Как найти индуктивность катушки через напряжение

Лучший ответ

Александр R9AAA Прокудин

Высший разум

(101161)


12 лет назад

Закон Ома I=U/R
R=wL=2пfL
L=U/(I*w)=U/(2*I*пf)
где U – напряжение, I – ток, w – угловая частота, f – частота в Гц. п это пи или 3,14159 а R это не R a X ибо реактивные сопротивления R не обозначаются.

Остальные ответы

Игорь Царенко

Гуру

(2551)


12 лет назад

индуктивное сопротивление котушки равно X=2*pi*f*L;
U=I*Z, если индуктивное сопротивление намного больше активного то можно приблизительно считать U=I*X;
U=I*2*pi*f*L отсюда L=U/(I*2*pi*f)
вроде так, но, повторюсь, здесь не учтено активное сопротивление

Erik Talver

Ученик

(216)


7 лет назад

Помогите найти индуктивность катушки:
Дано:
25гц
1.25А
36.5В

Как рассчитать индуктивность катушки

Катушка индуктивности является спиральным или винтовым проводником, который преобразовывает энергию электрополя в магнитное поле. Каково более полное определение этого элемента электроцепи, как сделать расчёт катушки индуктивности и что влияет на ее индуктивность? Об этом далее.

Описание устройства

Катушка индуктивности бывает винтовой, спиральной или винтоспиральной, имеющей свернутый изолированный проводник, который обладает значительным показателем индукции при малой емкости с активным сопротивлением. Как следствие, ток протекает через источник тока со значительной инерционностью.

Главный компонент электроцепи

Обратите внимание! Применяется, чтобы подавлять помехи, сглаживать биения, накапливать энергию, ограничивать переменный ток или резонансный/частотно-избирательный контур цепи.

Стоит указать, что ее применение разнообразно. Называется она дросселем, вариометром, соленоидом и токоограничивающим реактором. При этом основные технические характеристики варьируются. Могут отличаться силой тока, сопротивлением потерь, добротностью, емкостью и температурным добротным коэффициентом.

Полное определение из физики

Факторы, влияющие на индукцию

Влияет на индукцию число проводниковых витков, площадь поперечного сечения, длина и материалы. Благодаря увеличению витков повышается индукция и наоборот. Что касается сечения, чем больше источник, тем больше показатель. Также чем больше магнитный вид проницаемости, тем больше индуктивный показатель.

Факторы, влияющие на преобразование энергии в магнитное поле

Расчет

Вычислить число витков, зная конструкцию, можно по формуле нахождения энергии и ее магнитного поля W = LI2/2, где L является индукцией, I — силой тока. Витки находятся из формулы L/d, где d является проводным диаметром. Стоит указать, что есть специальный калькулятор, в который нужно только подставить необходимые параметры. При этом можно определить, однослойный или многослойный проводник.

Схематическое расположение витков в катушке

С сердечником

Стоит отметить, что со стержнем, намоткой, обмоткой индукция вычисляется через замкнутый магнитный поток индуктивных элементов, в то время как без него учитывается поток, который пронизывает только проводник с токовой энергией. Расчитывая индуктивность подобных элементов, необходимо учесть размеры и материал центральной части. Обобщенно можно представить формулу схематично. При этом требуется взять в расчет источник с сопротивлением магнитной цепи, абсолютной магнитной проницаемостью вещества, площадью поперечного сердечникового сечения и длиной средней силовой линии. Зная это, можно посчитать индукцию. Стоит учитывать погрешность. Она будет равна 25%.

Без сердечника

Стоит указать, что без ферритового, геометрического и цилиндрического сердечника с мощным каркасом источник имеет небольшую индукцию, а с ним она повышается. Это связано с тем, что имеется материальная магнитная проницаемость. Форма бывает разная. Есть броневой, стержневой и тороидальный материал.

Обратите внимание! Рассчитать можно, используя метод эллиптических максвелловских интегралов и специальную онлайн программу.

Катушка — незаменимый компонент любой электросети, который имеет вид скрученного или обвивающего элемента с проводником. Влияет на ее индукцию число проводных витков, площадь сечения, длина и материал сердечника. Отыскать количество витков и посчитать индуктивность с сердечником и без него несложно, главное — руководствоваться приведенными выше рекомендациями.

Источник

Как рассчитать количество витков катушки?

Как определить количество витков в катушке?

Формула для расчёта числа витков из [1] была видоизменена: L – 25π·n 2 (C+D) 2 / [2 (C+D)+ 9l + 10C] = 0, Если витки обмотки уложены неплотно (например, внавал), необходим коэффициент, учитывающий эту неплотность.

Как рассчитать количество витков электромагнита?

F = (n x i)2 x магнитная постоянна x S / (2 x lср2)

  1. F = Сила,
  2. i = Ток,
  3. lср = Длина зазора между соленоидом и куском металла,
  4. S = Площадь сечения электромагнита
  5. n = Количество витков,
  6. Магнитная постоянная = 4 x PI x 10-7.

Как посчитать индуктивность катушки?

Базовая формула индуктивности катушки:

  1. L = индуктивность в генри
  2. μ 0 = проницаемость свободного пространства = 4π × 10 -7 Гн / м
  3. μ г = относительная проницаемость материала сердечника
  4. N = число витков
  5. A = Площадь поперечного сечения катушки в квадратных метрах (м 2 )
  6. l = длина катушки в метрах (м)

Как рассчитать длину провода в катушке?

Для этого вычисляем средний радиус витка (складываем длину большего и меньшего радиуса и делим на два) и по формуле L= пи * 2 * r средний расчитываем длину витка. После этого количество витков намотки умножаем на среднюю длину витка и получаем примерную длину провода.

Как определить число витков первичной и вторичной обмоток трансформатора?

w1/U1=w2/U2=k , где w1 число витков первичной обмотки, U1 напряжение в первичной обмотке, w2 число витков вторичной обмотки, U2 — напряжение вторичной обмотки, k коэффициент трансформации.

Как изменяются параметры катушки в зависимости от количества витков?

Число витков провода в катушке: При прочих равных условиях, увеличение числа витков приводит к увеличению индуктивности; уменьшение числа витков приводит к уменьшению индуктивности. Пояснение: чем больше количество витков, тем больше будет магнитодвижущая сила для заданной величины тока.

Как рассчитать мощность электромагнита?

F=40550∙B^2∙S, где F – сила тяги электромагнита, кГ (сила измеряется также в ньютонах, 1 кГ =9,81 Н, или 1 Н =0,102 кГ); B – индукция, Тл; S – площадь сечения электромагнита, м2.

Как сделать электромагнит своими руками?

Чтобы сделать простой электромагнит, вам понадобятся источник тока, проводник и металлический стержень. Плотно навейте медную проволоку на железный шуруп или гвоздь, а затем подсоедините концы проволоки к батарейке и проверьте, притягивает ли ваш электромагнит мелкие металлические предметы.

Как рассчитать индуктивность соленоида?

Аналитически индуктивность соленоида вычисляется по формуле: L = μ0 N 2 S / l, где S — площадь поперечного сечения соленоида (м2).

Что такое индуктивность катушки от чего она зависит?

Индуктивность L зависит от свойств самого проводника (его формы, размеров, количества витков и т. п., а также магнитной проницаемости среды μ). Так магнитное поле катушки (соленоида) много сильнее магнитного поля прямого проводника при прочих равных условиях. L не зависит от силы тока I, магнитного поля Ф и т.

Как определяется индуктивность?

Обозначение и единицы измерения В системе единиц СИ индуктивность выражается в генри, сокращённо «Гн». Контур обладает индуктивностью в один генри, если при изменении тока на один ампер в секунду на выводах контура будет возникать напряжение в один вольт. … Единица измерения индуктивности названа в честь Джозефа Генри.

Как определить количество кабеля на барабане?

Формула для расчета длины кабеля или провода намотанного на барабан:

  1. L=3,14*l*(D2н — d2ш)/4*D2.
  2. L – полная длина кабеля или провода, (м)
  3. l – длина шейки барабана, (мм)
  4. Dн – диаметр по намотанному кабелю на барабане, (мм)
  5. dш – диаметр шейки барабана, (мм)
  6. D – диаметр кабеля, (мм)

Как правильно рассчитать длину кабеля?

Суть заключается в том, что нужно рассчитать количество кабеля для электропроводки по площади помещения. Все очень просто – берете площадь частного дома либо квартиры и умножаете на «2». Вот столько примерно Вам нужно длины кабельной продукции, чтобы провести проводку.

Источник

Расчет катушки индуктивности

При построении электронных устройств часто приходится сталкиваться с индуктивным элементом схемы. Когда на чертеже указано только значение индуктивности L, то расчет катушки индуктивности приходится выполнять самостоятельно. В интернете есть множество программ, позволяющих выполнять расчёт индуктивности катушек онлайн при помощи специального калькулятора. Зная то, как устроен элемент, можно вручную произвести все вычисления.

Что такое катушка индуктивности

Данный элемент ещё называют дросселем. Это свёрнутый в спираль изолированный провод. Для такой спирали характерны большие индуктивные и маленькие ёмкостные параметры.

Важно! Дроссель препятствует протеканию переменного тока, потому что обладает существенной инерционностью. Она препятствует любому изменению проходящего через витки тока. При этом нет разницы, увеличивается он или уменьшается.

В связи с этим данные элементы применяют в электротехнике для осуществления:

  • токоограничения;
  • ослабления биений;
  • помехоподавления;
  • формирования магнитного поля;
  • изготовления датчиков движения.

Дроссель входит в систему колебательного контура в цепях резонанса и применяется в линиях задержки.

Какие параметры есть у катушки

От того, где будет применяться индуктивный элемент и на какой частоте работать, зависит его исполнение. Имеются общие параметры:

  • L – индуктивность;
  • R пот – сопротивление потерь;
  • Q – добротность;
  • свой резонанс и паразитарная ёмкость;
  • коэффициенты ТКИ и ТКД.

Индуктивность (коэффициент самоиндукции) L – это главная электрическая характеристика элемента, которая показывает количество накапливаемой дросселем энергии при передвижении тока. Величина энергии в катушки тем выше, чем больше её индуктивность. Единица измерений L – 1 Гн.

При взаимодействии тока и магнитного поля в обмотке возникают вредные явления. Они способствуют возникновению потерь, которые обозначают R пот. Формула потерь имеет вид:

Слагаемые формулыэто потери:

  • rω – в проводах;
  • rd – в диэлектрике;
  • rs – в сердечнике;
  • re – на вихревые токи.

В результате таких потерь импеданс индуктивного двухполюсника нельзя назвать целиком реактивным.

Добротность двухполюсника определяется по формуле:

где ω*L = 2π*L – реактивное сопротивление.

При наматывании витков элемента между ними возникает ненужная ёмкость. Из-за этого дроссель превращается в колебательный контур с собственным резонансом.

ТКИ – показатель, описывающий зависимость L от Т0С.

ТКД – показатель, описывающий зависимость добротности от Т0С.

Информация. Изменение основных параметров индуктивного двухполюсника зависит от коэффициентов ТКИ, ТКД, а также от времени и влажности.

Конструкция катушки

По конструктивному исполнению индуктивные элементы различаются:

  • видом намотки: винтоспиральная, винтовая; кольцевая;
  • количеством слоёв: однослойные или многослойные;
  • типом изолированного провода: одножильный, многожильный;
  • наличием каркаса: каркасные или бескаркасные (при небольшом количестве витков толстого провода);
  • геометрией каркаса: прямоугольный, квадратный, тороидальный;
  • наличием сердечника: ферритовый, из карбонильного железа, электротехнической стали, пермаллоевый (магнитомягкий сплав), металлический (латунный);
  • геометрией сердечника: стержневой (разомкнутый), кольцо-образный или ш-образный (замкнутый);
  • возможностью изменять L в узких интервалах (движение сердечника по отношению к обмотке).

Существуют плоские катушки, в печатном исполнении устанавливаемые на платах цифровых устройств.

К сведению. Намотка провода может быть как рядовой (витком к витку), так и в навал. Последний способ укладки провода снижает паразитную ёмкость.

Зачем нужен расчёт индуктивности

Расчет индуктивности нужен, потому что конструктивно это могут быть по-разному выполненные катушки. Применение дросселей в разных отраслях электрики и электроники, их работа под влиянием постоянного и переменного тока требуют тщательного подбора индуктивности, добротности и стабильности работы. При выполнении своими руками дросселей заданного параметра L нужно выполнить расчёт. Для каждого типа индуктивного двухполюсника используется своя формула.

Расчет параметров катушки

Приходится при расчётах рассматривать разные варианты. Расчет индуктивности зависит от исходных данных и заданных конечных параметров.

Расчет L в зависимости от заданной конструкции

Если исходными параметрами являются: w, D каркаса и длина намотанного провода, то формула для расчёта имеет вид:

  • D – диаметр каркаса, см;
  • w – число витков;
  • l – длина намотки, см;
  • L – индуктивность, мкГн.

Подставляя численные значения в формулу, получают значение L.

Расчет количества витков по индуктивности

Зная D каркаса и L, рассчитывают количество витков в катушке, формула имеет вид:

  • L – индуктивность, мкГн;
  • D – диаметр каркаса, мм.

Если в качестве исходных параметров берутся длина навитого в ряд проводника и его диаметр, то количество витков находят, используя формулу:

  • l – длина намотки, мм;
  • d – диаметр провода, мм.

Измерения диаметра провода проводят линейкой или штангенциркулем.

Расчёт индуктивности прямого провода

Собираясь найти L круглого прямого проводника, обращаются к приближённой формуле:

  • μ0 – магнитная постоянная;
  • μe – относительная магнитная проницаемость (ОМП) среды (для вакуума – 1);
  • μi – ОМП проводника;
  • l – длина провода;
  • r – радиус провода.

Формула справедлива для длинного проводника.

Расчёт однослойной намотки

Однослойные дроссели без сердечника легко и быстро можно рассчитать при помощи онлайн-калькулятора, в окно которого можно забить все известные характеристики, и программа выдаст значение L.

Вычисления проводятся и вручную, с использованием математического выражения. Оно имеет вид:

  • D – диаметр катушки, см;
  • l – длина намотанного провода, см;
  • n – количество витков.

Формула подходит для вычислений L дросселей без ферритовых сердечников.

Дроссель с сердечником

При наличии сердечника следует учесть его размеры и форму. В случае одинаковых катушках индуктивность больше у той, которая располагается на сердечнике.

Многослойная намотка

Особенности расчёта при подобном способе наматывания провода заключаются в том, что нужно учитывать его толщину. Формула для дросселя без сердечника имеет вид:

  • Dk – общий диаметр (диаметр каркаса и намотки);
  • t – толщина слоя;
  • l – длина накрученного провода.

Все значения подставляют в мм, величину L – в мкГн.

Факторы, влияющие на индуктивность катушки

Коэффициент самоиндукции зависит от следующих параметров:

  • геометрических особенностей каркаса;
  • формы оправки;
  • числа витков;
  • марки и диаметра провода;
  • свойств магнитопровода.

Интересно. Материал сердечников из распыленного железа выделяют разным цветом в зависимости от марки смеси. Сердечники такого рода используют для дросселей в импульсных устройствах.

Эквивалентная схема реальной катушки индуктивности

Каждый дроссель можно представить в виде эквивалентной схемы.

Данная схема состоит из элементов:

  • Rw – сопротивление обмотки с выводами;
  • L – индуктивность;
  • Cw – паразитная ёмкость;
  • Rl – сопротивление потерь.

Изготавливая индуктивный элемент, стремятся снизить величину сопротивления потерь, паразитную ёмкость. При работе катушки на низкой частоте учитывают сопротивление её обмотки Rw. На таких частотах действуют токи большой величины.

Правильно рассчитанная катушка индуктивности будет иметь высокую добротность (180-300) и стабильность работы при влиянии внешних условий (температуры и влажности). Зная способы различной намотки и манипуляции с шагом, можно уменьшить влияние паразитных факторов.

Видео

Источник

Главная » Справочник » Катушка индуктивности. Описание, характеристики, формула расчета

Катушка индуктивности является пассивным компонентом электронных схем, основное предназначение которой является сохранение энергии в виде магнитного поля. Свойство катушки индуктивности чем-то схоже с конденсатором, который хранит энергию в виде электрического поля.

Индуктивность (измеряется в Генри) — это эффект возникновения магнитного поля вокруг проводника с током. Ток, протекающий через катушку индуктивности, создает магнитное поле, которое имеет связь с электродвижущей силой (ЭДС) оказывающее противодействие приложенному напряжению.

фото катушка индуктивности

Возникающая противодействующая сила (ЭДС) противостоит изменению переменного напряжения и силе тока в катушке индуктивности. Это свойство индуктивной катушки называется индуктивным сопротивлением. Следует отметить, что индуктивное сопротивление находится в противофазе к емкостному реактивному сопротивлению конденсатора в цепи переменного тока. Путем увеличения числа витков можно повысить индуктивность самой катушки.

Накопленная энергия в индуктивности

Как известно магнитное поле обладает энергией. Аналогично тому, как в полностью заряженном конденсаторе существует запас электрической энергии, в индуктивной катушке, по обмотке которой течет ток, тоже существует запас — только уже магнитной энергии.

Энергия, запасенная в катушке индуктивности равна затраченной энергии необходимой для обеспечения протекания тока I в противодействии ЭДС. Величина запасенной энергии в индуктивности можно рассчитать по следующей формуле:

katushka-induktivnosti-opisanie-1

где L — индуктивность, I — ток, протекающий через катушку индуктивности.

Гидравлическая модель

Работу катушки индуктивности можно сравнить с работой гидротурбины в потоке воды. Поток воды, направленный сквозь еще не раскрученную турбину, будет ощущать сопротивление до того момента, пока турбина полностью не раскрутится.

Далее турбина, имеющая определенную степень инерции, вращаясь в равномерном потоке, практически не оказывая влияния на скорость течения воды. В случае же если данный поток резко остановить, то турбина по инерции все еще будет вращаться, создавая движение воды. И чем выше инерция данной турбины, тем больше она будет оказывать сопротивление изменению потока.

Также и индуктивная катушка сопротивляется изменению электрического тока протекающего через неё.

Индуктивность в электрических цепях

В то время как конденсатор оказывает сопротивление изменению переменного напряжения, индуктивность же сопротивляется переменному тока. Идеальная индуктивность не будет оказывать сопротивление постоянному току, однако, в реальности все индуктивные катушки сами по себе обладают определенным сопротивлением.

Инвертор 12 В/ 220 В

Инвертор с чистой синусоидой, может обеспечивать питание переменно…

В целом, отношение между изменяющимися во времени напряжением V(t) проходящим через катушку с индуктивностью L и изменяющимся во времени током I(t), проходящим через нее можно представить в виде дифференциального уравнения следующего вида:

katushka-induktivnosti-opisanie-2

Когда переменный синусоидальной ток (АС) протекает через катушку индуктивности, возникает синусоидальное переменное напряжение (ЭДС). Амплитуда ЭДС зависит от амплитуды тока и частоте синусоиды, которую можно выразить следующим уравнением:

katushka-induktivnosti-opisanie-3

где ω является угловой частотой резонансной частоты F:

katushka-induktivnosti-opisanie-4

Причем, фаза тока отстает от напряжения на 90 градусов. В конденсаторе же все наоборот, там ток опережает напряжение на 90 градусов. Когда индуктивная катушка соединена с конденсатором (последовательно либо параллельно), то образуется LC цепь, работающая на определенной резонансной частоте.

 Индуктивное сопротивление ХL определяется по формуле:

 Индуктивное сопротивление

где ХL — индуктивное сопротивление, ω — угловая частота, F — частота в герцах, и L индуктивность в генри.

Индуктивное сопротивление — это положительная составляющая импеданса. Оно измеряется в омах. Импеданс катушки индуктивности (индуктивное сопротивление) вычисляется по формуле:

katushka-induktivnosti-opisanie-6

Схемы соединения катушек индуктивностей

Параллельное соединение индуктивностей

параллельное соединение катушек индуктивности

Напряжение на каждой из катушек индуктивностей, соединенных параллельно, одинаково. Эквивалентную (общую) индуктивность параллельно соединенных катушек можно определить по формуле:

формула расчета параллельных индуктивностей

Последовательное соединение индуктивностей

последовательное соединение катушек индуктивностей

Ток, протекающий через катушки индуктивности соединенных последовательно, одинаков, но напряжение на каждой катушке индуктивности отличается. Сумма разностей потенциалов (напряжений) равна общему напряжению. Общая индуктивность последовательно соединенных катушек можно высчитать по формуле:

расчет последовательного соединения индуктивностей

Эти уравнения справедливы при условии, что магнитное поле каждой из катушек не оказывает влияние на соседние катушки.

Добротность катушки индуктивности

На практике катушка индуктивности имеет последовательное сопротивление, созданное медной обмоткой самой катушки. Это последовательное сопротивление преобразует протекающий через катушку электрический ток  в тепло, что приводит к потере качества индукции, то есть добротности. Добротность является отношением индуктивности к сопротивлению.

Добротность катушки индуктивности может быть найдена через следующую формулу:

Добротность катушки индуктивности

 где R является собственным сопротивлением обмотки.

Катушка индуктивности. Формула индуктивности

Базовая формула индуктивности катушки:

Базовая формула индуктивности катушки

  • L = индуктивность в генри
  • μ 0 = проницаемость свободного пространства = 4π × 10 -7 Гн / м
  • μ г = относительная проницаемость материала сердечника
  • N = число витков
  • A = Площадь поперечного сечения катушки в квадратных метрах (м 2 )
  • l = длина катушки в метрах (м)

Индуктивность прямого проводника:

Индуктивность прямого проводника

  • L = индуктивность в нГн
  • l = длина проводника
  • d = диаметр проводника в тех же единицах, что и l

Индуктивность катушки с воздушным сердечником:

Индуктивность катушки с воздушным сердечником:

  • L = индуктивность в мкГн
  • r = внешний радиус катушки
  • l = длина катушки
  • N = число витков

Индуктивность многослойной катушки с воздушным сердечником:

Индуктивность многослойной катушки с воздушным сердечником

  • L = индуктивность в мкГн
  • r = средний радиус катушки
  • l = длина катушки
  • N = число витков
  • d = глубина катушки

Индуктивность плоской катушки:

Индуктивность плоской катушки

  • L = индуктивность в мкГн
  • r = средний радиус катушки
  • N = число витков
  • d = глубина катушки

Конструкция катушки индуктивности

Катушка индуктивности представляет собой обмотку из проводящего материала, как правило, медной проволоки, намотанной вокруг либо железосодержащего сердечника, либо вообще без сердечника.

Применение в качестве сердечника материалов с высокой магнитной проницаемостью, более высокой чем воздух, способствует удержанию магнитного поля вблизи катушки, тем самым увеличивая ее индуктивность. Индуктивные катушки бывают разных форм и размеров.

Большинство изготавливаются путем намотки эмалированного медного провода поверх ферритового сердечника.

katushka-induktivnosti-opisanie-f3

Некоторые индуктивные катушки имеют регулируемый сердечник, при помощи которого обеспечивается изменение индуктивности.

Миниатюрные катушки могут быть вытравлены непосредственно на печатной плате в виде спирали. Индуктивности с малым значением могут быть расположены в микросхемах с использованием тех же технологических процессов, которые используются при создании транзисторов.

Применение катушек индуктивности

Индуктивности широко используются в аналоговых схемах и схемах обработки сигналов. Они в сочетании с конденсаторами и другими радиокомпонентами образуют специальные схемы, которые могут усилить или отфильтровать сигналы определенной частоты.

Катушки индуктивности получили широкое применение начиная от больших катушек индуктивности, таких как дроссели в источниках питания, которые в сочетании с конденсаторами фильтра устраняют остаточные помехи и другие колебания на выходе источника питания, и до столь малых индуктивностей, которые располагаются внутри интегральных микросхем.

Две (или более) катушки индуктивности, которые соединены единым магнитным потоком, образуют трансформатор, являющимся основным компонентом схем работающих с электрической сетью электроснабжения. Эффективность трансформатора возрастает с увеличением частоты напряжения.

katushka-induktivnosti-opisanie-f2

По этой причине, в самолетах используется переменное напряжение с частотой 400 герц вместо обычных 50 или 60 герц, что в свою очередь позволяет значительно сэкономить на массе используемых трансформаторов в электроснабжении самолета.

Так же индуктивности используются в качестве устройства для хранения энергии в импульсных стабилизаторах напряжения, в высоковольтных электрических системах передачи электроэнергии для преднамеренного снижения системного напряжения или ограничения ток короткого замыкания.

Тестер транзисторов / ESR-метр / генератор

Многофункциональный прибор для проверки транзисторов, диодов, тиристоров…

Индуктивность

Время на прочтение
9 мин

Количество просмотров 19K

Выше мы рассматривали два основных понятия в электротехнике — идеальный генератор напряжения и идеальный генератор тока.

Идеальный генератор напряжения выдает заданное напряжения U (давление в водопроводной аналогии) на любой нагрузке (сопротивлении внешней цепи).

При этом в соответствии с законом Ома I=U/R, даже если R стремится к нулю, а ток возрастает до бесконечности.

Внутренне сопротивление идеального генератора напряжения равно 0.Идеальный генератор тока выдает заданный ток I (поток в водопроводной аналогии), даже если сопротивление внешней цепи стремится к бесконечности. Напряжение на нагрузке при этом также стремится к бесконечности U=I*R.

Внутреннее сопротивление идеального генератора тока равно ∞.

Тут можно увидеть определенную симметрию, дуализм.

Мы рассматривали конденсатор С который может накапливать заряд (потому и называется — емкость) С=Q/U. Чем больше емкость, тем медленнее растет напряжение (давление) при закачке в конденсатор заряда U=Q/C.

Если емкость заряда очень большая (стремится к бесконечности), то такой конденсатор бесконечной емкости будет являться идеальным генератором напряжения. Он никогда не разрядится и при этом может выдать ток любой величины, и напряжение на нем будет оставаться постоянным.

Симметричным (дуальным) к конденсатору элементом будет являться индуктивность. Индуктивность обозначается буквой L (см схему ниже).

Обычно сам электронный компонент называется катушка индуктивности, а его параметр — индуктивность L.

рис 13.  Подключение катушки индуктивности к генератору напряжения.

рис 13. Подключение катушки индуктивности к генератору напряжения.

Если конденсатор является генератором напряжения, то индуктивность является генератором тока. Индуктивность стремиться поддерживать ток в цепи постоянным, то есть препятствует изменению тока в цепи.

Индуктивность бесконечной величины является идеальным генератором тока, то есть будет бесконечно гнать заданный ток I независимо от сопротивления нагрузки.

Как хорошо сказано в wiki – “При сопоставлении силы электрического тока со скоростью в механике и электрической индуктивности с массой в механике ЭДС самоиндукции сходна с силой инерции.”

Это похоже как если вы подойдете к стоящей на рельсах вагонетке и станете ее толкать (приложите к ней силу). Вагонетка начнет медленно разгоняться и «ток все быстрее и быстрее побежит по проводам». А потом попробуйте вагонетку тормозить и она будет медленно останавливаться.

Так и в индуктивности, после подачи напряжения ток будет постепенно расти (вагонетка разгоняется), а при подаче напряжения другой полярности — постепенно уменьшаться (вагонетка тормозится).

Отсюда следует вывод «

Поезд мгновенно остановить нельзя!»

«Ток в индуктивности мгновенно остановить нельзя!»

То есть даже если щелкнуть выключателем S4 на схеме и разомкнуть цепь, ток в первый момент после этого будет продолжать идти! На практике это приводит к тому, что в момент размыкания контактов в выключателе между ними будет проскакивать искра.

Сопротивление при размыкании контактов увеличивается до бесконечности (в реальности до очень больших величин) и протекающий ток создаст на этом сопротивлении напряжение очень большой величины, так что воздушный промежуток между контактами будет пробит.

В водопроводной аналогии этому явлению можно сопоставить гидравлический удар, когда масса воды в водопроводе набирает скорость, и при резком закрытии крана вода, продолжая двигаться по инерции, создает высокое давление, что может привести к разрыву трубы.

Причины по которой индуктивность имеет такие свойства (поддержание тока в цепи) хорошо описаны в wiki –

https://ru.wikipedia.org/wiki/Самоиндукция

“При изменении тока в контуре пропорционально меняется и магнитный поток через поверхность, ограниченную этим контуром. Изменение этого магнитного потока, в силу закона электромагнитной индукции, приводит к возбуждению в этом контуре индуктивной ЭДС. Это явление называется самоиндукцией. Направление ЭДС самоиндукции всегда оказывается таким, что при возрастании тока в цепи ЭДС самоиндукции препятствует этому возрастанию (направлена против тока), а при убывании тока — убыванию (сонаправлена с током). Явление самоиндукции проявляется в замедлении процессов исчезновения и установления тока.

По отношению к конденсатору , основным отличием индуктивности, если говорить простыми словами, является то, что конденсатор пропускает переменный ток и не пропускает постоянный, а индуктивность наоборот — пропускает постоянный ток и не пропускает переменный.

Тут есть некий момент — постоянный ток это ток, который не меняется со временем, то, что называется «постоянная составляющая» частотой равной 0 Гц. Ее конденсатор не пропускает. Совсем.

А вот индуктивность совсем не пропускает переменный ток бесконечной частоты. А просто переменный ток любой конечной частоты немножко пропускает.

Но к понятию напряжения переменного тока мы вернемся позже.

Рассмотрим цепь на рис. 13 – подключение катушки индуктивности к генератору напряжения.
Ниже представлен график тока в индуктивности при подаче на нее постоянного напряжения от генератора напряжения.

   рис. 14  График тока в индуктивности при подаче на нее постоянного напряжения.

рис. 14 График тока в индуктивности при подаче на нее постоянного напряжения.

При подаче на индуктивность постоянного напряжения ток в ней линейно возрастает со временем.

Мы помним аналогичную картину для конденсатора.

Напряжение на конденсаторе линейно возрастает при его заряде постоянным током.

А что будет, если запитать индуктивность от генератора тока?

рис 15. Подключение индуктивности к генератору тока.

рис 15. Подключение индуктивности к генератору тока.

Ну тут из серии «кто кого заборет — слон или кит».

Попробуйте проанализировать работу схемы (hint – вообще схема изображена с ошибкой. В чем она заключается? Как нарисовать схему правильно?)

Цепи, содержащие конденсатор и индуктивность

Как было отмечено выше, индуктивность в электротехнике играет ту же роль, что масса в механике. А что является аналогом конденсатора в механике? Конденсатор является генератором напряжения, то есть создает силу, которая двигает поток заряда по проводам. Выше мы приводили аналог конденсатора в виде водонапорной башни, которая заполняется водой (зарядом) и давление (напряжение) в ней увеличивается.

Но можно также представить конденсатор в виде пружины — при заряде пружина сжимается и сила сжатия (напряжение) увеличивается. Емкость в этом случае величина обратная жесткости пружины. Чем пружина жестче, тем быстрее возрастает сила при сжатии. То есть соединение конденсатора и индуктивности эквивалентно вагонетке закрепленной на пружине. )

Что же будет происходить, если конденсатор соединить с индуктивностью, например как в схеме на рис. 16

рис 16.  Параллельное включение конденсатора и катушки индуктивности.

рис 16. Параллельное включение конденсатора и катушки индуктивности.

Пусть конденсатор С заряжен до напряжения U. Ключ S2 замыкается и в цепи начинает течь ток. Это эквивалентно тому, как если бы мы сжали пружину и затем в какой-то момент отпустили (замкнули ключ S2).

В первый момент после замыкания ключа ток в цепи будет равен 0, так как индуктивность препятствует изменению тока. К вагонетке приложили силу, но в первый момент времени ее скорость равна 0. Затем ток начинает возрастать (вагонетка разгоняется). Пружина разжимается все больше и больше, скорость вагонетки (ток) растет и в какой-то момент времени пружина оказывается не сжата. Конденсатор разрядился до 0. Но. Мы помним что «ток в индуктивности мгновенно остановить нельзя!» Вагонетка разогналась и даже если мы не будем ее толкать, она будет двигаться по инерции. То есть индуктивность будет поддерживать ток и при этом заряжать конденсатор, но уже в другой полярности – заряды теперь будут скапливаться на другой обкладке конденсатора. Растущее напряжение противоположного знака на конденсаторе будет препятствовать движению зарядов, и в конце концов ток в цепи станет равным нулю. Но при этом конденсатор уже зарядился напряжением U другой полярности!

То есть цепь пришла в состояние когда конденсатор заряжен, ток в ней равен нулю.
Хм.. но это то же состояние, с которого мы начали, только полярность напряжения противоположная. Следовательно процесс повторится, только ток потечет уже в другую сторону и система вернется в исходное состояние. Вагонетка поедет обратно, проедет положение равновесия и по инерции снова сожмет пружину.

Возникнет колебательный процесс. То есть вагонетка на пружине так и будет кататься туда-сюда и в отсутствие потерь энергии (трения) этот процесс будет длиться бесконечно.

Таким образом соединение конденсатора с индуктивностью образует колебательное звено. Такие звенья широко используются в электротехнике для создания генераторов и фильтров напряжения переменного тока.

Понятие переменного тока рассмотрим в следующей статье.

UPD.
Поскольку возник диспут экспоненциально ли растет ток при подключении катушки индуктивности к генератору напряжения или линейно, скажу еще пару слов по этому вопросу.

Откуда же берется экспонента роста тока в схеме на рис.13?
Ответ- ниоткуда. Ее там нет. Ток растет линейно и зависимость тока от напряжения описывается формулой

ЭДС самоиндукции в цепи прямо пропорциональна скорости изменения силы тока в этой цепи.
Чтобы обеспечить U=const (а U – это производная от тока в катушке), ток должен линейно расти.

А откуда тогда вообще зашел разговор об экспоненте? А зашел он потому, что ток линейно растет только в идеальном случае — в схеме с идеальным генератором напряжения (бесконечной мощности и с нулевым внутренним сопротивлением) и идеальной индуктивностью (с нулевым внутренним сопротивлением).
В реальном случае с учетом внутреннего сопротивления схема будет выглядеть так.

рис 17. Подключение катушки индуктивности к генератору напряжения с учетом внутреннего сопротивления.

рис 17. Подключение катушки индуктивности к генератору напряжения с учетом внутреннего сопротивления.

На схеме рис.17 R символизирует собой внутреннее сопротивление генератора и катушки индуктивности. (они все равно включены последовательно, поэтому можно обойтись одним R, как суммой этих сопротивлений)

В этом случае процесс разворачивается следующим образом. При замыкании ключа S4 цепь замкнется и должен был бы пойти ток. Однако, катушка индуктивности препятствует изменению тока, и в первый момент времени после замыкания ключа ток останется равным 0! По сути дела катушка в этот момент представляет собой разрыв цепи с бесконечным сопротивлением. Поэтому напряжение U будет приложено к катушке целиком. Можно и по другому подойти – Ur=I*R. Падение напряжения на резисторе равно I*R, I у нас равен 0, поэтому напряжение на резисторе тоже равно 0, и к катушке будет приложено полное напряжение U. Дальше ток в катушке будет расти. В области 0 линейно кстати (см рис 19 «Переход Суворова через Альпы» «Экспонента проходит через 0 под углом 45 градусов»). Ток будет расти и падение напряжения на резисторе тоже будет расти. А на катушке соответственно падать, потому что часть напряжения будет забирать на себя резистор. Поэтому со временем линейность роста тока в цепи будет нарушаться. Когда падение напряжения на резисторе I*R сравняется с напряжением генератора U рост тока прекратится совсем, потому что напряжение на катушке будет равно 0 (все напряжение будет падать на резисторе).

Вот в этом случае и получится такой экспоненциальный график роста тока в индуктивности.

Рис. 18  Экспоненциальный график роста тока в индуктивности.

Рис. 18 Экспоненциальный график роста тока в индуктивности.
ис 19 «Экспонента проходит через 0 под углом 45 градусов»
ис 19 «Экспонента проходит через 0 под углом 45 градусов»

зы. В интернете столько разнообразной ереси на тему катушек индуктивности. Просто диву даешься.
«Катушка индуктивности обладает также очень интересным свойством. При подаче на катушку постоянного напряжения, в катушке возникает на короткий промежуток времени противоположное напряжение. Это противоположное напряжение называется ЭДС самоиндукции. Эта ЭДС зависит от значения индуктивности катушки. Поэтому, в момент подачи напряжения на катушку сила тока в течение долей секунд плавно меняет свое значение от 0 до некоторого значения, потому что напряжение, в момент подачи электрического тока, также меняет свое значение от ноля и до установившегося значения.»
Ну.. поскольку про резистор в цепи ничего не сказано, то не на короткий промежуток, а пока входное напряжение не будет снято. Вторая часть звучит бредово, но направление верное — ток с цепи растет от нуля до.. без резистора до бесконечности, с резистором до I=Uвх/R.

Предположим, что обычная катушка индуктивности подключена к источнику напряжения через ключ. При замыкании ключа на индуктивность подается напряжение, вызывающее быстрое изменение протекающего через нее тока. Когда приложенное напряжение увеличивается от нуля до пикового значения (за короткое время), индуктивность противодействует изменяющемуся через нее току, индуцируя напряжение, противоположное по полярности приложенному напряжению. Индуцированное напряжение при подаче питания на катушку индуктивности называется обратной ЭДС и определяется по формуле 1:

VL = – L*(di/dt), (1)
где:
VL – напряжение (обратная ЭДС), индуцированная на катушке;
L – индуктивность катушки;
di/dt – скорость изменения тока во времени.
Видимо здесь попытались описать начальный момент возникновения ЭДС самоиндукции, но получилась ерунда. Говорить, что «индуцированное напряжение противоположно по полярности приложенному напряжению» это то же самое, что “падение напряжения на резисторе противоположно по полярности приложенному напряжению.” Ага, точно, приложенное напряжение сложили с падением напряжения и после резистора получили 0. Так и есть, лол.
«ЭДС самоиндукции» в катушке это аналог «падения напряжения» на резисторе. Только в резисторе электрическая энергия рассеивается, переходит в тепло, а в индуктивности — накапливается, переходит в энергию магнитного поля. В водопроводной аналогии индуктивность это такая турбинка, вставленная в водопроводную трубу, и которая имеет момент инерции. Турбинка пропускает воду только когда вращается. И вот крантель открыли, давление к турбинке приложили, она начала вращаться и пошел ток дальше по трубе. И чем быстрее турбинка вращается, тем больше ее пропускная способность. Турбинка раскручивается, ток возрастает и так до бесконечности. Это если нет потерь энергии — резистора. А если есть резистор (трение), то часть давления расходуется на преодоление трения. И когда вся входная энергия будет расходоваться на трение, турбинка перестанет ускоряться и ток достигнет максимальной величины.

Рис.20   Переходной процесс в цепи с индуктивностью

Рис.20 Переходной процесс в цепи с индуктивностью

Картинка неправильная. В правильном варианте при отключении источника, подключался резистор и цепь оставалась замкнутой.

Рассмотрим следующую цепь

Рис.21 Цепь с индуктивностью и переключателем

Рис.21 Цепь с индуктивностью и переключателем

Вопрос на засыпку: Чему будет равно напряжение на индуктивности в первый момент после переключения ключа S из верхнего положения в нижнее?

Hint: Не надо выносить себе мозг, пытаясь сообразить с каким там знаком возникнет ЭДС самоиндукции и что с ней будет дальше. Надо применять простое правило:
Ток в индуктивности в первый момент времени после переключения сохраняется неизменным.
Дальше применять закон Ома.

Цель работы

Целью данной работы
является изучение явления электромагнитной
индукции и его законов, измерение
индуктивности катушки, исследование
зависимости индуктивности катушки от
силы тока, протекающего по ее обмотке,
а также индуктивности катушки, ее полного
и индуктивного сопротивлений от частоты
переменного тока.

Краткая теория.

Всякий контур, по
которому течет ток, пронизывается
магнитным полем, созданным этим током.
Если сила тока в контуре меняется, то
изменяется и сцепленный с контуром
магнитный поток, поэтому вследствие
явления электромагнитной индукции в
контуре возникает ЭДС.
Возникновение ЭДС
в контуре при изменении силы тока в нем
называется самоиндукцией. В соответствии
с законом Фарадея величина ЭДС
индукции пропорциональна скорости
изменения магнитного потока, пронизывающего
контур, то есть,

(2.07.1)

Магнитный поток,
создаваемый током, протекающим в контуре,
называется потоком самоиндукции s.
Поток самоиндукции пропорционален
индукции магнитного поля, создаваемого
этим током, которая, в свою очередь,
пропорциональна величине силы тока в
контуре. Поэтому магнитный поток
самоиндукции пропорционален величине
силы тока

, (2.07.2)

где L – индуктивность
контура.

Индуктивность
контура
 – это
скалярная физическая величина,
характеризующая способность контура
создавать поток самоиндукции и зависящая
от его формы, размеров и магнитной
проницаемости среды. Из (2.07.2) следует,
что индуктивность контура измеряется
величиной магнитного потока, сцепленного
с контуром, при силе тока в нем равной
1 А. За единицу измерения индуктивности
в системе СИ принимается 1 Гн – это
индуктивность такого контура, с которым
сцеплен магнитный поток в 1 Вб при
силе тока в контуре, равной 1 А.

При
неизменной индуктивности закон Фарадея
для самоиндукции выглядит следующим
образом:

(2.07.3)

т. е. ЭДС
самоиндукции пропорциональна скорости
изменения силы тока в контуре. В
соответствии с законом Фарадея можно
дать другое определение индуктивности.
Индуктивность определяется величиной
ЭДС,
возникающей в контуре, при изменении в
нем силы тока на 1 А за 1 с. Тогда,
согласно (2.07.3), 1 Гн – это
индуктивность такого контура, в котором
индуцируется ЭДС,
равная 1 В, при изменении в нем силы
тока на 1 А за 1 с. Знак минус в
формуле (2.07.3) отражает правило Ленца,
согласно которому самоиндукция
противодействует всякому изменению
силы тока в контуре и представляет собой
аналогию с инерцией в механике.

В электрической
цепи наличие индуктивности приводит к
возникновению добавочного индуктивного
сопротивления катушки переменному току

,
(2.07.4)

где  – частота
переменного тока.

Модуль
полного сопротивления Z
катушки переменному току определяется
по закону Ома

(2.07.5)

где U
и I – эффективные
значения напряжения и силы тока в
катушке.

Полное сопротивление
катушки Z
складывается из сопротивления катушки
в цепи постоянного тока R
(омического или активного сопротивления)
и индуктивного сопротивления XL
в соответствии с формулой:

. (2.07.6)

или, подставив

(2.07.7)

из которого можно
выразить индуктивность катушки L

(2.07.8)

Соотношение
(2.07.8) лежит в основе опыта по определению
индуктивности. Для того, чтобы определить
индуктивность, необходимо измерить
частоту переменного тока, действующее
значение силы переменного тока,
протекающего через катушку, действующее
значения напряжения на катушке и
омическое сопротивление катушки.

Индуктивность
длинного соленоида с сердечником может
быть рассчитана по формуле

, (2.07.9)

где  – магнитная
проницаемость сердечника;
– магнитная
постоянная;n – число
витков, приходящихся на единицу длины
катушки; V – объем
катушки.

Измеряя индуктивность
катушки, можно определять магнитную
проницаемость материала, из которого
изготовлен сердечник. В частности, таким
способом можно определять магнитную
проницаемость горных пород. Определив
индуктивность катушки с сердечником
из исследуемой породы Lс
и без
сердечника L0,
по отношению этих индуктивностей LС/L0
определяют
.
Определение магнитной проницаемости
горных пород и минералов необходимо
для изучения вопросов, связанных с
установлением качества железных руд и
железистых пород, магнитным обогащением
полезных ископаемых, с разведкой рудных
тел, исследованием трещиноватости
массива горных пород.

Выполнение работы

Необходимые
приборы
:
лабораторный стенд, внутри которого
смонтированы все элементы схемы;
генератор периодических сигналов;
цифровой вольтметр. Рабочая схема опыта
показана на рис. 18 и на панели стенда.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Добавить комментарий