Как найти икс в уравнении с дробями

Иногда линейные уравнения принимают вид, когда неизвестное оказывается в числителе одной или нескольких дробей.
Как, например, в уравнении ниже.

уравнение с неизвестным в дроби

В таких случаях подобные уравнения можно решить двумя способами.

I способ решения
Сведение уравнения к пропорции

Запомните!
!

При решении уравнений способом пропорции необходимо выполнить следующие действия:

  • привести все дроби к общему знаменателю и сложить их как алгебраические дроби
    (в левой и правой части должно остаться только по одной дроби);
  • полученное уравнение решить по правилу пропорции.

Итак, вернемся к нашему уравнению. В левой части у нас и так стоит только одна дробь, поэтому в ней не нужны
никакие преобразования.

уравнение с неизвестным в дроби

Будем работать с правой частью уравнения.
Упростим правую часть уравнения так, чтобы там осталась только одна дробь.
Для этого вспомним правила сложения числа с алгебраической дробью.

решаем уравнение с неизвестным в дроби

Теперь используем правило пропорции и решим уравнение до конца.

решаем уравнение с неизвестным в дроби как пропорцию


II способ решения
Сведение к линейному уравнению без дробей

Рассмотрим уравнение выше еще раз и решим его другим способом.

уравнение с неизвестным в дроби

Мы видим, что в уравнении присутствуют две дроби
«» и
«».

Наша задача сделать так, чтобы в уравнении не осталось ни одной дроби.

Другими словами, необходимо свести уравнение к обычному
линейному уравнению без неизвестного в дроби.

Запомните!
!

Чтобы избавиться от дробей в уравнении нужно:

  • найти число, которое без остатка будет делиться на каждый из знаменателей;
  • умножить каждый член уравнения на это число.

Давайте зададим себе вопрос: «Какое число без остатка делится на каждый из знаменателей дробей, то есть и на
«5», и на «9» ?».
Таким ближайшим наименьшим числом будет число «45».

Умножим каждый член уравнения на «45».

уравнение с неизвестным в дроби

Важно!
Галка

При умножении уравнения на число нужно каждый член уравнения
умножить на это число.

уравнение с неизвестным в дроби

Другие примеры решения уравнений с неизвестным в дроби

Решение уравнения I способом (через пропорцию)


  • +

    =

    +

    =

    +

    =

    =

    =

    (49 − 23y) · 2 = 15 · (y + 6)

    98 − 46y = 15y + 90

    −46y − 15y = 90 − 98

    −61y = −8     | :(−61)

    y =

    Ответ: y =

Решение уравнения II способом
(сведение к уравнению без дробей)


  • 2 − +
    = 0             | ·20

    2 · 20 − +
    = 0 · 20

    40 − 5 ·(3x − 7) + 4 · (x + 17) = 0

    40 − 15x + 35 + 4x + 68 = 0

    −15x + 4x + 40 + 35 + 68 = 0

    −11x + 75 + 68 = 0

    −11x + 143 = 0

    −11x = −143     | :(−11)

    x = 13

    Ответ: x = 13


Ваши комментарии

Важно!
Галка

Чтобы оставить комментарий, вам нужно войти на наш сайт при помощи

«ВКонтакте».

Пришелец пожимает плечами

Оставить комментарий:

25 августа 2016 в 13:08

Виктория Лебеденко
(^-^)
Профиль
Благодарили: 0

Сообщений: 1

(^-^)
Виктория Лебеденко
Профиль
Благодарили: 0

Сообщений: 1

0
Спасибоthanks
Ответить

3 сентября 2016 в 19:36
Ответ для Виктория Лебеденко

Юлия Анарметова
(^-^)
Профиль
Благодарили: 0

Сообщений: 11

(^-^)
Юлия Анарметова
Профиль
Благодарили: 0

Сообщений: 11


раскроем скобки x2+3x-x-3-x2-5=0(уничтожим xи-x2) получим  2x-8=0
                       2x=8
                         x=8 :2
                         x=4

0
Спасибоthanks
Ответить


        Итак, друзья, продолжаем осваивать решение основных типов алгебраических уравнений. Мы с вами уже хорошо (надеюсь) знаем, как именно надо решать линейные и квадратные уравнения. Осталось разобрать ещё одним основным типом уравнений — дробными уравнениями.

        Иногда их называют более научно и солидно – дробные рациональные уравнения. Или дробно-рациональные уравнения. Это сути не меняет.)

        Дробные уравнения — незаменимая вещь во многих других темах математики. Особенно — в текстовых задачах. Но для успешного их решения жизненно необходимо ориентироваться в трёх смежных темах:

        1. Дроби и действия с дробями и дробными выражениями.

        2. Тождественные преобразования уравнений.

        3. Решение линейных и квадратных уравнений.

        Без этих трёх китов браться за решение дробных уравнений слишком уж самонадеянно, я бы сказал. Почему? Да потому, что непонимание, как, скажем, работать с дробями (сокращать, приводить к общему знаменателю и т.д.) автоматически будет приводить к полному провалу и в дробных уравнениях. Намёк понятен?)

        Так что тем, у кого проблемы хотя бы по одной из вышеперечисленных тем — настоятельно рекомендую освежить их в памяти, да и по ссылочкам пройтись.

        Итак, вперёд!

Что такое дробное уравнение? Примеры.

        Дробное уравнение, как следует непосредственно из названия, – это уравнение, в котором есть дроби. Обязательно. Причём (важно!) не просто дроби, а дроби, у которых есть икс в знаменателе. Хотя бы в одном.

        Например, вот такое уравнение:

        

        Или такое:

        

        Или вот такое:

        

        И так далее.) Напоминаю, что, если в знаменателях сидят только числа, то такие уравнения к дробным не относятся. Либо это линейные уравнения, либо квадратные.

        Например:

        

        Это линейное уравнение, хотя тут тоже есть дроби. Почему? Да потому, что знаменатели дробей — четвёрка и пятёрка. Т.е. просто числа. И ни один из знаменателей не содержит иксов.

        Или такое уравнение:

        

        Это обычное квадратное уравнение, несмотря на двойку в знаменателе. Опять же, по причине того, что двойка — не икс, и деления на неизвестное в дроби нету.

        В общем, вы поняли.

Как решать дробные уравнения? Убираем дроби!

        Как это ни странно, дробные уравнения в большинстве своём решаются довольно просто. По чётким и несложным правилам. Каким же именно образом?

        Первым делом надо избавиться от дробей! Это ключевой шаг в решении любого дробного уравнения, который должен быть освоен идеально. Ибо после того, как все дроби исчезли, уравнение, чаще всего, превращается в линейное или квадратное. А дальше мы уже с вами знаем, что делать.)

        Но… Как же нам избавиться от дробей?! Легко! Применяя всё те же старые добрые тождественные преобразования! В чём же суть?

        Вникаем. Нам надо помножить обе части уравнения на одно и то же выражение. Но не на какое попало, а на такое, чтобы все знаменатели посокращались! Одним махом.) Ибо дальше, без знаменателей, жизнь становится гораздо проще и приятнее.)

        Это только на конкретном примере показать можно. Итак, решаем первое уравнение из нашего списка:

        Первое, что приходит на ум — перенести всё в одну сторону, привести всё к общему знаменателю и т.д. Забудьте, как кошмарный сон! Так делают только в одном случае — при решении дробно-рациональных неравенств методом интервалов. Это отдельная большая тема.

        А в уравнениях нам надо сразу умножить обе части на такое выражение, которое нам позволит сократить все знаменатели. И какое же это выражение?

        Давайте его конструировать.) Смотрим ещё раз на уравнение:

        

        Понятно, что в левой части для ликвидации знаменателя нам необходимо умножение на (х+3), а в правой — на 3. Но математика позволяет умножать обе части уравнения только на одно и то же выражение! На разные — не катит. Ничего не поделать, так уж она устроена…)

        Значит, нам надо скомбинировать такое выражение, которое одновременно делилось бы как на (х+3), так и на тройку. Причём очень важно — только с помощью умножения! И какое же это выражение? Очевидно, это 3(х+3). То есть, по сути, общий знаменатель обеих дробей.

        Итак, для ликвидации всех дробей наше уравнение надо умножать на выражение 3(х+3).

        Умножаем:

        

        Это самое обычное умножение дробных выражений, но, так уж и быть, расписываю детально:

        

        Прошу обратить внимание: скобки (х+3) я не раскрываю! Прямо так, целиком, их и пишу, как будто бы это одна буква. Ибо наша основная на данный момент задача — дроби убрать. Чего без произведения никак не сделаешь… И зачем же нам тогда париться с раскрытием скобок?!

        А вот теперь мы видим, что в левой части сокращается целиком (х+3), а в правой 3. Чего мы и добивались! И теперь с чувством глубокого удовлетворения производим сокращение:

        

        Вот и отлично. Дроби исчезли. После сокращения получилось безобидное линейное уравнение:

        2∙3 = х+3

        А его (надеюсь) уже решит каждый:

        х = 3

        Решаем следующий примерчик:

        

        И опять избавляемся от того, что нам не нравится. В данном примере это дробь 20/х. Одна единственная. Для её ликвидации правую часть надо домножить на знаменатель. То есть, просто на х. Но тогда и левую часть тоже надо домножить на х: так уж второе тождественное преобразование требует.

        Вот и домножаем! Всю левую часть и всю правую часть:

        

        Напоминаю, что эта вертикальная чёрточка с умножением всего лишь означает, что обе части нашего уравнения мы умножаем на “х”.    

        Вперёд!

        

        А вот теперь — снова внимание! Очередные грабли. Заметьте, что при умножении левой части на икс, выражение (9 — х) я взял в скобки! Почему? Потому, что мы умножаем на икс всю левую часть целиком, а не отдельные её кусочки!

        Дело всё в том, что частенько после умножения народ записывает левую часть вот так:

        

        Это категорически неверно. Дальше можно уже не решать, да…)

        Но у нас всё хорошо, будем дорешивать.

        С чистой совестью сокращаем икс справа и получаем уравнение уже безо всяких дробей, в одну строчку.

        (9 — х)∙х = 20

        Вот и отлично. Все дроби исчезли напрочь, теперь можно и скобки раскрыть:

        9х — х2 = 20

        Переносим всё влево и приводим к стандартному виду:

        

        Получили классическое квадратное уравнение. Но минус перед квадратом икса — нехорош. Забыть его проще простого! От него всегда можно избавиться умножением (или делением) уравнения на (-1). Проще говоря, меняем в левой части все знаки на противоположные. А справа как был ноль, так ноль же и останется:

        

        Решаем через дискриминант (или подбираем по теореме Виета) и получаем два корня:

        х1 = 4

        х2 = 5

        И все дела.)

        Как вы видите, в первом случае уравнение после преобразований стало линейным, а здесь — квадратным.

        А бывает и так, что после ликвидации дробей вообще все иксы сокращаются и остаётся чистая правда. Что-нибудь типа 3=3.  Это означает, что икс может быть любым. Какой икс ни возьми — всё равно всё посокращается и останется железное равенство 3=3.

        Или наоборот, может получиться какая-нибудь белиберда, типа 3=4. А это будет означать, что корней нет. Какой икс ни возьми — всё сократится и останется бред…

        Надеюсь, такие сюрпризы вас уже нисколько не удивят.) Если всё же удивят, то прогуляйтесь по ссылочке: Линейные уравнения. Как решать линейные уравнения? А чуть конкретнее — особые случаи при решении линейных уравнений. Эти сюрпризы (полная пропажа иксов после преобразований) — они ко всем видам уравнений относятся. И дробные — не исключение.)

        Разумеется, при попытке ликвидации дробей встречаются и неожиданности. И одну из них мы рассмотрим прямо сейчас.

Раскладываем на множители!

        Решаем третье уравнение по списку:

        

        А вот тут некоторые могут и зависнуть. На что же такое надо домножить всё уравнение, чтобы за один шаг сократились все знаменатели? Можно, конечно, взять и тупо перемножить все три знаменателя, получить

        x(x2+2x)(x+2)

        и домножить на эту конструкцию всё уравнение. Математика не возражает.) Но… Может быть, есть выражение попроще?

        Что ж, вскрою тайну: да, всё гораздо проще! Если в совершенстве владеть таким мощным приёмом, как разложение на множители. Привет седьмому классу!)

        А попробуем-ка разложить на множители каждый из знаменателей? Ну, с х и х+2 точно ничего не сделать, а вот х2+2х вполне себе раскладывается! Выносим один икс за скобку и получаем:

        х2+2х = х(х+2)

        Отлично. Вставим наше разложение в исходное уравнение:

        

        Вот теперь всё и прояснилось.) Теперь уже отчётливо видно, что гораздо проще будет умножать обе части уравнения на х(х+2). Это выражение гораздо короче и прекрасно делится на каждый из знаменателей: и на x, и на (х+2), и само на себя — на х(х+2).

        Вот на х(х+2) и умножаем:

        

        И снова расписываю подробно, дабы не запутаться. В левой части я буду использовать скобки: там сумма дробей. В правой части скобки не нужны: там одна дробь. Вот и пишем:

        

        А теперь производим умножение. В левой части большие скобки умножаем на наше выражение х(х+2). Разумеется, по правилу раскрытия скобок, сначала первую дробь, затем — вторую. Ну, а в правой части, по правилу умножения дробей, просто умножаем числитель:

        

        Я уж не стал здесь рисовать единички в знаменателях, несолидно… И, опять же, малые скобки в числителях я не раскрываю! Они нам сейчас для сокращения понадобятся! И да… Откуда появились скобки (х — 3) в числителе первой дроби — думаю, уже не стоит объяснять?)

        С удовольствием сокращаем все дроби:

        

        (x-3)(x+2) + 3 = x

        Раскрываем оставшиеся скобки, приводим подобные и собираем всё слева:

        x2 + 2x — 3x — 6 + 3 — х = 0

        x2 — 2x — 3 = 0

        И снова получили квадратное уравнение.) Решаем и получаем два корня:

        x1 = -1

        x2 = 3

        Вот и всё. Это и есть ответ.)

        Из этого примера можно сделать важный вывод:

        Если знаменатели дробей можно разложить на простые множители — обязательно делаем это! Пригодится при ликвидации дробей. Причём раскладываем всё до упора, используя все возможные способы из алгебры седьмого класса!

        Как вы видите, всё просто и логично. Мы меняем исходное уравнение так, чтобы после наших преобразований из примера исчезло всё то, что нам не нравится. Или мешает. В данном случае это — дроби. И точно так же мы будем поступать и со всякими логарифмами, синусами, показателями и прочей жестью.) Мы всегда будем от всего этого избавляться.)

        Ну что, порешаем?)

        Решить уравнения:

        

        Ответы (как обычно, вразброс):

        x = 3

        x1 = 0,5;    x2 = 3

        x = 2

        х = 6

        x = 2,6

        x1 = 2;    x2 = 5

        Последнее задание не решается? Что ж, формулы сокращённого умножения всяко помнить надо, да…)

        Всё решилось? Что ж, здорово! Значит, полпути в решении дробных уравнений мы с вами уже преодолели. Эта первая часть пути — избавление от дробей. Осталась вторая. Не менее важная!

        Всё просто, но… Пришло время открыть вам горькую правду. Успешное решение дробных уравнений этого урока вовсе не гарантирует успех в решении всех остальных примеров этой темы. Даже очень простых, подобных этим. К сожалению…

        Но об этом — дальше.)

Дробно-рациональные уравнения

Что такое дробно-рациональные уравнения

Дробно-рациональными уравнениями называют такие выражения, которые представляется возможным записать, как:

при P ( x ) и Q ( x ) в виде выражений, содержащих переменную.

Таким образом, дробно-рациональные уравнения обязательно содержат как минимум одну дробь с переменной в знаменателе с любым модулем.

9 x 2 – 1 3 x = 0

1 2 x + x x + 1 = 1 2

6 x + 1 = x 2 – 5 x x + 1

Уравнения, которые не являются дробно-рациональными:

Как решаются дробно-рациональные уравнения

В процессе решения дробно-рациональных уравнений обязательным действием является определение области допустимых значений. Найденные корни следует проверить на допустимость, чтобы исключить посторонние решения.

Алгоритм действий при стандартном способе решения:

  1. Выписать и определить ОДЗ.
  2. Найти общий знаменатель для дробей.
  3. Умножить каждый из членов выражения на полученный общий параметр (знаменатель), сократить дроби, которые получились в результате, чтобы исключить знаменатели.
  4. Записать уравнение со скобками.
  5. Раскрыть скобки для приведения подобных слагаемых.
  6. Найти корни полученного уравнения.
  7. Выполним проверку корней в соответствии с ОДЗ.
  8. Записать ответ.

Пример 1

Разберем предложенный алгоритм на практическом примере. Предположим, что имеется дробно-рациональное уравнение, которое требуется решить:

x x – 2 – 7 x + 2 = 8 x 2 – 4

Начать следует с области допустимых значений:

x 2 – 4 ≠ 0 ⇔ x ≠ ± 2

Воспользуемся правилом сокращенного умножения:

x 2 – 4 = ( x – 2 ) ( x + 2 )

В результате общим знаменателем дробей является:

Выполним умножение каждого из членов выражения на общий знаменатель:

x x – 2 – 7 x + 2 = 8 x 2 – 4

x ( x – 2 ) ( x + 2 ) x – 2 – 7 ( x – 2 ) ( x + 2 ) x + 2 = 8 ( x – 2 ) ( x + 2 ) ( x – 2 ) ( x + 2 )

После сокращения избавимся от скобок и приведем подобные слагаемые:

x ( x + 2 ) – 7 ( x – 2 ) = 8

x 2 + 2 x – 7 x + 14 = 8

Осталось решить квадратное уравнение:

Согласно ОДЗ, первый корень является лишним, так как не удовлетворяет условию, по которому корень не равен 2. Тогда в ответе можно записать:

Примеры задач с ответами для 9 класса

Требуется решить дробно-рациональное уравнение:

x x + 2 + x + 1 x + 5 – 7 – x x 2 + 7 x + 10 = 0

x x + 2 + x + 1 x + 5 – 7 – x x 2 + 7 x + 10 = 0

Определим область допустимых значений:

О Д З : x + 2 ≠ 0 ⇔ x ≠ – 2

x 2 + 7 x + 10 ≠ 0

D = 49 – 4 · 10 = 9

x 1 ≠ – 7 + 3 2 = – 2

x 2 ≠ – 7 – 3 2 = – 5

Квадратный трехчлен x 2 + 7 x + 10 следует разложить на множители, руководствуясь формулой:

a x 2 + b x + c = a ( x – x 1 ) ( x – x 2 )

x x + 2 + x + 1 x + 5 – 7 – x ( x + 2 ) ( x + 5 ) = 0

Заметим, что общим знаменателем для дробей является: ( x + 2 ) ( x + 5 ) . Умножим на этот знаменатель уравнение:

x x + 2 + x + 1 x + 5 – 7 – x ( x + 2 ) ( x + 5 ) = 0

Сократим дроби, избавимся от скобок, приведем подобные слагаемые:

x ( x + 2 ) ( x + 5 ) x + 2 + ( x + 1 ) ( x + 2 ) ( x + 5 ) x + 5 –

– ( 7 – x ) ( x + 2 ) ( x + 5 ) ( x + 2 ) ( x + 5 ) = 0

x ( x + 5 ) + ( x + 1 ) ( x + 2 ) – 7 + x = 0

x 2 + 5 x + x 2 + 3 x + 2 – 7 + x = 0

2 x 2 + 9 x – 5 = 0

Потребуется решить квадратное уравнение:

2 x 2 + 9 x – 5 = 0

Первый корень не удовлетворяет условиям ОДЗ, поэтому в ответ нужно записать только второй корень.

Дано дробно-рациональное уравнение, корни которого требуется найти:

4 x – 2 – 3 x + 4 = 1

В первую очередь следует переместить все слагаемые влево и привести дроби к минимальному единому знаменателю:

4 ( x + 4 ) x – 2 – 3 ( x – 2 ) x + 4 – 1 ( x – 2 ) ( x + 4 ) = 0

4 ( x + 4 ) – 3 ( x – 2 ) – ( x – 2 ) ( x + 4 ) ( x – 2 ) ( x + 4 ) = 0

4 x + 16 – 3 x + 6 – ( x 2 + 4 x – 2 x – 8 ) ( x – 2 ) ( x + 4 ) = 0

x + 22 – x 2 – 4 x + 2 x + 8 ( x – 2 ) ( x + 4 ) = 0

Заметим, что получилось нулевое значение для дроби. Известно, что дробь может равняться нулю, если в числителе нуль, а знаменатель не равен нулю. На основании этого можно составить систему:

– x 2 – x + 30 ( x – 2 ) ( x + 4 ) = 0 ⇔ – x 2 – x + 30 = 0 ( x – 2 ) ( x + 4 ) ≠ 0

Следует определить такие значения для переменной, при которых в дроби знаменатель будет обращаться в нуль. Такие значения необходимо удалить из ОДЗ:

( x – 2 ) ( x + 4 ) ≠ 0

Далее можно определить значения для переменных, которые при подстановке в уравнение обращают числитель в нуль:

– x 2 – x + 30 = 0 _ _ _ · ( – 1 )

Получилось квадратное уравнение, которое можно решить:

Сравнив корни с условиями области допустимых значений, можно сделать вывод, что оба корня являются решениями данного уравнения.

Нужно решить дробно-рациональное уравнение:

x + 2 x 2 – 2 x – x x – 2 = 3 x

На первом шаге следует перенести все слагаемые в одну сторону и привести дроби к минимальному единому знаменателю:

x + 2 1 x ( x – 2 ) – x x x – 2 – 3 ( x – 2 ) x = 0

x + 2 – x 2 – 3 ( x – 2 ) x ( x – 2 ) = 0

x + 2 – x 2 – 3 x + 6 x ( x – 2 ) = 0

– x 2 – 2 x + 8 x ( x – 2 ) = 0 ⇔ – x 2 – 2 x + 8 = 0 x ( x – 2 ) ≠ 0

Перечисленные значения переменной обращают знаменатель в нуль. По этой причине их необходимо удалить из области допустимых значений.

– x 2 – 2 x + 8 = 0 _ _ _ · ( – 1 )

Корни квадратного уравнения:

x 1 = – 4 ; x 2 = 2

Заметим, что второй корень не соответствует ОДЗ. Таким образом, в ответе остается только первый корень.

Найти корни уравнения:

x 2 – x – 6 x – 3 = x + 2

Согласно стандартному алгоритму решения дробно-рациональных уравнений, выполним перенос всех слагаемых в одну сторону. Далее необходимо привести к дроби к наименьшему общему знаменателю:

x 2 – x – 6 1 x – 3 – x ( x – 3 ) – 2 ( x – 3 ) = 0

x 2 – x – 6 – x ( x – 3 ) – 2 ( x – 3 ) x – 3 = 0

x 2 – x – 6 – x 2 + 3 x – 2 x + 6 x – 3 = 0

0 x x – 3 = 0 ⇔ 0 x = 0 x – 3 ≠ 0

Такое значение переменной, при котором знаменатель становится равным нулю, нужно исключить из области допустимых значений:

Заметим, что это частный случай линейного уравнения, которое обладает бесконечным множеством корней. При подстановке какого-либо числа на место переменной х в любом случае числовое равенство будет справедливым. Единственным недопустимым значением для х в данном задании является число 3, которое не входит в ОДЗ.

Ответ: х — любое число, за исключением 3.

Требуется вычислить корни дробно-рационального уравнения:

5 x – 2 – 3 x + 2 = 20 x 2 – 4

На первом этапе необходимо выполнить перенос всех слагаемых влево, привести дроби к минимальному единому знаменателю:

5 ( x + 2 ) x – 2 – 3 ( x – 2 ) x + 2 – 20 1 ( x – 2 ) ( x + 2 ) = 0

5 ( x + 2 ) – 3 ( x – 2 ) – 20 ( x – 2 ) ( x + 2 ) = 0

5 x + 10 – 3 x + 6 – 20 ( x – 2 ) ( x + 2 ) = 0

2 x – 4 ( x – 2 ) ( x + 2 ) = 0 ⇔ 2 x – 4 = 0 ( x – 2 ) ( x + 2 ) ≠ 0

( x – 2 ) ( x + 2 ) ≠ 0

Данные значения переменной х являются недопустимыми, так как в этом случае теряется смысл дроби в связи с тем, что знаменатель принимает нулевое значение.

Заметим, что 2 не входит в область допустимых значений. В связи с этим, можно заключить, что у уравнения отсутствуют корни.

Ответ: корни отсутствуют

Нужно найти корни уравнения:

x – 3 x – 5 + 1 x = x + 5 x ( x – 5 )

Начнем с определения ОДЗ:

– 5 ≠ 0 x ≠ 0 x ( x – 5 ) ≠ 0 x ≠ 5 x ≠ 0

При умножении обеих частей уравнения на единый знаменатель всех дробей и сокращении аналогичных выражений, которые записаны в числителе и знаменателе, получим:

x – 3 x – 5 + 1 x = x + 5 x ( x – 5 ) · x ( x – 5 )

( x – 3 ) x ( x – 5 ) x – 5 + x ( x – 5 ) x = ( x + 5 ) x ( x – 5 ) x ( x – 5 )

( x – 3 ) x + x = x + 5

Прибегая к арифметическим преобразованиям, можно записать уравнение в упрощенной форме:

x 2 – 3 x + x – 5 = x + 5 → x 2 – 2 x – 5 – x – 5 = 0 → x 2 – 3 x – 10 = 0

Для дальнейших действий следует определить, к какому виду относится полученное уравнение. В нашем случае уравнение является квадратным с коэффициентом при x 2 , который равен 1. Таким образом, целесообразно воспользоваться теоремой Виета:

x 1 · x 2 = – 10 x 1 + x 2 = 3

В этом случае подходящими являются числа: -2 и 5.

Второе значение не соответствует области допустимых значений.

Дробно-рациональные уравнения. Алгоритм решения

Дробно-рациональные уравнения – уравнения, которые можно свести к виду (frac) (=0), где (P(x)) и (Q(x)) – выражения с иксом (или другой переменной).

Проще говоря, это уравнения, в которых есть хотя бы одна дробь с переменной в знаменателе.

Пример не дробно-рациональных уравнений:

Как решаются дробно-рациональные уравнения?

Главное, что надо запомнить про дробно-рациональные уравнения – в них надо писать ОДЗ . И после нахождения корней – обязательно проверять их на допустимость. Иначе могут появиться посторонние корни, и все решение будет считаться неверным.

Алгоритм решения дробно-рационального уравнения:

Выпишите и «решите» ОДЗ.

Умножьте каждый член уравнения на общий знаменатель и сократите полученные дроби. Знаменатели при этом пропадут.

Запишите уравнение, не раскрывая скобок.

Решите полученное уравнение.

Проверьте найденные корни с ОДЗ.

Запишите в ответ корни, которые прошли проверку в п.7.

Алгоритм не заучивайте, 3-5 решенных уравнений – и он запомнится сам.

Пример. Решите дробно-рациональное уравнение (frac – frac<7>=frac<8>)

Сначала записываем и “решаем” ОДЗ.

По формуле сокращенного умножения : (x^2-4=(x-2)(x+2)). Значит, общий знаменатель дробей будет ((x-2)(x+2)). Умножаем каждый член уравнения на ((x-2)(x+2)).

Сокращаем то, что можно и записываем получившееся уравнение.

Приводим подобные слагаемые

Согласуем корни с ОДЗ. Замечаем, что по ОДЗ (x≠2). Значит первый корень – посторонний. В ответ записываем только второй.

Пример. Найдите корни дробно-рационального уравнения (frac + frac-frac<7-x>) (=0)

Записываем и «решаем» ОДЗ.

Раскладываем квадратный трехчлен (x^2+7x+10) на множители по формуле: (ax^2+bx+c=a(x-x_1)(x-x_2)).
Благо (x_1) и (x_2) мы уже нашли.

Очевидно, общий знаменатель дробей: ((x+2)(x+5)). Умножаем на него всё уравнение.

Приводим подобные слагаемые

Находим корни уравнения

Один из корней не подходи под ОДЗ, поэтому в ответ записываем только второй корень.

Решение уравнений с дробями

О чем эта статья:

5 класс, 6 класс, 7 класс

Понятие дроби

Прежде чем отвечать на вопрос, как найти десятичную дробь, разберемся в основных определениях, видах дробей и разницей между ними.

Дробь — это рациональное число, представленное в виде a/b, где a — числитель дроби, b — знаменатель. Есть два формата записи:

  • обыкновенный вид — ½ или a/b,
  • десятичный вид — 0,5.

Дробь — это одна из форм деления, записываемая с помощью дробной черты. Над чертой принято писать делимое (число, которое делим) — числитель. А под чертой всегда находится делитель (на сколько делим), его называют знаменателем. Черта между числителем и знаменателем означает деление.

Дроби бывают двух видов:

  1. Числовые — состоят из чисел. Например, 2/7 или (1,8 − 0,3)/5.
  2. Алгебраические — состоят из переменных. Например, (x + y)/(x − y). Значение дроби зависит от данных значений букв.

Дробь называют правильной, когда ее числитель меньше знаменателя. Например, 4/9 и 23/57.

Неправильная дробь — та, у которой числитель больше знаменателя или равен ему. Например, 13/5. Такое число называют смешанным — читается так: «две целых три пятых», а записывается — 2 3/5.

Основные свойства дробей

Дробь не имеет значения, если делитель равен нулю.

Дробь равняется нулю в том случае, если числитель равен нулю, а знаменатель отличен от нуля.

Дроби a/b и c/d называют равными, если a × d = b × c.

Если числитель и знаменатель дроби умножить или разделить на одно и то же натуральное число, то получится равная ей дробь.

Действия с дробями можно выполнять те же, что и с обычными числами: складывать, вычитать, умножать и делить. Также, дроби можно сравнивать между собой и возводить в степень.

Понятие уравнения

Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Наша задача — найти неизвестные числа так, чтобы при их подстановке в пример получилось верное числовое равенство. Давайте на примере:

  • Возьмем выражение 4 + 5 = 9. Это верное равенство, потому что 4+5 действительно 9. Если бы вместо 9 стояло любое другое число — мы бы сказали, что числовое равенство неверное.
  • Уравнением можно назвать выражение 4 + x = 9, с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.

Корень уравнения — то самое число, которое уравнивает выражения справа и слева, когда мы подставляем его на место неизвестной. В таком случае афоризм «зри в корень» — очень кстати при усердном решении уравнений.

Равносильные уравнения — это те, в которых совпадают множества решений. Другими словами, у них одни и те же корни.

Решить уравнение значит найти все его корни или убедиться, что корней нет.

Алгебраические уравнения могут быть разными, самые часто встречающиеся — линейные и квадратные. Расскажем и про них.

Линейное уравнение выглядит так ах + b = 0, где a и b — действительные числа.

Что поможет в решении:

  • если а не равно нулю, то у уравнения единственный корень: х = −b : а;
  • если а равно нулю, а b не равно нулю — у уравнения нет корней;
  • если а и b равны нулю, то корень уравнения — любое число.
Квадратное уравнение выглядит так: ax 2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, a ≠ 0.

Понятие дробного уравнения

Дробное уравнение — это уравнение с дробями. Да, вот так просто. Но это еще не все. Чаще всего неизвестная стоит в знаменателе. Например, вот так:

Такие уравнения еще называют дробно-рациональными. В них всегда есть хотя бы одна дробь с переменной в знаменателе.

Если вы видите в знаменателях числа, то это уравнения либо линейные, либо квадратные. Решать все равно нужно, поэтому идем дальше. Примеры:

На алгебре в 8 классе можно встретить такое понятие, как область допустимых значений — это множество значений переменной, при которых это уравнение имеет смысл. Его используют, чтобы проверить корни и убедиться, что решение правильное.

Мы уже знаем все важные термины, их определения и наконец подошли к самому главному — сейчас узнаем как решить дробное уравнение.

Как решать уравнения с дробями

1. Метод пропорции

Чтобы решить уравнение методом пропорции, нужно привести дроби к общему знаменателю. А само правило звучит так: произведение крайних членов пропорции равно произведению средних. Проверим, как это работает.

Итак, у нас есть линейное уравнение с дробями:

В левой части стоит одна дробь — оставим без преобразований. В правой части видим сумму, которую нужно упростить так, чтобы осталась одна дробь.

После того, как в левой и правой части осталась одна дробь, можно применить метод пропорции и перемножить крест-накрест числители и знаменатели.

2. Метод избавления от дробей

Возьмем то же самое уравнение, но попробуем решить его по-другому.

В уравнении есть две дроби, от которых мы очень хотим избавиться. Вот, как это сделать:

  • подобрать число, которое можно разделить на каждый из знаменателей без остатка;
  • умножить на это число каждый член уравнения.

Ищем самое маленькое число, которое делится на 5 и 9 и без остатка — 45 как раз подходит. Умножаем каждый член уравнения на 45 и избавляемся от знаменателей. Вуаля!

Вот так просто мы получили тот же ответ, что и в прошлый раз.

Что еще важно учитывать при решении

  • если значение переменной обращает знаменатель в 0, значит это неверное значение;
  • делить и умножать уравнение на 0 нельзя.

Универсальный алгоритм решения

Определить область допустимых значений.

Найти общий знаменатель.

Умножить каждый член уравнения на общий знаменатель и сократить полученные дроби. Знаменатели при этом пропадут.

Раскрыть скобки, если нужно и привести подобные слагаемые.

Решить полученное уравнение.

Сравнить полученные корни с областью допустимых значений.

Записать ответ, который прошел проверку.

Курсы по математике от Skysmart помогут закрепить материал и разобраться в сложных темах.

Примеры решения дробных уравнений

Чтобы стать успешным в любом деле, нужно чаще практиковаться. Мы уже знаем, как решаются дробные уравнения — давайте перейдем к решению задачек.

Пример 1. Решить дробное уравнение: 1/x + 2 = 5.

  1. Вспомним правило х ≠ 0. Это значит, что область допустимых значений: х — любое число, кроме нуля.
  2. Отсчитываем справа налево в числителе дробной части три знака и ставим запятую.
  3. Избавимся от знаменателя. Умножим каждый член уравнения на х.

Решим обычное уравнение.

Пример 2. Найти корень уравнения

  1. Область допустимых значений: х ≠ −2.
  2. Умножим обе части уравнения на выражение, которое сократит оба знаменателя: 2(х+2)
  3. Избавимся от знаменателя. Умножим каждый член уравнения на х.

Переведем новый множитель в числитель..

Сократим левую часть на (х+2), а правую на 2.

Пример 3. Решить дробное уравнение:

    Найти общий знаменатель:

Умножим обе части уравнения на общий знаменатель. Сократим. Получилось:

Выполним возможные преобразования. Получилось квадратное уравнение:

Решим полученное квадратное уравнение:

Получили два возможных корня:

Если x = −3, то знаменатель равен нулю:

Если x = 3 — знаменатель тоже равен нулю.

  • Вывод: числа −3 и 3 не являются корнями уравнения, значит у данного уравнения нет решения.
  • [spoiler title=”источники:”]

    http://cos-cos.ru/math/151/

    http://skysmart.ru/articles/mathematic/reshenie-uravnenij-s-drobyami

    [/spoiler]

    Методы решения уравнений, содержащих дроби

    В этой статье я расскажу методики решения рациональных уравнений, содержащих дроби.

    Что такое рациональное уравнение? Это уравнение, которое содержит в себе такие действия как сложение, вычитание, умножение, деление, возведение в степень с целым показателем. Извлечение корня – это недопустимое действие для рационального уравнения. Корень делает уравнение иррациональным, как, собственно, и дробный показатель степени.

    В свою очередь рациональные уравнения делятся на два вида: целые рациональные и дробные рациональные.

    К целым рациональным уравнениям относятся линейные и квадратные уравнения. Рассмотрим пример:

    Это уравнение является…попробуешь угадать?…линейным. Его можно запросто увидеть, если деление на 2 и на 6 заменить умножением на 1/2 и 1/6 соответственно. Но оно все-таки содержит в себе знаменатель, поэтому мы его и рассматриваем в данной статье.

    К дробным рациональным уравнениям относятся уравнения, которые содержат икс в знаменателе. Например, это уравнение дробное рациональное:

    Методика решения приведенных примеров, в принципе, одинакова. Разница состоит в том, что в дробных рациональных уравнениях знаменатель не должен равняться нулю, поэтому при их решении оговаривают ограничения для икса. По-научному говорят, что находят область допустимых значений (ОДЗ).

    Но давайте начнем с простого.

    Целое рациональное уравнение.

    Сначала решим целое рациональное уравнение.

    Если ты в уравнении видишь дроби, то надо от них избавится, ведь уравнение без дробей решается намного приятнее)

    В этом уравнении находим общий знаменатель. Он равен 6. Это значит, что обе части уравнения надо умножить на 6 (одинокий икс тоже).

    Обычно этот шаг пропускают и переходят к следующему, но я его все равно распишу:

    Числители и знаменатели сокращаются и получается элементарное уравнение:

    Приводим подобные слагаемые:

    Чтобы найди икс надо -10 разделить на 10 (произведение делим на известный множитель). Получаем ответ:

    Готово!

    Дробное рациональное уравнение.

    Теперь решим дробное рациональное уравнение.

    Я уже писала о том, что в дробных рациональных уравнениях знаменатели не должны равняться нулю. Знаменатель второй дроби нас устраивает, ведь 3 не равно 0) А вот знаменатель первой дроби требует от нас, чтобы мы нашли ОДЗ.

    А дальше по накатанной: надо обе части уравнения умножить на общий знаменатель. Общим знаменателем будет выражение 3(х + 9).

    Снова распишу подробно, но если ты шаришь, то следующую запись можешь не писать.

    В первой дроби сокращаем (х + 9), а во второй – тройки. Получаем такое уравнение:

    Здесь можно раскрыть скобки, потом перенести известные в одну сторону, а неизвестные – в другую… Но делать я этого не стану, а просто обе части уравнения разделю на -2. А еще поменяю местами левую и правую части уравнения, чтобы привести его к привычному виду.

    Чтобы найти неизвестное слагаемое надо из суммы вычесть известное слагаемое, т.е. из -9 вычесть 9.

    Ответ таков:

    Сравниваем с ОДЗ… Всё отлично. Корень уравнения подходит.

    Альтернативный метод решения уравнения с дробями.

    Но нельзя пройти мимо другого метода решения данного уравнения: с помощью пропорции. Помнишь, как она раскрывается? Правильно, крест-накрест. И не надо искать общий знаменатель)

    Перемножаем….и о чудо! Получаем уравнение, которое мы уже решали!

    Дальнейшее решение расписывать не буду, оно есть выше.

    Такой способ решения уравнений хорош, когда в уравнении имеются две дроби.

    В завершении решу еще одно уравнение предложенными выше способами.

    Только ты решаешь какой способ выбрать.

    Твой персональный препод Васильева Анна)

    Решение уравнений с дробями

    О чем эта статья:

    5 класс, 6 класс, 7 класс

    Понятие дроби

    Прежде чем отвечать на вопрос, как найти десятичную дробь, разберемся в основных определениях, видах дробей и разницей между ними.

    Дробь — это рациональное число, представленное в виде a/b, где a — числитель дроби, b — знаменатель. Есть два формата записи:

    • обыкновенный вид — ½ или a/b,
    • десятичный вид — 0,5.

    Дробь — это одна из форм деления, записываемая с помощью дробной черты. Над чертой принято писать делимое (число, которое делим) — числитель. А под чертой всегда находится делитель (на сколько делим), его называют знаменателем. Черта между числителем и знаменателем означает деление.

    Дроби бывают двух видов:

    1. Числовые — состоят из чисел. Например, 2/7 или (1,8 − 0,3)/5.
    2. Алгебраические — состоят из переменных. Например, (x + y)/(x − y). Значение дроби зависит от данных значений букв.

    Дробь называют правильной, когда ее числитель меньше знаменателя. Например, 4/9 и 23/57.

    Неправильная дробь — та, у которой числитель больше знаменателя или равен ему. Например, 13/5. Такое число называют смешанным — читается так: «две целых три пятых», а записывается — 2 3/5.

    Основные свойства дробей

    Дробь не имеет значения, если делитель равен нулю.

    Дробь равняется нулю в том случае, если числитель равен нулю, а знаменатель отличен от нуля.

    Дроби a/b и c/d называют равными, если a × d = b × c.

    Если числитель и знаменатель дроби умножить или разделить на одно и то же натуральное число, то получится равная ей дробь.

    Действия с дробями можно выполнять те же, что и с обычными числами: складывать, вычитать, умножать и делить. Также, дроби можно сравнивать между собой и возводить в степень.

    Понятие уравнения

    Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Наша задача — найти неизвестные числа так, чтобы при их подстановке в пример получилось верное числовое равенство. Давайте на примере:

    • Возьмем выражение 4 + 5 = 9. Это верное равенство, потому что 4+5 действительно 9. Если бы вместо 9 стояло любое другое число — мы бы сказали, что числовое равенство неверное.
    • Уравнением можно назвать выражение 4 + x = 9, с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.

    Корень уравнения — то самое число, которое уравнивает выражения справа и слева, когда мы подставляем его на место неизвестной. В таком случае афоризм «зри в корень» — очень кстати при усердном решении уравнений.

    Равносильные уравнения — это те, в которых совпадают множества решений. Другими словами, у них одни и те же корни.

    Решить уравнение значит найти все его корни или убедиться, что корней нет.

    Алгебраические уравнения могут быть разными, самые часто встречающиеся — линейные и квадратные. Расскажем и про них.

    Линейное уравнение выглядит так ах + b = 0, где a и b — действительные числа.

    Что поможет в решении:

    • если а не равно нулю, то у уравнения единственный корень: х = −b : а;
    • если а равно нулю, а b не равно нулю — у уравнения нет корней;
    • если а и b равны нулю, то корень уравнения — любое число.
    Квадратное уравнение выглядит так: ax 2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, a ≠ 0.

    Понятие дробного уравнения

    Дробное уравнение — это уравнение с дробями. Да, вот так просто. Но это еще не все. Чаще всего неизвестная стоит в знаменателе. Например, вот так:

    Такие уравнения еще называют дробно-рациональными. В них всегда есть хотя бы одна дробь с переменной в знаменателе.

    Если вы видите в знаменателях числа, то это уравнения либо линейные, либо квадратные. Решать все равно нужно, поэтому идем дальше. Примеры:

    На алгебре в 8 классе можно встретить такое понятие, как область допустимых значений — это множество значений переменной, при которых это уравнение имеет смысл. Его используют, чтобы проверить корни и убедиться, что решение правильное.

    Мы уже знаем все важные термины, их определения и наконец подошли к самому главному — сейчас узнаем как решить дробное уравнение.

    Как решать уравнения с дробями

    1. Метод пропорции

    Чтобы решить уравнение методом пропорции, нужно привести дроби к общему знаменателю. А само правило звучит так: произведение крайних членов пропорции равно произведению средних. Проверим, как это работает.

    Итак, у нас есть линейное уравнение с дробями:

    В левой части стоит одна дробь — оставим без преобразований. В правой части видим сумму, которую нужно упростить так, чтобы осталась одна дробь.

    После того, как в левой и правой части осталась одна дробь, можно применить метод пропорции и перемножить крест-накрест числители и знаменатели.

    2. Метод избавления от дробей

    Возьмем то же самое уравнение, но попробуем решить его по-другому.

    В уравнении есть две дроби, от которых мы очень хотим избавиться. Вот, как это сделать:

    • подобрать число, которое можно разделить на каждый из знаменателей без остатка;
    • умножить на это число каждый член уравнения.

    Ищем самое маленькое число, которое делится на 5 и 9 и без остатка — 45 как раз подходит. Умножаем каждый член уравнения на 45 и избавляемся от знаменателей. Вуаля!

    Вот так просто мы получили тот же ответ, что и в прошлый раз.

    Что еще важно учитывать при решении

    • если значение переменной обращает знаменатель в 0, значит это неверное значение;
    • делить и умножать уравнение на 0 нельзя.

    Универсальный алгоритм решения

    Определить область допустимых значений.

    Найти общий знаменатель.

    Умножить каждый член уравнения на общий знаменатель и сократить полученные дроби. Знаменатели при этом пропадут.

    Раскрыть скобки, если нужно и привести подобные слагаемые.

    Решить полученное уравнение.

    Сравнить полученные корни с областью допустимых значений.

    Записать ответ, который прошел проверку.

    Курсы по математике от Skysmart помогут закрепить материал и разобраться в сложных темах.

    Примеры решения дробных уравнений

    Чтобы стать успешным в любом деле, нужно чаще практиковаться. Мы уже знаем, как решаются дробные уравнения — давайте перейдем к решению задачек.

    Пример 1. Решить дробное уравнение: 1/x + 2 = 5.

    1. Вспомним правило х ≠ 0. Это значит, что область допустимых значений: х — любое число, кроме нуля.
    2. Отсчитываем справа налево в числителе дробной части три знака и ставим запятую.
    3. Избавимся от знаменателя. Умножим каждый член уравнения на х.

    Решим обычное уравнение.

    Пример 2. Найти корень уравнения

    1. Область допустимых значений: х ≠ −2.
    2. Умножим обе части уравнения на выражение, которое сократит оба знаменателя: 2(х+2)
    3. Избавимся от знаменателя. Умножим каждый член уравнения на х.

    Переведем новый множитель в числитель..

    Сократим левую часть на (х+2), а правую на 2.

    Пример 3. Решить дробное уравнение:

      Найти общий знаменатель:

    Умножим обе части уравнения на общий знаменатель. Сократим. Получилось:

    Выполним возможные преобразования. Получилось квадратное уравнение:

    Решим полученное квадратное уравнение:

    Получили два возможных корня:

    Если x = −3, то знаменатель равен нулю:

    Если x = 3 — знаменатель тоже равен нулю.

  • Вывод: числа −3 и 3 не являются корнями уравнения, значит у данного уравнения нет решения.
  • Как решать уравнения с дробями. Показательное решение уравнений с дробями.

    Решение уравнений с дробями рассмотрим на примерах. Примеры простые и показательные. С их помощью вы наиболее понятным образом сможете усвоить, как решать уравнения с дробями.
    Например, требуется решить простое уравнение x/b + c = d.

    Уравнения такого типа называется линейным, т.к. в знаменателе находятся только числа.

    Решение выполняется путем умножения обоих частей уравнения на b, тогда уравнение принимает вид x = b*(d – c), т.е. знаменатель дроби в левой части сокращается.

    Например, как решить дробное уравнение:
    x/5+4=9
    Умножаем обе части на 5. Получаем:
    х+20=45
    x=45-20=25

    Другой пример, когда неизвестное находится в знаменателе:

    Уравнения такого типа называются дробно-рациональными или просто дробными.

    Решать дробное уравнение бы будем путем избавления от дробей, после чего это уравнение, чаще всего, превращается в линейное или квадратное, которое решается обычным способом. Следует только учесть следующие моменты:

    • значение переменной, обращающее в 0 знаменатель, корнем быть не может;
    • нельзя делить или умножать уравнение на выражение =0.

    Здесь вступает в силу такое понятие, как область допустимых значений (ОДЗ) – это такие значения корней уравнения, при которых уравнение имеет смысл.

    Таким образом решая уравнение, необходимо найти корни, после чего проверить их на соответствие ОДЗ. Те корни, которые не соответствуют нашей ОДЗ, из ответа исключаются.

    Например, требуется решить дробное уравнение:

    Исходя из вышеуказанного правила х не может быть = 0, т.е. ОДЗ в данном случае: х – любое значение, отличное от нуля.

    Избавляемся от знаменателя путем умножения всех членов уравнения на х

    И решаем обычное уравнение

    5x – 2х = 1
    3x = 1
    х = 1/3

    Решим уравнение посложнее:

    Здесь также присутствует ОДЗ: х -2.

    Решая это уравнение, мы не станем переносить все в одну сторону и приводить дроби к общему знаменателю. Мы сразу умножим обе части уравнения на выражение, которое сократит сразу все знаменатели.

    Для сокращения знаменателей требуется левую часть умножить на х+2, а правую — на 2. Значит, обе части уравнения надо умножать на 2(х+2):

    Это самое обычное умножение дробей, которое мы уже рассмотрели выше

    Запишем это же уравнение, но несколько по-другому

    Левая часть сокращается на (х+2), а правая на 2. После сокращения получаем обычное линейное уравнение:

    х = 4 – 2 = 2, что соответствует нашей ОДЗ

    Для закрепления материала рекомендуем еще посмотреть видео.

    Решение уравнений с дробями не так сложно, как может показаться. В этой статье мы на примерах это показали. Если у вас возникли какие то трудности с тем, как решать уравнения с дробями, то отписывайтесь в комментариях.

    Если материал был полезен, вы можете отправить донат или поделиться данным материалом в социальных сетях:

    Алгебра. Урок 4. Уравнения, системы уравнений

    Смотрите бесплатные видео-уроки на канале Ёжику Понятно по теме “Уравнения”.

    Видео-уроки на канале Ёжику Понятно. Подпишись!

    Содержание страницы:

    • Линейные уравнения

    Линейные уравнения

    Линейное уравнение – уравнение вида a x = b , где x – переменная, a и b некоторые числа, причем a ≠ 0 .

    Примеры линейных уравнений:

    1. 3 x = 2
    1. 2 7 x = − 5

    Линейными уравнениями называют не только уравнения вида a x = b , но и любые уравнения, которые при помощи преобразований и упрощений сводятся к этому виду.

    Как же решать уравнения, которые приведены к виду a x = b ? Достаточно поделить левую и правую часть уравнения на величину a . В результате получим ответ: x = b a .

    Как распознать, является ли произвольное уравнение линейным или нет? Надо обратить внимание на переменную, которая присутствует в нем. Если старшая степень, в которой стоит переменная, равна единице, то такое уравнение является линейным уравнением.

    Для того, чтобы решить линейное уравнение , необходимо раскрыть скобки (если они есть), перенести «иксы» в левую часть, числа – в правую, привести подобные слагаемые. Получится уравнение вида a x = b . Решение данного линейного уравнения: x = b a .

    Примеры решения линейных уравнений:

    1. 2 x + 1 = 2 ( x − 3 ) + 8

    Это линейное уравнение, так как переменная стоит в первое степени.

    Попробуем преобразовать его к виду a x = b :

    Для начала раскроем скобки:

    2 x + 1 = 4 x − 6 + 8

    В левую часть переносятся все слагаемые с x , в правую – числа:

    Теперь поделим левую и правую часть на число ( -2 ) :

    − 2 x − 2 = 1 − 2 = − 1 2 = − 0,5

    Это уравнение не является линейным уравнением, так как старшая степень, в которой стоит переменная x равна двум.

    Это уравнение выглядит линейным на первый взгляд, но после раскрытия скобок старшая степень становится равна двум:

    x 2 + 3 x − 8 = x − 1

    Это уравнение не является линейным уравнением.

    Особые случаи (в 4 задании ОГЭ они не встречались, но знать их полезно)

    1. 2 x − 4 = 2 ( x − 2 )

    Это линейное уравнение. Раскроем скобки, перенесем иксы влево, числа вправо:

    2 x − 2 x = − 4 + 4

    И как же здесь искать x , если его нет? После выполнения преобразований мы получили верное равенство (тождество), которое не зависит от значения переменной x . Какое бы значение x мы ни подставляли бы в исходное уравнение, в результате всегда получается верное равенство (тождество). Значит x может быть любым числом. Запишем ответ к данном линейному уравнению.

    Это линейное уравнение. Раскроем скобки, перенесем иксы влево, числа вправо:

    2 x − 4 = 2 x − 16

    2 x − 2 x = − 16 + 4

    В результате преобразований x сократился, но в итоге получилось неверное равенство, так как . Какое бы значение x мы ни подставляли бы в исходное уравнение, в результате всегда будет неверное равенство. А это означает, что нет таких значений x , при которых равенство становилось бы верным. Запишем ответ к данному линейному уравнению.

    Квадратные уравнения

    Квадратное уравнение – уравнение вида a x 2 + b x + c = 0, где x – переменная, a , b и c – некоторые числа, причем a ≠ 0 .

    Алгоритм решения квадратного уравнения:

    1. Раскрыть скобки, перенести все слагаемые в левую часть, чтобы уравнение приобрело вид: a x 2 + b x + c = 0
    2. Выписать, чему равны в числах коэффициенты: a = … b = … c = …
    3. Вычислить дискриминант по формуле: D = b 2 − 4 a c
    4. Если D > 0 , будет два различных корня, которые находятся по формуле: x 1,2 = − b ± D 2 a
    5. Если D = 0, будет один корень, который находится по формуле: x = − b 2 a
    6. Если D 0, решений нет: x ∈ ∅

    Примеры решения квадратного уравнения:

    1. − x 2 + 6 x + 7 = 0

    a = − 1, b = 6, c = 7

    D = b 2 − 4 a c = 6 2 − 4 ⋅ ( − 1 ) ⋅ 7 = 36 + 28 = 64

    D > 0 – будет два различных корня:

    x 1,2 = − b ± D 2 a = − 6 ± 64 2 ⋅ ( − 1 ) = − 6 ± 8 − 2 = [ − 6 + 8 − 2 = 2 − 2 = − 1 − 6 − 8 − 2 = − 14 − 2 = 7

    Ответ: x 1 = − 1, x 2 = 7

    a = − 1, b = 4, c = − 4

    D = b 2 − 4 a c = 4 2 − 4 ⋅ ( − 1 ) ⋅ ( − 4 ) = 16 − 16 = 0

    D = 0 – будет один корень:

    x = − b 2 a = − 4 2 ⋅ ( − 1 ) = − 4 − 2 = 2

    a = 2, b = − 7, c = 10

    D = b 2 − 4 a c = ( − 7 ) 2 − 4 ⋅ 2 ⋅ 10 = 49 − 80 = − 31

    D 0 – решений нет.

    Также существуют неполные квадратные уравнения (это квадратные уравнения, у которых либо b = 0, либо с = 0, либо b = с = 0 ). Смотрите видео, как решать такие квадратные уравнения!

    Разложение квадратного трехчлена на множители

    Квадратный трехчлен можно разложить на множители следующим образом:

    a x 2 + b x + c = a ⋅ ( x − x 1 ) ⋅ ( x − x 2 )

    где a – число, коэффициент перед старшим коэффициентом,

    x – переменная (то есть буква),

    x 1 и x 2 – числа, корни квадратного уравнения a x 2 + b x + c = 0 , которые найдены через дискриминант.

    Если квадратное уравнение имеет только один корень , то разложение выглядит так:

    a x 2 + b x + c = a ⋅ ( x − x 0 ) 2

    Примеры разложения квадратного трехчлена на множители:

    1. − x 2 + 6 x + 7 = 0 ⇒ x 1 = − 1, x 2 = 7

    − x 2 + 6 x + 7 = ( − 1 ) ⋅ ( x − ( − 1 ) ) ( x − 7 ) = − ( x + 1 ) ( x − 7 ) = ( x + 1 ) ( 7 − x )

    1. − x 2 + 4 x − 4 = 0 ; ⇒ x 0 = 2

    − x 2 + 4 x − 4 = ( − 1 ) ⋅ ( x − 2 ) 2 = − ( x − 2 ) 2

    Если квадратный трехчлен является неполным, ( ( b = 0 или c = 0 ) то его можно разложить на множители следующими способами:

    • c = 0 ⇒ a x 2 + b x = x ( a x + b )
    • b = 0 ⇒ применить формулу сокращенного умножения для разности квадратов.

    Дробно рациональные уравнения

    Пусть f ( x ) и g ( x ) – некоторые функции, зависящие от переменной x .

    Дробно рациональное уравнение – это уравнение вида f ( x ) g ( x ) = 0 .

    Для того, чтобы решить дробно рациональное уравнение, надо вспомнить, что такое ОДЗ и когда оно возникает.

    ОДЗ – область допустимых значений переменной.

    В выражении вида f ( x ) g ( x ) = 0

    ОДЗ: g ( x ) ≠ 0 (знаменатель дроби не может быть равен нулю).

    Алгоритм решения дробно рационального уравнения:

    1. Привести выражение к виду f ( x ) g ( x ) = 0 .
    2. Выписать ОДЗ: g ( x ) ≠ 0.
    3. Приравнять числитель дроби к нулю f ( x ) = 0 и найти корни.
    4. Указать в ответе корни из числителя, исключив те корни, которые попали в ОДЗ.

    Пример решения дробного рационального уравнения:

    Решить дробно рациональное уравнение x 2 − 4 2 − x = 1.

    Решение:

    Будем действовать в соответствии с алгоритмом.

    1. Привести выражение к виду f ( x ) g ( x ) = 0 .

    Переносим единичку в левую часть, записываем к ней дополнительный множитель, чтобы привести оба слагаемых к одному общему знаменателю:

    x 2 − 4 2 − x − 1 2 − x = 0

    x 2 − 4 2 − x − 2 − x 2 − x = 0

    x 2 − 4 − ( 2 − x ) 2 − x = 0

    x 2 − 4 − 2 + x 2 − x = 0

    x 2 + x − 6 2 − x = 0

    Первый шаг алгоритма выполнен успешно.

    Обводим в рамочку ОДЗ, не забываем про него: x ≠ 2

    1. Приравнять числитель дроби к нулю f ( x ) = 0 и найти корни:

    x 2 + x − 6 = 0 – Квадратное уравнение. Решаем через дискриминант.

    a = 1, b = 1, c = − 6

    D = b 2 − 4 a c = 1 2 − 4 ⋅ 1 ⋅ ( − 6 ) = 1 + 24 = 25

    D > 0 – будет два различных корня.

    x 1,2 = − b ± D 2 a = − 1 ± 25 2 ⋅ 1 = − 1 ± 5 2 = [ − 1 + 5 2 = 4 2 = 2 − 1 − 5 2 = − 6 2 = − 3

    1. Указать в ответе корни из числителя, исключив те корни, которые попали в ОДЗ.

    Корни, полученные на предыдущем шаге:

    Значит, в ответ идет только один корень, x = − 3.

    Системы уравнений

    Системой уравнений называют два уравнения с двумя неизвестными (как правило, неизвестные обозначаются x и y ) , которые объединены в общую систему фигурной скобкой.

    Пример системы уравнений

    Решить систему уравнений – найти пару чисел x и y , которые при подстановке в систему уравнений образуют верное равенство в обоих уравнениях системы.

    Существует два метода решений систем линейных уравнений:

    1. Метод подстановки.
    2. Метод сложения.

    Алгоритм решения системы уравнений методом подстановки:

    1. Выразить из любого уравнения одну переменную через другую.
    2. Подставить в другое уравнение вместо выраженной переменной полученное значение.
    3. Решить уравнение с одной неизвестной.
    4. Найти оставшуюся неизвестную.

    Решить систему уравнений методом подстановки

    Решение:

    1. Выразить из любого уравнения одну переменную через другую.
    1. Подставить в другое уравнение вместо выраженной переменной полученное значение.
    1. Решить уравнение с одной неизвестной.

    3 ( 8 − 2 y ) − y = − 4

    y = − 28 − 7 = 28 7 = 4

    1. Найти оставшуюся неизвестную.

    x = 8 − 2 y = 8 − 2 ⋅ 4 = 8 − 8 = 0

    Ответ можно записать одним из трех способов:

    Решение системы уравнений методом сложения.

    Метод сложения основывается на следующем свойстве:

    Идея метода сложения состоит в том, чтобы избавиться от одной из переменных, сложив уравнения.

    Решить систему уравнений методом сложения

    Давайте избавимся в данном примере от переменной x . Суть метода состоит в том, чтобы в первом и во втором уравнении перед переменной x стояли противоположные коэффициенты. Во втором уравнении перед x стоит коэффициент 3 . Для того, чтобы метод сложения сработал, надо чтобы перед переменной x оказался коэффициент ( − 3 ) . Для этого домножим левую и правую часть первого уравнения на ( − 3 ) .

    Теперь, когда перед переменной в обоих уравнениях стоят противоположные коэффициенты, при сложении левых частей уравнений переменная x исчезнет.

    ( − 3 x − 6 y ) + ( 3 x − y ) = ( − 24 ) + ( − 4 )

    − 3 x − 6 y + 3 x − y = − 24 − 4

    y = − 28 − 7 = 28 7 = 4

    Осталось найти переменную x . Для этого подставим y = 4 в любое из двух уравнений системы. Например, в первое.

    Ответ можно записать одним из трех способов:

    Задание №9 из ОГЭ 2020. Типовые задачи и принцип их решения.

    источники:

    http://reshit.ru/Kak-reshat-uravneniya-s-drobyami

    http://epmat.ru/modul-algebra/urok-4-uravneniya-sistemy-uravnenij/

    Добавить комментарий