Индуктивность | |
---|---|
Размерность | L2MT−2I−2 |
Единицы измерения | |
СИ | Гн |
СГС | см−1·с2 |
Классическая электродинамика |
---|
Электричество · Магнетизм |
Электростатика Закон Кулона |
Магнитостатика Закон Био — Савара — Лапласа |
Электродинамика Векторный потенциал |
Электрическая цепь Закон Ома |
Ковариантная формулировка Тензор электромагнитного поля |
См. также: Портал:Физика |
Индуктивность микрополосковой линии является распределённой и характеризуется значением индуктивности на единицу длины.
Индукти́вность (или коэффициент самоиндукции) — коэффициент пропорциональности между электрическим током , текущим в каком-либо замкнутом контуре, и полным магнитным потоком , называемым также потокосцеплением, создаваемым этим током через поверхность[1], краем которой является данный контур[2][3][4]:
- .
Зависит от формы проводников с током и магнитной проницаемости среды. Обозначается буквой , в СИ измеряется в генри.
Словом «индуктивность» также называют сосредоточенный элемент электрической цепи, в котором накапливается магнитная энергия.
Определение. Некоторые формулы[править | править код]
Индуктивность определяется как отношение магнитного потока , пронизывающего контур, к току в контуре . Обычно const(), кроме тех случаев, когда магнитная проницаемость среды зависит от поля.
Величина используется при характеризации свойства проводника противодействовать появлению, прекращению и всякому изменению в нём тока. Через индуктивность выражается ЭДС самоиндукции в контуре, возникающая при изменении [4]:
- .
Как следует из этой формулы, индуктивность численно равна ЭДС самоиндукции (в вольтах), возникающей в контуре при изменении силы тока на 1 А за 1 с. Вышеуказанное свойство, по сути, является электрической инерцией (её мерой служит ЭДС), подобной инерции тел в механике.
При заданной силе тока индуктивность определяет энергию магнитного поля, создаваемого током[4]:
- .
Это соотношение может быть удобным для вычисления в ситуациях, когда адекватно указать замкнутый контур непросто (особенно если неприменимо квазистационарное приближение), скажем, при рассмотрении индуктивности прямого длинного провода.
Создание индуктивности[править | править код]
Практически участки цепи со значительной индуктивностью выполняют в виде катушек индуктивности[4]. Элементами малой индуктивности (применяемыми для больших рабочих частот) могут быть одиночные (в том числе и неполные) витки или даже прямые проводники; при высоких рабочих частотах необходимо учитывать индуктивность всех проводников[5].
Для имитации индуктивности, то есть ЭДС на элементе, пропорциональной и противоположной по знаку скорости изменения тока через этот элемент, в электронике используются[6] и устройства, не основанные на электромагнитной индукции (см. Гиратор); такому элементу можно приписать определённую эффективную индуктивность, используемую в расчётах полностью (хотя вообще говоря с определёнными ограничивающими условиями) аналогично тому, как используется обычная индуктивность.
Обозначение и единицы измерения[править | править код]
В системе единиц СИ индуктивность выражается в генри[7][8], сокращённо «Гн». Контур обладает индуктивностью в один генри, если при изменении тока на один ампер в секунду на выводах контура будет возникать напряжение в один вольт.
В вариантах системы СГС — системе СГСМ и в гауссовой системе индуктивность измеряется в сантиметрах (1 Гн = 109 см; 1 см = 1 нГн)[4]; для сантиметров в качестве единиц индуктивности применяется также название абгенри. В системе СГСЭ единицу измерения индуктивности либо оставляют безымянной, либо иногда называют статгенри (1 статгенри ≈ 8,987552⋅1011 генри: коэффициент перевода численно равен 10−9 от квадрата скорости света, выраженной в см/с).
Символ L, используемый для обозначения индуктивности, был принят в честь Эмилия Христиановича Ленца[9][10]. Единица измерения индуктивности названа в честь Джозефа Генри[11]. Сам термин индуктивность был предложен Оливером Хевисайдом в феврале 1886 года[12].
Теоретическое обоснование[править | править код]
Если в проводящем контуре течёт ток, то ток создаёт магнитное поле[4].
Будем вести рассмотрение в квазистатическом приближении, подразумевая, что переменные электрические поля достаточно слабы либо меняются достаточно медленно, чтобы можно было пренебречь порождаемыми ими магнитными полями.
Ток считаем одинаковым по всей длине контура (пренебрегая ёмкостью проводника, которая позволяет накапливать заряды в разных его участках, что вызвало бы неодинаковость тока вдоль проводника и заметно усложнило бы картину).
По закону Био — Савара — Лапласа, величина вектора магнитной индукции, создаваемой некоторым элементарным (в смысле геометрической малости участка проводника, рассматриваемого как элементарный источник магнитного поля) током в каждой точке пространства, пропорциональна этому току. Суммируя поля, создаваемые каждым элементарным участком, приходим к тому, что и магнитное поле (вектор магнитной индукции), создаваемое всем проводником, также пропорционально порождающему току.
Рассуждение выше верно для вакуума. В случае присутствия магнитной среды[13] (магнетика) с заметной (или даже большой) магнитной восприимчивостью, вектор магнитной индукции (который и входит в выражение для магнитного потока) будет заметно (или даже во много раз) отличаться от того, каким бы он был в отсутствие магнетика (в вакууме). Мы ограничимся здесь линейным приближением, тогда вектор магнитной индукции, хотя, возможно, возросший (или уменьшившийся) в заметное количество раз по сравнению с отсутствием магнетика при том же контуре с током, тем не менее остаётся пропорциональным порождающему его току.
Тогда магнитный поток, то есть поток поля вектора магнитной индукции:
через любую конкретную фиксированную поверхность S (в частности и через интересующую нас поверхность, краем которой является наш контур с током) будет пропорционален току, так как пропорционально току B всюду под интегралом.
Заметим, что поверхность, краем которой является контур, может быть достаточно сложна, если сложен сам контур. Уже для контура в виде просто многовитковой катушки такая поверхность оказывается достаточно сложной. На практике это приводит к использованию некоторых упрощающих представлений, позволяющих легче представить такую поверхность и приближённо рассчитать поток через неё (а также в связи с этим вводятся некоторые дополнительные специальные понятия, подробно описанные в отдельном параграфе ниже). Однако здесь, при чисто теоретическом рассмотрении нет необходимости во введении каких-то дополнительных упрощающих представлений, достаточно просто заметить, что как бы ни был сложен контур, в данном параграфе мы имеем в виду «полный поток» — то есть поток через всю сложную (как бы многолистковую) поверхность, натянутую на все витки катушки (если речь идет о катушке), то есть о том, что называется потокосцеплением. Но поскольку нам здесь не надо конкретно рассчитывать его, а нужно только знать, что он пропорционален току, нам не слишком интересен конкретный вид поверхности, поток через которую нас интересует (ведь свойство пропорциональности току сохраняется для любой).
Итак, мы обосновали:
- ~
этого достаточно, чтобы утверждать, введя обозначение L для коэффициента пропорциональности, что
В заключение теоретического обоснования покажем, что рассуждение корректно в том смысле, что магнитный поток не зависит от конкретной формы поверхности, натянутой на контур. (Действительно, даже на самый простой контур может быть натянута — в том смысле, что контур должен быть её краем — не единственная поверхность, а разные, например, начав с двух совпадающих поверхностей, затем одну поверхность можно немного прогнуть, и она перестанет совпадать со второй). Поэтому надо показать, что магнитный поток одинаков для любых поверхностей, натянутых на один и тот же контур.
Но это действительно так: возьмём две такие поверхности. Вместе они будут составлять одну замкнутую поверхность. А мы знаем (из закона Гаусса для магнитного поля), что магнитный поток через любую замкнутую поверхность равен нулю. Это (с учетом знаков) означает, что поток через одну поверхность и другую поверхность — равны. Что доказывает корректность определения.
Свойства индуктивности[править | править код]
Индуктивность в ряде важных случаев[править | править код]
Виток, цилиндрическая катушка[править | править код]
Величина магнитного потока, пронизывающего одновитковый контур, связана с величиной тока в нём следующим образом[4]:
где — индуктивность витка.
В случае катушки, состоящей из витков, предыдущее выражение модифицируется к виду:
где — сумма магнитных потоков через все витки (это полный поток, называемый в электротехнике потокосцеплением, именно он фигурирует в качестве магнитного потока в общем определении индуктивности и в теоретическом обосновании выше), а — индуктивность многовитковой катушки. называют потокосцеплением или полным магнитным потоком[17]. Коэффициент пропорциональности иначе называется коэффициентом самоиндукции катушки[4].
Если принять, что потоки, пронизывающие каждый из витков, одинаковы (что часто соответствует реальности, в хорошем приближении), то . При этом, что существенно, поток через конкретный виток отличается от того, каким он был бы в «одновитковой» ситуации, ибо присутствие витков приводит к -кратному росту магнитного поля , а значит, и потока через конкретный виток (как если бы в раз возрос ток в самом витке). В результате , откуда
- .
Чуть иными словами, магнитный поток через каждый виток увеличивается в раз — так как его создают теперь единичных витков, и потокосцепление ещё в раз, поскольку это поток через единичных витков.
На практике магнитные поля в центре и на краях катушки всё-таки не совсем одинаковы, поэтому используются более сложные формулы.
Соленоид[править | править код]
Катушка в форме соленоида (конечной длины).
Соленоид — катушка, длина которой намного больше, чем её диаметр (также в дальнейших выкладках подразумевается, что толщина обмотки намного меньше, чем диаметр катушки). При этих условиях и без использования магнитного сердечника плотность магнитного потока (или магнитная индукция) , которая выражается в системе СИ в тесла [Тл], внутри катушки вдали от её концов (приближённо) равна
или
где — магнитная постоянная, — число витков, — ток в амперах [А], — длина катушки в метрах [м] и — плотность намотки витков в [м-1]. Пренебрегая краевыми эффектами на концах соленоида, получим[18], что потокосцепление через катушку равно плотности потока [Тл], умноженному на площадь поперечного сечения [м2] и число витков :
где — объём катушки. Отсюда следует формула для индуктивности соленоида (без сердечника):
Если катушка внутри полностью заполнена магнитным сердечником, то индуктивность отличается на множитель — относительную магнитную проницаемость[19] сердечника:
В случае, когда , под S можно понимать площадь сечения сердечника [м2] и пользоваться данной формулой даже при толстой намотке, если только полная площадь сечения катушки не превосходит площади сечения сердечника во много раз.
Тороидальная катушка[править | править код]
Для тороидальной катушки, намотанной на сердечнике из материала с большой магнитной проницаемостью, можно приближённо пользоваться формулой для бесконечного прямого соленоида (см. выше):
где — оценка длины соленоида ( — средний радиус тора).
Лучшее приближение дает формула
где предполагается сердечник прямоугольного сечения с наружным радиусом R и внутренним радиусом r, высотой h.
Длинный прямой проводник[править | править код]
Для длинного прямого (или квазилинейного) провода кругового сечения индуктивность выражается приближённой формулой[20]:
где — магнитная постоянная, — относительная магнитная проницаемость внешней среды (которой заполнено пространство (для вакуума ), — относительная магнитная проницаемость материала проводника, — длина провода, — радиус его сечения.
Таблица индуктивностей[править | править код]
Символ обозначает магнитную постоянную (4π⋅10−7 Гн/м). В высокочастотном случае ток течёт в поверхности проводников (скин-эффект) и в зависимости от вида проводников иногда нужно различать индуктивность высокой и низкой частоты. Для этого служит постоянная Y: Y = 0, когда ток равномерно распределён по поверхности провода (скин-эффект), Y = 1⁄4, когда ток равномерно распределён по поперечному сечению провода. В случае скин-эффекта нужно учитывать, что при маленьких расстояниях между проводниками в поверхностях текут дополнительные вихревые токи (эффект экранирования), и выражения, содержащие Y, становятся неточными.
Вид | Индуктивность | Комментарий |
---|---|---|
соленоид с тонкой обмоткой[21] |
для |
N: Число витков r: Радиус l: Длина w = r/l m = 4w2 E,K: Эллиптический интеграл |
Коаксиальный кабель, высокая частота |
a1: Радиус a: Радиус l: Длина |
|
единичный круглый виток[20][22] |
r: Радиус витка a: Радиус проволоки |
|
прямоугольник[20][23][24] |
|
b, d: Длины краёв d >> a, b >> a a: Радиус проволоки |
Две параллельные проволоки |
a: Радиус проволоки d: Расстояние, d ≥ 2a l: Длина пары |
|
Две параллельные проволоки, высокая частота |
a: Радиус проволоки d: Расстояние, d ≥ 2a l: Длина пары |
|
Проволока параллельна идеально проводящей стене |
a: Радиус проволоки d: Расстояние, d ≥ a l: Длина |
|
Проволока параллельна стене, высокая частота |
a: Радиус проволоки d: Расстояние, d ≥ a l: Длина |
См. также[править | править код]
- Взаимоиндукция
- Соленоид
- Катушка индуктивности
- Индуктивный датчик
Примечания[править | править код]
- ↑ Если контур многовитковый (катушка) или вообще сложной формы, поверхность, краем которой он будет являться, может иметь достаточно сложную форму. Это никак не сказывается на большей части общих утверждений, однако для упрощения конкретного понимания ситуации и количественных оценок в случае катушки обычно приближенно рассматривают эту поверхность как совокупность («стопку») отдельных листков, каждый из которых привязан к отдельному единичному витку, а общий поток через такую поверхность рассматривается приближенно как сумма потоков через все такие листки.
- ↑ Касаткин А. С. Основы электротехники. М.:Высшая школа, 1986.
- ↑ Бессонов Л. А. Теоретические основы электротехники. Электрические цепи. М.:Высшая школа, 1978.
- ↑ 1 2 3 4 5 6 7 8 Индуктивность — статья из Большой советской энциклопедии.
- ↑ Правда, этот случай в принципе выходит за рамки квазистационарного приближения, позволяющего рассматривать элементы схемы как независимые, то есть понятие индуктивности отдельного элемента цепи начинает терять четкий смысл; однако оно во всяком случае может быть использовано хотя бы для оценочного расчета.
- ↑ Прежде всего использование таких устройств, не основанных на электромагнитной индукции, обусловлено такими причинами, как необходимость или желательность иметь меньший размер элемента, чем это возможно для катушки индуктивности; например — в микросхемах, а также для элементов очень большой индуктивности.
- ↑ Генри (единица индуктивности) — статья из Большой советской энциклопедии.
- ↑ Индуктивность // Казахстан. Национальная энциклопедия. — Алматы: Қазақ энциклопедиясы, 2005. — Т. II. — ISBN 9965-9746-3-2. (CC BY-SA 3.0)
- ↑ Glenn Elert. The Physics Hypertextbook: Inductance (1998–2008). Архивировано 19 ноября 2012 года.
- ↑ Michael W. Davidson. Molecular Expressions: Electricity and Magnetism Introduction: Inductance (1995–2008). Архивировано 19 ноября 2012 года.
- ↑ Генри Джозеф — статья из Большой советской энциклопедии.
- ↑ Heaviside, O. Electrician. Feb. 12, 1886, p. 271. См. репринт Архивная копия от 16 февраля 2022 на Wayback Machine.
- ↑ Присутствие магнетика особенно важно для катушек с ферромагнитным сердечником и т. п.
- ↑ Здесь имеется в виду настоящая индуктивность; в электронике можно создать искусственно элементы (не основанные на явлении самоиндукции), зависимость ЭДС в которых от производной тока будет такой же, как в катушке индуктивности, но с коэффициентом противоположного знака — такие элементы можно условно назвать (по их поведению в электрической цепи) элементами с отрицательной индуктивностью, однако они не имеют отношения к предмету данной статьи.
- ↑ Если считать структуру токов (точно или приближенно) фиксированной, то есть если токи не перераспределяются по объёму проводника в процессе их возбуждения.
- ↑ См., напр. в книге: О. И. Клюшников, А. В. Степанов. Теоретические основы электротехники Архивная копия от 10 марта 2022 на Wayback Machine, РГППУ, Екатеринбург, 2010 — стр. 9.
- ↑ Потокосцепление — статья из Большой советской энциклопедии.
- ↑ * Сивухин Д. В. Общий курс физики. — М.. — Т. III. Электричество.
- ↑ Как и в других случаях, присутствие магнетика, особенно если это ферромагнетик, для какового всегда имеет место гистерезис, приводит к более или менее существенной нелинейности (особенно большой для магнитожестких материалов сердечника); поэтому формулу для индуктивности, подразумевающей именно линейное приближение, следует считать приближенной, а в общем случае в качестве магнитной проницаемости в формулу входит некоторая эффективная величина, зависящая от величины тока в катушке.
- ↑ 1 2 3 Физическая энциклопедия, Главный редактор А. М. Прохоров. Индуктивность // Физический энциклопедический словарь. — Советская энциклопедия. — М., 1983.
- ↑ Lorenz, L. Über die Fortpflanzung der Elektrizität // Annalen der Physik. — 1876. — Т. VII. — С. 161—193. (The expression given is the inductance of a cylinder with a current around its surface)..
- ↑ Elliott, R. S. Electromagnetics. — New York: Institute of Electrical and Electronics Engineers, 1993. Замечание: Постоянная −3/2 неправильна.
- ↑ Rosa, E.B. The Self and Mutual Inductances of Linear Conductors (англ.) // Bulletin of the Bureau of Standards : journal. — 1908. — Vol. 4, no. 2. — P. 301—344.
- ↑ Moscow Power Engineering Institute: Mathcad Calculation Server. Дата обращения: 16 апреля 2012. Архивировано 17 февраля 2020 года.
Всем доброго времени суток! В прошлой статье я рассказывал о таком явлении как электромагнитная индукция и ЭДС возникающая при самоиндукции и взаимной индукции. Устройства, в основе которых лежат данные явления и процессы, называются индуктивными элементами (катушки колебательных контуров, трансформаторы, дроссели, реакторы). В качестве одного из основных параметров данных элементов выступает индуктивность L(также имеет название коэффициента самоиндукции). О том, как рассчитать данный параметр пойдёт речь в данной статье.
Для сборки радиоэлектронного устройства можно преобрески DIY KIT набор по ссылке.
Методы расчёта индуктивностей
Индуктивностью (обозначается L) или коэффициентом самоиндукции называется коэффициент пропорциональности между потокосцеплением (обозначается ΨL) и электрическим током, который возбуждает данное потокосцепление.
В простых случаях индуктивность можно рассчитать, применяя формулы для вычисления магнитной индукции B0 (закон Био-Савара-Лапласа), магнитного потока Φ и потокосцепления ΨL
где S – площадь поверхности ограниченная контуром, который создает магнитную индукцию;
n – количество контуров с током, которые пронизывает магнитный поток.
Однако это в идеальном случае, в реальности говоря о токе I, который протекает по проводнику, необходимо отметить, что его распределение по сечению проводника не всегда равномерно, вследствие возникновения скин-эффекта при переменном токе. В результате этого эффекта плотность электрического тока распределяется неравномерно, происходит её уменьшение от внешнего слоя проводника к его центру. Уменьшение плотности тока также происходит неравномерно и зависит от частоты переменного тока. Для оценки скин-эффекта ввели понятие толщины скин-слоя ∆, которая показывает, на каком расстоянии от поверхности проводника плотность тока падает в е = 2,718 раз. Толщину скин-слоя можно вычислить по выражению
где δ – глубина проникновения переменного тока или толщина скин-слоя;
μ – магнитная проницаемость вещества;
γ – удельная электрическая проводимость материала проводника;
ω – круговая частота переменного тока, ω = 2πf.
Поэтому непосредственный способ вычисления индуктивности практически не применяется.
На практике применяется выражения для индуктивности, выведенные с некоторыми допущениями, погрешности вычисления индуктивности по этим выражениями составляет порядка нескольких процентов.
Так как индуктивные элементы довольно разнообразны, их можно разделить на три группы:
индуктивные элементы без сердечников;
индуктивные элементы с замкнутыми сердечниками;
индуктивные элементы с сердечниками, имеющие воздушный зазор.
Самые простые по конструкции являются индуктивные элементы без сердечников, поэтому рассмотрим их в первую очередь. Простейшим из таких элементов является прямой провод.
Индуктивность прямолинейного провода круглого сечения
При расчёте индуктивности необходимо разделять индуктивность на постоянном токе и индуктивность на высокой частоте. Под высокой частотой следует понимать такую частоту, на которой толщина скин-слоя меньше размеров поперечного сечения провода. В случае если толщина скин-слоя больше поперечных размеров провода, то можно вести расчёт для постоянного тока.
Определение индуктивности прямого провода. l – это длина проводника, d = 2r – диаметр проводника.
В случае постоянного тока или тока низкой частоты индуктивность составит
где μ0 – магнитная постоянная, μ0 = 4π•10-7 Гн/м;
l – длина провода, м;
d – диаметр провода, м.
Как я уже говорил, на величину индуктивности влияет частота переменного тока, поэтому в случае необходимости рассчитать индуктивность на любой частоте применяется следующее выражение
где ξ – коэффициент, вносящий поправку на распространение переменного тока по сечению провода. Данный коэффициент зависит от величины k*r, где
d = 2r – диаметр поперечного сечения провода, м.
где ω – угловая частота переменного тока, ω = 2πf;
μ0 – магнитная постоянная, μ0 = 4π•10-7 Гн/м;
γ – удельная проводимость вещества проводника.
Тогда если k*r < 3, то
если k*r > 3, то
где
Пример. Необходимо рассчитать индуктивность прямолинейного провода круглого сечения из меди (γ = 5,81*107 См/м) диаметром d = 2 мм и длиной l = 4 м, при постоянном токе и токе частотой f = 50 кГц.
На постоянном токе
На частоте 50 кГц
Online калькулятор индуктивности прямолинейного проводника
Индуктивность кругового кольца круглого сечения
Теперь рассмотрим, какова будет индуктивность если провод свернуть в кольцо. Такой индуктивный элемент будет иметь вид
Определение индуктивности кругового витка. D – диаметр кольца (витка), d – диаметр провода, из которого сделано кольцо (виток).
При этом его индуктивность можно вычислить по следующему выражению
для постоянного тока
где R – радиус витка, м, R = D/2;
r – радиус провода, м, r = d/2;
μ0 – магнитная постоянная, μ0 = 4π•10-7 Гн/м.
Так же как и для проводника существует выражение для индуктивности кругового витка на любой частоте
где ξ – коэффициент, вносящий поправку на распространение переменного тока по сечению провода. Определяется также как и для прямого проводника.
Пример. В качестве примера рассчитаем индуктивность такого же провода, как и в первом примере, только свёрнутом в кольцо. В этом случае диаметр провода d = 2 мм, а диаметр кольца D = l/π = 4/3,142 ≈ 1,273 м, провод выполнен из меди (γ = 5,81*107 См/м).
Для постоянного тока индуктивность составит
На частоте 50 кГц
Online калькулятор индуктивности кольца кругового сечения
В следующей части я продолжу рассмотрение расчётов индуктивности для различных индуктивных элементов.
Индуктивность характеризует свойства элементов электрической цепи накапливать энергию магнитного поля. Также это мера связи между током и магнитным полем. Ещё её сравнивают с инерцией электричества – также, как массу с мерой инерции механических тел.
Содержание
- 1 Явление самоиндукции
- 2 Последовательное и параллельное соединение индуктивностей
- 2.1 Параллельное соединение
- 2.2 Последовательное соединение
- 3 Некоторые практические вопросы и конструкции катушек индуктивности
- 3.1 Добротность катушки индуктивности
- 3.2 Экранный эффект
- 3.3 Подстроечная индуктивность
- 3.4 Переменная индуктивность (вариометр)
- 3.5 Индуктивность в виде печатной спирали
- 3.6 Катушка с секционной намоткой
- 3.7 Катушка индуктивности на тороидальном сердечнике
Явление самоиндукции
Если ток, идущий через проводящий контур, изменяется по величине, то возникает явление самоиндукции. В этом случае изменяется магнитный поток через контур, и на выводах рамки с током возникает ЭДС, называемая ЭДС самоиндукции. Эта ЭДС противоположна направлению тока и равна:
ε=-∆Ф/∆t=-L*(∆I/∆t)
Очевидно, что ЭДС самоиндукции равна скорости изменения магнитного потока, вызванного изменением протекающего по контуру тока, а также пропорциональна скорости изменения тока. Коэффициент пропорциональности между ЭДС самоиндукции и скоростью изменения тока называется индуктивностью и обозначается L. Эта величина всегда положительна, и имеет единицу измерения в СИ 1 Генри (1 Гн). Также используются дробные доли – миллигенри и микрогенри. Об индуктивности в 1 Генри можно говорить, если изменение тока на 1 ампер вызывает ЭДС самоиндукции в 1 Вольт. Индуктивностью обладает не только контур, но и отдельный проводник, а также катушка, которую можно представить как множество последовательно включенных контуров.
В индуктивности запасается энергия, которую можно вычислить, как W=L*I2/2, где:
- W – энергия, Дж;
- L – индуктивность, Гн;
- I – ток в катушке, А.
И здесь энергия прямо пропорциональна индуктивности катушки.
Важно! В технике индуктивностью также называется устройство, в котором происходит запасание электрического поля. Реальный элемент, наиболее близкий к такому определению – катушка индуктивности.
Общая формула для расчета индуктивности физической катушки имеет сложный вид и для практических вычислений неудобна. Полезно запомнить, что индуктивность пропорциональна количеству витков, диаметру катушки и зависит от геометрической формы. Также на индуктивность влияет магнитная проницаемость сердечника, на котором расположена обмотка, но не влияет ток, протекающий по виткам. Для вычисления индуктивности каждый раз надо обращаться к приведенным формулам для конкретной конструкции. Так, для цилиндрической катушки её основная характеристика вычисляется по формуле:
L=μ*μ0*(N2*S/l),
где:
- μ – относительная магнитная проницаемость сердечника катушки;
- μ0 – магнитная постоянная, 1,26*10-6 Гн/м;
- N – количество витков;
- S – площадь витка;
- l – геометрическая длина катушки.
Для вычисления индуктивности для цилиндрической катушки и катушек других форм лучше воспользоваться программами-калькуляторами, в том числе онлайн-калькуляторами.
Последовательное и параллельное соединение индуктивностей
Индуктивности можно соединять последовательно или параллельно, получая набор с новыми характеристиками.
Параллельное соединение
При параллельном соединении катушек напряжение на всех элементах равны, а токи (переменные) распределяются обратно пропорционально индуктивностям элементов.
- U=U1=U2=U3;
- I=I1+I2+I3.
Общая индуктивность цепи определяется, как 1/L=1/L1+1/L2+1/L3. Формула справедлива для любого количества элементов, а для двух катушек упрощается до вида L=L1*L2/(L1+L2). Очевидно, что итоговая индуктивность меньше индуктивности элемента с наименьшим значен
Последовательное соединение
При таком виде соединения через цепь, составленную из катушек, течёт один и тот же ток, а напряжение (переменное!) на каждом компоненте цепи распределяется пропорционально индуктивности каждого элемента:
- U=U1+U2+U3;
- I=I1=I2=I3.
Суммарная индуктивность равна сумме всех индуктивностей, и будет больше индуктивности элемента с наибольшим значением. Поэтому такое соединение используют при необходимости получить увеличение индуктивности.
Важно! При соединении катушек в последовательную или параллельную батарею формулы расчёта верны только для случаев, когда исключено взаимное влияние магнитных полей элементов друг на друга (экранировкой, большим расстоянием и т.д.). Если влияние существует, то общее значение индуктивности будет зависеть от взаимного расположения катушек.
Некоторые практические вопросы и конструкции катушек индуктивности
На практике применяют различные конструкции катушек индуктивности. В зависимости от назначения и области применения устройства можно выполнить различным способом, но надо учитывать эффекты, возникающие в реальных катушках.
Добротность катушки индуктивности
У реальной катушки, кроме индуктивности, есть ещё несколько параметров, и один из самых важных – добротность. Эта величина определяет потери в катушке и зависит от:
- омических потерь в проводе обмотки (чем больше сопротивление, тем ниже добротность);
- диэлектрических потерь в изоляции провода и каркасе обмотки;
- потерь в экране;
- потерь в сердечнике.
Все эти величины определяют сопротивление потерь, а добротностью называют безразмерную величину, равную Q=ωL/Rпотерь, где:
- ω = 2*π*F – круговая частота;
- L – индуктивность;
- ωL – реактивное сопротивление катушки.
Можно приближённо говорить о том, что добротность равна отношению реактивного (индуктивного) сопротивления к активному. С одной стороны, с ростом частоты растёт числитель, но в то же время за счет скин-эффекта растёт и сопротивление потерь за счет уменьшения полезного сечения провода.
Экранный эффект
Для уменьшения влияния посторонних предметов, а также электрических и магнитных полей и взаимного влияния элементов посредством этих полей, катушки (особенно высокочастотные) часто помещают в экран. Кроме полезного эффекта, экранирование вызывает снижение добротности катушки, снижение её индуктивности и повышение паразитной ёмкости. Причём чем ближе стенки экрана к виткам катушки, тем выше вредное влияние. Поэтому экранированные катушки практически всегда выполняют с возможностью подстройки параметров.
Подстроечная индуктивность
В некоторых случаях требуется точно установить значение индуктивности на месте после подключения катушки к другим элементам цепи, компенсируя отклонение параметров при настройке. Для этого применяются разные способы (переключения отводов витков и т.п.), но наиболее точный и плавный метод – подстройка с помощью сердечника. Он выполняется в виде стержня с резьбой, который можно вворачивать и выворачивать внутри каркаса, настраивая индуктивность катушки.
Переменная индуктивность (вариометр)
Там, где требуется оперативная регулировка индуктивности или индуктивной связи, применяются катушки другой конструкции. Они содержат две обмотки – подвижную и неподвижную. Общая индуктивность равна сумме индуктивностей двух катушек и взаимной индуктивности между ними.
Изменением относительного положения одной катушки к другой, регулируется общее значение индуктивности. Такое устройство называется вариометром и часто применяется в связной аппаратуре для настройки резонансных контуров в тех случаях, когда применение конденсаторов переменной ёмкости по каким-то причинам невозможно. Конструкция вариометра довольно громоздкая, что ограничивает область его применения.
Шаровой вариометр
Индуктивность в виде печатной спирали
Катушки с небольшой индуктивностью можно выполнять в виде спирали из печатных проводников. Достоинством такой конструкции являются:
- технологичность производства;
- высокая повторяемость параметров.
К недостаткам относят невозможность точной подстройки при регулировке и сложность получения больших значений индуктивности – чем выше индуктивность, тем больше катушка занимает места на плате.
Катушка с секционной намоткой
Индуктивность без ёмкости бывает только на бумаге. При любой физической реализации катушки сразу же возникает паразитная межвитковая ёмкость. Это во многих случаях вредное явление. Паразитная ёмкость складывается с ёмкостью LC-контура, снижая резонансную частоту и добротность колебательной системы. Также у катушки возникает собственная резонансная частота, которая провоцирует нежелательные явления.
Для снижения паразитной ёмкости применяют различные способы, самый простой из которых – намотка индуктивности в виде нескольких последовательно включенных секций. При таком включении индуктивности складываются, а суммарная ёмкость снижается.
Катушка индуктивности на тороидальном сердечнике
Линии магнитного поля цилиндрической катушки
Линии магнитного поля цилиндрической катушки индуктивности проводят через внутреннюю часть обмотки (если там сердечник – то через него) и замыкаются снаружи через воздух. Этот факт влечёт за собой несколько недостатков:
- снижается индуктивность;
- характеристики катушки меньше поддаются расчёту;
- любой предмет, внесенный во внешнее магнитное поле, меняет параметры катушки (индуктивность, паразитная ёмкость, потери и т.п.), поэтому во многих случаях требуется экранировка.
От этих недостатков во многом свободны катушки, намотанные на тороидальных сердечниках (в виде кольца или «бублика»). Магнитные линии проходят внутри сердечника в виде замкнутых петель. Это означает, что внешние предметы практически не оказывают влияние на параметры намотанной на таком сердечнике катушки, и экранировка для такой конструкции не нужна. Также увеличивается индуктивность при прочих равных параметрах, а характеристики проще рассчитать.
Линии магнитного поля тороидальной катушки
К недостаткам катушек, намотанных на торах, относят невозможность плавной подстройки индуктивности на месте. Другая проблема – высокая трудоёмкость и низкая технологичность намотки. Впрочем, это относится ко всем индуктивным элементам в целом, в большей или меньшей степени.
Также общим недостатком физической реализации индуктивности являются высокие массогабаритные показатели, относительно невысокая надежность и низкая ремонтопригодность.
Поэтому в технике от индуктивных компонентов стараются избавляться. Но это возможно далеко не всегда, поэтому намоточные компоненты будут использоваться как в обозримом будущем, так и в среднесрочной перспективе.
Явление самоиндукции. Индуктивность проводников.
При
любом изменении тока в проводнике его
собственное магнитное поле также
изменяется. Вместе с ним изменяется и
поток магнитной индукции, пронизывающий
поверхность, охваченную контуром
проводника. В результате в этом контуре
индуцируется ЭДС. Это явление называется
явлением самоиндукции.
В
соответствии с законом Био-Савара-Лапласа
индукция магнитного поля В
пропорциональна силе тока I
в проводнике. Отсюда следует, что поток
магнитной индукции
и
сила тока
I
также
пропорциональны друг другу:
Коэффициент
пропорциональности L
называют
индуктивностью
проводника. За единицу индуктивности
в СИ принимают индуктивность такого
проводника, у которого при силе тока
1А создается поток магнитной индукции,
равный 1Вб. Эту единицу называют Генри,
Гн.
Индуктивность
проводника зависит от его формы и
размеров, а также от магнитных свойств
окружающей его среды (магнитной
проницаемости μ).
Заметим при этом, что линейная
зависимость
между
иI
остается
справедливой
и в том случае, когда μ
зависит
от напряженности магнитного поля
Н,
а значит, от
I
(например, ферромагнитная среда). В этом
случае индуктивность L
также
зависит
от I.
Согласно
основному закону электромагнитной
индукции, ЭДС
самоиндукции,
возникающая при изменении силы тока в
проводнике, есть:
.
Или,
записав
,
будем иметь:.
В
том случае, когда среда не
является
ферромагнитной L=const,
тогда:
Последняя
формула дает возможность определить
индуктивность
L
как коэффициент
пропорциональности
между скоростью изменения силы тока в
проводнике и возникающей вследствие
этого ЭДС самоиндукции.
Пример вычисления индуктивности. Индуктивность соленоида.
Согласно
основному соотношению, связывающему
между собой ток I
и поток
,
индуктивность проводника определяется
выражением:
Применим
эту формулу для расчета индуктивности
прямого
длинного соленоида.
Имеем:
.
Рисунок
5.3. Прямой длинный соленоид
Поток
магнитной индукции через один виток
катушки
;
через все N витков поток равен:
.
Поделив
это выражение на I
, находим искомую индуктивность соленоида:
,
где
– число витков на единицу длины;– объем соленоида.
Если
магнитная проницаемость
сердечника зависит от(силы тока),
что имеет место, когда сердечником
соленоида является, например, железный
или ферритовый стержень, тобудет
зависеть
от
.
Это свойство индуктивности используют,
в частности, в различных устройствах
релейной защиты электрических цепей
при токовых перегрузках.
Переходные процессы в электрических цепях, содержащих индуктивность. Экстратоки замыкания и размыкания.
При
всяком изменении силы тока в каком-либо
контуре в нем возникает ЭДС
самоиндукции,
которая вызывает появление в этом
контуре дополнительных
токов, называемых экстратоками.
По правилу Ленца экстратоки, возникающие
в проводниках вследствие самоиндукции,
всегда направлены так, чтобы
воспрепятствовать изменению тока,
текущего в цепи. В схеме опыта, приведенной
на рисункепри замыкании ключа (положение
1) в катушке возникает экстраток
замыкания,
направление которого противоположно
нарастающему току батареи. При этом
часть экстратока замыкания ответвляется
на батарею, а часть на гальванометр, где
его направление совпадает
с направлением тока батареи – гальванометр
дает дополнительный отброс вправо.
Рисунок
5.4. Электрическую цепь, состоящая из
источника ЭДС
,
катушки
индуктивности L
и сопротивления R.:
1 – замыкание
ключа:
,
2 – размыкание ключа:
При
размыкании ключа (положение 2) магнитный
поток в катушке начнет исчезать. В ней
возникнет экстраток
размыкания,
который будет препятствовать
убыванию магнитного потока, то есть
будет направлен в катушке в ту же сторону,
что и убывающий ток. При этом экстраток
размыкания теперь целиком проходит
через гальванометр, где его направление
противоположно
направлению первоначального тока –
гальванометр дает отброс влево.
Установление
и исчезновение тока в цепи, содержащей
индуктивность, происходит не мгновенно,
а постепенно.
Рассмотрим электрическую цепь, состоящую
из источника ЭДС
,
катушки индуктивностиL
и сопротивления R.
При размыкании ключа в образующейся
замкнутой цепи помимо ЭДС
будет действовать ЭДС самоиндукции.
По второму правилу Кирхгофа можем
написать:или в виде
.
Решением
полученного дифференциального уравнения,
полагая, что в начальный момент времени
t
= 0 ток отсутствовал I(0)=0,
является функция:
,
где
.
График
этой функции приведен на рис.3 (кривая
1). Видим, что установление тока в цепи
происходит не мгновенно, а с некоторым
запаздыванием. Характерное время
называетсявременем
ретардации
(запаздывания, задержки).
Рисунок
5.5. Установление и исчезновение тока в
цепи, содержащей индуктивность.
При
замыкании ключа образуется контур,
содержащий только индуктивность L
и
сопротивление R
(источник ЭДС
при этом блокируется). Теперь в цепи
действует только ЭДС самоиндукции,
и по закону Ома:
или
в виде
.
Решением
этого уравнения, считая, что в начальный
момент времени t
= 0 ток имел максимальное значение, равное
,
является функция:
.
График
ее приведен на рис. 5.5 (кривая 2). Видим,
что исчезновение тока в цепи происходит
не мгновенно, но с запаздыванием.
Характерное
время
называется в этом случаевременем
релаксации
(восстановления).
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
Индуктивность контура — теоретические основы
Индуктивностью называется идеализированный элемент, приближающийся по своим свойствам к индуктивной катушке, в котором накапливается энергия магнитного поля.
Условное обозначение индуктивности и положительные направления тока, ЭДС самоиндукции и напряжения:
Если по проводнику пропустить ток, то вокруг него создается магнитный поток Φ. Суммарный магнитный поток (поток сцепления) катушки индуктивности равен Ψ= w×Φ, где Φ — магнитный поток, создаваемый одним витком; w — число витков.
По определению собственная индуктивность (или просто индуктивность) равна коэффициенту пропорциональности между потокосцеплением и током
катушки L=Ψ/i.
Индуктивность измеряется в генри 1 Гн = 1 Вб / 1 А. Символ L, используемый для обозначения индуктивности, был принят в честь Эмилия Христиановича Ленца (Heinrich Friedrich Emil Lenz). Единица измерения индуктивности названа в честь Джозефа Генри(Joseph Henry). Сам термин индуктивность был предложен Оливером Хевисайдом (Oliver Heaviside) в феврале 1886 года.
Поток сцепления катушки индуктивности равен Ψ=L×i.
В соответствии с законом электромагнитной индукции при изменении магнитного потока в катушке наводится ЭДС самоиндукции eL=-dΨ/dt. Знак «-» ставится потому, что ЭДС имеет такое направление, что образуемый ею ток своим магнитным полем препятствует изменению магнитного потока, вызывающего данную ЭДС.
Напряжение на индуктивности уравновешивает ЭДС и может быть записано в
виде uL=-eL=dΨ/dt=L×di/dt.
Мгновенная мощность, поступающая в катушку индуктивности равна p=uL×i=L×i×di/dt.
Энергия, запасаемая в катушке индуктивности равна wM=∫(0^t)ptd=∫(0^t)L×i×dt×di/dt=(L×i²)/2.
Взаимная индуктивность характеризует свойство одного элемента с током i1 создавать магнитное поле, частично сцепляющиеся с витками w2 другого элемента.
Коэффициент взаимной индуктивности определяется по формуле M=Ψ12/i2=Ψ21/i1, где Ψ12 — поток сцепления первого контура, вызванный током второго контура (аналогично Ψ21). Измеряется в Гн.
Электрическая цепь и индуктивность контура
Индуктивность характеризует электромагнитные свойства электроцепей. В более узком понятии, это элемент или участок цепи, обладающий большой величиной самоиндукции.
Таким элементом может считаться один, несколько или даже часть витка проводника, на высоких частотах также прямой отрезок провода любой длины.
Электромагнитная индукция
Электромагнитная индукция — явление возникновения тока в замкнутом проводящем контуре при изменении магнитного потока, пронизывающего его.
Явление электромагнитной индукции открыл Майкл Фарадей в ходе серии опытов.
Опыт раз. На одну непроводящую основу намотали две катушки таким образом, что витки одной катушки были расположены между витками второй. Витки первой катушки были замкнуты на гальванометр, а второй — подключены к источнику тока.
При замыкании ключа и протекании тока по второй катушке в первой возникал импульс тока. При размыкании ключа также наблюдался импульс тока, но ток через гальванометр тек в противоположном направлении.
Опыт два. Первую катушку подключили к источнику тока, а вторую — к гальванометру. При этом вторая катушка перемещалась относительно первой. При приближении или удалении катушки фиксировался ток.
Опыт три. Катушку замкнули на гальванометр, а магнит передвигали относительно катушки.
Вот что показали эти опыты:
-
- Индукционный ток возникает только при изменении линий магнитной индукции.
-
- Направление тока различается при увеличении числа линий и при их уменьшении.
- Сила индукционного тока зависит от скорости изменения магнитного потока. При этом как само поле может изменяться, так и контур может перемещаться в неоднородном магнитном поле.
Почему возникает индукционный ток?
Ток в цепи может существовать, когда на свободные заряды действуют сторонние силы. Работа этих сил по перемещению единичного положительного заряда вдоль замкнутого контура равна электродвижущей силе (ЭДС).
Значит, при изменении числа магнитных линий через поверхность, ограниченную контуром, в нем появляется ЭДС, которую называют ЭДС индукции.
Самоиндукция и измерение индуктивности
Индуктивность проводника
При изменении тока, который протекает в замкнутом электрическом контуре, меняется создаваемый им магнитный поток. Вследствие этого наводится ЭДС, которая называется ЭДС самоиндукции.
Напряжение ЭДС определяется формулой расчета индукции:
Ꜫ=-L∙di/dt.
То есть ЭДС прямо пропорциональна величине скорости изменения тока с некоторым коэффициентом L, который и называется «индуктивность».
Как найти индуктивность контура
Формула, которая является простейшей для нахождения величины, следующая:
- L = F : I,
где F – магнитный поток, I – ток в контуре.
Через индуктивность можно выразить ЭДС самоиндукции:
- Ei = -L х dI : dt.
Из формулы напрашивается вывод о численном равенстве индукции с ЭДС, которое возникает в контуре при изменении силы тока на один амперметр за одну секунду.
Переменная индуктивность дает возможность найти и энергию магнитного поля:
- W = L I2 : 2.
Необходимые формулы для расчетов
Чтобы найти индуктивность соленоида, формула применяется следующая:
- L= µ0n2V,
где µ0 показывает магнитную проницаемость вакуума, n – это число витков, V – объем соленоида.
Также провести расчет индуктивности соленоида можно и с помощью еще одной формулы:
- L = µ0N2S : l,
где S – это площадь поперечного сечения, а l – длина соленоида.
Чтобы найти индуктивность соленоида, формула применяется любая, которая подходит по решению к данной задаче.
Обозначение и единицы измерения
Сопротивление тока: формула
В честь Ленца, единица измерения индуктивности получила обозначение символом «L». Выражается в Генри, сокращенно Гн (в англоязычной литературе Н), в честь известного американского физика.
Джозеф Генри
Если при изменении тока в один ампер за каждую секунду ЭДС самоиндукции составляет 1 вольт, то индуктивность цепи будет измеряться в 1 генри.
Как может обозначаться индуктивность в других системах:
- В системе СГС, СГСМ – в сантиметрах. Для отличия от единицы длины обозначается абгенри;
- В системе СГСЭ – в статгенри.
Свойства
Имеет следующие свойства:
- Зависит от количества витков контура, его геометрических размеров и магнитных свойств сердечника;
- Не может быть отрицательной;
- Исходя из определения, скорость изменения тока в контуре, ограничена значением его индуктивности;
- При увеличении частоты тока реактивное сопротивление катушки увеличивается;
- Обладает свойством запасать энергию – при отключении тока запасенная энергия стремится компенсировать падение тока.
Индуктивность и конденсатор
Токоведущие элементы устройства способны создавать его собственную индуктивность. Это такие конструктивные части, как кладки, соединительные шины, токоотводы, выводы и предохранители. Можно создать дополнительную индуктивность конденсатора путем присоединения шин. Режим работы электрической цепи зависит от индуктивности, емкости и активного сопротивления. Формула расчета индуктивности, которая возникает при приближении к резонансной частоте, следующая:
- Ce = C : (1 – 4Π2f2LC),
где Ce определяет эффективную емкость конденсатора, C показывает действительную емкость, f – это частота, L – индуктивность.
Значение индуктивности всегда должно учитываться при работе с силовыми конденсаторами. Для импульсных конденсаторов наиболее важна величина собственной индуктивности. Их разряд приходится на индуктивный контур и имеет два вида – апериодический и колебательный.
Индуктивность в конденсаторе находится в зависимости от схемы соединения элементов в нем. Например, при параллельном соединении секций и шин эта величина равна сумме индуктивностей пакета главных шин и выводов. Чтобы найти такого рода индуктивность, формула следующая:
- Lk = Lp + Lm + Lb,
где Lk показывает индуктивность устройства, Lp –пакета, Lm – главных шин, а Lb – индуктивность выводов.
Если при параллельном соединении ток шины меняется по ее длине, то тогда эквивалентная индуктивность определяется так:
- Lk = Lc : n + µ0 l х d : (3b) + Lb,
где l – длина шин, b – ее ширина, а d – расстояние между шинами.
Чтобы снизить индуктивность устройства, необходимо токоведущие части конденсатора расположить так, чтобы взаимно компенсировались их магнитные поля. Иными словами, токоведущие части с одинаковым движением тока нужно удалять друг от друга как можно дальше, а с противоположным направлением сближать. При совмещении токоотводов с уменьшением толщины диэлектрика можно снизить индуктивность секции. Этого можно достигнуть еще путем деления одной секции с большим объемом на несколько с более мелкой емкостью.
“Катушка ниток”
Катушка индуктивности представляет собой намотанную изолированную медную проволоку на твердое основание. Что касается изоляции, то выбор материала широк – это и лак, и проводная изоляция, и ткань. Величина магнитного потока зависит от площади цилиндра. Если увеличить ток в катушке, то магнитное поле будет становиться все больше и наоборот.
Если подать электрический ток на катушку, то в ней возникнет напряжение, противоположное напряжению тока, но оно внезапно исчезает. Такого рода напряжение называется электродвижущей силой самоиндукции. В момент включения напряжения на катушку сила тока меняет свое значение от 0 до некоего числа. Напряжение в этот момент тоже меняет значение, согласно закону Ома:
- I = U : R,
где I характеризует силу тока, U – показывает напряжение, R – сопротивление катушки.
Еще одной особенной чертой катушки является следующий факт: если разомкнуть цепь “катушка – источник тока”, то ЭДС добавится к напряжению. Ток тоже вначале вырастет, а потом пойдет на спад. Отсюда вытекает первый закон коммутации, в котором говорится, что сила тока в катушке индуктивности мгновенно не меняется.
Катушку можно разделить на два вида:
- С магнитным наконечником. В роли материала сердца выступают ферриты и железо. Сердечники служат для повышения индуктивности.
- С немагнитным. Используются в случаях, когда индуктивность не больше пяти миллиГенри.
Устройства различаются и по внешнему виду, и внутреннему строению. В зависимости от таких параметров находится индуктивность катушки. Формула в каждом случае разная. Например, для однослойной катушки индуктивность будет равна:
- L = 10µ0ΠN2R2 : 9R + 10l.
А вот уже для многослойной другая формула:
- L= µ0N2R2 :2Π(6R + 9l + 10w).
Основные выводы, связанные с работой катушек:
- На цилиндрическом феррите самая большая индуктивность возникает в середине.
- Для получения максимальной индуктивности необходимо близко наматывать витки на катушку.
- Индуктивность тем меньше, чем меньше количество витков.
- В тороидальном сердечнике расстояние между витками не играет роли катушки.
- Значение индуктивности зависит от “витков в квадрате”.
- Если последовательно соединить индуктивности, то их общее значение равно сумме индуктивностей.
- При параллельном соединении нужно следить, чтобы индуктивности были разнесены на плате. В противном случае их показания будут неправильными за счет взаимного влияния магнитных полей.
Применение катушек индуктивности
Индуктивности широко используются в аналоговых схемах и схемах обработки сигналов. Они в сочетании с конденсаторами и другими радиокомпонентами образуют специальные схемы, которые могут усилить или отфильтровать сигналы определенной частоты.
Катушки индуктивности получили широкое применение начиная от больших катушек индуктивности, таких как дроссели в источниках питания, которые в сочетании с конденсаторами фильтра устраняют остаточные помехи и другие колебания на выходе источника питания, и до столь малых индуктивностей, которые располагаются внутри интегральных микросхем.
Две (или более) катушки индуктивности, которые соединены единым магнитным потоком, образуют трансформатор, являющимся основным компонентом схем работающих с электрической сетью электроснабжения. Эффективность трансформатора возрастает с увеличением частоты напряжения.
По этой причине, в самолетах используется переменное напряжение с частотой 400 герц вместо обычных 50 или 60 герц, что в свою очередь позволяет значительно сэкономить на массе используемых трансформаторов в электроснабжении самолета.
Так же индуктивности используются в качестве устройства для хранения энергии в импульсных стабилизаторах напряжения, в высоковольтных электрических системах передачи электроэнергии для преднамеренного снижения системного напряжения или ограничения ток короткого замыкания.
Общие сведения
Для того чтобы понять, от чего зависит индуктивность катушки, необходимо подробно изучить всю информацию об этой физической величине. Первым делом следует рассмотреть принятое международное обозначение параметра, его назначение, характеристики и единицы измерения.
Само понятие индуктивности было предложено известным английским физиком Оливером Хевисайдом, который занимался её изучением. Этот учёный подарил миру и другие известные термины — электропроводимость, магнитная проницаемость и сопротивление, а также ЭДС (электродвижущая сила).
Первая буква фамилии другого знаменитого физика — Эмилия Ленца — была взята в качестве обозначения индуктивности в формулах и при проведении расчётов. В наше время символ L продолжает использоваться при упоминании этого параметра.
Выдающийся американский физик Джозеф Генри первым обнаружил явление индуктивности. В его честь физики назвали единицу измерения в международной СИ, которая чаще всего используется в расчётах. В других системах (гауссова и СГС) индуктивность измеряют в сантиметрах. Для упрощения вычислений было принято соотношение, в котором 1 см равняется 1 наногенри. Очень редко используемая система СГСЭ оставляет коэффициент самоиндукции без каких-либо единиц измерения или использует величину статгенри. Она зависит от нескольких параметров и приблизительно равняется 89875520000 генри.
Среди основных свойств индуктивности выделяются:
- Величина параметра никогда не может быть меньше нуля.
- Показатель зависит только от магнитных свойств сердечника катушки, а также от геометрических размеров контура.
Способы расчёта
Существует несколько основных способов определить индуктивность катушки. Все формулы, которые будут использоваться в расчётах, легко можно найти в справочной литературе или интернете. Весь процесс вычисления довольно простой и не составит труда для людей, имеющих элементарные математические и физические знания.
Через силу тока
Этот расчёт считается самым простым способом определения индуктивности катушки. Формула через силу тока вытекает из самого термина. Какова индуктивность катушки — можно определить по формуле: L=Ф/I, где:
- L — индуктивность контура (в генри);
- Ф — величина магнитного потока, измеряемого в веберах;
- I — сила тока в катушке (в амперах).
Такая формула подходит только для одновиткового контура. Если катушка состоит из нескольких витков, то вместо величины магнитного потока используется полный поток (суммарное значение). Когда же через все витки проходит одинаковый магнитный поток, то для определения суммарного значения достаточно умножить величину одного из них на общее количество.
Соленоид конечной длины
Соленоид представляет собой тонкую длинную катушку, где толщина обмотки значительно меньше диаметра. В этом случае расчёты ведутся по той же формуле, что и через силу тока, только величина магнитного потока будет определяться следующим образом: Ф=µ0NS/l, где:
-
µ0 — магнитная проницаемость среды, определяющаяся по справочным таблицам (для воздуха, который принимается по умолчанию в большинстве расчётов, она равна 0,00000126 генри/метр); - N — количество витков в катушке;
- S — площадь поперечного сечения витка, измеряемая в квадратных метрах;
- l — длина соленоида в метрах.
Коэффициент самоиндукции соленоида можно рассчитать и исходя из способа определения энергии магнитного потока поля. Это более простой вариант, но он требует наличия некоторых величин. Формула для нахождения индуктивности — L=2W/I 2 , где:
- W — энергия магнитного потока, измеряемая в джоулях;
- I — сила тока в амперах.
Катушка с тороидальным сердечником
большинстве случаев тороидальная катушка наматывается на сердечник, изготовленный из материала, обладающего большой магнитной проницаемостью. В этом случае для расчётов индуктивности можно использовать формулу для прямого соленоида бесконечной длины. Она имеет такой вид: L=N µ0 µS/2 πr, где:
- N — число витков катушки;
- µ — относительная магнитная проницаемость;
- µ0 — магнитная постоянная;
- S — площадь сечения сердечника;
- π — математическая постоянная, равная 3,14;
- r — средний радиус тора.
Длинный проводник
Большинство таких квазилинейных проводников имеет круглое сечение. В этом случае величина коэффициента самоиндукции будет определяться по стандартной формуле для приближённых расчётов: L= µ0l (µelnl/r+ µi/4)/2 π. Здесь используются следующие обозначения:
-
l — длина проводника в метрах; - r — радиус сечения провода, измеряемый в метрах;
- µ0 — магнитная постоянная;
- µi — относительная магнитная проницаемость, характерная для материала, из которого изготовлен проводник;
- µe — относительная магнитная проницаемость внешней среды (чаще всего принимается значение для вакуума, которое равняется 1);
- π — число Пи;
- ln — обозначение логарифма.
Графический вывод формулы
Существует возможность получить записанную формулу, используя графический метод. Для этого отобразим на графике зависимость магнитного потока Φ(I) от тока I (рис. 1.21.2). Полное количество выделившейся теплоты, которое равно изначальному запасу энергии магнитного поля, определится как площадь получившегося на рис. 1.21.2 треугольника:
Рисунок 1.21.2. Вычисление энергии магнитного поля.
В итоге формула энергии Wм магнитного поля катушки с индуктивностью L, создаваемого током I, будет записана в виде формулы:
Wм=ΦI2=LI22=Φ22L
Используем выражение, которое мы получили, для энергии катушки к длинному соленоиду с магнитным сердечником. Применяя указанные выше формулы для коэффициента самоиндукции Lμ соленоида и для магнитного поля B, создаваемого током I, получим запись:
Wм=μ0·μ·n2·I22V=B22μ0·μV
В этой формуле V является объемом соленоида. Полученное выражение демонстрирует нам, что магнитная энергия имеет локализацию не в витках катушки, по которым проходит ток, а распределена по всему объему, в котором возникло магнитное поле.
Определение 4
Объёмная плотность магнитной энергии – это физическая величина, которая равна энергии магнитного поля в единице объема: Wм=B22μ·μ.
В свое время Максвелл продемонстрировал, что указанная формула (в нашем случае выведенная для длинного соленоида) верна для любых магнитных полей.
Об индуктивности простыми словами
Индуктивностью является физическая величина, которая была введена с целью оценки способности электрического проводника противодействовать току. Т.е. индуктивность, или как ее еще называют – коэффициент самоиндукции, показывает зависимость Ɛ от свойств проводника и от магнитной проницаемости среды, в которой он находится. Единицей измерения величины является генри (Гн).
Если рассмотреть величину на примере катушки индуктивности, то можно понять, что ее показатели будут изменяться в зависимости от числа витков катушки, а также ее размеров и формы. Чем больше количество витков, тем больше индуктивность. Данная величина также будет увеличена, если внутрь катушки будет помещен сердечник, так как изменится относительная магнитная проницаемость среды, в которой находится проводник. Данную зависимость можно увидеть на схеме.
Если посмотреть на формулу зависимости ЭДС от индуктивности, то можно понять, что чем больше будет величина, тем заметнее будет электродвижущая сила, что говорит о их прямой пропорциональности. Следуя из этого, можно сделать вывод, что индуктивность выступает неким «хранилищем» энергии, которое открывается в момент изменения тока.
Ɛ=- L(dI/dt), где:
- Ɛ – ЭДС самоиндукции;
- L-индуктивность;
- I – сила тока;
- t – время.
При этом L равно магнитному полю (Ф) деленному на силу тока (I).
Польза и вред
Такое явление, как самоиндукция, большинство людей наблюдают ежедневно, даже не осознавая этого. Так, например, принцип работы люминесцентных трубчатых ламп основан именно на явлении самоиндукции. Также данное явление можно наблюдать в цепи зажигания транспортных средств, работающих на бензине. Это возможно благодаря наличию катушки индуктивности и прерывателя. Так, в момент, когда через катушку проходит ток, прерыватель разрывает цепь питания катушки, в результате чего и образуется ЭДС, которая далее приводит к тому, что импульс более 10 кВ поступает на свечи зажигания.
Явление самоиндукции также приносит пользу, убирая лишнюю пульсацию, частоты или различные шумы в музыкальных колонках или другой аудиотехнике. Именно на ней основано работа различных «шумовых» фильтров.
Однако самоиндукция способна приносить не только пользу, но и заметный вред. Особенно часто она вредит различным выключателям, рубильникам, розеткам и другим устройствам, размыкающим электрическую цепь. Ее негативное воздействие на электроприборы можно заметить невооруженным глазом: искра в розетке в момент вытаскивания вилки, работающего фена и есть проявление сопротивления изменению силы тока.
Именно поэтому лампочки чаще всего перегорают именно в момент выключения света, а не наоборот. Это связано с тем, что сопротивление приводит к выгоранию контактов и накоплению цепей с токами в различных электроприборах, что в свою очередь представляет собой довольно серьезную техническую проблему.
Индуктивность и самоиндукция – незнакомые многим термины, с которыми люди встречаются ежедневно. И если первый термин является физической величиной, обозначающей способность проводника препятствовать изменению напряжения, то второй объясняет появление ЭДС индукции в том же проводнике.
Предыдущая
РазноеЧто такое фазное и линейное напряжение?
Следующая
РазноеБлуждающие токи и способы борьбы с ними