Виталий Викторович Карабут
Эксперт по предмету «Физика»
Задать вопрос автору статьи
Французские ученые Ж. Био и Ф. Савар изучали магнитные поля, создаваемые постоянными токами разной формы. Результаты их работы обобщил известный математик и физик П. Лаплас.
Применение закона Био – Савара – Лапласа к вычислению магнитного поля кругового тока
Закон Био-Савара–Лапласа описывает порождение магнитного поля током $I$ на элементе проводника длиной $dl$ в некоторой точке пространства ($mu$ – магнитная проницаемость вещества в котором локализовано поле):
$dvec{B}=frac{mu_{0}mu }{4pi }frac{Ileft[ dvec{l}vec{r}right]}{r^{3}}left( 1 right)$
где $d vec l ⃗$ – вектор, длина которого равна длине элемента проводника $dl$, направленный по току; $vec r$ – радиус-вектор, который проведен от элемента $dl$ в точку, в которой исследуется магнитное поле. Поскольку в правой части формулы (1) находится векторное произведение, очевидно, что индукция элементарного магнитного поля будет направлена перпендикулярно плоскости, в которой находятся векторы $vec r$ и $vec l$ и при этом является касательной к силовой линии поля.
Сделаем домашку
с вашим ребенком за 380 ₽
Уделите время себе, а мы сделаем всю домашку с вашим ребенком в режиме online
Бесплатное пробное занятие
*количество мест ограничено
Величину вектора $vec{dB}$ из выражения (1) найдем как:
$dB=frac{mu_{0}mu }{4pi }frac{Idlsin alpha }{r^{2}}left( 2 right)$.
где $ alpha $– угол между векторами $vec r$ и $vec l$ .
Конкретное направление $vec{dB}$ находят по правилу буравчика (правилу правой руки):
Если правый винт вращать так, что его поступательное движение будет совпадать с направлением течения тока в избранном элементе, то вращение его головки укажет направление $vec{dB}$.
Магнитные поля подчиняются принципу суперпозиции:
Суммарную магнитную индукцию поля, создаваемого несколькими источниками, находят как геометрическую сумму векторов магнитной индукции отдельных полей:
$vec{B}=sumlimits_{i=1}^N vec{B}_{i} left( 3 right). $
Если распределение токов можно считать непрерывным, то принцип суперпозиции можно записать:
$vec{B}=int {dvec{B}_{i}} left( 4 right).$
Вычисление магнитной индукции поля с применением закона Био-Савара-Лапласа довольно сложная процедура. Но при существовании определенной симметрии в распределении токов, используя, рассмотренный нами закон и принцип суперпозиции, рассчитать конкретные поля просто. В любом случае следует придерживаться следующей схемы действий:
«Магнитное поле кругового тока» 👇
- Выделить на проводнике с током элементарный отрезок $dl$.
- Записать для исследуемой точки поля закон Био – Савара – Лапласа.
- Определить направление элементарного поля $vec{dB}$ в избранной точке.
- Воспользоваться принципом суперпозиции для магнитных полей (учесть, что суммируются векторы).
Магнитное поле кругового тока в его центре
Рисунок 1. Магнитное поле кругового тока в его центре. Автор24 — интернет-биржа студенческих работ
Рассмотрим круговой проводник, по которому течет постоянный ток $I$ (рис.1). Выделим на этом проводнике элемент $dl$, который можно считать прямолинейным. Если перейти к другому элементу этого же тока, затем к третьему и так далее, применить правило правого винта, то очевидно, что все магнитные поля, созданные этими элементами в центре, направлены вдоль одной прямой, перпендикуляру к плоскости кольца. Это означает, применяя принцип суперпозиции, мы векторное сложение заменим алгебраическим.
Запишем закон Био-Савара-Лапласа для модуля вектора индукции поля, создаваемого элементом d$l_1$:
$dB=frac{mu_{0}mu }{4pi }frac{Idl_{1}sin alpha }{r^{2}}left( 5right).$
Из рис.1 мы видим:
- что расстояние от элементарного тока до центра витка равно его радиусу ($R$) и будет одинаковым для всех элементов на этом витке,
- элемент $dl$ (как и все остальные элементы) будут нормальны к радиус-вектору $vec r$.
Учитывая сказанное выражение (5) представим в виде:
$dB=frac{mu_{0}mu }{4pi }frac{Idl_{1}}{R^{2}}left( 6 right)$.
Обезличивая витки с током, положим далее $dl_1=dl$.
Поскольку наш ток является непрерывным, то для нахождения полного поля в его центре, мы проинтегрируем (6), имеем:
$B=ointlimits_L {dB=} frac{mu_{0}mu }{4pi}frac{I}{R^{2}}ointlimits_L {dl} =frac{mu_{0}mu }{4pi}frac{I}{R^{2}}2pi Rto$
$B=mu_{0}mu frac{I}{2R}left( 7 right)$.
Замечание 1
$L=2πR$ – длина окружности витка.
Индукция магнитного поля кругового тока на его оси
Найдем индукцию магнитного поля на оси кругового тока, если ток, текущий по нему равен $I$, радиус витка – $R$ (рис.2).
Рисунок 2. Индукция магнитного поля кругового тока на его оси. Автор24 — интернет-биржа студенческих работ
Как основу для выполнения поставленной задачи возьмем закон Био-Савара-Лапласа (1), где из рис.2 мы видим, что:
-
$vec{r}=vec{R}+vec{h}$,
-
$dvec{l}times vec{r}=dvec{l}times vec{R}+dvec{l}times vec{h}(9).$
Используя принцип суперпозиции закон (1) для нашего тока и формулы (8-9) запишем:
$vec{B}=ointlimits_L {dB=}$$frac{mu mu_{0}}{4pi }Iointlimits_L frac{dvec{l}timesvec{r}}{r^{3}} $
$=frac{mu mu_{0}}{4pi }frac{I}{r^{3}}left( ointlimits_L{dvec{l}times vec{R}+} ointlimits_L {dvec{l}times vec{h}}right)left( 10 right).$
В выражении (10) при записи интеграла, мы учли, что величина вектора $vec{r}$ не изменяется. Кроме этого вектор $vec h$, определяющий положение точки, в которой мы ищем поле, не изменяется при движении по нашему контуру, поэтому:
$ointlimits_L {dvec{l}times vec{h}} =(ointlimits_L {dvec{l})timesvec{h}} =0, left( 11 right),$
так как ( $ointlimits_L {dvec{l})=0.}$
Вычислим интеграл: $ointlimits_L {dvec{l}times vec{R}.}$ Введем единичный вектор ($vec n$), нормальный к плоскости витка с током.
$ointlimits_L {dvec{l}times vec{R}=ointlimits_L {vec{n}Rdl=vec{n}R}} ointlimits_L {dl=vec{n}R} 2pi R=2pi R^{2}vec{n}left( 12 right)$.
Подставляем результаты интегрирования из (12) в (10), имеем:
$vec{B}=frac{mu mu_{0}}{4pi }frac{I}{r^{3}}2pi R^{2}vec{n}=frac{mumu_{0}I}{2}frac{R^{2}}{left( R^{2}+h^{2}right)^{frac{3}{2}}}vec{n}left( 13 right)$
где при записи окончательного результата мы учли, что:
$r^{3}=left( R^{2}+h^{2} right)^{frac{3}{2}}$.
Кольца Гельмгольца
Кольцами Гельмгольца считают пару проводников в виде колец одного радиуса, расположенных в параллельных плоскостях (рис.3) на одной оси. Расстояние между плоскостями колец равно их радиусу.
Рисунок 3. Кольца Гельмгольца. Автор24 — интернет-биржа студенческих работ
Рассмотрим магнитное поле на оси этих колец.
Декартову систему координат разместим так, что ее начало совпадает с центром нижнего кольца с током. Ось Z нашей системы будет направлена по оси колец (рис.3).
Запишем индукцию магнитного поля в точке с координатой $z$ на оси колец. Используем формулу (13):
$B_{z}=frac{mu mu_{0}I}{2}R^{2}left[ frac{1}{left( R^{2}+z^{2}right)^{frac{3}{2}}}+frac{1}{left[ left( z-d right)^{2}+R^{2}right]^{frac{3}{2}}} right]left( 14right)$.
Исследуем полученное поле. Считается, что магнитное поле на оси колец Гельмгольца на посередине между ними является однородным.
Неоднородность в первом приближении характеризуют первой производной:
$frac{partial B_{z}}{partial z}=frac{3mu mu_{0}I}{2}R^{2}left[frac{-z}{left( R^{2}+z^{2} right)^{frac{5}{2}}}+frac{z-d}{left[ left(z-d right)^{2}+R^{2} right]^{frac{5}{2}}} right]left( 15 right)$.
Если $z=frac{d}{2}quad$ , подставим в (15), имеем:
$frac{partial B_{z}}{partial z}=0.$
Найдем $frac{partial^{2}B_{z}}{partial z^{2}}:$
$frac{partial^{2}B_{z}}{partial z^{2}}=frac{3mu mu_{0}I}{2}R^{2}left( frac{5z^{2}}{left( R^{2}+z^{2}right)^{frac{7}{2}}}-frac{1}{left( R^{2}+z^{2}right)^{frac{5}{2}}}+frac{5left( z-d right)^{2}}{left[ left( z-d right)^{2}+R^{2} right]^{frac{7}{2}}}-frac{1}{left[ left( z-dright)^{2}+R^{2} right]^{frac{5}{2}}} right)left( 16 right)$
По условию для колец Гельмгольца, имеем:
$d=R.$
На середине их общей оси ($z=frac{d}{2})$, получаем:
$frac{partial^{2}B_{z}}{partial z^{2}}=0, left( 17 right)$.
Равенство нулю второй производной от $B_z$ по координате $z$, показывает, что в на середине оси колец магнитное поле является однородным с высокой степенью точности.
Находи статьи и создавай свой список литературы по ГОСТу
Поиск по теме
Магнитное поле в центре кругового проводника с током
Для
нахождения индукции магнитного поля в
центре кругового проводника с током
необходимо разбить этот проводник на
элементы
,
для каждого из них найти вектор
,
а затем все эти векторы сложить. Так как
всевекторы
направлены
вдоль нормали к плоскости витка (рис.
11), то сложение векторов
можно заменить сложением их модулей
dB.
По
закону Био-Савара-Лапласа модуль вектора
:
.
Так
как все элементы
проводника перпендикулярны соответствующим
радиусам-векторам
,то sin
= 1 для всех
элементов
.
Расстояния
r
=
R для всех
элементов проводника
.
Тогда выражение для модуля вектора
:
.
Теперь
можно перейти к интегрированию:
.
Итак,
индукция магнитного поля в центре
кругового проводника с током:
(R
– радиус
витка с током I).
Тема 4. Действие магнитного поля на проводник с током (закон Ампера) и на движущийся заряд (сила Лоренца)
Закон
Ампера. На
элемент проводника
с током I
, помещённый
в магнитное поле с индукцией
(рис. 12), действует сила
(–сила
Ампера):
.
Модуль
вектора
:
,
где
–
угол между векторами
и
.
Направление вектора
можно определить поправилу
левой руки:
если силовые линии входят в ладонь, а
четыре вытянутых пальца располагаются
по току, то отведённый большой палец
укажет направление вектора силы Ампера
.
(Сила
перпендикулярна плоскости рисунка 12.)
Сила
Лоренца. На
заряд q
, движущийся со скоростью в магнитном
поле с индукцией (рис. 13), действует сила
(
–сила Лоренца
):
.
Модуль вектора
:,
где
α – угол
между векторами
и
.
Н
Рис.
13
аправление вектораможет быть определено поправилу
левой руки для движущихся
положительных зарядов и по правилу
правой руки для движущихся
отрицательных зарядов:
если
силовые линии магнитного поля входят
в ладонь, а четыре вытянутых пальца
располагаются по скорости движения
частицы, то отведённый большой палец
укажет направление силы
Лоренца
(рис. 13, сила
перпендикулярна плоскости рисунка).
Тема. 5. Магнитный поток. Теорема Гаусса для магнитного поля
Поток
вектора магнитной индукции
(или
магнитный поток)
через произвольную площадку S
характеризуется числом силовых линий
магнитного поля, пронизывающих данную
площадку S.
Если
площадка S
расположена
перпендикулярно
силовым линиям магнитного поля (рис.
14), то поток ФB
вектора индукции
через данную площадкуS
:
.
Рис.
14 Рис.
15
Если
площадка S
расположена
неперпендикулярно силовым линиям
магнитного поля (рис. 15), то поток ФB
вектора индукции
через данную площадкуS
:
,
где
α
– угол между векторами
и нормалик площадкеS.
Д
ля
того, чтобы найти потокФB
вектора магнитной индукции
через произвольную поверхностьS,
необходимо разбить
эту поверхность на элементарные площадки
dS
(рис.
16) и
определить элементарный
поток
векторачерез каждую площадкуdS
по формуле:
,
г
Рис.
16
де α
– угол между векторами
и нормалик данной площадкеdS;
–вектор,
равный по величине площади площадки dS
и направленный по вектору нормали к
данной площадке dS
.
Тогда
поток вектора
через произвольную поверхностьS
равен
алгебраической сумме элементарных
потоков
через все элементарные площадки
dS,
на которые разбита поверхность S,
что приводит к интегрированию:
.
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
Закон Био Савара Лапласа — Магнитное поле любого тока может быть вычислено как векторная сумма полей, создаваемая отдельными участками токов.
.
Для магнитного поля, как и для электрического, справедлив принцип суперпозиции: магнитная индукция результирующего поля, создаваемого несколькими токами или движущимися зарядами, равна векторной сумме магнитных индукций складываемых полей, создаваемых каждым током или движущимся зарядом в отдельности:
.
Закон Био-Савара-Лапласа для некоторых токов:
Магнитное поле прямого тока: .
Магнитное поле кругового тока: .
Обозначения:
dB — магнитная индукция;
dl — вектор, по модулю равный длине dl элемента проводника и совпадающий по направлению с током;
— магнитная постоянная;
μ — относительная магнитная проницаемость (среды);
I — сила тока;
R — расстояние от провода до точки, где мы вычисляем магнитную индукцию;
α — угол между вектором dl и r.
В современной формулировке закон Био — Савара — Лапласа чаще рассматривают как следствие двух уравнений Максвелла для магнитного поля при условии постоянства электрического поля:
где квадратными скобками обозначено векторное произведение, r — положение точек контура γ, dr — вектор элемента контура (ток течет вдоль него); μ0 — магнитная постоянная; r,r0 — единичный вектор, направленный от элемента контура к точке наблюдения.
В принципе контур γ может иметь ветвления, представляя собой сколь угодно сложную сеть. В таком случае под выражением, приведенным выше, следует понимать сумму по всем ветвям, слагаемое же для каждой ветви является интегралом приведенного выше вида (контур интегрирования для каждой ветви может быть при этом незамкнутым).
В случае простого контура, ток I одинаков на всех участках контура и может быть вынесен за знак интеграла. (Это справедливо отдельно и для каждого неразветвленного участка разветвленной цепи).
Если же взять за точку отсчёта точку, в которой нужно найти вектор магнитной индукции, то формула немного упрощается:
где — вектор, описывающий кривую проводника с током I, r — модуль , — вектор магнитной индукции, создаваемый элементом проводника .
Пример решения задачи закона Био Савара Лапласа.
Применим закон Био — Савара — Лапласа для вычисления поля прямого тока, т. е. поля, создаваемого током, текущим по тонкому прямому проводу бесконечной длины (рис. 1). Все векторы dB в данной точке имеют одинаковое направление (в нашем случае «к нам»). Поэтому сложение векторов dB можно заменить сложением их модулей. Точка, для которой мы вычисляем магнитную индукцию, находится на расстоянии r0 от провода. Из рис. 1 видно, что
r =R/sinα, dl =rdα/sinα = R dα/ sin2α.
Подставим эти значения в формулу магнитной индукции:
dB = (μ0 μ/4π) I R sinα sin2α dα /R2 sin2α = (μ0 μ/4π) I sinα dα /R.
Угол α для всех элементов бесконечного прямого тока изменяется в пределах от 0 до π. Следовательно,
B = ∫ dB = (μ0μ/4π) I/R∫ sinα dα = (μ0 μ/4π) 2I/R.
Таким образом, магнитная индукция поля, создаваемого бесконечно длинным прямым проводником с током
B = (μ0 μ/4π) 2I/R,
где R – кратчайшее расстояние от оси проводника.
Аналогичным образом можно найти магнитное поле в центре кругового проводника с током (рис. 2). Как следует из рисунка, все элементы кругового тока создают в центре магнитное поле одинакового направления — вдоль нормали витка. Поэтому сложение векторов dB можно заменить сложением их модулей. Так как все элементы проводника перпендикулярны радиусу-вектору (sin α=l) и расстояние всех элементов проводника до центра кругового тока одинаково и равно R, то, согласно закону Био-Савара-Лапласа,
dB=(μ0 μ/4π) I/R2dl. Тогда
B=∫dB=(μ0 μ/4π) I/R2∫dl=(μ0 μ/4π) I/R22πR=μ0 μI/2R
Следовательно, магнитная индукция поля в центре кругового проводника с током равна B = μ0 μI/2R.
Магнитное поле кругового тока — Создается током текущему по тонкому круглому проводу
Вывод формулы для магнитного поля кругового тока :
Поскольку расстояние всех элементов проводника до центра кругового тока одинаково и равно R и все элементы проводника перпендикулярны радиусу-вектору (sinα=1), то
Тогда у нас получается
Решив интеграл, у нас получается формула для магнитного поля кругового тока
Так же есть :
Магнитное поле прямого тока:
В Формуле мы использовали :
— Магнитная индукция прямого тока
— Магнитная постоянная
— Магнитная проницаемость среды
— Сила тока
— Расстояние от провода до точки, где мы вычисляем магнитную индукцию
— Угол между вектором dl и r
Классическая электродинамика |
---|
Электричество · Магнетизм |
Электростатика Закон Кулона |
Магнитостатика Закон Био — Савара — Лапласа |
Электродинамика Векторный потенциал |
Электрическая цепь Закон Ома |
Ковариантная формулировка Тензор электромагнитного поля |
См. также: Портал:Физика |
Закон Био́ — Савáра — Лапла́са (также Закон Био́ — Савáра) — физический закон для определения вектора индукции магнитного поля, порождаемого постоянным электрическим током. Установлен экспериментально Био и Саваром и сформулирован в общем виде Лапласом.
Согласно этому закону магнитная индукция в вакууме, создаваемая пространственным распределением плотности тока , в точке с радиус-вектором составляет (в СИ)
- ,
где — элемент объёма, а интегрирование производится по всем областям, где (вектор соответствует текущей точке при интегрировании). Имеется также формула для векторного потенциала магнитного поля .
Роль закона Био — Савара — Лапласа в магнитостатике аналогична роли закона Кулона в электростатике. Он широко используется для расчёта магнитного поля по заданному распределению токов.
В современной методологии закон Био — Савара — Лапласа, как правило, рассматривается как следствие двух уравнений Максвелла для магнитного поля при условии постоянства электрического поля.
Закон Био — Савара в разных случаях[править | править код]
Закон Био — Савара служит для вычисления магнитного поля токов в вакууме. Он также может использоваться в случае среды с координатно-независимой магнитной проницаемостью (тогда всюду заменяется на ). Но при наличии неоднородного магнетика формулы неприменимы, так как для получения в интегрирование нужно было бы включать и токи проводимости, и молекулярные токи, а последние заранее неизвестны.
Для текущих по тонкому проводнику токов[править | править код]
Пусть постоянный ток течёт по контуру (проводнику) , находящемуся в вакууме, — точка, в которой ищется поле. Тогда индукция магнитного поля в этой точке выражается интегралом (в системе единиц СИ)
- ,
где квадратными скобками обозначено векторное произведение, — положение точек контура , — вектор элемента контура (ток течёт вдоль него); — магнитная постоянная.
Векторный потенциал даётся интегралом (в системе СИ)
- .
Контур может иметь ветвления. В таком случае под выражением, приведённым выше, следует понимать сумму по ветвям, слагаемое для каждой ветви является интегралом выписанного вида. Для простого (неветвящегося) контура (и при выполнении условий магнитостатического приближения, подразумевающих отсутствие накопления зарядов) ток одинаков на всех участках контура и может быть вынесен за знак интеграла.
Если взять за точку отсчёта ту точку, в которой нужно найти вектор магнитной индукции, то
и формула немного упрощается:
- ,
где — вектор, описывающий кривую проводника с током , — модуль , — вектор магнитной индукции, создаваемый элементом проводника .
Направление перпендикулярно плоскости, в которой лежат векторы и . Направление вектора магнитной индукции может быть найдено по правилу правого винта: направление вращения головки винта даёт направление , если поступательное движение буравчика соответствует направлению тока в элементе.
Модуль вектора определяется выражением (в системе СИ)
где — угол между вектором (радиус-вектором, проведённым от элемента проводника к точке, в которой ищется поле) и элементом проводника.
Поле в центре кольца[править | править код]
Найдём магнитное поле в центре кольцевого витка радиуса с током . Совместим начало отсчёта с точкой, где ищется индукция. Радиус-вектор элемента тока, создающего поле (элемента дуги кольца), запишется как , где — единичный вектор в плоскости кольца, направленный от центра. Элемент дуги записывается как , где — единичный касательный вектор к окружности. По формуле Био — Савара,
- ,
поскольку — единичный вектор вдоль оси кольца. Для нахождения поля, создаваемого всем кольцом, а не отдельным элементом, нужно проинтегрировать. Результат:
- ,
так как интеграл равен просто длине окружности .
Поле бесконечного прямого провода[править | править код]
Найдём теперь магнитное поле, создаваемое бесконечным прямым проводником с током , на расстоянии от проводника. На этот раз выберем начало отсчёта в месте проекции точки P, где ищется индукция, на ось провода . Тогда радиус-вектор элемента тока, создающего поле (элемента отрезка прямой), запишется как , при этом , а радиус-вектор точки P как . По формуле Био — Савара,
- ,
поскольку — единичный вектор вдоль окружности, осью симметрии которой является провод, а . Для нахождения поля всего провода нужно проинтегрировать по от от :
- ,
так как интеграл равен (при взятии делается замена ). Результат совпадает с полученным другим, более простым при данной геометрии, способом — из уравнения Максвелла для напряжённости магнитного поля в интегральной форме при отсутствии переменных полей: . Если в качестве контура, по которому ведётся интегрирование, выбрать окружность радиуса , то, ввиду симметрии, поле во всех её точках будет одинаковым по величине и направленным по касательной (, ). Тогда интегрирование даст , после чего имеем . Соответственно, для вакуума (а для однородной магнитной среды с проницаемостью вместо появится ).
Для поверхностных и объёмных токов[править | править код]
Для случая, когда источником магнитного поля являются объёмно-распределённые токи (A/м2), характеризуемые зависящим от координат вектором плотности тока , формула закона Био — Савара для магнитной индукции и формула для вектор-потенциала принимают вид (в системе СИ)
- ,
где — элемент объёма, а интегрирование производится по всему пространству (или по всем его областям, где (вектор соответствует текущей точке при интегрировании (положению элемента ).
Для случая, когда источником магнитного поля является ток (А/м), текущий по некоей поверхности,
- ,
где — элемент площади токонесущей поверхности, по которой и выполняется интегрирование.
Логическое место закона в магнитостатике[править | править код]
В современном изложении учения об электромагнетизме закон Био — Савара — Лапласа обычно позиционируется как следствие двух уравнений Максвелла для магнитного поля при условии постоянства электрического поля — и выводится из них математическими преобразованиями. В этой логике уравнения Максвелла выступают как более фундаментальные, постулируемые утверждения (в том числе потому, что формулу Био — Савара нельзя просто обобщить на общий случай полей, зависящих от времени).
Однако исторически появление закона Био — Савара предшествовало уравнениям Максвелла и входило в экспериментальную базу для формулирования последних. Предвестниками установления этого закона явились опыты Ампера по изучению силового взаимодействия проводников с током. Это силовое взаимодействие может быть описано вообще без упоминания словосочетания «магнитное поле», но постепенно была выработана трактовка взаимодействия токов как взаимодействия одного тока с полем, создаваемым другим током, согласно равенствам:
-
- ,
где и — радиус-векторы элементов длины проводников и , а — сила действия элемента (создающего поле в точке ) на элемент .
По факту, при этом «магнитное поле» выделилось в самостоятельную физическую сущность, и встал вопрос об определении именно поля, а не силы. В этих работах в 1820 году приняли участие Био и Савар, а общую формулу для поля предложил Лаплас. Он же показал, что с помощью закона Био — Савара можно вычислить поле движущегося точечного заряда (считая движение одной заряженной частицы током). В логике того времени первичным является именно этот закон.
С формальной точки зрения в случае магнитостатики оба подхода можно считать равноправными, то есть в этом смысле то, что из них объявить исходными положениями, а что следствиями, зависит от выбора аксиоматизации, который для магнитостатики может быть тем или другим с равным правом и практически равным удобством. Но, как сказано выше, ныне доминирует подход, базирующийся на уравнениях Максвелла.
Закон Био — Савара — Лапласа можно вывести и другим способом, используя лоренцевское преобразование компонент тензора электромагнитного поля из движущейся системы отсчёта, где есть только электрическое поле некоторой системы зарядов, в неподвижную систему отсчёта[1].
При этом оказывается, что магнитное поле в законе Био — Савара определяется с относительной неточностью, по порядку величины равной , где — скорость света, — дрейфовая скорость заряженных частиц, входящая в плотность тока .
В практическом аспекте, для вычислений, закон Био — Савара — Лапласа играет в магнитостатике ту же роль, что закон Кулона в электростатике.
Вывод закона из уравнений Максвелла[править | править код]
Закон Био — Савара — Лапласа может быть получен из уравнений Максвелла для стационарного поля. При этом производные по времени равны 0, так что уравнения для поля в вакууме примут вид (в системе СИ)
- ,
где — плотность тока в пространстве, — электрическая постоянная, — плотность заряда. Электрическое и магнитное поля при этом оказываются независимыми.
Воспользуемся векторным потенциалом для магнитного поля (). Калибровочная инвариантность уравнений позволяет наложить на векторный потенциал одно дополнительное условие: . Раскрывая двойной ротор в уравнении для по формуле векторного анализа, получим для потенциала уравнение типа уравнения Пуассона:
Его частное решение даётся интегралом, аналогичным ньютонову потенциалу:
- .
Тогда магнитное поле определяется интегралом
- ,
аналогичным по форме закону Био — Савара — Лапласа. Это соответствие можно сделать полным, если воспользоваться обобщёнными функциями и записать пространственную плотность тока, соответствующую витку с током в пустом пространстве. Переходя от интегрирования по всему пространству к повторному интегралу вдоль витка и по ортогональным ему плоскостям и учитывая, что , получим закон Био — Савара — Лапласа для поля витка с током.
Примечания[править | править код]
- ↑ Fedosin, Sergey G. (2021). “The Theorem on the Magnetic Field of Rotating Charged Bodies”. Progress In Electromagnetics Research M. 103: 115—127. arXiv:2107.07418. Bibcode:2021arXiv210707418F. DOI:10.2528/PIERM21041203. // Теорема о магнитном поле вращающихся заряженных тел Архивная копия от 14 августа 2021 на Wayback Machine.
Литература[править | править код]
- Сивухин Д. В. Общий курс физики. — Изд. 4-е, стереотипное. — М.: Физматлит; Изд-во МФТИ, 2004. — Т. III. Электричество. — 656 с. — ISBN 5-9221-0227-3; ISBN 5-89155-086-5..
- Ландау Л. Д., Лифшиц Е. М. Теория поля. — Издание 7-е, исправленное. — М.: Наука, 1988. — 512 с. — («Теоретическая физика», том II). — ISBN 5-02-014420-7.