Как объяснить уравнения с х (икс) школьнику в 4 классе?
Автор: Творческая Анна
Недавно звонит мама школьника, с которым я занимаюсь и просит объяснить математику ребёнку, т.к он не понимает, а она не него кричит и разговор с сыном не выходит.
У меня не математический склад ума, творческим людям это не свойственно, но я сказала, что посмотрю что они проходят и попробую. И вот что получилось.
Я взяла лист бумаги формата А4, обычный белый, фломастеры, карандаш в руки и начала выделять, то что стоит понять, запомнить, обратить внимание. И чтобы было видно, куда эта цифра переходит и как меняется.
Объяснение примеров с левой стороны, на правую сторону.
Пример № 1
Пример уравнения для 4 класса со знаком плюс.
Самым первым действием смотрим, что мы можем сделать в этом уравнении? Тут мы можем выполнить умножение. Умножаем 80*7 получаем 560. Переписываем ещё раз.
Х + 320 = 560 (выделила цифры зеленым маркером).
Теперь мы видим, что у нас есть х (неизвестное) и числа, только не рядом, а разделяет их знак равно. Х в одну сторону, цифры в другую.
Х = 560 – 320. Минус ставим потому что при переносе числа, знак что перед ним меняется на противоположный. Выполняем вычитание.
Х = 240 Обязательно делаем проверку. Проверка покажет правильно ли мы решили уравнение. Вместо х вставляем число, которое получили.
Проверка:
240 + 320 = 80*7 Складываем числа, с другой стороны умножаем.
Всё верно! Значит мы решили уравнение правильно!
Пример № 2
Пример уравнения для 4 класса со знаком минус.
Первым действием смотрим, что мы можем сделать в этом уравнении? В данном примере мы можем разделить. Производим деление 240 разделить на 3 получаем 80. Переписываем уравнение ещё раз.
Х – 180 = 80 (выделила цифры зеленым маркером).
Теперь мы видим, что у нас есть х (неизвестное) и числа, только не рядом, а разделяет их знак равно. Х в одну сторону, цифры в другую.
Х = 80 + 180 Знак плюс ставим потому что при переносе числа, знак что был перед цифрой меняется на противоположный. Считаем.
Х = 260 Выполняем проверочную работу. Проверка покажет правильно ли мы решили уравнение. Вместо х вставляем число, которое получили.
Проверка:
Пример № 3
Пример уравнения для 4 класса со знаком минус, где х в середине, другими словами пример уравнения, где х отрицательный в середине.
400 – х = 275 + 25 Складываем числа.
400 – х = 300 Числа разделены знаком равенства, х является отрицательным. Чтобы сделать его положительным, нам нужно перенести его через знак равно, собираем числа в одной стороне, х в другой.
400 – 300 = х Цифра 300 была положительной, при переносе в другую сторону поменяла знак и стал минус. Считаем.
Т.к не принято так писать, а первым в уравнении должен быть х, просто меняем их местами.
Проверка:
400 – 100 = 275 + 25 Считаем.
Пример № 4
Пример уравнения для 4 класса со знаком минус, где х в середине, другими словами пример уравнения, где х отрицательный в середине.
72 – х = 18 * 3 Выполняем умножение. Переписываем пример.
72 – х = 54 Выстраиваем числа в одну сторону, х в другую. Цифра 54 меняет знак на противоположный, т.к перепрыгивает через знак равно.
72 – 54 = х Считаем.
18 = х Меняем местами, для удобства.
Проверка:
Пример № 5
Пример уравнения с х с вычитанием и сложением для 4 класса.
Х – 290 = 470 + 230 Складываем.
Х – 290 = 700 Выставляем числа с одной стороны.
Х = 700 + 290 Считаем.
Проверка:
990 – 290 = 470 + 230 Выполняем сложение.
Пример № 6
Пример уравнения с х на умножение и деление для 4 класса.
15 * х = 630/70 Выполняем деление. Переписываем уравнение.
15 * х = 90 Это тоже самое, что 15х = 90 Оставляем х с одной стороны, числа с другой. Данное уравнение принимает следующий вид.
Х = 90/15 при переносе цифры 15 знак умножения меняется на деление. Считаем.
Проверка:
15*6 = 630 / 7 Выполняем умножение и вычитание.
Теперь озвучиваем основные правила:
- Умножаем, складываем, делим или вычитаем;
Выполняем то, что можно сделать, уравнение станет немного короче.
Х в одну сторону, цифры в другую.
Неизвестную переменную в одну сторону (не всегда это х, может быть и другая буква), числа в другую.
При переносе х или цифры через знак равенства, их знак меняется на противоположный.
Если было число положительным, то при переносе перед цифрой ставим знак минус. И наоборот, если число или х было со знаком минус, то при переносе через равно ставим знак плюс.
При выполнении домашнего задания, классной работы, тестов, всегда можно взять лист и написать вначале на нём и сделать проверку.
Дополнительно находим подобные примеры в интернете, дополнительных книгах, методичках. Проще не менять цифры, а брать уже готовые примеры.
Чем больше ребёнок будет решать сам, заниматься самостоятельно, тем быстрее усвоит материал.
Если ребенок не понимает примеры с уравнением, стоит объяснить пример и сказать, чтобы остальные делал по образцу.
Данное подробное описание, как объяснить уравнения с х школьнику для:
- родителей;
- школьников;
- репетиторов;
- бабушек и дедушек;
- учителей;
Детям нужно все делать в цвете, разными мелками на доске, но увы не все так делают.
Из своей практики
Мальчик писал так, как хотел, вопреки существующим правилам по математике. При проверке уравнения были разные цифры и одно число (с левой стороны) не равнялось другому (то что с правой стороны), он тратил время на поиски ошибки.
При вопросе, почему он так делает? Был ответ, что он пытается угадать и думает, а вдруг сделает правильно.
В данном случае нужно каждый день (через день) решать подобные примеры. Довести действия до автоматизма и конечно все дети разные, дойти может не с первого занятия.
Если у родителей нет времени, а часто это так, потому что родители зарабатывают денежные средства, то лучше найти репетитора в своём городе, который сможет объяснить пройденный материал ребёнку.
Сейчас век ЕГЭ, тестов, контрольных работ, есть дополнительные сборники и методички. Делая за ребёнка домашние задания, родители должны помнить, что на экзамене в школе их не будет. Лучше объяснить доходчиво ребёнку 1 раз, чтобы ребёнок смог самостоятельно решать примеры.
Решение простых линейных уравнений
О чем эта статья:
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).
Понятие уравнения
Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Значение неизвестных нужно найти так, чтобы при их подстановке в пример получилось верное числовое равенство.
Например, возьмем выражение 2 + 4 = 6. При вычислении левой части получается верное числовое равенство, то есть 6 = 6.
Уравнением можно назвать выражение 2 + x = 6, с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.
Корень уравнения — то самое число, которое при подстановке на место неизвестной уравнивает выражения справа и слева.
Решить уравнение значит найти все возможные корни или убедиться, что их нет.
Решить уравнение с двумя, тремя и более переменными — это два, три и более значения переменных, которые обращают данное выражение в верное числовое равенство.
Равносильные уравнения — это те, в которых совпадают множества решений. Другими словами, у них одни и те же корни.
Какие бывают виды уравнений
Уравнения могут быть разными, самые часто встречающиеся — линейные и квадратные.
Особенность преобразований алгебраических уравнений в том, что в левой части должен остаться многочлен от неизвестных, а в правой — нуль.
Линейное уравнение выглядит так | ах + b = 0, где a и b — действительные числа.
Что поможет в решении:
|
---|---|
Квадратное уравнение выглядит так: | ax 2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, a ≠ 0. |
Числовой коэффициент — число, которое стоит при неизвестной переменной.
Кроме линейных и квадратных есть и другие виды уравнений, с которыми мы познакомимся в следующий раз:
Онлайн-курсы по математике за 7 класс помогут закрепить новые знания на практике с талантливым преподавателем.
Как решать простые уравнения
Чтобы научиться решать простые линейные уравнения, нужно запомнить формулу и два основных правила.
1. Правило переноса. При переносе из одной части в другую, член уравнения меняет свой знак на противоположный.
Для примера рассмотрим простейшее уравнение: x+3=5
Начнем с того, что в каждом уравнении есть левая и правая часть.
Перенесем 3 из левой части в правую и меняем знак на противоположный.
Можно проверить: 2 + 3 = 5. Все верно. Корень равен 2.
Решим еще один пример: 6x = 5x + 10.
Перенесем 5x из правой части в левую. Знак меняем на противоположный, то есть на минус.
Приведем подобные и завершим решение.
2. Правило деления. В любом уравнении можно разделить левую и правую часть на одно и то же число. Это может ускорить процесс решения. Главное — быть внимательным, чтобы не допустить глупых ошибок.
Применим правило при решении примера: 4x=8.
При неизвестной х стоит числовой коэффициент — 4. Их объединяет действие — умножение.
Чтобы решить уравнение, нужно сделать так, чтобы при неизвестной x стояла единица.
Разделим каждую часть на 4. Как это выглядит:
Теперь сократим дроби, которые у нас получились и завершим решение линейного уравнения:
Рассмотрим пример, когда неизвестная переменная стоит со знаком минус: −4x = 12
-
Разделим обе части на −4, чтобы коэффициент при неизвестной стал равен единице.
−4x = 12 | : (−4)
x = −3
Если знак минус стоит перед скобками, и по ходу вычислений его убрали — важно не забыть поменять знаки внутри скобок на противоположные. Этот простой факт позволит не допустить обидные ошибки, особенно в старших классах.
Напомним, что не у каждого линейного уравнения есть решение — иногда корней просто нет. Изредка среди корней может оказаться ноль — ничего страшного, это не значит, что ход решения оказался неправильным. Ноль — такое же число, как и остальные.
Способов решения линейных уравнений немного, нужно запомнить только один алгоритм, который будет эффективен для любой задачки.
Алгоритм решения простого линейного уравнения |
---|
|
Чтобы быстрее запомнить ход решения и формулу линейного уравнения, скачайте или распечатайте алгоритм — храните его в телефоне, учебнике или на рабочем столе.
Примеры линейных уравнений
Теперь мы знаем, как решать линейные уравнения. Осталось попрактиковаться на задачках, чтобы чувствовать себя увереннее на контрольных. Давайте решать вместе!
Пример 1. Как правильно решить уравнение: 6х + 1 = 19.
-
Перенести 1 из левой части в правую со знаком минус.
Разделить обе части на множитель, стоящий перед переменной х, то есть на 6.
Пример 2. Как решить уравнение: 5(х − 3) + 2 = 3 (х − 4) + 2х − 1.
5х − 15 + 2 = 3х − 12 + 2х − 1
Сгруппировать в левой части члены с неизвестными, а в правой — свободные члены. Не забываем при переносе из одной части уравнения в другую поменять знаки на противоположные у переносимых членов.
5х − 3х − 2х = −12 − 1 + 15 − 2
Приведем подобные члены.
Ответ: х — любое число.
Пример 3. Решить: 4х = 1/8.
-
Разделим обе части уравнения на множитель стоящий перед переменной х, то есть на 4.
Пример 4. Решить: 4(х + 2) = 6 − 7х.
- 4х + 8 = 6 − 7х
- 4х + 7х = 6 − 8
- 11х = −2
- х = −2 : 11
- х = −2/11
Ответ: −2/11 или −(0,18). О десятичных дробях можно почитать в другой нашей статье.
Пример 5. Решить:
- 3(3х — 4) = 4 · 7х + 24
- 9х — 12 = 28х + 24
- 9х — 28х = 24 + 12
- -19х = 36
- х = 36 : (-19)
- х = – 36/19
Пример 6. Как решить линейное уравнение: х + 7 = х + 4.
5х — 15 + 2 = 3х — 2 + 2х — 1
Сгруппировать в левой части неизвестные члены, в правой — свободные члены:
Приведем подобные члены.
Ответ: нет решений.
Пример 7. Решить: 2(х + 3) = 5 − 7х.
Как решать
показательные уравнения?
Решение уравнений – навык, который необходим каждому нацеленному на успешную сдачу ЕГЭ и ОГЭ школьнику. Это поможет решить задания №5, 13 и 15 из профильного уровня математики.
Одна из их разновидностей – степенные уравнения, которые иногда также называют показательными. Основная отличительная особенность – наличие переменной (х) не в основании степени, а в самом показателе. Как это выглядит:
Не бойтесь – это самый общий вид показательных уравнений. Реальные примеры выглядят как-то так:
Внимательно посмотрите на приведенные уравнения. В каждом из них присутствует, так называемая, показательная (степенная) функция. При решении необходимо помнить об основных свойствах степени, а также использовать особые правила, помогающие вычислить значение (х). Познакомиться с понятием степени и ее свойствами можно тут и тут.
И вам понадобится умение решать обыкновенные линейные и квадратные уравнения, те, что вы проходили в 7-8 классе. Вот такие:
И так, любое уравнение, в котором вы увидите показательную (степенную) функцию, называется показательным уравнением. Кроме самой показательной функции в уравнении могут быть любые другие математические конструкции – тригонометрические функции, логарифмы, корни, дроби и т.д. Если вы видите степень, значит перед вам показательное уравнение.
Ура! Теперь знаем, как выглядят показательные уравнения, но толку от этого не очень много. Было бы неплохо научиться их решать. Отличная новость – на наш взгляд показательные уравнения одни из самых простых типов уравнений, по сравнению с логарифмическими, тригонометрическими или иррациональными.
Простейшие показательные уравнения
Давайте начнем с самых простых типов уравнений и разберем сразу несколько примеров:
Что такое решить уравнение? Это значит, что нужно найти такое число, которое при подстановке в исходное уравнение вместо (х) даст верное равенство. В нашем примере нужно найти такое число, в которое нужно возвести двойку, чтобы получить восемь. Ну это просто:
Значит, если (х=3), то мы получим верное равенство, а значит мы решили уравнение.
Решим что-нибудь посложнее.
Такое уравнение выглядит сложнее. Попробуем преобразовать правую часть уравнения:
Мы применили свойство отрицательной степени по формуле:
Теперь наше уравнение будет выглядеть так:
Заметим, что слева и справа у нас стоят показательные функции, и там, и там основания одинаковые и равны (3), только вот степени разные – слева степень ((4х-1)), а справа ((-2)). Логично предположить, что если степени у такой конструкции будут равны, при условии, что основания одинаковые, то мы получим верное равенство. Так и поступим:
Такое мы решать умеем, ведь это обыкновенное линейное уравнение.
Поздравляю, мы нашли корень нашего показательного уравнения.
Попробуем поступить так, как в предыдущем примере – преобразуем левую и правую часть, чтобы слева и справа была показательная функция с одинаковым основанием. Как это сделать? Обращаем внимание, что (125=5*5*5=5^3), а (25=5*5=5^2), подставим:
Воспользуемся одним из свойств степеней ((a^n)^m=a^):
И опять мы получили две показательные функции, у которых одинаковые основания и для того, чтобы равенство выполнялось, необходимо приравнять из степени:
И еще один пример:
Те, кто хорошо знает свойства степеней, знают, что показательная функция не может быть отрицательной. Действительно, попробуйте возводить (2) в различную степень, вы никогда не сможете получить отрицательное число.
Внимание! Показательная функция не может быть отрицательной, поэтому, когда вы встречаете примеры на подобии примера 4, то знайте, что такого быть не может. Здесь корней нет, потому что показательная функция всегда положительна.
Теперь давайте разработаем общий метод решения показательных уравнений. И научимся решать более сложные примеры.
Общий метод решения показательных уравнений
Пусть у нас есть вот такой пример:
Где (a,b) какие-то положительные числа. ((a>0, ; b>0).
Согласно разобранным выше примерам, логично предположить, что для того, чтобы решить данное уравнение, нужно его преобразовать к виду, где слева и справа стоят показательные функции с одинаковым основанием. Так и поступим.
Слева у нас уже стоит (a^x), с этим ничего делать не будем, а вот справа у нас стоит загадочное число (b), которое нужно попытаться представить в виде (b=a^m). Тогда уравнение принимает вид:
Раз основания одинаковые, то мы можем просто приравнять степени:
Вот и весь алгоритм решения. Просто нужно преобразовать исходное уравнение таким образом, чтобы слева и справа стояли показательные функции с одинаковыми основаниями, тогда приравниваем степени и вуаля – сложное показательное уравнение решено. Осталось только разобраться, как так преобразовывать. Опять разберем на примерах:
Замечаем, что (16=2*2*2*2=2^4) это степень двойки:
Основания одинаковые, значит можно приравнять степени:
$$x=4.$$
Пример 6 $$5^<-x>=125 Rightarrow 5^<-x>=5*5*5 Rightarrow 5^<-x>=5^3 Rightarrow –x=3 Rightarrow x=-3.$$
Пример 7 $$9^<4x>=81 Rightarrow (3*3)^<4x>=3*3*3*3 Rightarrow(3^2)^<4x>=3^4 Rightarrow 3^<8x>=3^4 Rightarrow 8x=4 Rightarrow x=frac<1><2>.$$
Здесь мы заметили, что (9=3^2) и (81=3^4) являются степенями (3).
Все здорово, но проблема в том, что такая схема решения показательных уравнений работает не всегда. Что делать, если привести к одинаковому основанию не получается. Например:
(3) и (2) привести к одинаковому основанию затруднительно. Но тем не менее мы должны это сделать. Воспользуемся следующей схемой преобразований: пусть есть некоторое положительное число (b>0), тогда его можно представить в виде степени любого, нужного вам, положительного числа не равного единице (a>0, ; a neq 1):
Эта очень важная формула, рекомендуем ее выучить. Вернемся к нашему примеру и по формуле представим (2) в виде (3) в какой-то степени, где (a=3), а (b=2):
Подставим данное преобразование в наш пример:
Получили равенство двух показательных функций с одинаковым основанием, значит можем приравнять их степени:
Так в ответ и запишем. Никакой ошибки здесь нет, дело в том, что такие логарифмы можно посчитать только на калькуляторе, поэтому на ЕГЭ или в контрольной работе вы просто оставляете ответ в таком виде.
Кто забыл, что такое логарифм, можно посмотреть здесь.
Рассмотрим еще несколько аналогичных примеров.
Те, кто хорошо знает свойства логарифмов, могут поиграться с последней формулой и получить ответ в разном виде:
Все эти варианты ответа верные, их можно смело писать в ответ.
И так, мы с вами научились решать любые показательные уравнения вот такого вида: (a^x=b), где (a>0; ; b>0).
Но это еще далеко не все. Часто вы будете встречать показательные уравнения гораздо более сложного типа. В ЕГЭ по профильной математике это номер 15 из 2й части. Но бояться тут не нужно, все на первый взгляд сложные уравнения при помощи обычно не самых сложных преобразований сводятся к уравнениям типа (a^x=b), где (a>0; ; b>0). Рассмотрим типы сложных уравнений, которые могут попасться:
Решение показательных уравнений при помощи замены
Самое первое, что вы должны всегда делать, это пытаться привести все имеющиеся показательные функции к одинаковому основанию.
Здесь это сделать легко, замечаем, что (9=3^2), тогда (9^x=(3^2)^x=3^<2x>=(3^x)^2). Здесь мы воспользовались свойством степеней: ((a^n)^m=a^). Подставим:
Обратим внимание, что во всем уравнении все (х) «входят» в одинаковую функцию – (3^x). Сделаем замену (t=3^x, ; t>0), так как показательная функция всегда положительна.
Квадратное уравнение, которое решается через дискриминант:
Оба корня больше нуля, значит оба нам подходят. Сделаем обратную замену и уравнение сводится к решению двух простых показательных уравнений:
И второй корень:
И еще один пример на замену:
Воспользуемся нашим правилом, что все нужно приводить к одинаковому основанию – а стоп, тут и так у всех показательных функций основание (3). Давайте еще внимательно посмотрим на наш пример, очень похоже на то, что он тоже делается через замену. Но у нас тут нет одинаковых показательных функций, основания то одинаковые, а вот степени отличаются. Но если быть внимательным, то можно заметить, что в первой степени можно разбить свободный член (3=2+1) и вынести общий множитель (2):
Подставим в исходное уравнение:
Теперь показательные функции одинаковы и можно сделать замену:
Обратная замена, и наше уравнение сводится к простейшему:
И второе значение (t):
Тут у нас две показательные функции с основаниями (7) и (3), и как сделать из них одинаковые основания непонятно. Этот пример решается при помощи деления. Давайте поделим все наша уравнение на (3^x):
Здесь нам придется воспользоваться свойствами степеней:
Разберем каждое слагаемое:
Теперь подставим получившееся преобразования в исходное уравнение:
Теперь видно, что в нашем уравнении есть одинаковая функция, которую можно убрать в замену (t=(frac<7><3>)^x):
Сделаем обратную замену:
И последний пример на замену:
Первым делом нужно сделать так, чтобы все показательные функции были с одинаковым основанием и в идеале с одинаковой степенью. Для этого нам понадобятся формулы для степеней:
Разберем каждое слагаемое нашего уравнения:
Все десятичные дроби всегда разумно представить в виде обыкновенных дробей. И будьте внимательны – отрицательная степень не имеет никакого отношения к знаку показательной функции!
И последнее слагаемое со степенью:
Подставим все наши преобразования в исходное уравнение:
Теперь можно сделать замену (t=2^x) или можно обойтись без замены, просто приведя подобные слагаемые (вынести общий множитель (2^x)):
Особенно стоит подчеркнуть прием, который мы использовали при решении 13-го примера. Всегда старайтесь избавляться от десятичных дробей. Переводите их в обыкновенные дроби.
И другой тип степенных уравнений, где обычно не нужно делать замену, а необходимо отлично знать все свойства степеней, некоторые из них мы уже обсудили выше. Все про свойства степеней можно посмотреть тут
Вот такое уравнение, в котором у нас, во-первых, показательных функции перемножаются, а еще хуже то, что у них у всех разные основания. Катастрофа, а не пример. Но ничего, все не так страшно, как кажется. Внимательно посмотрите на основания: у нас есть в основании (2), (5) и (10). Очевидно, что (10=2*5). Воспользуемся этим и подставим в наше уравнение:
Воспользуемся формулой ((a*b)^n=a^n*b^n):
И перекинем все показательные функции с основанием (2) влево, а с основанием (5) вправо:
Сокращаем и воспользуемся формулами (a^n*a^m=a^) и (frac=a^):
Самая главная идея при решении показательных уравнений – это любыми доступными способами свести все имеющиеся степенные функции к одинаковому основанию. А еще лучше и к одинаковой степени. Вот почему необходимо знать все свойства степеней, без этого решить уравнения будет проблематично.
Как же понять, где какие преобразования использовать? Не бойтесь, это придет с опытом, чем больше примеров решите, тем увереннее будете себя чувствовать на контрольных в школе или на ЕГЭ по профильной математике. Сначала потренируйтесь на простых примерах и постепенно повышайте уровень сложности. Успехов в изучении математики!
[spoiler title=”источники:”]
http://skysmart.ru/articles/mathematic/reshenie-prostyh-linejnyh-uravnenij
http://sigma-center.ru/exponential_equations
[/spoiler]
Основными уравнениями школьной алгебры являются линейные и квадратные. Все остальные уравнения путём различных тождественных преобразований или путём соответствующей подстановки сводятся к ним.
Линейные уравнения
Линейные уравнения ах = b, где а ≠ 0; x=b/a.
Пример 1. Решите уравнение – х + 5,18 = 11,58.
Решение:
– х + 5,18 = 11,58;
– х = – 5,18 + 11,58;
– х = 6,4;
х = – 6,4.
Ответ: – 6,4.
Пример 2. Решите уравнение 3 – 5(х + 1) = 6 – 4х.
Решение:
3 – 5(х + 1) = 6 – 4х;
3 – 5х – 5 = 6 – 4х;
– 5х + 4х = 5 – 3+6;
– х = 8;
х = – 8.
Ответ: – 8.
Пример 3. Решите уравнение .
Решение:
. Домножим обе части равенства на 6. Получим уравнение, равносильное исходному.
2х + 3(х – 1) = 12; 2х + 3х – 3 =12; 5х = 12 + 3; 5х = 15; х = 3.
Ответ: 3.
Пример 4. Решите систему
Решение:
Из уравнения 3х – у = 2 найдём у = 3х – 2 и подставим в уравнение 2х + 3у = 5.
Получим: 2х + 9х – 6 = 5; 11х = 11; х = 1.
Следовательно, у = 3∙1 – 2; у = 1.
Ответ: (1; 1).
Замечание.
Если неизвестные системы х и у, то ответ можно записать в виде координаты точки.
Квадратные уравнения
Квадратные уравнения ax2 + bx + c = 0, где а ≠ 0.
D = b2 – 4ac;
;
нет решения при D < 0.
При решении квадратных уравнений полезно помнить формулу чётного коэффициента, т.е. случай, когда b = 2k или k =b/2:
.
х2 + px + q = 0 – приведённое квадратное уравнение. Для него справедлива теорема Виета:
где х1 и х2 – корни уравнения.
Пример 5. Решите уравнение 3у + у2 = у.
Решение:
3у + у2 = у – неполное квадратное уравнение; у2 + 3у – у = 0;
у2 + 2у =0; у∙(у + 2) = 0.
Помните! Произведение равно нулю, когда хотя бы один из сомножителей равен нулю, но второй при этом имеет смысл.
y1 = 0, или у + 2 = 0;
у2 = – 2.
Ответ: – 2; 0.
Пример 6. Решите уравнение 18 – х2 = 14.
Решение:
18 – х2 = 14 – неполное квадратное уравнение; – х2 = 14 – 18;
– х2 = – 4; х2 =4; х = ± 2.
Ответ: ± 2.
Пример 7. Решите уравнение х2 + 6х – 3 = 2х3.
Решение:
х2 + 6х – 3 = 2х3 – уравнение 3-ей степени. Оно решается разложением на множители: х2 – 2х3 + 6х – 3 = 0;
– х2(2х – 1 ) + 3(2х – 1) = 0;
(2х – 1)(3 – х2) = 0;
2х – 1 = 0 или 3 – х2 =0;
х1 = 0,5; х2,3 =.
Ответ: 0,5; .
Пример 8. Решите уравнение (х2 – 5х)2 – 30 (х2 – 5х) – 216 = 0.
Решение:
(х2 – 5х)2 – 30 (х2 – 5х) – 216 = 0 – биквадратное уравнение. Такое уравнение решается методом подстановки.
Метод подстановки позволяет перейти к уравнению, равносильному данному.
Пусть х2 – 5х = t. Тогда уравнение примет вид t2 – 30t – 216 = 0;
x2 – 5х = – 6 или х2 – 5х = 36;
х2 – 5х + 6 = 0 или х2 – 5х – 36 =0.
По теореме Виета:
х1 = 2, х2 = 3, х3 = – 4, х4 =9.
Ответ: – 4, 2, 3, 9.
Пример 9. Вычислить наибольший корень уравнения х4 – 7х3 + 14х2 – 7х + 1 = 0.
Решение:
х4 – 7х3 + 14х2 – 7х + 1 = 0 │: х2 (х ≠ 0)
t2 – 2 – 7t + 14 = 0;
t2 – 7t + 12 = 0;
t1 =3; t2 = 4.
х2 – 3х + 1 = 0 или х2 – 4х + 1 = 0;
D = 9 – 4 = 5, D = 16 – 4 = 12
x1 и х3 – меньшие корни. Остаётся сравнить х2 и х4.
– больший корень.
Ответ:.
Пример 10. Найти все целые решения системы уравнений
Решение:
Решаем уравнение 2(х + у)2 + (х + у) = 21.
Пусть х + у = t. Тогда получим 2t2 + t – 21 = 0; t1 =-7/2 ; t2 = 3.
x + у = -7/2 не удовлетворяет условию задачи, так как хотя бы одно из слагаемых в данной сумме будет нецелым числом.
x + у = 3 – удовлетворяет условию.
Решением системы будут (1; 2) или (2; 1).
Ответ: (1; 2), (2; 1).
Рациональные уравнения
Уравнение, содержащее неизвестную в знаменателе, называют рациональным.
При решении рационального уравнения необходимо исключать те значения неизвестного, при которых знаменатель обращается в нуль.
Пример 11. Решить уравнение
Решение:
Область определения уравнения х – 2 ≠ 0. В данном случае левую часть уравнения можно сократить на ( ).
По т. Виета х1 = 1, х2 = 3.
Ответ: 1; 3.
Пример 12. Решить уравнение
Решение:
Ответ: 2.
Пример 13. Решить уравнение
Решение:
Так как x2+5 быть равным нулю не может, то данное уравнение будет равносильно уравнению 3(x2+5)2-23(x2+5)-8=0, которое решается методом подстановки. Пусть x2+5=t .
Имеем 3t2-23t-8=0; t1=-1/3; t2=8.
x2+5≠-1/3. Остаётся x2+5=8; x2=3; x=.
Ответ: .
Пример 14. Решить систему
Решение:
Полученное решение системы удовлетворяет области определения.
Ответ: х = 2; у = 4.
Иррациональные уравнения
Уравнение, содержащее неизвестную под знаком корня n-ой степени, называется иррациональным.
Иррациональное уравнение чаще всего решается путём возведения в степень, которую имеет корень, содержащий неизвестную, или заменой неизвестной. Не следует забывать, что в степень возводятся обе части уравнения.
При возведении в нечётную степень обеих частей уравнения, получаем уравнение, равносильное исходному.
Новое уравнение, получившееся после возведения в чётную степень обеих частей, не всегда равносильно исходному уравнению, поэтому необходимо либо выполнить проверку полученных значений неизвестного путём подстановки в исходное уравнение, либо отбросить корни, не принадлежащие области определения уравнения.
Пример 15. Решить уравнение .
Решение:
Область определения: х + 1 ≥ 0.
x2 – 4 = 0 или х + 1 = 0;
х1 = – 2 , х3 = – 1.
х2 = 2,
х1 = – 2 не принадлежит области определения.
Ответ: – 1; 2
Пример 16. Решить уравнение .
Решение:
Данное уравнение решается возведением в квадрат левой и правой частей, и, так как в правой части уравнения содержится переменная, мы получим уравнение не равносильное исходному.
15 – 3х = х2 + 2х + 1; х2 + 5х – 14 = 0; х1 = – 7, х2 = 2.
Проверка. При х1 = – 7, – не корень.
При х2 = 2, – корень.
Ответ: 3.
Пример 17. Решить систему
Решение:
В данном случае не требуется ни проверка, ни нахождение области определения, поскольку правые части обоих уравнений и до возведений в квадрат, и после – заведомо положительны.
Ответ: (29; 20).
Уравнения, содержащие знак модуля
Пример 18. Решите уравнение .
Решение:
х + 5 = 3 или х + 5 = – 3. Откуда х1 = – 2 или х2 = – 8.
Ответ: – 2; – 8.
Пример 19. Решите уравнение .
Решение:
Данное уравнение будем рассматривать на двух числовых промежутках:.
Значение –1/2 назовём пограничным, т.е. при х = –1/2, 2х – 1 = 0.
При имеем –(2x+1)=x+3; -3=4; x=-4/3 – число принадлежит рассматриваемому промежутку, следовательно, –4/3 – корень.
При имеем 2x+1=x+3; x=2 – принадлежит рассматриваемому промежутку, следовательно, является корнем.
Помните!
Пограничное значение смены знака необходимо включить хотя бы в один из интервалов.
Ответ: -4/3; 2.
Пример 20. Решите уравнение .
Решение:
Двучлен х – 3 меняет свой знак при переходе через х = 3, а х + 1 – при х = – 1. Данное уравнение будем рассматривать на трёх числовых промежутках:
1); имеем-(x-3)-2(x+1)=4; – 3х = 3; х = – 1.
и не является корнем.
2) ;-(x-3)-2(x+1)=4; х = – 1.
, – 1 – корень.
3) ;(x-3)-2(x+1)=4; 3х = 5; х =5/3.
, следовательно, корнем не является.
Ответ: – 1.
Пример 21. Решить систему
Решение:
Ответ: (3; – 1), (1; – 3).
Уравнения с параметром
Пример 22. При каком значении а уравнение х(2 – а) – х = 5 + х не имеет решений?
Решение:
Выразим х через а. 2х – ах – х – х = 5; – ах = 5; х = –5/a .
При а = 0 х не определён.
Подставим а = 0 в исходное уравнение: х(2 – 0) – х = 5 + х; 2х – 2х = 5; 0 ≠ 5, следовательно, при а =0 данное уравнение не имеет решения.
Ответ: при а = 0.
Пример 23. Корни х1 и х2 уравнения х2 + х + а = 0 обладают свойством x12+x22=5 . Найти а.
Решение:
Уравнение х2 + х + а = 0 – приведённое квадратное. По теореме Виета х1 + х2 = – 1, х1 ∙ х2 = а. Т.к. x12+x22=5, то х1 – х2 = – 5.
Имеем х1 = – 3; х2 = 2, следовательно, а = (– 3)∙2= – 6.
Ответ: а = – 6.
Пример 24. При каких значениях параметра n уравнение (n-2)x2-2nx+n+3=0 имеет корни разных знаков.
Решение:
n – 2 ≠ 0. В противном случае – нет квадратного уравнения.
Приведём исходное уравнение (путём почленного деления обеих частей равенства на n – 2) к приведённому:
Чтобы уравнение имело корни разных знаков, необходимо и достаточно выполнение двух условий одновременно:
1) D/4 > 0 (по формуле чётного коэффициента);
2) x1 ∙ x2 < 0 (по теореме Виета):
Ответ: .
Показательные уравнения и системы уравнений
Пример 25. Решите уравнение 62-x=63-2x.
Решение:
62-x=63-2x; 2 – х = 3 – 2х; х = 1.
Ответ: 1.
Пример 26. Решите уравнение .
Решение:
.
Ответ: – 2.
Пример 27. Решите уравнение .
Решение:
Ответ: 2.
Пример 28. Решите уравнение .
Решение:
При подстановке полученных значений х1 = 1 и х2 = 10 уравнение обращается в тождество, следовательно, 1 и 10 – корни уравнения.
Ответ: 1, 10.
Пример 29. Укажите промежуток, на котором лежит корень уравнения
Решение:
Применим свойство степени и выделим в левой части уравнения множитель 3х:
Корень уравнения – число 0 – принадлежит промежутку .
Ответ: 1).
Логарифмические уравнения
Пример 30. Укажите отрицательный корень уравнения log5(x2-7x-35)=2.
Решение:
По определению логарифма получаем
Ответ: – 5.
Пример 31. Решите уравнение log3x+log3(3x-2)=log35.
Решение:
Область допустимых значений
В левой части уравнения на основании 3-го свойства получаем log3(x(3x-2))=log35; x(3x-2)=5; 3x2-2x-5=0; x1=5/3; x2=–1. –1 – не принадлежит области допустимых значений, т.е. не является корнем.
5/3 – принадлежит области допустимых значений, т.е. является корнем.
Ответ: 5/3.
Пример 32. Укажите целое решение уравнения
Решение:
Так как правая часть уравнения есть показательная функция, то , т.е. х > 0 и, поскольку x2 – основание логарифма, х ≠ 1.
Прологарифмируем обе части уравнения по основанию x2:
К правой части уравнения применим 5-е свойство логарифмов:
К обеим частям уравнения применим 7-е свойство логарифмов:
К обеим частям уравнения применим 4-е свойство логарифмов, сгруппируем и разложим на множители, получим:
(1-logx4)(1+logx4-logx3)=0
1-logx4=0 или 1+logx4-logx3=0
Из первого уравнения получаем х = 4, из второго х = 3/4.
Все найденные значения неизвестного входят в область допустимых значений уравнения, т.е. являются его корнями. Выбираем только целое – 4.
Ответ: 4.
Задачи для самостоятельного решения
Базовый уровень
Линейные уравнения и системы уравнений
1) Решите уравнение 3x=75
2) Решите уравнение .
3) Решите уравнение.
4) Решите уравнение .
5) Решите уравнение .
6) Решите систему уравнений.
7) Решить систему уравнений.
8) Решите систему уравнений
Квадратные уравнения и системы уравнений
9) Решите уравнение х + х2=0.
10) Укажите меньший корень уравнения (2х – 1)(х+3) = 0.
11) Решить систему уравнений
Рациональные уравнения и системы уравнений
12) Решите уравнение .
13) Решите уравнение .
14) Сколько корней имеет уравнение .
Иррациональные уравнения и системы уравнений
15) Решите уравнение .
16) Решите уравнение .
17) Решите уравнение .
18) Решите уравнение .
19) Решите систему уравнений .
20) Решите систему уравнений .
21) Пусть (х0; у0) решение системы уравнений . Найдите произведение х0 ∙ у0.
22) Решите систему уравнений .
Показательные уравнения и системы уравнений
23) Решите уравнение 52x-3=5 .
24) Решите уравнение 23х+1 = 4.
25) Решите уравнение 9x-5∙3x+1+54=0 .
26) Укажите отрицательный корень уравнения 23x+1-22x=2x+1-1.
27) Решите уравнение 3x+2-3x=72 .
28) Решите уравнение .
29) Решите уравнение 9x-75∙3x-1-54=0.
30) Решите уравнение .
31) Решите уравнение .
Логарифмические уравнения
32) Решите уравнение log2x=5.
33) Решите уравнение .
34) Решите уравнение 3log0.2x=log0.2x4-1 .
35) Решите уравнение .
36) Решите уравнение .
37) Решите уравнение lg(3+2lg(1+x))=0.
38) Решите уравнение log2(54-x3)=3log2x.
Уравнения и системы уравнений, содержащие модуль
39) Найдите наибольший корень уравнения |5-4x|=1.
40) Решите уравнение 2x+|x-13|=8.
41) Решить уравнение |x+1|-8x=|x-5|+4.
42) Решите систему уравнений .
Повышенный уровень
Уравнения с параметром
43) При каких значениях k уравнение x2 + kx + 9 =0 имеет корни?
44) Найти все значения а, при каждом из которых уравнение |2x+3|+|2x-3|=ax+6 имеет один корень.
Сложные уравнения
45) Решите уравнение log3|x+1|=1 .
46) Укажите наибольший корень уравнения
47) Решите уравнение
48) Пусть – решение системы Найдите сумму х0 + у0.
49) Укажите целый корень уравнения xlog2x+4=32 .
50) Решите уравнение x2log3x=81x2 и укажите произведение его корней.
51) Решите уравнение lg(x+2)=lg(5x+1)-lg(4-2x).
52) Найдите сумму корней уравнения logx(5x-4)=2.
53) Сколько корней имеет уравнение ln(x2+2x-3)=ln(x-3)?
54) Решите уравнение log7(x-7)-1=log7(5x-1).
55) Укажите все пары (х, у) положительных чисел х и у, удовлетворяющих системе
56) Решите уравнение .
Решение простых уравнений — одна из базовых тем для усвоения, при этом они являются достаточно мощным инструментом для решения большинства задач. По мере усвоения новых материалов, уравнения будут усложняться, поэтому понять основы очень важно.
Уравнение — это равенство, содержащее в себе переменную. Значение данной переменной требуется найти. Это значение должно быть таким, чтобы при его подстановке в исходное уравнение получалось верное числовое равенство.
Переменную, входящую в уравнение, еще называют неизвестным.
Примеры:
- выражение 3+2=5 является равенством, так как при вычислении получаем 5=5
- выражение 3+х=5 является уравнением, так как содержит переменную х, значение которой можно найти.
Решить уравнение — значит найти такое значение х, чтобы равенство было верным.
То есть, в уравнении 3+х=5 значение будет равно 2 (х=2), чтобы получилось верное равенство.
При этом говорят, что 2 — это корень уравнения или решение уравнения 3+х=5.
Корень или решение уравнения — это значение переменной, при котором уравнение обращается в верное числовое равенство.
Корней может быть несколько или не быть совсем. Решить уравнение означает найти его корни или доказать, что корней нет.
Компоненты
Компонентами называются числа и переменные, которые входят в равенство:
- компоненты сложения — слагаемые и сумма;
- компоненты вычитания — уменьшаемое, вычитаемое и разность;
- компоненты умножения — множители и произведение;
- компоненты деления — делимое, делитель и частное.
Правила нахождения неизвестных
Чтобы выразить переменную через другие числа, нужно переменную оставить (или перенести) в левой части выражения, а все числа перенести в правую часть.
Решение простых уравнений подразумевает применение следующих правил:
- чтобы найти неизвестное слагаемое, нужно из суммы вычесть известное слагаемое;
- чтобы найти неизвестное уменьшаемое, нужно к разности прибавить вычитаемое;
- чтобы найти неизвестное вычитаемое, нужно из уменьшаемого вычесть разность.
- чтобы найти неизвестный множитель, нужно произведение разделить на известный множитель.
- чтобы найти неизвестное делимое, нужно частное умножить на делитель;
- чтобы найти неизвестный делитель, нужно делимое разделить на частное.
Примеры:
- 3+х=5.
Нужно задать вопрос: что сделать с числами 5 и 3, чтобы получить переменную х.
Чтобы найти слагаемое, нужно из суммы вычесть известное слагаемое: х=5-3. - х-3=7
Нужно задать вопрос: что сделать с числами 3 и 7, чтобы получить переменную х.
Чтобы найти уменьшаемое, нужно к разности прибавить вычитаемое: х=7+3. - 8-х=6
Нужно задать вопрос: что сделать с числами 8 и 6, чтобы получить переменную х.
Чтобы найти вычитаемое, нужно из уменьшаемого вычесть разность: х=8-6. - 3×а=6 (а-переменная)
Нужно задать вопрос: что сделать с числами 3 и 6, чтобы получить переменную а.
Чтобы найти неизвестный множитель, нужно произведение разделить на известный множитель - а:4=3(а-переменная)
Нужно задать вопрос: что сделать с числами 4 и 3, чтобы получить переменную а.
Чтобы найти неизвестное делимое, нужно частное умножить на делитель: а=3*4 - 12:а=3(а-переменная)
Нужно задать вопрос: что сделать с числами 12 и 3, чтобы получить переменную а.
Чтобы найти неизвестный делитель, нужно делимое разделить на частное: а=12:3.
Если неизвестное имеет коэффициент
Решение простых уравнений сводится к тому, что неизвестное нужно выразить через другие числа. Но чаще всего задаются уравнения, в которых неизвестное имеет коэффициент, например: 2х, 5х и т.д. В таких случаях неизвестное нельзя выразить сразу, поскольку оно содержит коэффициент. Поэтому нужно привести это уравнение к виду, в котором переменная будет выражена.
Рассмотрим пример: 2х+4=8.
В данном примере: 2x — первое слагаемое, 4 — второе слагаемое, 8 — сумма.
- Принимает слагаемое 2х за неизвестное слагаемое. Применяем правило нахождения неизвестного слагаемого: вычитаем из суммы известное слагаемое. Получаем: 2х=8-4 или 2*х=4.
- Мы получили новое уравнение . Теперь мы имеем дело с умножением. Применяем правило нахождения неизвестного множителя: произведение делим на известный множитель. Получаем: х=4:2; х=2
- Вычислим правую часть, получим значение переменной х.
- Проверяем: 2*2+4=8. Равенство верное.
Если уравнение имеет неизвестные с разными коэффициентами
Рассмотрим пример: a+2a+3a=30.
Cразу выразить неизвестное нельзя. Сначала нужно привести данное уравнение к виду при котором его можно было бы выразить. Для этого нужно сложить все неизвестные величины с коэффициентами: 1а+2а+3а=6а (а — это переменная с коэффициентом 1. который не пишется).
Получаем уравнение вида: 6*а=30. Его можно решить как простое уравнение. Получаем корень: а=5.
Равносильные уравнения
Уравнения называют равносильными, если их корни совпадают.
Из предыдущего примера: уравнение a+2a+3a=30 и уравнение 6а=30 являются равносильными.
Проверим это. Подставим корень сначала в уравнение a+2a+3a=30, а затем в уравнение 6а=30, которое получилось в результате приведения подобных слагаемых в левой части предыдущего уравнения. Мы должны получить верные числовые равенства.
Для удобства решения можно любое уравнение преобразовать в равносильное. Для этого можно применить законы математики и свойства уравнений.
Свойства уравнений
- Если к обеим частям уравнения прибавить одно и то же число, то получится уравнение равносильное данному.
- Если из обеих частей уравнения вычесть одно и то же число, то получится уравнение равносильное данному.
Пример. Решить уравнение 5х-10=20.
Вычтем из обеих частей уравнения число 10, получим: 5х=20-10 или 5х=10.
В результате получилось равносильное уравнение , корень которого равен 2.
Пример. Решить уравнение 4(х+3)=20.
Раскроем скобки: 4х+12=20.
Вычтем из обеих частей уравнения число 12, получим: 4х=20-12 или 4х=8.
В результате получилось равносильное уравнение , корень которого равен 2.
Если в уравнении перенести слагаемое из одной части в другую, изменив его знак, то получится уравнение равносильное данному.
То есть корень уравнения не изменится, если мы перенесем слагаемое из одной части уравнения в другую, изменив его знак. Это свойство является одним из важных и одним из часто используемых при решении уравнений.
Если обе части уравнения умножить или разделить на одно и то же число, не равное нулю, то получится уравнение равносильное данному.
Другими словами, корни уравнения не изменятся, если обе его части умножить или разделить на одно и то же число. Это действие часто применяется тогда, когда нужно решить уравнение содержащее дробные числа.
Пример. Решить уравнение (1/4)х+5=6,5
- При решении уравнений, содержащих дробные выражения, сначала принято упростить это уравнение.
- Для упрощения обе части уравнения можно умножить на 4: 4*(1/4)х+4*5=4*6,5 или х+20=26.
- В результате останется простейшее уравнение. Получаем, что корень равен 6.
- Вернемся к исходному уравнению и подставим вместо x найденное значение. Получается верное числовое равенство. Значит уравнение решено правильно.
Пример. Решить уравнение 8х+16=56
- Для упрощения обе части уравнения можно разделить на 8: 8х:8+16:8=56:8 или х+2=7.
- В результате останется простейшее уравнение. Получаем, что корень равен 5.
- Вернемся к исходному уравнению и подставим вместо x найденное значение. Получается верное числовое равенство. Значит уравнение решено правильно.
Если обе части уравнения умножить на минус единицу (поменять знаки), то получится уравнение равносильное данному.
Это правило следует из того, что если обе части уравнения умножить или разделить на одно и тоже число, не равное нулю, то получится равносильное уравнение. Иногда это нужно для того, чтобы получить равносильное уравнение, которое проще решать.
Понятно, что от умножения на −1 любое число поменяет свой знак на противоположный. Поэтому саму процедуру умножения на −1 и раскрытие скобок подробно не расписывают, а сразу записывают компоненты уравнения с противоположными знаками.
При этом минус, стоящий перед переменной x, относится не к самой переменной x, а к единице, которую мы не видим, поскольку коэффициент 1 принято не записывать.
Пример. Решить уравнение: 2х-5х+10=4.
- Приведем подобные слагаемые: -3х+10=4
- Перенесем второе слагаемое в правую часть: -3х=-6
- Для удобства умножим обе части на (-1). получим: 3х=6.
- Корень: х=2.
Уравнение имеет несколько корней
Уравнение может иметь несколько корней.
Рассмотрим уравнение: x(x + 9) = 0.
Из законов умножения мы знаем, что произведение равно нулю, если хотя бы один из множителей равен нулю.
То есть в уравнении x(x + 9) = 0 равенство будет выполняться, если x будет равен нулю или (x + 9) будет равно нулю. Таким образом, уравнение имеет два корня: 0 и −9.
Уравнение имеет бесконечно много корней
Уравнение может иметь бесконечно много корней, когда при подстановке подставив в такое уравнение любого числа, мы получим верное равенство.
Например: рассмотрим простое уравнение 6*(х+2)=6х+12. Если раскрыть скобки в левой части уравнения и привести подобные слагаемые, то получится равенство 6х+12= 6х+12. Это равенство будет выполняться при любом х.
Уравнение не имеет корней
Бывает и так, что уравнение совсем не имеет корней.
Например: уравнение х+2=х.
Данное уравнение не имеет корней, так как при любом значении х, левая часть уравнения всегда будет больше правой на 2.
Таким образом, мы рассмотрели в статье решение разных видов простых уравнений. Решение более сложных уравнений без знания данного материала практически невозможно.
Далее вы можете переходить к решению квадратных уравнений и решению систем линейных уравнений.
Для решения уравнений вам также могут понадобится темы: раскрытие скобок и порядок действий в примерах.
Уравнение представляет собой многочлен переменных (неизвестных величин) вида:
f(x1,x2,…,xn)=0fleft(x_1,x_2,ldots,x_nright)=0
Степень уравнения определяется степенью входящего в него неизвестного.
Линейные уравнения
Линейные уравнения – уравнения типа ax=bax=b.
Например, 103x+18=4103x+18=4.
Для решения таких уравнений необходимо перенести неизвестные в одну сторону, числовые значения в другую, затем привести подобные и выразить неизвестное.
Решить уравнение 4x–8=2+3x+44x – 8 = 2 + 3x + 4
Решение
- Перенесем неизвестные в левую часть, числа – в правую (с противоположными знаками):
4x–3x=2+4+84x – 3x = 2 + 4 + 8
- Приведем подобные (сложим и вычтем неизвестные и числа):
x=14x = 14
Ответ: x=14x = 14
Противоположный знак – знак обратный исходному при переноси числа или выражения через знак =. Для знака плюс, противоположным будет знак «–» и наоборот, для частного произведение и соответственно для произведения – частное.
Выразить xx в уравнении 18x+2x–4=10x+1618x + 2x – 4 = 10x + 16
Решение
- Перенесем неизвестные в левую часть, числа – в правую
18x+2x–10x=16+418x + 2x – 10x = 16 + 4
- Приведем подобные
10∗x=2010*x = 20
x=20/10=2x = 20/10 = 2
Ответ: x=2x = 2.
Квадратные уравнения
Квадратные уравнения – уравнения вида ax2+bx+c=0ax^2+bx+c=0. Наиболее универсальной формулой решения таких уравнений является следующая:
x1.2=−b∓b2−4ac2ax_{1.2}=-bmpfrac{sqrt{b^2-4ac}}{2a}
где a,b,ca,b,c – коэффициенты уравнения.
Найти корни уравнения x2+2x–1=–9–3хx^2 + 2x – 1 = –9 – 3х
Решение
- Приведем уравнение к виду квадратного
x2+2x–1+9+3х=0x^2 + 2x – 1 + 9 + 3х = 0
1×2+5x+8=01x^2 + 5x + 8 = 0
- Найдем корни
x1.2=−5∓52−4∗1∗82∗1=−5∓−72∗1x_{1.2}=-5mpfrac{sqrt{5^2-4ast1ast8}}{2ast1}=-5mpfrac{sqrt{-7}}{2ast1}
Поскольку подкоренное выражение отрицательно, уравнение корней не имеет.
Решить уравнение 2×2+3x–2=02x^2 + 3x – 2 = 0
Решение
x1.2=−3∓32−4∗2∗(−2)2∗2=−3∓9+164=3∓54×1=3+54=4,25×2=3−54=1,75x_{1.2}=-3mpfrac{sqrt{3^2-4ast2astleft(-2right)}}{2ast2}=-3mpfrac{sqrt{9+16}}{4}=3mpfrac{5}{4}
x_1=3+frac{5}{4}=4,25
x_2=3-frac{5}{4}=1,75
Ответ: уравнение имеет 2 корня: 4,25 и 1,75.
Кубические уравнения
Кубические уравнения – уравнения вида ax3+b=0ax^3 + b = 0 или ax3+сx2+dx=0ax^3 + сx^2 + dx = 0.
Для решения таких уравнений xx выносится за скобку, записывается корень х=0х = 0, решается оставшееся в скобках квадратное уравнение.
Сколько корней имеет уравнение 3×3+2×2–1x=03x^3 + 2x^2 – 1x = 0
Решение
- Вынесем xx
x(3×2+2x–1)=0x(3x^2 + 2x – 1) = 0
Первый корень x=0x = 0
- Решаем уравнение 3×2+2x–1=03x^2 + 2x – 1 = 0
x2.3=−2∓42−4∗3∗(−1)2∗3=−2∓16+126=−2∓286=−2∓276×2=−2+73×3=−2−73x_{2.3}=-2mpfrac{sqrt{4^2-4ast3astleft(-1right)}}{2ast3}=-2mpfrac{sqrt{16+12}}{6}=-2mpfrac{sqrt{28}}{6}=-2mpfrac{2sqrt7}{6}
x_2=-2+frac{sqrt7}{3}
x_3=-2-frac{sqrt7}{3}
Ответ: 3 корня.
Решить уравнение 2×3−16=02x^3 – 16 = 0
Решение
- Упростим уравнение делением на общий делитель 2
2×3− 16 2=x3−8×3−8=0x3=8x=83=2frac{2x^3- 16 }{2}=x^3-8
x^3-8=0
x^3=8
x=sqrt[3]{8}=2
Ответ: x=2x = 2
Существуют и другие виды уравнений (дробно-рациональные, трансцендентные), однако их решение сводится к упрощению и приведению к линейному, квадратному или кубическому виду.
Например, дробно-рациональное уравнение вида
x2+2x+1x+1=0frac{x^2+2x+1}{x+1}=0
решается путем сокращения дроби и преобразованию к линейному виду
(x+1)∗(x+1)x+1=0frac{left(x+1right)astleft(x+1right)}{x+1}=0
x+1=0x+1=0
х=−1х = -1
Трансцендентные уравнения (логарифмические, показательные, тригонометрические) решаются заменой сложных выражений знакомым нам х, его нахождением и обратной заменой на найденное значение.
Тест по теме «Примеры решения уравнений»
Уравнение с одним неизвестным, которое после раскрытия скобок и приведения подобных членов принимает вид
aх + b = 0, где a и b произвольные числа, называется линейным уравнением с одним неизвестным. Cегодня разберёмся, как эти линейные уравнения решать.
Например, все уравнения:
2х + 3= 7 – 0,5х; 0,3х = 0; x/2 + 3 = 1/2 (х – 2) – линейные.
Значение неизвестного, обращающее уравнение в верное равенство называется решением или корнем уравнения.
Например, если в уравнении 3х + 7 = 13 вместо неизвестного х подставить число 2 , то получим верное равенство 3· 2 +7 = 13. Значит, значение х = 2 есть решение или корень уравнения.
А значение х = 3 не обращает уравнение 3х + 7 = 13 в верное равенство, так как 3· 2 +7 ≠ 13. Значит, значение х = 3 не является решением или корнем уравнения.
Решение любых линейных уравнений сводится к решению уравнений вида
aх + b = 0.
Перенесем свободный член из левой части уравнения в правую, изменив при этом знак перед b на противоположный, получим
aх = ‒ b.
Если a ≠ 0, то х = ‒ b/a .
Пример 1. Решите уравнение 3х + 2 =11.
Перенесем 2 из левой части уравнения в правую, изменив при этом знак перед 2 на противоположный, получим
3х = 11 – 2.
Выполним вычитание, тогда
3х = 9.
Чтобы найти х надо разделить произведение на известный множитель, то есть
х = 9 : 3.
Значит, значение х = 3 является решением или корнем уравнения.
Ответ: х = 3.
Если а = 0 и b = 0, то получим уравнение 0х = 0. Это уравнение имеет бесконечно много решений, так как при умножении любого числа на 0 мы получаем 0,но b тоже равно 0. Решением этого уравнения является любое число.
Пример 2. Решите уравнение 5(х – 3) + 2 = 3 (х – 4) + 2х ‒ 1.
Раскроем скобки:
5х – 15 + 2 = 3х – 12 + 2х ‒ 1.
Сгруппируем в левой части члены, содержащие неизвестные, а в правой ‒ свободные члены:
5х – 3х ‒ 2х = – 12 ‒ 1 + 15 ‒ 2.
Приведем подобные члены:
0х = 0.
Ответ: х – любое число.
Если а = 0 и b ≠ 0, то получим уравнение 0х = – b. Это уравнение решений не имеет, так как при умножении любого числа на 0 мы получаем 0, но b ≠ 0 .
Пример 3. Решите уравнение х + 8 = х + 5.
Сгруппируем в левой части члены, содержащие неизвестные, а в правой ‒ свободные члены:
х – х = 5 ‒ 8.
Приведем подобные члены:
0х = ‒ 3.
Ответ: нет решений.
На рисунке 1 изображена схема решения линейного уравнения
Составим общую схему решения уравнений с одной переменной. Рассмотрим решение примера 4.
Пример 4. Пусть надо решить уравнение
1) Умножим все члены уравнения на наименьшее общее кратное знаменателей, равное 12.
2) После сокращения получим
4 (х – 4) + 3·2 (х + 1) ‒ 12 = 6·5 (х – 3) + 24х – 2 (11х + 43)
3) Чтобы отделить члены, содержащие неизвестные и свободные члены, раскроем скобки:
4х – 16 + 6х + 6 – 12 = 30х – 90 + 24х – 22х – 86 .
4) Сгруппируем в одной части члены, содержащие неизвестные, а в другой – свободные члены:
4х + 6х – 30х – 24х + 22х = ‒ 90 – 86 + 16 – 6 + 12.
5) Приведем подобные члены:
‒ 22х = ‒ 154.
6) Разделим на – 22 , Получим
х = 7.
Как видим, корень уравнения равен семи.
Вообще такие уравнения можно решать по следующей схеме:
а) привести уравнение к целому виду;
б) раскрыть скобки;
в) сгруппировать члены, содержащие неизвестное, в одной части уравнения, а свободные члены ‒ в другой;
г) привести подобные члены;
д) решить уравнение вида aх = b,которое получили после приведения подобных членов.
Однако эта схема не обязательна для всякого уравнения. При решении многих более простых уравнений приходится начинать не с первого, а со второго (Пример. 2), третьего (Пример. 1, 3) и даже с пятого этапа, как в примере 5.
СЛОЖНА-А-А 🙀 Ты же знаешь, что если не разобраться в теме сейчас, то потом придется исправлять оценки. Беги на бесплатное онлайн-занятие с репетитором (подробности тут + 🎁).
Пример 5. Решите уравнение 2х = 1/4.
Находим неизвестное х = 1/4 : 2,
х = 1/8 .
Рассмотрим решение некоторых линейных уравнений, встречающихся на основном государственном экзамене.
Пример 6. Решите уравнение 2 (х + 3) = 5 – 6х.
Решение
2х + 6 = 5 – 6х
2х + 6х = 5 – 6
8х = ‒1
х = ‒1 : 8
х = ‒ 0, 125
Ответ: ‒ 0, 125
Пример 7. Решите уравнение – 6 (5 – 3х) = 8х – 7.
Решение
– 30 + 18х = 8х – 7
18х – 8х = – 7 +30
10х = 23
х = 23 : 10
х = 2,3
Ответ: 2,3
Пример 8. Решите уравнение
Решение:
3(3х – 4) = 4 · 7х + 24
9х – 12 = 28х + 24
9х – 28х = 24 + 12
-19х = 36
х = 36 : (-19)
х = – 36/19
Ответ: – .
Пример 9. Найдите f(6), если f (x + 2) = 37-х
Решение
Так как надо найти f(6), а нам известно f (x + 2),
то х + 2 = 6.
Решаем линейное уравнение х + 2 = 6,
получаем х = 6 – 2, х = 4.
Если х = 4, тогда
f(6) = 37-4 = 33 = 27
Ответ: 27.
Молодец! Раз ты дочитал это до конца, вероятно, ты все отлично усвоил. Но если вдруг что-то еще непонятно – попробуй онлайн-занятие с репетитором (подробности тут + 🎁).
Если у Вас остались вопросы, есть желание разобраться с решением уравнений более основательно, записывайтесь на мои уроки в РАСПИСАНИИ. Буду рада Вам помочь!
Также TutorOnline советует посмотреть новый видеоурок от нашего репетитора Ольги Александровны, который поможет разобраться как с линейными уравнениями, так и с другими.
© blog.tutoronline.ru,
при полном или частичном копировании материала ссылка на первоисточник обязательна.