 , x = 3 3 7 .

Дискриминант, формула корней квадратного уравнения

Для нахождения решения квадратных уравнений существует формула корней:

x = – b ± D 2 · a , где D = b 2 − 4 · a · c – так называемый дискриминант квадратного уравнения.

Запись x = – b ± D 2 · a по сути означает, что x 1 = – b + D 2 · a , x 2 = – b – D 2 · a .

Нелишним будет понимать, как была выведена указанная формула и каким образом ее применять.

Вывод формулы корней квадратного уравнения

Пускай перед нами стоит задача решить квадратное уравнение a · x 2 + b · x + c = 0 . Осуществим ряд равносильных преобразований:

  • разделим обе части уравнения на число a, отличное от нуля, получим приведенное квадратное уравнение: x 2 + b a · x + c a = 0 ;
  • выделим полный квадрат в левой части получившегося уравнения:
    x 2 + b a · x + c a = x 2 + 2 · b 2 · a · x + b 2 · a 2 – b 2 · a 2 + c a = = x + b 2 · a 2 – b 2 · a 2 + c a
    После этого уравнения примет вид: x + b 2 · a 2 – b 2 · a 2 + c a = 0 ;
  • теперь возможно сделать перенос двух последних слагаемых в правую часть, сменив знак на противоположный, после чего получаем: x + b 2 · a 2 = b 2 · a 2 – c a ;
  • наконец, преобразуем выражение, записанное в правой части последнего равенства:
    b 2 · a 2 – c a = b 2 4 · a 2 – c a = b 2 4 · a 2 – 4 · a · c 4 · a 2 = b 2 – 4 · a · c 4 · a 2 .

Таким образом, мы пришли к уравнению x + b 2 · a 2 = b 2 – 4 · a · c 4 · a 2 , равносильному исходному уравнению a · x 2 + b · x + c = 0 .

Решение подобных уравнений мы разбирали в предыдущих пунктах (решение неполных квадратных уравнений). Уже полученный опыт дает возможность сделать вывод касательно корней уравнения x + b 2 · a 2 = b 2 – 4 · a · c 4 · a 2 :

  • при b 2 – 4 · a · c 4 · a 2 0 уравнение не имеет действительных решений;
  • при b 2 – 4 · a · c 4 · a 2 = 0 уравнение имеет вид x + b 2 · a 2 = 0 , тогда x + b 2 · a = 0 .

Отсюда очевиден единственный корень x = – b 2 · a ;

  • при b 2 – 4 · a · c 4 · a 2 > 0 верным будет: x + b 2 · a = b 2 – 4 · a · c 4 · a 2 или x = b 2 · a – b 2 – 4 · a · c 4 · a 2 , что то же самое, что x + – b 2 · a = b 2 – 4 · a · c 4 · a 2 или x = – b 2 · a – b 2 – 4 · a · c 4 · a 2 , т.е. уравнение имеет два корня.

Возможно сделать вывод, что наличие или отсутствие корней уравнения x + b 2 · a 2 = b 2 – 4 · a · c 4 · a 2 (а значит и исходного уравнения) зависит от знака выражения b 2 – 4 · a · c 4 · a 2 , записанного в правой части. А знак этого выражения задается знаком числителя, (знаменатель 4 · a 2 всегда будет положителен), то есть, знаком выражения b 2 − 4 · a · c . Этому выражению b 2 − 4 · a · c дано название – дискриминант квадратного уравнения и определена в качестве его обозначения буква D . Здесь можно записать суть дискриминанта – по его значению и знаку делают вывод, будет ли квадратное уравнение иметь действительные корни, и, если будет, то каково количество корней – один или два.

Вернемся к уравнению x + b 2 · a 2 = b 2 – 4 · a · c 4 · a 2 . Перепишем его, используя обозначение дискриминанта: x + b 2 · a 2 = D 4 · a 2 .

Вновь сформулируем выводы:

  • при D 0 уравнение не имеет действительных корней;
  • при D = 0 уравнение имеет единственный корень x = – b 2 · a ;
  • при D > 0 уравнение имеет два корня: x = – b 2 · a + D 4 · a 2 или x = – b 2 · a – D 4 · a 2 . Эти корни на основе свойства радикалов возможно записать в виде: x = – b 2 · a + D 2 · a или – b 2 · a – D 2 · a . А, когда раскроем модули и приведем дроби к общему знаменателю, получим: x = – b + D 2 · a , x = – b – D 2 · a .

Так, результатом наших рассуждений стало выведение формулы корней квадратного уравнения:

x = – b + D 2 · a , x = – b – D 2 · a , дискриминант D вычисляется по формуле D = b 2 − 4 · a · c .

Данные формулы дают возможность при дискриминанте больше нуля определить оба действительных корня. Когда дискриминант равен нулю, применение обеих формул даст один и тот же корень, как единственное решение квадратного уравнения. В случае, когда дискриминант отрицателен, попытавшись использовать формулу корня квадратного уравнения, мы столкнемся с необходимостью извлечь квадратный корень из отрицательного числа, что выведет нас за рамки действительных чисел. При отрицательном дискриминанте у квадратного уравнения не будет действительных корней, но возможна пара комплексно сопряженных корней, определяемых теми же полученными нами формулами корней.

Алгоритм решения квадратных уравнений по формулам корней

Решить квадратное уравнение возможно, сразу задействуя формулу корней, но в основном так поступают при необходимости найти комплексные корни.

В основной же массе случаев обычно подразумевается поиск не комплексных, а действительных корней квадратного уравнения. Тогда оптимально перед тем, как использовать формулы корней квадратного уравнения, сначала определить дискриминант и удостовериться, что он не является отрицательным (в ином случае сделаем вывод, что у уравнения нет действительных корней), а после приступить к вычислению значения корней.

Рассуждения выше дают возможность сформулировать алгоритм решения квадратного уравнения.

Чтобы решить квадратное уравнение a · x 2 + b · x + c = 0 , необходимо:

  • по формуле D = b 2 − 4 · a · c найти значение дискриминанта;
  • при D 0 сделать вывод об отсутствии у квадратного уравнения действительных корней;
  • при D = 0 найти единственный корень уравнения по формуле x = – b 2 · a ;
  • при D > 0 определить два действительных корня квадратного уравнения по формуле x = – b ± D 2 · a .

Отметим, что, когда дискриминант есть нуль, можно использовать формулу x = – b ± D 2 · a , она даст тот же результат, что и формула x = – b 2 · a .

Примеры решения квадратных уравнений

Приведем решение примеров при различных значениях дискриминанта.

Необходимо найти корни уравнения x 2 + 2 · x − 6 = 0 .

Решение

Запишем числовые коэффициенты квадратного уравнения: a = 1 , b = 2 и c = − 6 . Далее действуем по алгоритму, т.е. приступим к вычислению дискриминанта, для чего подставим коэффициенты a , b и c в формулу дискриминанта: D = b 2 − 4 · a · c = 2 2 − 4 · 1 · ( − 6 ) = 4 + 24 = 28 .

Итак, мы получили D > 0 , а это означает, что исходное уравнение будет иметь два действительных корня.
Для их нахождения используем формулу корня x = – b ± D 2 · a и, подставив соответствующие значения, получим: x = – 2 ± 28 2 · 1 . Упростим полученное выражение, вынеся множитель за знак корня с последующим сокращением дроби:

x = – 2 + 2 · 7 2 или x = – 2 – 2 · 7 2

x = – 1 + 7 или x = – 1 – 7

Ответ: x = – 1 + 7 ​​​​​​, x = – 1 – 7 .

Необходимо решить квадратное уравнение − 4 · x 2 + 28 · x − 49 = 0 .

Решение

Определим дискриминант: D = 28 2 − 4 · ( − 4 ) · ( − 49 ) = 784 − 784 = 0 . При таком значении дискриминанта исходное уравнение будет иметь лишь один корень, определяемый по формуле x = – b 2 · a .

x = – 28 2 · ( – 4 ) x = 3 , 5

Ответ: x = 3 , 5 .

Необходимо решить уравнение 5 · y 2 + 6 · y + 2 = 0

Решение

Числовые коэффициенты этого уравнения будут: a = 5 , b = 6 и c = 2 . Используем эти значения для нахождения дискриминанта: D = b 2 − 4 · a · c = 6 2 − 4 · 5 · 2 = 36 − 40 = − 4 . Вычисленный дискриминант отрицателен, таким образом, исходное квадратное уравнение не имеет действительных корней.

В случае, когда стоит задача указать комплексные корни, применим формулу корней, выполняя действия с комплексными числами:

x = – 6 + 2 · i 10 или x = – 6 – 2 · i 10 ,

x = – 3 5 + 1 5 · i или x = – 3 5 – 1 5 · i .

Ответ: действительные корни отсутствуют; комплексные корни следующие: – 3 5 + 1 5 · i , – 3 5 – 1 5 · i .

В школьной программе стандартно нет требования искать комплексные корни, поэтому, если в ходе решения дискриминант определен как отрицательный, сразу записывается ответ, что действительных корней нет.

Формула корней для четных вторых коэффициентов

Формула корней x = – b ± D 2 · a ( D = b 2 − 4 · a · c ) дает возможность получить еще одну формулу, более компактную, позволяющую находить решения квадратных уравнений с четным коэффициентом при x (либо с коэффициентом вида 2 · n , к примеру, 2 · 3 или 14 · ln 5 = 2 · 7 · ln 5 ). Покажем, как выводится эта формула.

Пусть перед нами стоит задача найти решение квадратного уравнения a · x 2 + 2 · n · x + c = 0 . Действуем по алгоритму: определяем дискриминант D = ( 2 · n ) 2 − 4 · a · c = 4 · n 2 − 4 · a · c = 4 · ( n 2 − a · c ) , а затем используем формулу корней:

x = – 2 · n ± D 2 · a , x = – 2 · n ± 4 · n 2 – a · c 2 · a , x = – 2 · n ± 2 n 2 – a · c 2 · a , x = – n ± n 2 – a · c a .

Пусть выражение n 2 − a · c будет обозначено как D 1 (иногда его обозначают D ‘ ). Тогда формула корней рассматриваемого квадратного уравнения со вторым коэффициентом 2 · n примет вид:

x = – n ± D 1 a , где D 1 = n 2 − a · c .

Легко увидеть, что что D = 4 · D 1 , или D 1 = D 4 . Иначе говоря, D 1 – это четверть дискриминанта. Очевидно, что знак D 1 такой же, как знак D , а значит знак D 1 также может служить индикатором наличия или отсутствия корней квадратного уравнения.

Таким образом, чтобы найти решение квадратного уравнения со вторым коэффициентом 2 · n , необходимо:

  • найти D 1 = n 2 − a · c ;
  • при D 1 0 сделать вывод, что действительных корней нет;
  • при D 1 = 0 определить единственный корень уравнения по формуле x = – n a ;
  • при D 1 > 0 определить два действительных корня по формуле x = – n ± D 1 a .

Необходимо решить квадратное уравнение 5 · x 2 − 6 · x − 32 = 0 .

Решение

Второй коэффициент заданного уравнения можем представить как 2 · ( − 3 ) . Тогда перепишем заданное квадратное уравнение как 5 · x 2 + 2 · ( − 3 ) · x − 32 = 0 , где a = 5 , n = − 3 и c = − 32 .

Вычислим четвертую часть дискриминанта: D 1 = n 2 − a · c = ( − 3 ) 2 − 5 · ( − 32 ) = 9 + 160 = 169 . Полученное значение положительно, это означает, что уравнение имеет два действительных корня. Определим их по соответствующей формуле корней:

x = – n ± D 1 a , x = – – 3 ± 169 5 , x = 3 ± 13 5 ,

x = 3 + 13 5 или x = 3 – 13 5

x = 3 1 5 или x = – 2

Возможно было бы произвести вычисления и по обычной формуле корней квадратного уравнения, но в таком случае решение было бы более громоздким.

Ответ: x = 3 1 5 или x = – 2 .

Упрощение вида квадратных уравнений

Иногда существует возможность оптимизировать вид исходного уравнения, что позволит упростить процесс вычисления корней.

К примеру, квадратное уравнение 12 · x 2 − 4 · x − 7 = 0 явно удобнее для решения, чем 1200 · x 2 − 400 · x − 700 = 0 .

Чаще упрощение вида квадратного уравнения производится действиями умножения или деления его обеих частей на некое число. К примеру, выше мы показали упрощенную запись уравнения 1200 · x 2 − 400 · x − 700 = 0 , полученную делением обеих его частей на 100 .

Такое преобразование возможно, когда коэффициенты квадратного уравнения не являются взаимно простыми числами. Тогда обычно осуществляют деление обеих частей уравнения на наибольший общий делитель абсолютных величин его коэффициентов.

Как пример используем квадратное уравнение 12 · x 2 − 42 · x + 48 = 0 . Определим НОД абсолютных величин его коэффициентов: НОД ( 12 , 42 , 48 ) = НОД(НОД ( 12 , 42 ) , 48 ) = НОД ( 6 , 48 ) = 6 . Произведем деление обеих частей исходного квадратного уравнения на 6 и получим равносильное ему квадратное уравнение 2 · x 2 − 7 · x + 8 = 0 .

Умножением обеих частей квадратного уравнения обычно избавляются от дробных коэффициентов. При этом умножают на наименьшее общее кратное знаменателей его коэффициентов. К примеру, если каждую часть квадратного уравнения 1 6 · x 2 + 2 3 · x – 3 = 0 перемножить с НОК ( 6 , 3 , 1 ) = 6 , то оно станет записано в более простом виде x 2 + 4 · x − 18 = 0 .

Напоследок отметим, что почти всегда избавляются от минуса при первом коэффициенте квадратного уравнения, изменяя знаки каждого члена уравнения, что достигается путем умножения (или деления) обеих частей на − 1 . К примеру, от квадратного уравнения − 2 · x 2 − 3 · x + 7 = 0 можно перейти к упрощенной его версии 2 · x 2 + 3 · x − 7 = 0 .

Связь между корнями и коэффициентами

Уже известная нам формула корней квадратных уравнений x = – b ± D 2 · a выражает корни уравнения через его числовые коэффициенты. Опираясь на данную формулу, мы имеем возможность задать другие зависимости между корнями и коэффициентами.

Самыми известными и применимыми являются формулы теоремы Виета:

x 1 + x 2 = – b a и x 2 = c a .

В частности, для приведенного квадратного уравнения сумма корней есть второй коэффициент с противоположным знаком, а произведение корней равно свободному члену. К примеру, по виду квадратного уравнения 3 · x 2 − 7 · x + 22 = 0 возможно сразу определить, что сумма его корней равна 7 3 , а произведение корней – 22 3 .

Также можно найти ряд прочих связей между корнями и коэффициентами квадратного уравнения. Например, сумма квадратов корней квадратного уравнения может быть выражена через коэффициенты:

x 1 2 + x 2 2 = ( x 1 + x 2 ) 2 – 2 · x 1 · x 2 = – b a 2 – 2 · c a = b 2 a 2 – 2 · c a = b 2 – 2 · a · c a 2 .

Как решать квадратные уравнения

О чем эта статья:

Понятие квадратного уравнения

Уравнение — это равенство, содержащее переменную, значение которой нужно найти.

Например, х + 8 = 12 — это уравнение, которое содержит переменную х.

Корень уравнения — это такое значение переменной, которое при подстановке в уравнение обращает его в верное числовое равенство.

Например, если х = 5, то при подстановке в уравнение мы получим 5 + 8 = 12. 13 = 12 — противоречие. Значит, х = 5 не является корнем уравнения.

А вот если х = 4, то при подстановке в уравнение мы получим 4 + 8 = 12. 12 = 12 — верное равенство. Значит, х = 4 является корнем уравнения.

Решить уравнение — значит найти все его корни или доказать, что их не существует.

Квадратное уравнение — это уравнение вида ax 2 + bx + c = 0, где a — первый или старший коэффициент, не равный нулю, b — второй коэффициент, c — свободный член.

Чтобы запомнить месторасположение коэффициентов, давайте потренируемся определять их.

Квадратные уравнения могут иметь два корня, один корень или не иметь корней.

Чтобы определить, сколько корней имеет уравнение, нужно обратить внимание на дискриминант. Чтобы его найти, берем формулу: D = b 2 − 4ac. А вот свойства дискриминанта:

  • если D 0, есть два различных корня.

С этим разобрались. А сейчас посмотрим подробнее на различные виды квадратных уравнений.

Разобраться в теме еще быстрее с помощью опытного преподавателя можно на курсах по математике в онлайн-школе Skysmart.

Приведенные и неприведенные квадратные уравнения

Квадратное уравнение может быть приведенным или неприведенным — все зависит от от значения первого коэффициента.

Приведенное квадратное уравнение — это уравнение, где старший коэффициент, тот который стоит при одночлене высшей степени, равен единице.

Неприведенным называют квадратное уравнение, где старший коэффициент отличается от единицы.

Давайте-ка на примерах — вот у нас есть два уравнения:

  • x 2 — 2x + 6 = 0
  • x 2 — x — 1/4 = 0

В каждом из них старший коэффициент равен единице (которую мы мысленно представляем при x 2 ), а значит уравнение называется приведенным.

  • 2x 2 − 4x — 12 = 0 — первый коэффициент отличен от единицы (2), значит это неприведенное квадратное уравнение.

Каждое неприведенное квадратное уравнение можно преобразовать в приведенное, если произвести равносильное преобразование — разделить обе его части на первый коэффициент.

Пример 1. Превратим неприведенное уравнение: 8x 2 + 20x — 9 = 0 — в приведенное.

Для этого разделим обе части исходного уравнения на старший коэффициент 8:

Ответ: равносильное данному приведенное уравнение x 2 + 2,5x — 1,125 = 0.

Полные и неполные квадратные уравнения

В определении квадратного уравнения есть условие: a ≠ 0. Оно нужно, чтобы уравнение ax 2 + bx + c = 0 было именно квадратным. Если a = 0, то уравнение обретет вид линейного: bx + c = 0.

Что касается коэффициентов b и c, то они могут быть равны нулю, как по отдельности, так и вместе. В таком случае квадратное уравнение принято называть неполным.

Неполное квадратное уравнение —— это квадратное уравнение вида ax 2 + bx + c = 0, где оба или хотя бы один из коэффициентов b и c равен нулю.

Полное квадратное уравнение — это уравнение, у которого все коэффициенты отличны от нуля.

Для самых любопытных объясняем откуда появились такие названия:
  • Если b = 0, то квадратное уравнение принимает вид ax 2 + 0x+c=0 и оно равносильно ax 2 + c = 0.
  • Если c = 0, то квадратное уравнение выглядит так ax 2 + bx + 0 = 0, иначе его можно написать как ax 2 + bx = 0.
  • Если b = 0 и c = 0, то квадратное уравнение выглядит так ax 2 = 0.

Такие уравнения отличны от полного квадратного тем, что их левые части не содержат либо слагаемого с неизвестной переменной, либо свободного члена, либо и того и другого. Отсюда и их название — неполные квадратные уравнения.

Решение неполных квадратных уравнений

Как мы уже знаем, есть три вида неполных квадратных уравнений:

  • ax 2 = 0, ему отвечают коэффициенты b = 0 и c = 0;
  • ax 2 + c = 0, при b = 0;
  • ax 2 + bx = 0, при c = 0.

Давайте рассмотрим по шагам, как решать неполные квадратные уравнения по видам.

Как решить уравнение ax 2 = 0

Начнем с решения неполных квадратных уравнений, в которых b и c равны нулю, то есть, с уравнений вида ax 2 = 0.

Уравнение ax 2 = 0 равносильно x 2 = 0. Такое преобразование возможно, когда мы разделили обе части на некое число a, которое не равно нулю. Корнем уравнения x 2 = 0 является нуль, так как 0 2 = 0. Других корней у этого уравнения нет, что подтверждают свойства степеней.

Таким образом, неполное квадратное уравнение ax 2 = 0 имеет единственный корень x = 0.

Пример 1. Решить −6x 2 = 0.

  1. Замечаем, что данному уравнению равносильно x 2 = 0, значит исходное уравнение имеет единственный корень — нуль.
  2. По шагам решение выглядит так:

Как решить уравнение ax 2 + с = 0

Обратим внимание на неполные квадратные уравнения вида ax 2 + c = 0, в которых b = 0, c ≠ 0. Мы давно знаем, что слагаемые в уравнениях носят двусторонние куртки: когда мы переносим их из одной части уравнения в другую, они надевает куртку на другую сторону — меняют знак на противоположный.

Еще мы знаем, что если обе части уравнения поделить на одно и то же число (кроме нуля) — у нас получится равносильное уравнение. Ну есть одно и то же, только с другими цифрами.

Держим все это в голове и колдуем над неполным квадратным уравнением (производим «равносильные преобразования»): ax 2 + c = 0:

  • перенесем c в правую часть: ax 2 = – c,
  • разделим обе части на a: x 2 = – c/а.

Ну все, теперь мы готовы к выводам о корнях неполного квадратного уравнения. В зависимости от значений a и c, выражение — c/а может быть отрицательным или положительным. Разберем конкретные случаи.

Если — c/а 2 = – c/а не имеет корней. Все потому, что квадрат любого числа всегда равен неотрицательному числу. Из этого следует, что при — c/а 0, то корни уравнения x 2 = – c/а будут другими. Например, можно использовать правило квадратного корня и тогда корень уравнения равен числу √- c/а, так как (√- c/а) 2 = – c/а. Кроме того, корнем уравнения может стать -√- c/а, так как (-√- c/а) 2 = – c/а. Ура, больше у этого уравнения нет корней.

Неполное квадратное уравнение ax 2 + c = 0 равносильно уравнению х 2 = -c/a, которое:

  • не имеет корней при — c/а 0.
В двух словах

Пример 1. Найти решение уравнения 8x 2 + 5 = 0.

    Перенесем свободный член в правую часть:

Разделим обе части на 8:

  • В правой части осталось число со знаком минус, значит у данного уравнения нет корней.
  • Ответ: уравнение 8x 2 + 5 = 0 не имеет корней.

    Как решить уравнение ax 2 + bx = 0

    Осталось разобрать третий вид неполных квадратных уравнений, когда c = 0.

    Неполное квадратное уравнение ax 2 + bx = 0 можно решить методом разложения на множители. Как разложить квадратное уравнение:

    Разложим на множители многочлен, который расположен в левой части уравнения — вынесем за скобки общий множитель x.

    Теперь можем перейти от исходного уравнения к равносильному x * (ax + b) = 0. А это уравнение равносильно совокупности двух уравнений x = 0 и ax + b = 0, последнее — линейное, его корень x = −b/a.

    Таким образом, неполное квадратное уравнение ax 2 + bx = 0 имеет два корня:

    Пример 1. Решить уравнение 0,5x 2 + 0,125x = 0

  • Это уравнение равносильно х = 0 и 0,5x + 0,125 = 0.
  • Решить линейное уравнение:

    0,5x = 0,125,
    х = 0,125/0,5

  • Значит корни исходного уравнения — 0 и 0,25.
  • Ответ: х = 0 и х = 0,25.

    Как разложить квадратное уравнение

    С помощью теоремы Виета можно получить формулу разложения квадратного трехчлена на множители. Выглядит она так:

    Формула разложения квадратного трехчлена

    Если x1 и x2 — корни квадратного трехчлена ax 2 + bx + c, то справедливо равенство ax 2 + bx + c = a (x − x1) (x − x2).

    Дискриминант: формула корней квадратного уравнения

    Чтобы найти результат квадратного уравнения, придумали формулу корней. Выглядит она так:

    где D = b 2 − 4ac — дискриминант квадратного уравнения.

    Эта запись означает:

    Чтобы легко применять эту формулу, нужно понять, как она получилась. Давайте разбираться.

    Алгоритм решения квадратных уравнений по формулам корней

    Теперь мы знаем, что при решении квадратных уравнения можно использовать универсальную формулу корней — это помогает находить комплексные корни.

    В 8 классе на алгебре можно встретить задачу по поиску действительных корней квадратного уравнения. Для этого важно перед использованием формул найти дискриминант и убедиться, что он неотрицательный, и только после этого вычислять значения корней. Если дискриминант отрицательный, значит уравнение не имеет действительных корней.

    Алгоритм решения квадратного уравнения ax 2 + bx + c = 0:

    • вычислить его значение дискриминанта по формуле D = b 2 −4ac;
    • если дискриминант отрицательный, зафиксировать, что действительных корней нет;
    • если дискриминант равен нулю, вычислить единственный корень уравнения по формуле х = −b/2a;
    • если дискриминант положительный, найти два действительных корня квадратного уравнения по формуле корней

    Чтобы запомнить алгоритм решения квадратных уравнений и с легкостью его использовать, давайте тренироваться!

    Примеры решения квадратных уравнений

    Как решать квадратные уравнения мы уже знаем, осталось закрепить знания на практике.

    Пример 1. Решить уравнение −4x 2 + 28x — 49 = 0.

    1. Найдем дискриминант: D = 28 2 — 4(-4)(-49) = 784 — 784 = 0
    2. Так как дискриминант равен нулю, значит это квадратное уравнение имеет единственный корень
    3. Найдем корень

    Ответ: единственный корень 3,5.

    Пример 2. Решить уравнение 54 — 6x 2 = 0.

      Произведем равносильные преобразования. Умножим обе части на −1

    Оставим неизвестное в одной части, остальное перенесем с противоположным знаком в другую

    Ответ: два корня 3 и — 3.

    Пример 3. Решить уравнение x 2 — х = 0.

      Преобразуем уравнение так, чтобы появились множители

    Ответ: два корня 0 и 1.

    Пример 4. Решить уравнение x 2 — 10 = 39.

      Оставим неизвестное в одной части, остальное перенесем с противоположным знаком в другую

    Ответ: два корня 7 и −7.

    Пример 5. Решить уравнение 3x 2 — 4x+94 = 0.

      Найдем дискриминант по формуле

    D = (-4) 2 — 4 * 3 * 94 = 16 — 1128 = −1112

  • Дискриминант отрицательный, поэтому корней нет.
  • Ответ: корней нет.

    В школьной программе за 8 класс нет обязательного требования искать комплексные корни, но такой подход может ускорить ход решения. Если дискриминант отрицательный — сразу пишем ответ, что действительных корней нет и не мучаемся.

    Формула корней для четных вторых коэффициентов

    Рассмотрим частный случай. Формула решения корней квадратного уравнения , где D = b 2 — 4ac, помогает получить еще одну формулу, более компактную, при помощи которой можно решать квадратные уравнения с четным коэффициентом при x. Рассмотрим, как появилась эта формула.

    Например, нам нужно решить квадратное уравнение ax 2 + 2nx + c = 0. Сначала найдем его корни по известной нам формуле. Вычислим дискриминант D = (2n) 2 – 4ac = 4n 2 — 4ac = 4(n 2 – ac) и подставим в формулу корней:

    2 + 2nx + c = 0″ height=”705″ src=”https://user84060.clients-cdnnow.ru/uploads/5fc11a460e2f8354381151.png” width=”588″>

    Для удобства вычислений обозначим выражение n 2 -ac как D1. Тогда формула корней квадратного уравнения со вторым коэффициентом 2·n примет вид:

    где D1 = n 2 – ac.

    Самые внимательные уже заметили, что D = 4D1, или D1= D/4. Проще говоря, D1 — это четверть дискриминанта. И получается, что знак D1 является индикатором наличия или отсутствия корней квадратного уравнения.

    Сформулируем правило. Чтобы найти решение квадратного уравнения со вторым коэффициентом 2n, нужно:

    • вычислить D1= n 2 – ac;
    • если D1 0, значит можно найти два действительных корня по формуле

    Формула Виета

    Если в школьной геометрии чаще всего используется теорема Пифагора, то в школьной алгебре ведущую роль занимают формулы Виета. Теорема звучит так:

    Сумма корней x 2 + bx + c = 0 равна второму коэффициенту с противоположным знаком, а произведение корней равняется свободному члену.

    Если дано x 2 + bx + c = 0, где x₁ и x₂ являются корнями, то справедливы два равенства:

    Знак системы, который принято обозначать фигурной скобкой, означает, что значения x₁ и x₂ удовлетворяют обоим равенствам.

    Рассмотрим теорему Виета на примере: x 2 + 4x + 3 = 0.

    Пока неизвестно, какие корни имеет данное уравнение. Но в соответствии с теоремой можно записать, что сумма этих корней равна второму коэффициенту с противоположным знаком. Он равен четырем, значит будем использовать минус четыре:

    Произведение корней по теореме соответствует свободному члену. В данном случае свободным членом является число три. Значит:

    Необходимо проверить равна ли сумма корней −4, а произведение 3. Для этого найдем корни уравнения x 2 + 4x + 3 = 0. Воспользуемся формулами для чётного второго коэффициента:
    2 + 4x + 3 = 0″ height=”215″ src=”https://lh5.googleusercontent.com/E_X403ETh_88EANRWdQN03KRT8yxP2HO4HoCrxj__c8G0DqmNJ1KDRqtLH5Z1p7DtHm-rNMDB2tEs41D7RHpEV5mojDTMMRPuIkcW33jVNDoOe0ylzXdHATLSGzW4NakMkH2zkLE” width=”393″>

    Получилось, что корнями уравнения являются числа −1 и −3. Их сумма равняется второму коэффициенту с противоположным знаком, а значит решение верное.
    2 + 4x + 3 = 0″ height=”52″ src=”https://lh5.googleusercontent.com/VzGPXO9B0ZYrr9v0DpJfXwuzeZtjYnDxE_ma76PUC8o7jVWwa8kZjTJhq2Lof0TiJXAp_ny3yRwI_OyRzeucv9xUZ63yoozGPP4xd4OxvElVT7Pt-d6xL5w17e_mQNs5qZJQiwfG” width=”125″>

    Произведение корней −1 и −3 по теореме Виета должно равняться свободному члену, то есть числу 3. Это условие также выполняется:
    2 + 4x + 3 = 0″ height=”52″ src=”https://lh4.googleusercontent.com/Cq-LCFmY3YGNSan1VF3l3CqIeojoJYAvGAiTBWnzyoZu_xJFrF5NfQ3xCe59apJklw6uYbmQ4lAkBTeC-TJmEGicN3rgGtsezhuqdNiOWjZT39NziOB5uOmQr3cr9-5fNnepdZDo” width=”112″>

    Результат проделанных вычислений в том, что мы убедились в справедливости выражения:

    Когда дана сумма и произведение корней квадратного уравнения, принято начинать подбор подходящих корней. Теорема, обратная теореме Виета, при таких условиях может быть главным помощником. Вот она:

    Обратная теорема Виета

    Если числа x1 и x2 таковы, что их сумма равна второму коэффициенту уравнения x 2 + bx + c = 0, взятому с противоположным знаком, а их произведение равно свободному члену, то эти числа и есть корни x 2 + bx + c = 0.

    Обычно вся суть обратных теорем в том самом выводе, которое дает первая теорема. Так, при доказательстве теоремы Виета стало понятно, что сумма x1 и x2 равна −b, а их произведение равно c. В обратной теореме это и есть утверждение.

    Пример 1. Решить при помощи теоремы Виета: x 2 − 6x + 8 = 0.

      Для начала запишем сумму и произведение корней уравнения. Сумма будет равна 6, так как второй коэффициент равен −6. А произведение корней равно 8.

    2 − 6x + 8 = 0″ height=”59″ src=”https://user84060.clients-cdnnow.ru/uploads/5fc101ce2e346034751939.png” width=”117″>

    Когда у нас есть эти два равенства, можно подобрать подходящие корни, которые будут удовлетворять обоим равенствам системы.

    Чтобы проще подобрать корни, нужно их перемножить. Число 8 можно получить путем перемножения чисел 4 и 2 либо 1 и 8. Но значения x1 и x2 надо подбирать так, чтобы они удовлетворяли и второму равенству тоже.

    Можно сделать вывод, что значения 1 и 8 не подходят, так как они не удовлетворяют равенству x1 + x2 = 6. А значения 4 и 2 подходят обоим равенствам:

    Значит числа 4 и 2 — корни уравнения x 2 − 6x + 8 = 0. p>

    Упрощаем вид квадратных уравнений

    Если мы ходили в школу всегда одной тропинкой, а потом вдруг обнаружили путь короче — это значит теперь у нас есть выбор: упростить себе задачу и сократить время на дорогу или прогуляться по привычному маршруту.

    Так же и при вычислении корней квадратного уравнения. Ведь проще посчитать уравнение 11x 2 — 4 x — 6 = 0, чем 1100x 2 — 400x — 600 = 0.

    Часто упрощение вида квадратного уравнения можно получить через умножение или деление обеих частей на некоторое число. Например, в предыдущем абзаце мы упростили уравнение 1100x 2 — 400x — 600 = 0, просто разделив обе части на 100.

    Такое преобразование возможно, когда коэффициенты не являются взаимно простыми числами. Тогда принято делить обе части уравнения на наибольший общий делитель абсолютных величин его коэффициентов.

    Покажем, как это работает на примере 12x 2 – 42x + 48 = 0. Найдем наибольший общий делитель абсолютных величин его коэффициентов: НОД (12, 42, 48) = 6. Разделим обе части исходного квадратного уравнения на 6, и придем к равносильному уравнению 2x 2 — 7x + 8 = 0. Вот так просто.

    А умножение обеих частей квадратного уравнения отлично помогает избавиться от дробных коэффициентов. Умножать в данном случае лучше на наименьшее общее кратное знаменателей его коэффициентов. Например, если обе части квадратного уравнения

    умножить на НОК (6, 3, 1) = 6, то оно примет более простой вид x 2 + 4x — 18 = 0.

    Также для удобства вычислений можно избавиться от минуса при старшем коэффициенте квадратного уравнения — для этого умножим или разделим обе части на −1. Например, удобно от квадратного уравнения −2x 2 – 3x + 7 = 0 перейти к решению 2x 2 + 3x — 7 = 0.

    Связь между корнями и коэффициентами

    Мы уже запомнили, что формула корней квадратного уравнения выражает корни уравнения через его коэффициенты:

    Из этой формулы, можно получить другие зависимости между корнями и коэффициентами.

    Например, можно применить формулы из теоремы Виета:

    Для приведенного квадратного уравнения сумма корней равна второму коэффициенту с противоположным знаком, а произведение корней — свободному члену. Например, по виду уравнения 3x 2 – 7x + 22 = 0 можно сразу сказать, что сумма его корней равна 7/3, а произведение корней равно 22/3.

    Можно активно использовать уже записанные формулы и с их помощью получить ряд других связей между корнями и коэффициентами квадратного уравнения. Таким образом можно выразить сумму квадратов корней квадратного уравнения через его коэффициенты:

    [spoiler title=”источники:”]

    http://zaochnik.com/spravochnik/matematika/systems/reshenie-kvadratnyh-uravnenij/

    http://skysmart.ru/articles/mathematic/kak-reshat-kvadratnye-uravneniya

    [/spoiler]

    Доброго времени суток, дорогие любители математики! Предлагаю Вам сегодня еще раз разобраться, как решать квадратные уравнения. Думаю, для многих читателей данный вопрос покажется простым, но сможете ли Вы навскидку назвать семь способов? А их, конечно, больше! Думаю, другие способы вспомните в комментариях.

    Кстати, о комментариях! Там я часто вижу вопрос: «Почему Вы игнорируете формулы Виета?». Мне кажется, что на широкую аудиторию стоит транслировать наиболее простой способ — решение через дискриминант. Он понятный, его все помнят, а значит смогут разобраться в решении [и дочитают статью ;)].

    Всем известно, что квадратное уравнение имеет вид:

    Как решаются квадратные уравнения — почти все способы

    Коэффициенты a, b и c здесь — это некоторые числа, а x — неизвестная. Для решения квадратного уравнения придумали общие формулы, понятные и простые.

    Способ первый. Дискриминант.

    Для решения квадратного уравнения через дискриминант его нужно вычислить:

    Как решаются квадратные уравнения — почти все способы

    А затем найти корни:

    Как решаются квадратные уравнения — почти все способы

    Все супер просто! Берем числа, получаем результат.

    Пример:

    Как решаются квадратные уравнения — почти все способы
    Как решаются квадратные уравнения — почти все способы
    Как решаются квадратные уравнения — почти все способы
    Как решаются квадратные уравнения — почти все способы

    Способ первый с половиной. Дискриминант, деленный на четыре.

    Существует еще одна формула — для случая, когда второй коэффициент четный. Выведем ее:

    Как решаются квадратные уравнения — почти все способы
    Как решаются квадратные уравнения — почти все способы
    Как решаются квадратные уравнения — почти все способы

    Как видите, для четного коэффициента двойка будет всегда сокращаться, поэтому говорят о дискриминанте, деленном на четыре:

    Как решаются квадратные уравнения — почти все способы

    А корни будут находиться по такой формуле:

    Как решаются квадратные уравнения — почти все способы

    Проверим на нашем примере:

    Как решаются квадратные уравнения — почти все способы
    Как решаются квадратные уравнения — почти все способы
    Как решаются квадратные уравнения — почти все способы
    Как решаются квадратные уравнения — почти все способы

    Корни сошлись, работает!

    Способ второй. Выделение полного квадрата.

    Формулы для дискриминанта очень занятные, но откуда они взялись?

    Вернемся к началу:

    Как решаются квадратные уравнения — почти все способы

    Поделим все уравнение на a:

    Как решаются квадратные уравнения — почти все способы

    А дальше начнем шаманить. Мы хотим собрать полный квадрат по формуле сокращенного умножения:

    Как решаются квадратные уравнения — почти все способы

    В нашем уравнении на первом месте стоит . На втором должно находиться удвоенное произведение. Создадим двойку искусственно, умножив и поделив на нее одномоментно:

    Как решаются квадратные уравнения — почти все способы

    Теперь у нас есть произведение двойки, x и некоторого числа. Для того чтобы получить формулу квадрата суммы прибавим это “некоторое число” в квадрате и сразу вычтем, дабы сумма не изменилась:

    Как решаются квадратные уравнения — почти все способы

    Все готово для формулы сокращенного умножения:

    Как решаются квадратные уравнения — почти все способы

    Перенесем все числа в правую часть:

    Как решаются квадратные уравнения — почти все способы

    Приведем к общему знаменателю:

    Как решаются квадратные уравнения — почти все способы

    Извлечем корень [считаем, что мы можем это сделать]:

    Как решаются квадратные уравнения — почти все способы

    Выразим икс и посмотрим, что же у нас получилось:

    Как решаются квадратные уравнения — почти все способы

    Да это же и есть формула из предыдущего способа!

    Рассмотрим на примере:

    Как решаются квадратные уравнения — почти все способы

    Нам повезло и здесь двойка уже есть в наличии. Выделим полный квадрат:

    Как решаются квадратные уравнения — почти все способы

    Соберем полный квадрат:

    Как решаются квадратные уравнения — почти все способы
    Как решаются квадратные уравнения — почти все способы
    Как решаются квадратные уравнения — почти все способы
    Как решаются квадратные уравнения — почти все способы

    Согласитесь, в числах выглядит гораздо проще и приятнее! Двигаемся дальше.

    Способ третий. Разложение на множители.

    Тут даже не буду пытаться сделать общие выкладки. Просто берем и раскладываем, как учили в восьмом классе.

    Как решаются квадратные уравнения — почти все способы

    Добавим «лишний» икс, получится:

    Как решаются квадратные уравнения — почти все способы

    Из первых двух слагаемых вынесем икс, из оставшихся — минус:

    Как решаются квадратные уравнения — почти все способы

    Вынесем за скобки общий множитель:

    Как решаются квадратные уравнения — почти все способы

    Произведение равно нулю, когда хотя бы один из множителей равен нулю:

    Как решаются квадратные уравнения — почти все способы
    Как решаются квадратные уравнения — почти все способы

    Просто и надежно!

    Способ четвертый. Формулы Виета.

    Мы можем разложить квадратное уравнение на множители (как в прошлом способе). Получим такую картину:

    Как решаются квадратные уравнения — почти все способы

    Раскроем скобки:

    Как решаются квадратные уравнения — почти все способы
    Как решаются квадратные уравнения — почти все способы

    Получили соответствие коэффициентам исходного уравнения:

    Как решаются квадратные уравнения — почти все способы

    Или, в привычном виде:

    Как решаются квадратные уравнения — почти все способы

    Удобнее всего пользоваться этими формулами, когда a = 1.

    Приведем пример:

    Как решаются квадратные уравнения — почти все способы

    Здесь все еще можно воспользоваться дискриминантом, но вычисления будут некрасивые. Поэтому запишем формулы Виета:

    Как решаются квадратные уравнения — почти все способы

    Осталось подобрать корни. Для этого разложим 98 на множители:

    Как решаются квадратные уравнения — почти все способы

    Если первый способ разложения ничего не дает [ 2 + 49 = 51 ≠ 21]. То второй вариант дает нам корни:

    Как решаются квадратные уравнения — почти все способы
    Как решаются квадратные уравнения — почти все способы

    Нахождение корней уравнения по формулам Виета — это простой и быстрый способ, всем рекомендую!

    Способ пятый. Метод переброски.

    Данный способ — эффективная модификация предыдущего способа для случая, когда a ≠ 1. Возьмем квадратное уравнение в общем виде:

    Как решаются квадратные уравнения — почти все способы

    И умножим все на a:

    Как решаются квадратные уравнения — почти все способы

    Введем замену:

    Как решаются квадратные уравнения — почти все способы

    Получим новое квадратное уравнение:

    Как решаются квадратные уравнения — почти все способы

    Таким образом мы как бы перебросили a к c. Теперь корни легко найдутся по формулам Виета. А для того, чтобы найти корни исходного уравнения, поделим найденные корни на a:

    Как решаются квадратные уравнения — почти все способы

    Приведем пример:

    Как решаются квадратные уравнения — почти все способы

    Произведем переброску:

    Как решаются квадратные уравнения — почти все способы

    О, а эти корни мы уже знаем:

    Как решаются квадратные уравнения — почти все способы

    Найдем иксы:

    Как решаются квадратные уравнения — почти все способы

    На мой взгляд, неплохо. Для участников олимпиад — обязательно к изучению.

    Способ шестой. По свойствам коэффициентов.

    Здесь все просто. Нужно запомнить, если:

    Как решаются квадратные уравнения — почти все способы

    То корни будут:

    Как решаются квадратные уравнения — почти все способы

    При этом второй корень мы нашли по формулам Виета.

    И второе важное свойство, если:

    Как решаются квадратные уравнения — почти все способы

    То корни:

    Как решаются квадратные уравнения — почти все способы

    Список свойств не исчерпывающий, но другие свойства сильно сложнее, поэтому не будем их приводить.

    В этот раздел также можно отнести старый добрый подбор корней.

    Пример:

    Как решаются квадратные уравнения — почти все способы

    Здесь уже никакими дискриминантам и перебросками не поможешь. Но если заметить, что:

    Как решаются квадратные уравнения — почти все способы

    То сразу запишем:

    Как решаются квадратные уравнения — почти все способы

    Способ седьмой. Графический.

    Есть два возможных варианта решения и оба имеют не очень хорошую точность. Во-первых, можно представить квадратное уравнение в виде:

    Как решаются квадратные уравнения — почти все способы

    И изобразить на координатной плоскости два графика: параболу и прямую.

    Приведем пример:

    Как решаются квадратные уравнения — почти все способы
    Как решаются квадратные уравнения — почти все способы

    Изобразим графики:

    Как решаются квадратные уравнения — почти все способы

    Получаем корни:

    Как решаются квадратные уравнения — почти все способы

    Конечно, график построенный автоматически позволяет достаточно точно углядеть корни. Но если у вас под рукой компьютер, то легче будет воспользоваться калькулятором и посчитать их. А вот изобразив график на бумаге определить корни будет сложно.

    Разберем еще один графический вариант решения. На этот раз с помощью окружности.

    Возьмем на оси абсцисс точки B ( x₁ ; 0 ) и C ( x₂ ; 0 ).

    Посередине, между этими точками, будет находиться точка F, с координатами:

    Как решаются квадратные уравнения — почти все способы

    По формулам Виета:

    Как решаются квадратные уравнения — почти все способы

    На оси ординат возьмем точки A ( 0 ; 1 ) и D ( 0 ; c / a ). Посередине между ними будет находиться точка:

    Как решаются квадратные уравнения — почти все способы

    Точка S будет центром окружности:

    Как решаются квадратные уравнения — почти все способы

    Пусть O начало координат. Тогда OB · OC=OA · OD :

    Как решаются квадратные уравнения — почти все способы

    Таким образом для x₁ и x₂ выполняются формулы Виета.

    Приведем пример:

    Как решаются квадратные уравнения — почти все способы

    Центр окружности будет иметь координаты:

    Как решаются квадратные уравнения — почти все способы
    Как решаются квадратные уравнения — почти все способы

    Проведем окружность через точку A ( 0 ; 1 ) :

    Как решаются квадратные уравнения — почти все способы

    Получаем точки B ( 2 ; 0 ) и C ( 3 ; 0 ). А значит:

    Как решаются квадратные уравнения — почти все способы

    Как видите — способ рабочий, но опять же требует точности, которую на бумаге получить достаточно трудно.

    Существует еще способ решения с помощью номограммы. Про него говорят “незаслуженно забытый”. Но на мой взгляд он забыт абсолютно заслуженно, так как преимуществ у него особых нет, а понять его сложнее, чем решение через дискриминант.

    На практике я чаще всего использую формулы Виета и дискриминант. А какими способами пользуетесь Вы?

    Спасибо за внимание и удачи!

    Если вам понравилась статья, то ставьте лайк и подписывайтесь на канал. Математики будет много!

    Решение квадратных уравнений

    6 июля 2011

    Квадратные уравнения изучают в 8 классе, поэтому ничего сложного здесь нет. Умение решать их совершенно необходимо.

    Квадратное уравнение — это уравнение вида ax2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, причем a ≠ 0.

    Прежде, чем изучать конкретные методы решения, заметим, что все квадратные уравнения можно условно разделить на три класса:

    1. Не имеют корней;
    2. Имеют ровно один корень;
    3. Имеют два различных корня.

    В этом состоит важное отличие квадратных уравнений от линейных, где корень всегда существует и единственен. Как определить, сколько корней имеет уравнение? Для этого существует замечательная вещь — дискриминант.

    Дискриминант

    Пусть дано квадратное уравнение ax2 + bx + c = 0. Тогда дискриминант — это просто число D = b2 − 4ac.

    Эту формулу надо знать наизусть. Откуда она берется — сейчас неважно. Важно другое: по знаку дискриминанта можно определить, сколько корней имеет квадратное уравнение. А именно:

    1. Если D < 0, корней нет;
    2. Если D = 0, есть ровно один корень;
    3. Если D > 0, корней будет два.

    Обратите внимание: дискриминант указывает на количество корней, а вовсе не на их знаки, как почему-то многие считают. Взгляните на примеры — и сами все поймете:

    Задача. Сколько корней имеют квадратные уравнения:

    1. x2 − 8x + 12 = 0;
    2. 5x2 + 3x + 7 = 0;
    3. x2 − 6x + 9 = 0.

    Выпишем коэффициенты для первого уравнения и найдем дискриминант:
    a = 1, b = −8, c = 12;
    D = (−8)2 − 4 · 1 · 12 = 64 − 48 = 16

    Итак, дискриминант положительный, поэтому уравнение имеет два различных корня. Аналогично разбираем второе уравнение:
    a = 5; b = 3; c = 7;
    D = 32 − 4 · 5 · 7 = 9 − 140 = −131.

    Дискриминант отрицательный, корней нет. Осталось последнее уравнение:
    a = 1; b = −6; c = 9;
    D = (−6)2 − 4 · 1 · 9 = 36 − 36 = 0.

    Дискриминант равен нулю — корень будет один.

    Обратите внимание, что для каждого уравнения были выписаны коэффициенты. Да, это долго, да, это нудно — зато вы не перепутаете коэффициенты и не допустите глупых ошибок. Выбирайте сами: скорость или качество.

    Кстати, если «набить руку», через некоторое время уже не потребуется выписывать все коэффициенты. Такие операции вы будете выполнять в голове. Большинство людей начинают делать так где-то после 50-70 решенных уравнений — в общем, не так и много.

    Корни квадратного уравнения

    Теперь перейдем, собственно, к решению. Если дискриминант D > 0, корни можно найти по формулам:

    Формула корней квадратного уравнения

    Основная формула корней квадратного уравнения

    Когда D = 0, можно использовать любую из этих формул — получится одно и то же число, которое и будет ответом. Наконец, если D < 0, корней нет — ничего считать не надо.

    Задача. Решить квадратные уравнения:

    1. x2 − 2x − 3 = 0;
    2. 15 − 2xx2 = 0;
    3. x2 + 12x + 36 = 0.

    Первое уравнение:
    x2 − 2x − 3 = 0 ⇒ a = 1; b = −2; c = −3;
    D = (−2)2 − 4 · 1 · (−3) = 16.

    D > 0 ⇒ уравнение имеет два корня. Найдем их:

    Решение простого квадратного уравнения

    Второе уравнение:
    15 − 2xx2 = 0 ⇒ a = −1; b = −2; c = 15;
    D = (−2)2 − 4 · (−1) · 15 = 64.

    D > 0 ⇒ уравнение снова имеет два корня. Найдем их

    [begin{align} & {{x}_{1}}=frac{2+sqrt{64}}{2cdot left( -1 right)}=-5; \ & {{x}_{2}}=frac{2-sqrt{64}}{2cdot left( -1 right)}=3. \ end{align}]

    Наконец, третье уравнение:
    x2 + 12x + 36 = 0 ⇒ a = 1; b = 12; c = 36;
    D = 122 − 4 · 1 · 36 = 0.

    D = 0 ⇒ уравнение имеет один корень. Можно использовать любую формулу. Например, первую:

    [x=frac{-12+sqrt{0}}{2cdot 1}=-6]

    Как видно из примеров, все очень просто. Если знать формулы и уметь считать, проблем не будет. Чаще всего ошибки возникают при подстановке в формулу отрицательных коэффициентов. Здесь опять же поможет прием, описанный выше: смотрите на формулу буквально, расписывайте каждый шаг — и очень скоро избавитесь от ошибок.

    Неполные квадратные уравнения

    Бывает, что квадратное уравнение несколько отличается от того, что дано в определении. Например:

    1. x2 + 9x = 0;
    2. x2 − 16 = 0.

    Несложно заметить, что в этих уравнениях отсутствует одно из слагаемых. Такие квадратные уравнения решаются даже легче, чем стандартные: в них даже не потребуется считать дискриминант. Итак, введем новое понятие:

    Уравнение ax2 + bx + c = 0 называется неполным квадратным уравнением, если b = 0 или c = 0, т.е. коэффициент при переменной x или свободный элемент равен нулю.

    Разумеется, возможен совсем тяжелый случай, когда оба этих коэффициента равны нулю: b = c = 0. В этом случае уравнение принимает вид ax2 = 0. Очевидно, такое уравнение имеет единственный корень: x = 0.

    Рассмотрим остальные случаи. Пусть b = 0, тогда получим неполное квадратное уравнение вида ax2 + c = 0. Немного преобразуем его:

    Решение неполного квадратного уравнения

    Решение неполного квадратного уравнения

    Поскольку арифметический квадратный корень существует только из неотрицательного числа, последнее равенство имеет смысл исключительно при (−c/a) ≥ 0. Вывод:

    1. Если в неполном квадратном уравнении вида ax2 + c = 0 выполнено неравенство (−c/a) ≥ 0, корней будет два. Формула дана выше;
    2. Если же (−c/a) < 0, корней нет.

    Как видите, дискриминант не потребовался — в неполных квадратных уравнениях вообще нет сложных вычислений. На самом деле даже необязательно помнить неравенство (−c/a) ≥ 0. Достаточно выразить величину x2 и посмотреть, что стоит с другой стороны от знака равенства. Если там положительное число — корней будет два. Если отрицательное — корней не будет вообще.

    Теперь разберемся с уравнениями вида ax2 + bx = 0, в которых свободный элемент равен нулю. Тут все просто: корней всегда будет два. Достаточно разложить многочлен на множители:

    Разложение уравнения на множители

    Вынесение общего множителя за скобку

    Произведение равно нулю, когда хотя бы один из множителей равен нулю. Отсюда находятся корни. В заключение разберем несколько таких уравнений:

    Задача. Решить квадратные уравнения:

    1. x2 − 7x = 0;
    2. 5x2 + 30 = 0;
    3. 4x2 − 9 = 0.

    x2 − 7x = 0 ⇒ x · (x − 7) = 0 ⇒ x1 = 0; x2 = −(−7)/1 = 7.

    5x2 + 30 = 0 ⇒ 5x2 = −30 ⇒ x2 = −6. Корней нет, т.к. квадрат не может быть равен отрицательному числу.

    4x2 − 9 = 0 ⇒ 4x2 = 9 ⇒ x2 = 9/4 ⇒ x1 = 3/2 = 1,5; x2 = −1,5.

    Смотрите также:

    1. Теорема Виета
    2. Следствия из теоремы Виета
    3. Тест на тему «Значащая часть числа»
    4. Метод коэффициентов, часть 1
    5. Однородные тригонометрические уравнения: общая схема решения
    6. Задача B4: строительные бригады

    В продолжение темы «Решение уравнений» материал данной статьи познакомит вас с квадратными уравнениями.

    Рассмотрим все подробно: суть и запись квадратного уравнения, зададим сопутствующие термины, разберем схему решения неполных и полных уравнений, познакомимся с формулой корней и дискриминантом, установим связи между корнями и коэффициентами, ну и конечно приведем наглядное решение практических примеров.

    Квадратное уравнение, его виды

    Определение 1

    Квадратное уравнение – это уравнение, записанное как a·x2+b·x+c=0, где x – переменная, a, b и c – некоторые числа, при этом a не есть нуль.

    Зачастую квадратные уравнения также носят название уравнений второй степени, поскольку по сути квадратное уравнение есть алгебраическое уравнение второй степени.

    Приведем пример для иллюстрации заданного определения: 9·x2+16·x+2=0;  7,5·x2+3,1·x+0,11=0 и т.п. – это квадратные уравнения.

    Определение 2

    Числа a, b и c – это коэффициенты квадратного уравнения a·x2+b·x+c=0, при этом коэффициент a носит название первого, или старшего, или коэффициента при x2, b – второго коэффициента, или коэффициента при x, а c называют свободным членом.

    К примеру, в квадратном уравнении 6·x2−2·x−11=0 старший коэффициент равен 6, второй коэффициент есть −2, а свободный член равен −11. Обратим внимание на тот факт, что, когда коэффициенты b и/или c являются отрицательными, то используется краткая форма записи вида 6·x2−2·x−11=0, а не 6·x2+(−2)·x+(−11)=0.

    Уточним также такой аспект: если коэффициенты a и/или b равны 1 или −1, то явного участия в записи квадратного уравнения они могут не принимать, что объясняется особенностями записи указанных числовых коэффициентов. К примеру, в квадратном уравнении y2−y+7=0 старший коэффициент равен 1, а второй коэффициент есть −1.

    Приведенные и неприведенные квадратные уравнения

    По значению первого коэффициента квадратные уравнения подразделяют на приведенные и неприведенные.

    Определение 3

    Приведенное квадратное уравнение – это квадратное уравнение, где старший коэффициент равен 1. При иных значениях старшего коэффициента квадратное уравнение является неприведенным.

    Приведем примеры: квадратные уравнения x2−4·x+3=0, x2−x−45=0 являются приведенными, в каждом из которых старший коэффициент равен 1.

    9·x2−x−2=0 – неприведенное квадратное уравнение, где первый коэффициент отличен от 1.

    Любое неприведенное квадратное уравнение возможно преобразовать в приведенное уравнение, если разделить обе его части на первый коэффициент (равносильное преобразование). Преобразованное уравнение будет иметь такие же корни, как и заданное неприведенное уравнение или так же не иметь корней вовсе.

    Рассмотрение конкретного примера позволит нам наглядно продемонстрировать выполнение перехода от неприведенного квадратного уравнения к приведенному.

    Пример 1

    Задано уравнение 6·x2+18·x−7=0. Необходимо преобразовать  исходное уравнение в приведенную форму.

    Решение

    Cогласно указанной выше схеме разделим обе части исходного уравнения на старший коэффициент 6. Тогда получим: (6·x2+18·x−7):3=0:3, и это то же самое, что: (6·x2):3+(18·x):3−7:3=0 и далее: (6:6)·x2+(18:6)·x−7:6=0. Отсюда: x2+3·x-116=0. Таким образом, получено уравнение, равносильное заданному.

    Ответ: x2+3·x-116=0.

    Полные и неполные квадратные уравнения

    Обратимся к определению квадратного уравнения. В нем мы уточнили, что a≠0. Подобное условие необходимо, чтобы уравнение a·x2+b·x+c=0 было именно квадратным, поскольку при a=0 оно по сути преобразуется в линейное уравнение b·x+c=0.

    В случае же, когда коэффициенты b и c равны нулю (что возможно, как по отдельности, так и совместно), квадратное уравнение носит название неполного.

    Определение 4

    Неполное квадратное уравнение – такое квадратное уравнение a·x2+b·x+c=0, где хотя бы один из коэффициентов b и c (или оба) равен нулю.

    Полное квадратное уравнение – квадратное уравнение, в котором все числовые коэффициенты не равны нулю.

    Порассуждаем, почему типам квадратных уравнений даны именно такие названия.

    При b=0 квадратное уравнение примет вид a·x2+0·x+c=0, что то же самое, что a·x2+c=0. При c=0 квадратное уравнение записано как a·x2+b·x+0=0, что равносильно a·x2+b·x=0. При b=0 и c=0 уравнение примет вид a·x2=0. Уравнения, которые мы получили, отличны от полного квадратного уравнения тем, что в их левых частях не содержится либо слагаемого с переменной x, либо свободного члена, либо обоих сразу. Собственно, этот факт и задал название такому типу уравнений – неполное.

    Например, x2+3·x+4=0 и −7·x2−2·x+1,3=0 – это полные квадратные уравнения; x2=0, −5·x2=0; 11·x2+2=0, −x2−6·x=0 – неполные квадратные уравнения.

    Решение неполных квадратных уравнений

    Заданное выше определение дает возможность выделить следующие виды неполных квадратных уравнений:

    • a·x2=0, такому уравнению соответствуют коэффициенты b=0 и c=0;
    • a·x2+c=0 при b=0;
    • a·x2+b·x=0 при c=0.

    Рассмотрим последовательно решение каждого вида неполного квадратного уравнения.

    Решение уравнения a·x2=0

    Как уже было указано выше, такому уравнению отвечают коэффициенты b и c, равные нулю. Уравнение a·x2=0 возможно преобразовать в равносильное ему уравнение x2=0, которое мы получим, поделив обе части исходного уравнения на число a, не равное нулю. Очевидный факт, что корень уравнения x2=0 это нуль, поскольку 02=0. Иных корней это уравнение не имеет, что объяснимо свойствами степени: для любого числа p, не равного нулю, верно неравенство p2>0, из чего следует, что при p≠0 равенство p2=0 никогда не будет достигнуто.

    Определение 5

    Таким образом, для неполного квадратного уравнение a·x2=0 существует единственный корень x=0.

    Пример 2

    Для примера решим неполное квадратное уравнение −3·x2=0. Ему равносильно уравнение x2=0, его единственным корнем является x=0, тогда и исходное уравнение имеет единственный корень – нуль.

    Кратко решение оформляется так:

    −3·x2=0,x2=0,x=0.

    Решение уравнения a·x2+c=0

    На очереди – решение неполных квадратных уравнений, где b=0, c≠0, то есть уравнений вида a·x2+c=0. Преобразуем это уравнение, перенеся слагаемое из одной части уравнения в другую, сменив знак на противоположный и разделив обе части уравнения на число, не равное нулю:

    • переносим c в правую часть, что дает уравнение a·x2=−c;
    • делим обе части уравнения на a, получаем в итоге x=-ca.

    Наши преобразования являются равносильными, соответственно полученное уравнение также равносильно исходному, и этот факт дает возможность делать вывод о корнях уравнения. От того, каковы значения a и c зависит значение выражения  -ca: оно может иметь знак  минус (допустим, если a=1 и c=2, тогда -ca=-21=-2 ) или знак плюс (например, если a=−2 и c=6, то -ca=-6-2=3 ); оно не равно нулю, поскольку c≠0. Подробнее остановимся на ситуациях, когда  -ca<0 и -ca>0.

    В случае, когда -ca<0,  уравнение x2=-ca не будет иметь корней. Утверждая это, мы опираемся на то, что квадратом любого числа является число неотрицательное. Из сказанного следует, что при -ca<0  ни для какого числа p равенство p2=-ca  не может быть верным.

    Все иначе, когда -ca>0: вспомним о квадратном корне, и станет очевидно, что корнем уравнения x2=-ca будет число -ca, поскольку -ca2=-ca. Нетрудно понять, что число –ca – также корень уравнения x2=-ca: действительно, –ca2=-ca.

    Прочих корней уравнение не будет иметь. Мы можем это продемонстрировать, используя метод от противного. Для начала зададим обозначения найденных выше корней как x1 и −x1. Выскажем предположение, что уравнение  x2=-ca имеет также корень x2, который отличается от корней x1 и −x1. Мы знаем, что, подставив в уравнение вместо x его корни, преобразуем уравнение в справедливое числовое равенство.

    Для x1 и −x1 запишем: x12=-ca , а для x2 – x22=-ca  . Опираясь на свойства числовых равенств, почленно вычтем одно верное равенство из другого, что даст нам: x12−x22=0. Используем свойства действий с числами, чтобы переписать последнее равенство как (x1−x2)·(x1+x2)=0. Известно, что произведение двух чисел есть нуль тогда и только тогда, когда хотя бы одно из чисел является нулем. Из сказанного следует, что x1−x2=0 и/или x1+x2=0, что то же самое, x2=x1 и/или x2=−x1. Возникло очевидное противоречие, ведь  вначале было условлено, что корень уравнения x2 отличается от x1 и −x1. Так, мы доказали, что уравнение  не имеет иных корней, кроме x=-ca и x=–ca.

    Резюмируем все рассуждения выше.

    Определение 6

    Неполное квадратное уравнение a·x2+c=0 равносильно уравнению  x2=-ca, которое:

    • не будет иметь корней при -ca<0;
    • будет иметь два корня x=-ca и x=–ca  при -ca>0.

    Приведем примеры решения уравнений a·x2+c=0.

    Пример 3

    Задано квадратное уравнение 9·x2+7=0. Необходимо найти его решение.

    Решение

    Перенесем  свободный член в правую часть уравнения, тогда уравнение примет вид 9·x2=−7.
    Разделим обе части полученного уравнения на 9, придем к x2=-79. В правой части мы видим число со знаком минус, что означает: у заданного уравнения нет корней. Тогда и исходное неполное квадратное уравнение 9·x2+7=0 не будет иметь корней.

    Ответ: уравнение 9·x2+7=0 не имеет корней.

    Пример 4

    Необходимо решить уравнение −x2+36=0.

    Решение

    Перенесем 36 в правую часть: −x2=−36.
    Разделим обе части на −1, получим x2=36. В правой части – положительное число, отсюда можно сделать вывод, что x=36 или x=-36.
    Извлечем корень и запишем окончательный итог: неполное квадратное уравнение −x2+36=0 имеет два корня x=6 или x=−6.

    Ответ: x=6 или x=−6.

    Решение уравнения a·x2+b·x=0

    Разберем третий вид неполных квадратных уравнений, когда c=0. Чтобы найти решение неполного квадратного уравнения a·x2+b·x=0, воспользуемся методом разложения на множители. Разложим на множители многочлен, который находится в левой части уравнения, вынеся за скобки общий множитель x. Этот шаг даст возможность преобразовать исходное неполное квадратное уравнение в равносильное ему x·(a·x+b)=0. А это уравнение, в свою очередь,  равносильно совокупности уравнений x=0 и a·x+b=0. Уравнение a·x+b=0 линейное, и корень его: x=−ba.

    Определение 7

    Таким образом, неполное квадратное уравнение a·x2+b·x=0 будет иметь  два корня x=0 и x=−ba.

    Закрепим материал примером.

    Пример 5

    Необходимо найти решение уравнения 23·x2-227·x=0.

    Решение

    Вынесем x за скобки и получим уравнение x·23·x-227=0. Это уравнение равносильно уравнениям x=0 и 23·x-227=0. Теперь следует решить полученное линейное уравнение: 23·x=227, x=22723.

    Далее осуществим деление смешанного числа на обыкновенную дробь и определяем, что x=337. Таким образом, корни исходного уравнения это: x=0 и x=337.

    Кратко решение уравнения запишем так:

    23·x2-227·x=0x·23·x-227=0

    x=0 или 23·x-227=0

    x=0 или x=337

    Ответ: x=0, x=337.

    Дискриминант, формула корней квадратного уравнения

    Для нахождения решения квадратных уравнений существует формула корней:

    Определение 8

    x=-b±D2·a, где D=b2−4·a·c – так называемый дискриминант квадратного уравнения.

    Запись x=-b±D2·a по сути означает, что x1=-b+D2·a, x2=-b-D2·a.

    Нелишним будет понимать, как была выведена указанная формула и каким образом ее применять.

    Вывод формулы корней квадратного уравнения

    Пускай перед нами стоит задача решить квадратное уравнение a·x2+b·x+c=0. Осуществим ряд равносильных преобразований:

    • разделим обе части уравнения на число a, отличное от нуля, получим приведенное квадратное уравнение: x2+ba·x+ca=0;
    • выделим полный квадрат в левой  части получившегося уравнения:
      x2+ba·x+ca=x2+2·b2·a·x+b2·a2-b2·a2+ca==x+b2·a2-b2·a2+ca
      После этого уравнения примет вид: x+b2·a2-b2·a2+ca=0;
    • теперь возможно сделать перенос двух последних слагаемых в правую часть, сменив знак на противоположный, после чего получаем: x+b2·a2=b2·a2-ca;
    • наконец, преобразуем выражение, записанное в правой части последнего равенства:
      b2·a2-ca=b24·a2-ca=b24·a2-4·a·c4·a2=b2-4·a·c4·a2.

    Таким образом, мы пришли к уравнению x+b2·a2=b2-4·a·c4·a2, равносильному исходному уравнению a·x2+b·x+c=0.

    Решение подобных уравнений мы разбирали в предыдущих пунктах (решение неполных квадратных уравнений). Уже полученный опыт дает возможность сделать вывод касательно корней уравнения x+b2·a2=b2-4·a·c4·a2:

    • при b2-4·a·c4·a2<0 уравнение не имеет действительных решений;
    • при b2-4·a·c4·a2=0 уравнение имеет вид x+b2·a2=0, тогда x+b2·a=0.

    Отсюда очевиден единственный корень x=-b2·a;

    • при b2-4·a·c4·a2>0 верным будет: x+b2·a=b2-4·a·c4·a2 или x=b2·a-b2-4·a·c4·a2, что то же самое, что x+-b2·a=b2-4·a·c4·a2 или x=-b2·a-b2-4·a·c4·a2,  т.е. уравнение имеет два корня.

    Возможно сделать вывод, что наличие или отсутствие корней уравнения x+b2·a2=b2-4·a·c4·a2 (а значит и исходного уравнения) зависит от знака выражения b2-4·a·c4·a2, записанного в правой части. А знак этого выражения задается знаком числителя, (знаменатель 4·a2 всегда будет положителен), то есть, знаком выражения b2−4·a·c. Этому выражению b2−4·a·c дано название – дискриминант квадратного уравнения и определена в качестве его обозначения буква D. Здесь можно записать суть дискриминанта – по его значению и знаку делают вывод, будет ли квадратное уравнение иметь действительные корни, и, если будет, то каково количество корней – один или два.

    Вернемся к уравнению x+b2·a2=b2-4·a·c4·a2. Перепишем его, используя обозначение дискриминанта:  x+b2·a2=D4·a2.

    Вновь сформулируем выводы:

    Определение 9
    • при D<0 уравнение не имеет действительных корней;
    • при D=0 уравнение имеет единственный корень x=-b2·a;
    • при D>0 уравнение имеет два корня: x=-b2·a+D4·a2 или x=-b2·a-D4·a2. Эти корни на основе свойства радикалов возможно записать в виде: x=-b2·a+D2·a или -b2·a-D2·a. А, когда раскроем модули и приведем дроби к общему знаменателю, получим: x=-b+D2·a, x=-b-D2·a.

    Так, результатом наших рассуждений стало выведение формулы корней квадратного уравнения:

    x=-b+D2·a, x=-b-D2·a, дискриминант D вычисляется по формуле D=b2−4·a·c.

    Данные формулы дают возможность при дискриминанте больше нуля определить оба действительных корня. Когда дискриминант равен нулю, применение обеих формул даст один и тот же корень, как единственное решение квадратного уравнения. В случае, когда дискриминант отрицателен, попытавшись использовать формулу корня квадратного уравнения, мы столкнемся с необходимостью извлечь квадратный корень из отрицательного числа, что выведет нас за рамки действительных чисел. При отрицательном дискриминанте у квадратного уравнения не будет действительных корней, но возможна пара комплексно сопряженных корней, определяемых теми же полученными нами формулами корней.

    Алгоритм решения квадратных уравнений по формулам корней

    Решить квадратное уравнение возможно, сразу задействуя формулу корней, но в основном так поступают при необходимости найти комплексные корни.

    В основной же массе случаев обычно подразумевается поиск не комплексных, а действительных корней квадратного уравнения. Тогда оптимально перед тем, как использовать формулы корней квадратного уравнения, сначала определить дискриминант и удостовериться, что он не является отрицательным (в ином случае сделаем вывод, что у уравнения нет действительных корней), а после приступить к вычислению значения корней.

    Рассуждения выше дают возможность сформулировать  алгоритм решения квадратного уравнения.

    Определение 10

    Чтобы решить квадратное уравнение a·x2+b·x+c=0, необходимо:

    • по формуле D=b2−4·a·c найти значение дискриминанта;
    • при D<0 сделать вывод об отсутствии у квадратного уравнения действительных корней;
    • при D=0 найти единственный корень уравнения по формуле x=-b2·a;
    • при D>0 определить два действительных корня квадратного уравнения по формуле x=-b±D2·a.

    Отметим, что, когда дискриминант есть нуль, можно использовать формулу x=-b±D2·a, она даст тот же результат, что и формула x=-b2·a.

    Рассмотрим примеры.

    Примеры решения квадратных уравнений

    Приведем решение примеров при различных значениях дискриминанта.

    Пример 6

    Необходимо найти корни уравнения x2+2·x−6=0.

    Решение

    Запишем числовые коэффициенты квадратного уравнения: a=1, b=2 и c=−6. Далее действуем по алгоритму, т.е. приступим к вычислению дискриминанта, для чего подставим коэффициенты a, b и c в формулу дискриминанта: D=b2−4·a·c=22−4·1·(−6)=4+24=28.

    Итак, мы получили D>0, а это означает, что исходное уравнение будет иметь два действительных корня.
    Для их нахождения используем формулу корня x=-b±D2·a и, подставив соответствующие значения, получим: x=-2±282·1. Упростим полученное выражение, вынеся множитель за знак корня с последующим сокращением дроби:

    x=-2±2·72

    x=-2+2·72 или x=-2-2·72

    x=-1+7 или x=-1-7

    Ответ: x=-1+7​​​​​​, x=-1-7.

    Пример 7

    Необходимо решить квадратное уравнение −4·x2+28·x−49=0.

    Решение 

    Определим дискриминант: D=282−4·(−4)·(−49)=784−784=0. При таком значении дискриминанта исходное уравнение будет иметь лишь один корень, определяемый по формуле x=-b2·a.

    Тогда:

    x=-282·(-4)x=3,5

    Ответ: x=3,5.

    Пример 8

    Необходимо решить уравнение 5·y2+6·y+2=0

    Решение

    Числовые коэффициенты этого уравнения будут: a=5, b=6 и c=2. Используем эти значения для нахождения дискриминанта: D=b2−4·a·c=62−4·5·2=36−40=−4. Вычисленный дискриминант отрицателен, таким образом, исходное квадратное уравнение не имеет действительных корней.

    В случае, когда стоит задача указать комплексные корни, применим формулу корней, выполняя действия с комплексными числами:

    x=-6±-42·5,

    x=-6+2·i10 или x=-6-2·i10,

    x=-35+15·i  или x=-35-15·i.

    Ответ: действительные корни отсутствуют; комплексные корни следующие: -35+15·i, -35-15·i.

    В школьной программе стандартно нет требования искать комплексные корни, поэтому, если в ходе решения дискриминант определен как отрицательный, сразу записывается ответ, что действительных корней нет.

    Формула корней для четных вторых коэффициентов

    Формула корней x=-b±D2·a (D=b2−4·a·c) дает возможность получить еще одну формулу, более компактную, позволяющую находить решения квадратных уравнений с четным коэффициентом при x (либо с коэффициентом вида 2·n, к примеру, 2 · 3 или 14·ln5=2·7·ln5). Покажем, как выводится эта формула.

    Пусть перед нами стоит задача найти решение квадратного уравнения a·x2+2·n·x+c=0. Действуем по алгоритму: определяем дискриминантD=(2·n)2−4·a·c=4·n2−4·a·c=4·(n2−a·c), а затем используем формулу корней:

    x=-2·n±D2·a,x=-2·n±4·n2-a·c2·a,x=-2·n±2n2-a·c2·a,x=-n±n2-a·ca.

    Пусть выражение n2−a·c будет обозначено как D1 (иногда его обозначают D’). Тогда формула корней рассматриваемого квадратного уравнения со вторым коэффициентом 2·n примет вид:

     x=-n±D1a, где D1=n2−a·c.

    Легко увидеть, что что D=4·D1, или D1=D4. Иначе говоря, D1 – это четверть дискриминанта. Очевидно, что знак D1 такой же, как знак D, а значит знак D1 также может служить индикатором наличия или отсутствия корней квадратного уравнения.

    Определение 11

    Таким образом, чтобы найти решение квадратного уравнения со вторым коэффициентом  2 · n , необходимо: 

    • найти D1=n2−a·c;
    • при D1<0 сделать вывод, что действительных корней нет;
    • при D1=0 определить единственный корень уравнения по формуле x=-na;
    • при D1>0 определить два действительных корня по формуле x=-n±D1a.
    Пример 9

    Необходимо решить квадратное уравнение 5·x2−6·x−32=0.

    Решение

    Второй коэффициент заданного уравнения можем представить как 2·(−3). Тогда перепишем заданное квадратное уравнение как 5·x2+2·(−3)·x−32=0, где a=5, n=−3 и c=−32.

    Вычислим четвертую часть дискриминанта: D1=n2−a·c=(−3)2−5·(−32)=9+160=169. Полученное значение положительно, это означает, что уравнение имеет два действительных корня. Определим их по соответствующей формуле корней:

    x=-n±D1a,x=–3±1695,x=3±135,

    x=3+135 или x=3-135

    x=315 или x=-2

    Возможно было бы произвести вычисления и по обычной формуле корней квадратного уравнения, но в таком случае решение было бы более громоздким.

    Ответ: x=315 или x=-2.

    Упрощение вида квадратных уравнений

    Иногда существует возможность оптимизировать вид исходного уравнения, что позволит упростить процесс вычисления корней.

    К примеру, квадратное уравнение 12·x2−4·x−7=0 явно удобнее для решения, чем 1200·x2−400·x−700=0.

    Чаще упрощение вида квадратного уравнения производится действиями умножения или деления его обеих частей на некое число. К примеру, выше мы показали упрощенную запись уравнения 1200·x2−400·x−700=0, полученную делением обеих его частей на 100.

    Такое преобразование возможно, когда коэффициенты квадратного уравнения не являются взаимно простыми числами. Тогда обычно осуществляют деление обеих частей уравнения на наибольший общий делитель абсолютных величин его коэффициентов.

    Как пример используем квадратное уравнение 12·x2−42·x+48=0. Определим НОД абсолютных величин его коэффициентов: НОД(12, 42, 48)=НОД(НОД(12, 42), 48)=НОД(6, 48)=6. Произведем деление обеих частей исходного квадратного уравнения на 6 и получим равносильное ему квадратное уравнение 2·x2−7·x+8=0.

    Умножением обеих частей квадратного уравнения обычно избавляются от дробных коэффициентов. При этом умножают на наименьшее общее кратное знаменателей его коэффициентов. К примеру, если каждую часть квадратного уравнения 16·x2+23·x-3=0 перемножить с НОК(6, 3, 1)=6, то оно станет записано в более простом виде x2+4·x−18=0.

    Напоследок отметим, что почти всегда избавляются от минуса при первом коэффициенте квадратного уравнения, изменяя знаки каждого члена уравнения, что достигается путем умножения (или деления) обеих частей на −1. К примеру, от квадратного уравнения −2·x2−3·x+7=0 можно перейти к упрощенной его версии 2·x2+3·x−7=0.

    Связь между корнями и коэффициентами

    Уже известная нам формула корней квадратных уравнений x=-b±D2·a выражает корни уравнения через его числовые коэффициенты. Опираясь на данную формулу, мы имеем возможность задать другие зависимости между корнями и коэффициентами.

    Самыми известными и применимыми являются формулы теоремы Виета:

    x1+x2=-ba и x2=ca.

    В частности, для приведенного квадратного уравнения сумма корней есть второй коэффициент с противоположным знаком, а произведение корней равно свободному члену. К примеру, по виду квадратного уравнения 3·x2−7·x+22=0 возможно сразу определить, что сумма его корней равна 73, а произведение корней – 223.

    Также можно найти ряд прочих связей между корнями и коэффициентами квадратного уравнения. Например, сумма квадратов корней квадратного уравнения может быть выражена через коэффициенты:

    x12+x22=(x1+x2)2-2·x1·x2=-ba2-2·ca=b2a2-2·ca=b2-2·a·ca2.

    Добавить комментарий