Как найти икс в уравнении дроби

Дробно-рациональные уравнения

Что такое дробно-рациональные уравнения

Дробно-рациональными уравнениями называют такие выражения, которые представляется возможным записать, как:

при P ( x ) и Q ( x ) в виде выражений, содержащих переменную.

Таким образом, дробно-рациональные уравнения обязательно содержат как минимум одну дробь с переменной в знаменателе с любым модулем.

9 x 2 – 1 3 x = 0

1 2 x + x x + 1 = 1 2

6 x + 1 = x 2 – 5 x x + 1

Уравнения, которые не являются дробно-рациональными:

Как решаются дробно-рациональные уравнения

В процессе решения дробно-рациональных уравнений обязательным действием является определение области допустимых значений. Найденные корни следует проверить на допустимость, чтобы исключить посторонние решения.

Алгоритм действий при стандартном способе решения:

  1. Выписать и определить ОДЗ.
  2. Найти общий знаменатель для дробей.
  3. Умножить каждый из членов выражения на полученный общий параметр (знаменатель), сократить дроби, которые получились в результате, чтобы исключить знаменатели.
  4. Записать уравнение со скобками.
  5. Раскрыть скобки для приведения подобных слагаемых.
  6. Найти корни полученного уравнения.
  7. Выполним проверку корней в соответствии с ОДЗ.
  8. Записать ответ.

Пример 1

Разберем предложенный алгоритм на практическом примере. Предположим, что имеется дробно-рациональное уравнение, которое требуется решить:

x x – 2 – 7 x + 2 = 8 x 2 – 4

Начать следует с области допустимых значений:

x 2 – 4 ≠ 0 ⇔ x ≠ ± 2

Воспользуемся правилом сокращенного умножения:

x 2 – 4 = ( x – 2 ) ( x + 2 )

В результате общим знаменателем дробей является:

Выполним умножение каждого из членов выражения на общий знаменатель:

x x – 2 – 7 x + 2 = 8 x 2 – 4

x ( x – 2 ) ( x + 2 ) x – 2 – 7 ( x – 2 ) ( x + 2 ) x + 2 = 8 ( x – 2 ) ( x + 2 ) ( x – 2 ) ( x + 2 )

После сокращения избавимся от скобок и приведем подобные слагаемые:

x ( x + 2 ) – 7 ( x – 2 ) = 8

x 2 + 2 x – 7 x + 14 = 8

Осталось решить квадратное уравнение:

Согласно ОДЗ, первый корень является лишним, так как не удовлетворяет условию, по которому корень не равен 2. Тогда в ответе можно записать:

Примеры задач с ответами для 9 класса

Требуется решить дробно-рациональное уравнение:

x x + 2 + x + 1 x + 5 – 7 – x x 2 + 7 x + 10 = 0

x x + 2 + x + 1 x + 5 – 7 – x x 2 + 7 x + 10 = 0

Определим область допустимых значений:

О Д З : x + 2 ≠ 0 ⇔ x ≠ – 2

x 2 + 7 x + 10 ≠ 0

D = 49 – 4 · 10 = 9

x 1 ≠ – 7 + 3 2 = – 2

x 2 ≠ – 7 – 3 2 = – 5

Квадратный трехчлен x 2 + 7 x + 10 следует разложить на множители, руководствуясь формулой:

a x 2 + b x + c = a ( x – x 1 ) ( x – x 2 )

x x + 2 + x + 1 x + 5 – 7 – x ( x + 2 ) ( x + 5 ) = 0

Заметим, что общим знаменателем для дробей является: ( x + 2 ) ( x + 5 ) . Умножим на этот знаменатель уравнение:

x x + 2 + x + 1 x + 5 – 7 – x ( x + 2 ) ( x + 5 ) = 0

Сократим дроби, избавимся от скобок, приведем подобные слагаемые:

x ( x + 2 ) ( x + 5 ) x + 2 + ( x + 1 ) ( x + 2 ) ( x + 5 ) x + 5 –

– ( 7 – x ) ( x + 2 ) ( x + 5 ) ( x + 2 ) ( x + 5 ) = 0

x ( x + 5 ) + ( x + 1 ) ( x + 2 ) – 7 + x = 0

x 2 + 5 x + x 2 + 3 x + 2 – 7 + x = 0

2 x 2 + 9 x – 5 = 0

Потребуется решить квадратное уравнение:

2 x 2 + 9 x – 5 = 0

Первый корень не удовлетворяет условиям ОДЗ, поэтому в ответ нужно записать только второй корень.

Дано дробно-рациональное уравнение, корни которого требуется найти:

4 x – 2 – 3 x + 4 = 1

В первую очередь следует переместить все слагаемые влево и привести дроби к минимальному единому знаменателю:

4 ( x + 4 ) x – 2 – 3 ( x – 2 ) x + 4 – 1 ( x – 2 ) ( x + 4 ) = 0

4 ( x + 4 ) – 3 ( x – 2 ) – ( x – 2 ) ( x + 4 ) ( x – 2 ) ( x + 4 ) = 0

4 x + 16 – 3 x + 6 – ( x 2 + 4 x – 2 x – 8 ) ( x – 2 ) ( x + 4 ) = 0

x + 22 – x 2 – 4 x + 2 x + 8 ( x – 2 ) ( x + 4 ) = 0

Заметим, что получилось нулевое значение для дроби. Известно, что дробь может равняться нулю, если в числителе нуль, а знаменатель не равен нулю. На основании этого можно составить систему:

– x 2 – x + 30 ( x – 2 ) ( x + 4 ) = 0 ⇔ – x 2 – x + 30 = 0 ( x – 2 ) ( x + 4 ) ≠ 0

Следует определить такие значения для переменной, при которых в дроби знаменатель будет обращаться в нуль. Такие значения необходимо удалить из ОДЗ:

( x – 2 ) ( x + 4 ) ≠ 0

Далее можно определить значения для переменных, которые при подстановке в уравнение обращают числитель в нуль:

– x 2 – x + 30 = 0 _ _ _ · ( – 1 )

Получилось квадратное уравнение, которое можно решить:

Сравнив корни с условиями области допустимых значений, можно сделать вывод, что оба корня являются решениями данного уравнения.

Нужно решить дробно-рациональное уравнение:

x + 2 x 2 – 2 x – x x – 2 = 3 x

На первом шаге следует перенести все слагаемые в одну сторону и привести дроби к минимальному единому знаменателю:

x + 2 1 x ( x – 2 ) – x x x – 2 – 3 ( x – 2 ) x = 0

x + 2 – x 2 – 3 ( x – 2 ) x ( x – 2 ) = 0

x + 2 – x 2 – 3 x + 6 x ( x – 2 ) = 0

– x 2 – 2 x + 8 x ( x – 2 ) = 0 ⇔ – x 2 – 2 x + 8 = 0 x ( x – 2 ) ≠ 0

Перечисленные значения переменной обращают знаменатель в нуль. По этой причине их необходимо удалить из области допустимых значений.

– x 2 – 2 x + 8 = 0 _ _ _ · ( – 1 )

Корни квадратного уравнения:

x 1 = – 4 ; x 2 = 2

Заметим, что второй корень не соответствует ОДЗ. Таким образом, в ответе остается только первый корень.

Найти корни уравнения:

x 2 – x – 6 x – 3 = x + 2

Согласно стандартному алгоритму решения дробно-рациональных уравнений, выполним перенос всех слагаемых в одну сторону. Далее необходимо привести к дроби к наименьшему общему знаменателю:

x 2 – x – 6 1 x – 3 – x ( x – 3 ) – 2 ( x – 3 ) = 0

x 2 – x – 6 – x ( x – 3 ) – 2 ( x – 3 ) x – 3 = 0

x 2 – x – 6 – x 2 + 3 x – 2 x + 6 x – 3 = 0

0 x x – 3 = 0 ⇔ 0 x = 0 x – 3 ≠ 0

Такое значение переменной, при котором знаменатель становится равным нулю, нужно исключить из области допустимых значений:

Заметим, что это частный случай линейного уравнения, которое обладает бесконечным множеством корней. При подстановке какого-либо числа на место переменной х в любом случае числовое равенство будет справедливым. Единственным недопустимым значением для х в данном задании является число 3, которое не входит в ОДЗ.

Ответ: х — любое число, за исключением 3.

Требуется вычислить корни дробно-рационального уравнения:

5 x – 2 – 3 x + 2 = 20 x 2 – 4

На первом этапе необходимо выполнить перенос всех слагаемых влево, привести дроби к минимальному единому знаменателю:

5 ( x + 2 ) x – 2 – 3 ( x – 2 ) x + 2 – 20 1 ( x – 2 ) ( x + 2 ) = 0

5 ( x + 2 ) – 3 ( x – 2 ) – 20 ( x – 2 ) ( x + 2 ) = 0

5 x + 10 – 3 x + 6 – 20 ( x – 2 ) ( x + 2 ) = 0

2 x – 4 ( x – 2 ) ( x + 2 ) = 0 ⇔ 2 x – 4 = 0 ( x – 2 ) ( x + 2 ) ≠ 0

( x – 2 ) ( x + 2 ) ≠ 0

Данные значения переменной х являются недопустимыми, так как в этом случае теряется смысл дроби в связи с тем, что знаменатель принимает нулевое значение.

Заметим, что 2 не входит в область допустимых значений. В связи с этим, можно заключить, что у уравнения отсутствуют корни.

Ответ: корни отсутствуют

Нужно найти корни уравнения:

x – 3 x – 5 + 1 x = x + 5 x ( x – 5 )

Начнем с определения ОДЗ:

– 5 ≠ 0 x ≠ 0 x ( x – 5 ) ≠ 0 x ≠ 5 x ≠ 0

При умножении обеих частей уравнения на единый знаменатель всех дробей и сокращении аналогичных выражений, которые записаны в числителе и знаменателе, получим:

x – 3 x – 5 + 1 x = x + 5 x ( x – 5 ) · x ( x – 5 )

( x – 3 ) x ( x – 5 ) x – 5 + x ( x – 5 ) x = ( x + 5 ) x ( x – 5 ) x ( x – 5 )

( x – 3 ) x + x = x + 5

Прибегая к арифметическим преобразованиям, можно записать уравнение в упрощенной форме:

x 2 – 3 x + x – 5 = x + 5 → x 2 – 2 x – 5 – x – 5 = 0 → x 2 – 3 x – 10 = 0

Для дальнейших действий следует определить, к какому виду относится полученное уравнение. В нашем случае уравнение является квадратным с коэффициентом при x 2 , который равен 1. Таким образом, целесообразно воспользоваться теоремой Виета:

x 1 · x 2 = – 10 x 1 + x 2 = 3

В этом случае подходящими являются числа: -2 и 5.

Второе значение не соответствует области допустимых значений.

Дробно-рациональные уравнения. Алгоритм решения

Дробно-рациональные уравнения – уравнения, которые можно свести к виду (frac) (=0), где (P(x)) и (Q(x)) – выражения с иксом (или другой переменной).

Проще говоря, это уравнения, в которых есть хотя бы одна дробь с переменной в знаменателе.

Пример не дробно-рациональных уравнений:

Как решаются дробно-рациональные уравнения?

Главное, что надо запомнить про дробно-рациональные уравнения – в них надо писать ОДЗ . И после нахождения корней – обязательно проверять их на допустимость. Иначе могут появиться посторонние корни, и все решение будет считаться неверным.

Алгоритм решения дробно-рационального уравнения:

Выпишите и «решите» ОДЗ.

Умножьте каждый член уравнения на общий знаменатель и сократите полученные дроби. Знаменатели при этом пропадут.

Запишите уравнение, не раскрывая скобок.

Решите полученное уравнение.

Проверьте найденные корни с ОДЗ.

Запишите в ответ корни, которые прошли проверку в п.7.

Алгоритм не заучивайте, 3-5 решенных уравнений – и он запомнится сам.

Пример. Решите дробно-рациональное уравнение (frac – frac<7>=frac<8>)

Сначала записываем и “решаем” ОДЗ.

По формуле сокращенного умножения : (x^2-4=(x-2)(x+2)). Значит, общий знаменатель дробей будет ((x-2)(x+2)). Умножаем каждый член уравнения на ((x-2)(x+2)).

Сокращаем то, что можно и записываем получившееся уравнение.

Приводим подобные слагаемые

Согласуем корни с ОДЗ. Замечаем, что по ОДЗ (x≠2). Значит первый корень – посторонний. В ответ записываем только второй.

Пример. Найдите корни дробно-рационального уравнения (frac + frac-frac<7-x>) (=0)

Записываем и «решаем» ОДЗ.

Раскладываем квадратный трехчлен (x^2+7x+10) на множители по формуле: (ax^2+bx+c=a(x-x_1)(x-x_2)).
Благо (x_1) и (x_2) мы уже нашли.

Очевидно, общий знаменатель дробей: ((x+2)(x+5)). Умножаем на него всё уравнение.

Приводим подобные слагаемые

Находим корни уравнения

Один из корней не подходи под ОДЗ, поэтому в ответ записываем только второй корень.

Решение уравнений с дробями

О чем эта статья:

5 класс, 6 класс, 7 класс

Понятие дроби

Прежде чем отвечать на вопрос, как найти десятичную дробь, разберемся в основных определениях, видах дробей и разницей между ними.

Дробь — это рациональное число, представленное в виде a/b, где a — числитель дроби, b — знаменатель. Есть два формата записи:

  • обыкновенный вид — ½ или a/b,
  • десятичный вид — 0,5.

Дробь — это одна из форм деления, записываемая с помощью дробной черты. Над чертой принято писать делимое (число, которое делим) — числитель. А под чертой всегда находится делитель (на сколько делим), его называют знаменателем. Черта между числителем и знаменателем означает деление.

Дроби бывают двух видов:

  1. Числовые — состоят из чисел. Например, 2/7 или (1,8 − 0,3)/5.
  2. Алгебраические — состоят из переменных. Например, (x + y)/(x − y). Значение дроби зависит от данных значений букв.

Дробь называют правильной, когда ее числитель меньше знаменателя. Например, 4/9 и 23/57.

Неправильная дробь — та, у которой числитель больше знаменателя или равен ему. Например, 13/5. Такое число называют смешанным — читается так: «две целых три пятых», а записывается — 2 3/5.

Основные свойства дробей

Дробь не имеет значения, если делитель равен нулю.

Дробь равняется нулю в том случае, если числитель равен нулю, а знаменатель отличен от нуля.

Дроби a/b и c/d называют равными, если a × d = b × c.

Если числитель и знаменатель дроби умножить или разделить на одно и то же натуральное число, то получится равная ей дробь.

Действия с дробями можно выполнять те же, что и с обычными числами: складывать, вычитать, умножать и делить. Также, дроби можно сравнивать между собой и возводить в степень.

Понятие уравнения

Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Наша задача — найти неизвестные числа так, чтобы при их подстановке в пример получилось верное числовое равенство. Давайте на примере:

  • Возьмем выражение 4 + 5 = 9. Это верное равенство, потому что 4+5 действительно 9. Если бы вместо 9 стояло любое другое число — мы бы сказали, что числовое равенство неверное.
  • Уравнением можно назвать выражение 4 + x = 9, с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.

Корень уравнения — то самое число, которое уравнивает выражения справа и слева, когда мы подставляем его на место неизвестной. В таком случае афоризм «зри в корень» — очень кстати при усердном решении уравнений.

Равносильные уравнения — это те, в которых совпадают множества решений. Другими словами, у них одни и те же корни.

Решить уравнение значит найти все его корни или убедиться, что корней нет.

Алгебраические уравнения могут быть разными, самые часто встречающиеся — линейные и квадратные. Расскажем и про них.

Линейное уравнение выглядит так ах + b = 0, где a и b — действительные числа.

Что поможет в решении:

  • если а не равно нулю, то у уравнения единственный корень: х = −b : а;
  • если а равно нулю, а b не равно нулю — у уравнения нет корней;
  • если а и b равны нулю, то корень уравнения — любое число.
Квадратное уравнение выглядит так: ax 2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, a ≠ 0.

Понятие дробного уравнения

Дробное уравнение — это уравнение с дробями. Да, вот так просто. Но это еще не все. Чаще всего неизвестная стоит в знаменателе. Например, вот так:

Такие уравнения еще называют дробно-рациональными. В них всегда есть хотя бы одна дробь с переменной в знаменателе.

Если вы видите в знаменателях числа, то это уравнения либо линейные, либо квадратные. Решать все равно нужно, поэтому идем дальше. Примеры:

На алгебре в 8 классе можно встретить такое понятие, как область допустимых значений — это множество значений переменной, при которых это уравнение имеет смысл. Его используют, чтобы проверить корни и убедиться, что решение правильное.

Мы уже знаем все важные термины, их определения и наконец подошли к самому главному — сейчас узнаем как решить дробное уравнение.

Как решать уравнения с дробями

1. Метод пропорции

Чтобы решить уравнение методом пропорции, нужно привести дроби к общему знаменателю. А само правило звучит так: произведение крайних членов пропорции равно произведению средних. Проверим, как это работает.

Итак, у нас есть линейное уравнение с дробями:

В левой части стоит одна дробь — оставим без преобразований. В правой части видим сумму, которую нужно упростить так, чтобы осталась одна дробь.

После того, как в левой и правой части осталась одна дробь, можно применить метод пропорции и перемножить крест-накрест числители и знаменатели.

2. Метод избавления от дробей

Возьмем то же самое уравнение, но попробуем решить его по-другому.

В уравнении есть две дроби, от которых мы очень хотим избавиться. Вот, как это сделать:

  • подобрать число, которое можно разделить на каждый из знаменателей без остатка;
  • умножить на это число каждый член уравнения.

Ищем самое маленькое число, которое делится на 5 и 9 и без остатка — 45 как раз подходит. Умножаем каждый член уравнения на 45 и избавляемся от знаменателей. Вуаля!

Вот так просто мы получили тот же ответ, что и в прошлый раз.

Что еще важно учитывать при решении

  • если значение переменной обращает знаменатель в 0, значит это неверное значение;
  • делить и умножать уравнение на 0 нельзя.

Универсальный алгоритм решения

Определить область допустимых значений.

Найти общий знаменатель.

Умножить каждый член уравнения на общий знаменатель и сократить полученные дроби. Знаменатели при этом пропадут.

Раскрыть скобки, если нужно и привести подобные слагаемые.

Решить полученное уравнение.

Сравнить полученные корни с областью допустимых значений.

Записать ответ, который прошел проверку.

Курсы по математике от Skysmart помогут закрепить материал и разобраться в сложных темах.

Примеры решения дробных уравнений

Чтобы стать успешным в любом деле, нужно чаще практиковаться. Мы уже знаем, как решаются дробные уравнения — давайте перейдем к решению задачек.

Пример 1. Решить дробное уравнение: 1/x + 2 = 5.

  1. Вспомним правило х ≠ 0. Это значит, что область допустимых значений: х — любое число, кроме нуля.
  2. Отсчитываем справа налево в числителе дробной части три знака и ставим запятую.
  3. Избавимся от знаменателя. Умножим каждый член уравнения на х.

Решим обычное уравнение.

Пример 2. Найти корень уравнения

  1. Область допустимых значений: х ≠ −2.
  2. Умножим обе части уравнения на выражение, которое сократит оба знаменателя: 2(х+2)
  3. Избавимся от знаменателя. Умножим каждый член уравнения на х.

Переведем новый множитель в числитель..

Сократим левую часть на (х+2), а правую на 2.

Пример 3. Решить дробное уравнение:

    Найти общий знаменатель:

Умножим обе части уравнения на общий знаменатель. Сократим. Получилось:

Выполним возможные преобразования. Получилось квадратное уравнение:

Решим полученное квадратное уравнение:

Получили два возможных корня:

Если x = −3, то знаменатель равен нулю:

Если x = 3 — знаменатель тоже равен нулю.

  • Вывод: числа −3 и 3 не являются корнями уравнения, значит у данного уравнения нет решения.
  • [spoiler title=”источники:”]

    http://cos-cos.ru/math/151/

    http://skysmart.ru/articles/mathematic/reshenie-uravnenij-s-drobyami

    [/spoiler]

    Иногда линейные уравнения принимают вид, когда неизвестное оказывается в числителе одной или нескольких дробей.
    Как, например, в уравнении ниже.

    уравнение с неизвестным в дроби

    В таких случаях подобные уравнения можно решить двумя способами.

    I способ решения
    Сведение уравнения к пропорции

    Запомните!
    !

    При решении уравнений способом пропорции необходимо выполнить следующие действия:

    • привести все дроби к общему знаменателю и сложить их как алгебраические дроби
      (в левой и правой части должно остаться только по одной дроби);
    • полученное уравнение решить по правилу пропорции.

    Итак, вернемся к нашему уравнению. В левой части у нас и так стоит только одна дробь, поэтому в ней не нужны
    никакие преобразования.

    уравнение с неизвестным в дроби

    Будем работать с правой частью уравнения.
    Упростим правую часть уравнения так, чтобы там осталась только одна дробь.
    Для этого вспомним правила сложения числа с алгебраической дробью.

    решаем уравнение с неизвестным в дроби

    Теперь используем правило пропорции и решим уравнение до конца.

    решаем уравнение с неизвестным в дроби как пропорцию


    II способ решения
    Сведение к линейному уравнению без дробей

    Рассмотрим уравнение выше еще раз и решим его другим способом.

    уравнение с неизвестным в дроби

    Мы видим, что в уравнении присутствуют две дроби
    «» и
    «».

    Наша задача сделать так, чтобы в уравнении не осталось ни одной дроби.

    Другими словами, необходимо свести уравнение к обычному
    линейному уравнению без неизвестного в дроби.

    Запомните!
    !

    Чтобы избавиться от дробей в уравнении нужно:

    • найти число, которое без остатка будет делиться на каждый из знаменателей;
    • умножить каждый член уравнения на это число.

    Давайте зададим себе вопрос: «Какое число без остатка делится на каждый из знаменателей дробей, то есть и на
    «5», и на «9» ?».
    Таким ближайшим наименьшим числом будет число «45».

    Умножим каждый член уравнения на «45».

    уравнение с неизвестным в дроби

    Важно!
    Галка

    При умножении уравнения на число нужно каждый член уравнения
    умножить на это число.

    уравнение с неизвестным в дроби

    Другие примеры решения уравнений с неизвестным в дроби

    Решение уравнения I способом (через пропорцию)


    • +

      =

      +

      =

      +

      =

      =

      =

      (49 − 23y) · 2 = 15 · (y + 6)

      98 − 46y = 15y + 90

      −46y − 15y = 90 − 98

      −61y = −8     | :(−61)

      y =

      Ответ: y =

    Решение уравнения II способом
    (сведение к уравнению без дробей)


    • 2 − +
      = 0             | ·20

      2 · 20 − +
      = 0 · 20

      40 − 5 ·(3x − 7) + 4 · (x + 17) = 0

      40 − 15x + 35 + 4x + 68 = 0

      −15x + 4x + 40 + 35 + 68 = 0

      −11x + 75 + 68 = 0

      −11x + 143 = 0

      −11x = −143     | :(−11)

      x = 13

      Ответ: x = 13


    Ваши комментарии

    Важно!
    Галка

    Чтобы оставить комментарий, вам нужно войти на наш сайт при помощи

    «ВКонтакте».

    Пришелец пожимает плечами

    Оставить комментарий:

    25 августа 2016 в 13:08

    Виктория Лебеденко
    (^-^)
    Профиль
    Благодарили: 0

    Сообщений: 1

    (^-^)
    Виктория Лебеденко
    Профиль
    Благодарили: 0

    Сообщений: 1

    0
    Спасибоthanks
    Ответить

    3 сентября 2016 в 19:36
    Ответ для Виктория Лебеденко

    Юлия Анарметова
    (^-^)
    Профиль
    Благодарили: 0

    Сообщений: 11

    (^-^)
    Юлия Анарметова
    Профиль
    Благодарили: 0

    Сообщений: 11


    раскроем скобки x2+3x-x-3-x2-5=0(уничтожим xи-x2) получим  2x-8=0
                           2x=8
                             x=8 :2
                             x=4

    0
    Спасибоthanks
    Ответить


            Итак, друзья, продолжаем осваивать решение основных типов алгебраических уравнений. Мы с вами уже хорошо (надеюсь) знаем, как именно надо решать линейные и квадратные уравнения. Осталось разобрать ещё одним основным типом уравнений — дробными уравнениями.

            Иногда их называют более научно и солидно – дробные рациональные уравнения. Или дробно-рациональные уравнения. Это сути не меняет.)

            Дробные уравнения — незаменимая вещь во многих других темах математики. Особенно — в текстовых задачах. Но для успешного их решения жизненно необходимо ориентироваться в трёх смежных темах:

            1. Дроби и действия с дробями и дробными выражениями.

            2. Тождественные преобразования уравнений.

            3. Решение линейных и квадратных уравнений.

            Без этих трёх китов браться за решение дробных уравнений слишком уж самонадеянно, я бы сказал. Почему? Да потому, что непонимание, как, скажем, работать с дробями (сокращать, приводить к общему знаменателю и т.д.) автоматически будет приводить к полному провалу и в дробных уравнениях. Намёк понятен?)

            Так что тем, у кого проблемы хотя бы по одной из вышеперечисленных тем — настоятельно рекомендую освежить их в памяти, да и по ссылочкам пройтись.

            Итак, вперёд!

    Что такое дробное уравнение? Примеры.

            Дробное уравнение, как следует непосредственно из названия, – это уравнение, в котором есть дроби. Обязательно. Причём (важно!) не просто дроби, а дроби, у которых есть икс в знаменателе. Хотя бы в одном.

            Например, вот такое уравнение:

            

            Или такое:

            

            Или вот такое:

            

            И так далее.) Напоминаю, что, если в знаменателях сидят только числа, то такие уравнения к дробным не относятся. Либо это линейные уравнения, либо квадратные.

            Например:

            

            Это линейное уравнение, хотя тут тоже есть дроби. Почему? Да потому, что знаменатели дробей — четвёрка и пятёрка. Т.е. просто числа. И ни один из знаменателей не содержит иксов.

            Или такое уравнение:

            

            Это обычное квадратное уравнение, несмотря на двойку в знаменателе. Опять же, по причине того, что двойка — не икс, и деления на неизвестное в дроби нету.

            В общем, вы поняли.

    Как решать дробные уравнения? Убираем дроби!

            Как это ни странно, дробные уравнения в большинстве своём решаются довольно просто. По чётким и несложным правилам. Каким же именно образом?

            Первым делом надо избавиться от дробей! Это ключевой шаг в решении любого дробного уравнения, который должен быть освоен идеально. Ибо после того, как все дроби исчезли, уравнение, чаще всего, превращается в линейное или квадратное. А дальше мы уже с вами знаем, что делать.)

            Но… Как же нам избавиться от дробей?! Легко! Применяя всё те же старые добрые тождественные преобразования! В чём же суть?

            Вникаем. Нам надо помножить обе части уравнения на одно и то же выражение. Но не на какое попало, а на такое, чтобы все знаменатели посокращались! Одним махом.) Ибо дальше, без знаменателей, жизнь становится гораздо проще и приятнее.)

            Это только на конкретном примере показать можно. Итак, решаем первое уравнение из нашего списка:

            Первое, что приходит на ум — перенести всё в одну сторону, привести всё к общему знаменателю и т.д. Забудьте, как кошмарный сон! Так делают только в одном случае — при решении дробно-рациональных неравенств методом интервалов. Это отдельная большая тема.

            А в уравнениях нам надо сразу умножить обе части на такое выражение, которое нам позволит сократить все знаменатели. И какое же это выражение?

            Давайте его конструировать.) Смотрим ещё раз на уравнение:

            

            Понятно, что в левой части для ликвидации знаменателя нам необходимо умножение на (х+3), а в правой — на 3. Но математика позволяет умножать обе части уравнения только на одно и то же выражение! На разные — не катит. Ничего не поделать, так уж она устроена…)

            Значит, нам надо скомбинировать такое выражение, которое одновременно делилось бы как на (х+3), так и на тройку. Причём очень важно — только с помощью умножения! И какое же это выражение? Очевидно, это 3(х+3). То есть, по сути, общий знаменатель обеих дробей.

            Итак, для ликвидации всех дробей наше уравнение надо умножать на выражение 3(х+3).

            Умножаем:

            

            Это самое обычное умножение дробных выражений, но, так уж и быть, расписываю детально:

            

            Прошу обратить внимание: скобки (х+3) я не раскрываю! Прямо так, целиком, их и пишу, как будто бы это одна буква. Ибо наша основная на данный момент задача — дроби убрать. Чего без произведения никак не сделаешь… И зачем же нам тогда париться с раскрытием скобок?!

            А вот теперь мы видим, что в левой части сокращается целиком (х+3), а в правой 3. Чего мы и добивались! И теперь с чувством глубокого удовлетворения производим сокращение:

            

            Вот и отлично. Дроби исчезли. После сокращения получилось безобидное линейное уравнение:

            2∙3 = х+3

            А его (надеюсь) уже решит каждый:

            х = 3

            Решаем следующий примерчик:

            

            И опять избавляемся от того, что нам не нравится. В данном примере это дробь 20/х. Одна единственная. Для её ликвидации правую часть надо домножить на знаменатель. То есть, просто на х. Но тогда и левую часть тоже надо домножить на х: так уж второе тождественное преобразование требует.

            Вот и домножаем! Всю левую часть и всю правую часть:

            

            Напоминаю, что эта вертикальная чёрточка с умножением всего лишь означает, что обе части нашего уравнения мы умножаем на “х”.    

            Вперёд!

            

            А вот теперь — снова внимание! Очередные грабли. Заметьте, что при умножении левой части на икс, выражение (9 — х) я взял в скобки! Почему? Потому, что мы умножаем на икс всю левую часть целиком, а не отдельные её кусочки!

            Дело всё в том, что частенько после умножения народ записывает левую часть вот так:

            

            Это категорически неверно. Дальше можно уже не решать, да…)

            Но у нас всё хорошо, будем дорешивать.

            С чистой совестью сокращаем икс справа и получаем уравнение уже безо всяких дробей, в одну строчку.

            (9 — х)∙х = 20

            Вот и отлично. Все дроби исчезли напрочь, теперь можно и скобки раскрыть:

            9х — х2 = 20

            Переносим всё влево и приводим к стандартному виду:

            

            Получили классическое квадратное уравнение. Но минус перед квадратом икса — нехорош. Забыть его проще простого! От него всегда можно избавиться умножением (или делением) уравнения на (-1). Проще говоря, меняем в левой части все знаки на противоположные. А справа как был ноль, так ноль же и останется:

            

            Решаем через дискриминант (или подбираем по теореме Виета) и получаем два корня:

            х1 = 4

            х2 = 5

            И все дела.)

            Как вы видите, в первом случае уравнение после преобразований стало линейным, а здесь — квадратным.

            А бывает и так, что после ликвидации дробей вообще все иксы сокращаются и остаётся чистая правда. Что-нибудь типа 3=3.  Это означает, что икс может быть любым. Какой икс ни возьми — всё равно всё посокращается и останется железное равенство 3=3.

            Или наоборот, может получиться какая-нибудь белиберда, типа 3=4. А это будет означать, что корней нет. Какой икс ни возьми — всё сократится и останется бред…

            Надеюсь, такие сюрпризы вас уже нисколько не удивят.) Если всё же удивят, то прогуляйтесь по ссылочке: Линейные уравнения. Как решать линейные уравнения? А чуть конкретнее — особые случаи при решении линейных уравнений. Эти сюрпризы (полная пропажа иксов после преобразований) — они ко всем видам уравнений относятся. И дробные — не исключение.)

            Разумеется, при попытке ликвидации дробей встречаются и неожиданности. И одну из них мы рассмотрим прямо сейчас.

    Раскладываем на множители!

            Решаем третье уравнение по списку:

            

            А вот тут некоторые могут и зависнуть. На что же такое надо домножить всё уравнение, чтобы за один шаг сократились все знаменатели? Можно, конечно, взять и тупо перемножить все три знаменателя, получить

            x(x2+2x)(x+2)

            и домножить на эту конструкцию всё уравнение. Математика не возражает.) Но… Может быть, есть выражение попроще?

            Что ж, вскрою тайну: да, всё гораздо проще! Если в совершенстве владеть таким мощным приёмом, как разложение на множители. Привет седьмому классу!)

            А попробуем-ка разложить на множители каждый из знаменателей? Ну, с х и х+2 точно ничего не сделать, а вот х2+2х вполне себе раскладывается! Выносим один икс за скобку и получаем:

            х2+2х = х(х+2)

            Отлично. Вставим наше разложение в исходное уравнение:

            

            Вот теперь всё и прояснилось.) Теперь уже отчётливо видно, что гораздо проще будет умножать обе части уравнения на х(х+2). Это выражение гораздо короче и прекрасно делится на каждый из знаменателей: и на x, и на (х+2), и само на себя — на х(х+2).

            Вот на х(х+2) и умножаем:

            

            И снова расписываю подробно, дабы не запутаться. В левой части я буду использовать скобки: там сумма дробей. В правой части скобки не нужны: там одна дробь. Вот и пишем:

            

            А теперь производим умножение. В левой части большие скобки умножаем на наше выражение х(х+2). Разумеется, по правилу раскрытия скобок, сначала первую дробь, затем — вторую. Ну, а в правой части, по правилу умножения дробей, просто умножаем числитель:

            

            Я уж не стал здесь рисовать единички в знаменателях, несолидно… И, опять же, малые скобки в числителях я не раскрываю! Они нам сейчас для сокращения понадобятся! И да… Откуда появились скобки (х — 3) в числителе первой дроби — думаю, уже не стоит объяснять?)

            С удовольствием сокращаем все дроби:

            

            (x-3)(x+2) + 3 = x

            Раскрываем оставшиеся скобки, приводим подобные и собираем всё слева:

            x2 + 2x — 3x — 6 + 3 — х = 0

            x2 — 2x — 3 = 0

            И снова получили квадратное уравнение.) Решаем и получаем два корня:

            x1 = -1

            x2 = 3

            Вот и всё. Это и есть ответ.)

            Из этого примера можно сделать важный вывод:

            Если знаменатели дробей можно разложить на простые множители — обязательно делаем это! Пригодится при ликвидации дробей. Причём раскладываем всё до упора, используя все возможные способы из алгебры седьмого класса!

            Как вы видите, всё просто и логично. Мы меняем исходное уравнение так, чтобы после наших преобразований из примера исчезло всё то, что нам не нравится. Или мешает. В данном случае это — дроби. И точно так же мы будем поступать и со всякими логарифмами, синусами, показателями и прочей жестью.) Мы всегда будем от всего этого избавляться.)

            Ну что, порешаем?)

            Решить уравнения:

            

            Ответы (как обычно, вразброс):

            x = 3

            x1 = 0,5;    x2 = 3

            x = 2

            х = 6

            x = 2,6

            x1 = 2;    x2 = 5

            Последнее задание не решается? Что ж, формулы сокращённого умножения всяко помнить надо, да…)

            Всё решилось? Что ж, здорово! Значит, полпути в решении дробных уравнений мы с вами уже преодолели. Эта первая часть пути — избавление от дробей. Осталась вторая. Не менее важная!

            Всё просто, но… Пришло время открыть вам горькую правду. Успешное решение дробных уравнений этого урока вовсе не гарантирует успех в решении всех остальных примеров этой темы. Даже очень простых, подобных этим. К сожалению…

            Но об этом — дальше.)

    Методы решения уравнений, содержащих дроби

    В этой статье я расскажу методики решения рациональных уравнений, содержащих дроби.

    Что такое рациональное уравнение? Это уравнение, которое содержит в себе такие действия как сложение, вычитание, умножение, деление, возведение в степень с целым показателем. Извлечение корня – это недопустимое действие для рационального уравнения. Корень делает уравнение иррациональным, как, собственно, и дробный показатель степени.

    В свою очередь рациональные уравнения делятся на два вида: целые рациональные и дробные рациональные.

    К целым рациональным уравнениям относятся линейные и квадратные уравнения. Рассмотрим пример:

    Это уравнение является…попробуешь угадать?…линейным. Его можно запросто увидеть, если деление на 2 и на 6 заменить умножением на 1/2 и 1/6 соответственно. Но оно все-таки содержит в себе знаменатель, поэтому мы его и рассматриваем в данной статье.

    К дробным рациональным уравнениям относятся уравнения, которые содержат икс в знаменателе. Например, это уравнение дробное рациональное:

    Методика решения приведенных примеров, в принципе, одинакова. Разница состоит в том, что в дробных рациональных уравнениях знаменатель не должен равняться нулю, поэтому при их решении оговаривают ограничения для икса. По-научному говорят, что находят область допустимых значений (ОДЗ).

    Но давайте начнем с простого.

    Целое рациональное уравнение.

    Сначала решим целое рациональное уравнение.

    Если ты в уравнении видишь дроби, то надо от них избавится, ведь уравнение без дробей решается намного приятнее)

    В этом уравнении находим общий знаменатель. Он равен 6. Это значит, что обе части уравнения надо умножить на 6 (одинокий икс тоже).

    Обычно этот шаг пропускают и переходят к следующему, но я его все равно распишу:

    Числители и знаменатели сокращаются и получается элементарное уравнение:

    Приводим подобные слагаемые:

    Чтобы найди икс надо -10 разделить на 10 (произведение делим на известный множитель). Получаем ответ:

    Готово!

    Дробное рациональное уравнение.

    Теперь решим дробное рациональное уравнение.

    Я уже писала о том, что в дробных рациональных уравнениях знаменатели не должны равняться нулю. Знаменатель второй дроби нас устраивает, ведь 3 не равно 0) А вот знаменатель первой дроби требует от нас, чтобы мы нашли ОДЗ.

    А дальше по накатанной: надо обе части уравнения умножить на общий знаменатель. Общим знаменателем будет выражение 3(х + 9).

    Снова распишу подробно, но если ты шаришь, то следующую запись можешь не писать.

    В первой дроби сокращаем (х + 9), а во второй – тройки. Получаем такое уравнение:

    Здесь можно раскрыть скобки, потом перенести известные в одну сторону, а неизвестные – в другую… Но делать я этого не стану, а просто обе части уравнения разделю на -2. А еще поменяю местами левую и правую части уравнения, чтобы привести его к привычному виду.

    Чтобы найти неизвестное слагаемое надо из суммы вычесть известное слагаемое, т.е. из -9 вычесть 9.

    Ответ таков:

    Сравниваем с ОДЗ… Всё отлично. Корень уравнения подходит.

    Альтернативный метод решения уравнения с дробями.

    Но нельзя пройти мимо другого метода решения данного уравнения: с помощью пропорции. Помнишь, как она раскрывается? Правильно, крест-накрест. И не надо искать общий знаменатель)

    Перемножаем….и о чудо! Получаем уравнение, которое мы уже решали!

    Дальнейшее решение расписывать не буду, оно есть выше.

    Такой способ решения уравнений хорош, когда в уравнении имеются две дроби.

    В завершении решу еще одно уравнение предложенными выше способами.

    Только ты решаешь какой способ выбрать.

    Твой персональный препод Васильева Анна)

    Добавить комментарий