Всем доброго времени суток! В прошлой статье я рассказывал о таком явлении как электромагнитная индукция и ЭДС возникающая при самоиндукции и взаимной индукции. Устройства, в основе которых лежат данные явления и процессы, называются индуктивными элементами (катушки колебательных контуров, трансформаторы, дроссели, реакторы). В качестве одного из основных параметров данных элементов выступает индуктивность L(также имеет название коэффициента самоиндукции). О том, как рассчитать данный параметр пойдёт речь в данной статье.
Для сборки радиоэлектронного устройства можно преобрески DIY KIT набор по ссылке.
Методы расчёта индуктивностей
Индуктивностью (обозначается L) или коэффициентом самоиндукции называется коэффициент пропорциональности между потокосцеплением (обозначается ΨL) и электрическим током, который возбуждает данное потокосцепление.
В простых случаях индуктивность можно рассчитать, применяя формулы для вычисления магнитной индукции B0 (закон Био-Савара-Лапласа), магнитного потока Φ и потокосцепления ΨL
где S – площадь поверхности ограниченная контуром, который создает магнитную индукцию;
n – количество контуров с током, которые пронизывает магнитный поток.
Однако это в идеальном случае, в реальности говоря о токе I, который протекает по проводнику, необходимо отметить, что его распределение по сечению проводника не всегда равномерно, вследствие возникновения скин-эффекта при переменном токе. В результате этого эффекта плотность электрического тока распределяется неравномерно, происходит её уменьшение от внешнего слоя проводника к его центру. Уменьшение плотности тока также происходит неравномерно и зависит от частоты переменного тока. Для оценки скин-эффекта ввели понятие толщины скин-слоя ∆, которая показывает, на каком расстоянии от поверхности проводника плотность тока падает в е = 2,718 раз. Толщину скин-слоя можно вычислить по выражению
где δ – глубина проникновения переменного тока или толщина скин-слоя;
μ – магнитная проницаемость вещества;
γ – удельная электрическая проводимость материала проводника;
ω – круговая частота переменного тока, ω = 2πf.
Поэтому непосредственный способ вычисления индуктивности практически не применяется.
На практике применяется выражения для индуктивности, выведенные с некоторыми допущениями, погрешности вычисления индуктивности по этим выражениями составляет порядка нескольких процентов.
Так как индуктивные элементы довольно разнообразны, их можно разделить на три группы:
индуктивные элементы без сердечников;
индуктивные элементы с замкнутыми сердечниками;
индуктивные элементы с сердечниками, имеющие воздушный зазор.
Самые простые по конструкции являются индуктивные элементы без сердечников, поэтому рассмотрим их в первую очередь. Простейшим из таких элементов является прямой провод.
Индуктивность прямолинейного провода круглого сечения
При расчёте индуктивности необходимо разделять индуктивность на постоянном токе и индуктивность на высокой частоте. Под высокой частотой следует понимать такую частоту, на которой толщина скин-слоя меньше размеров поперечного сечения провода. В случае если толщина скин-слоя больше поперечных размеров провода, то можно вести расчёт для постоянного тока.
Определение индуктивности прямого провода. l – это длина проводника, d = 2r – диаметр проводника.
В случае постоянного тока или тока низкой частоты индуктивность составит
где μ0 – магнитная постоянная, μ0 = 4π•10-7 Гн/м;
l – длина провода, м;
d – диаметр провода, м.
Как я уже говорил, на величину индуктивности влияет частота переменного тока, поэтому в случае необходимости рассчитать индуктивность на любой частоте применяется следующее выражение
где ξ – коэффициент, вносящий поправку на распространение переменного тока по сечению провода. Данный коэффициент зависит от величины k*r, где
d = 2r – диаметр поперечного сечения провода, м.
где ω – угловая частота переменного тока, ω = 2πf;
μ0 – магнитная постоянная, μ0 = 4π•10-7 Гн/м;
γ – удельная проводимость вещества проводника.
Тогда если k*r < 3, то
если k*r > 3, то
где
Пример. Необходимо рассчитать индуктивность прямолинейного провода круглого сечения из меди (γ = 5,81*107 См/м) диаметром d = 2 мм и длиной l = 4 м, при постоянном токе и токе частотой f = 50 кГц.
На постоянном токе
На частоте 50 кГц
Online калькулятор индуктивности прямолинейного проводника
Индуктивность кругового кольца круглого сечения
Теперь рассмотрим, какова будет индуктивность если провод свернуть в кольцо. Такой индуктивный элемент будет иметь вид
Определение индуктивности кругового витка. D – диаметр кольца (витка), d – диаметр провода, из которого сделано кольцо (виток).
При этом его индуктивность можно вычислить по следующему выражению
для постоянного тока
где R – радиус витка, м, R = D/2;
r – радиус провода, м, r = d/2;
μ0 – магнитная постоянная, μ0 = 4π•10-7 Гн/м.
Так же как и для проводника существует выражение для индуктивности кругового витка на любой частоте
где ξ – коэффициент, вносящий поправку на распространение переменного тока по сечению провода. Определяется также как и для прямого проводника.
Пример. В качестве примера рассчитаем индуктивность такого же провода, как и в первом примере, только свёрнутом в кольцо. В этом случае диаметр провода d = 2 мм, а диаметр кольца D = l/π = 4/3,142 ≈ 1,273 м, провод выполнен из меди (γ = 5,81*107 См/м).
Для постоянного тока индуктивность составит
На частоте 50 кГц
Online калькулятор индуктивности кольца кругового сечения
В следующей части я продолжу рассмотрение расчётов индуктивности для различных индуктивных элементов.
- Информация о материале
-
Опубликовано: 28 августа 2013
-
Обновлено: 22 декабря 2022
-
Просмотров: 9777
Расчет индуктивности одиночного круглого витка
Индуктивность, реализованная в виде простой петли провода, другими словами в виде одного витка, чаще всего применяется в диапазоне метровых волн. Ввиду отсутствия эффекта близости, имеет довольно высокую добротность, зависящую от диаметра провода и небольшую собственную емкость.
Одновитковую петлю можно рассчитывать численными методами по уравнению Д.К.Максвелла:
где:
- E(k) – полный эллиптический интеграл первого рода
- K(k) – полный эллиптический интеграл второго рода
- r = D/2 – радиус петли (м)
- a = d/2 – радиус поперечного сечения провода, половина диаметра (м)
Параметр k рассчитывается следующим образом:
Однако в программе Coil32 расчет катушки ведется по простой эмпирической формуле, которую впервые вывел в 1946 году F.W.Grover. Применять более сложные алгоритмы расчета в этом случае не имеет смысла, т.к. точность расчета вполне достаточна для практических целей, при D/d > 5 около 1%. Численный алгоритм расчета в программе основан на методе последовательных приближений, до достижения заданной индуктивности. При расчете по заданной индуктивности максимально возможный диаметр петли принят за 10 м. Если при расчете получается бóльшая величина, программа выдает сообщение: “Катушка не может быть реализована”. В таком случае необходимо выбрать другую форму катушки, например – однослойную.
Формула расчета:
- L– индуктивность (мкГн)
- D– диаметр витка (мм)
- d– диаметр провода (мм)
Диаметр петли считается от центра до центра провода.
- Подробности
- Обновлено 03.07.2018 17:41
- Просмотров: 1452
Задачи по физике – это просто!
Не забываем, что решать задачи надо всегда в системе СИ!
А теперь к задачам!
Элементарные задачи из курса школьной физики на расчет индуктивности, самоиндукции, энергии магнитного поля тока.
Задача 1
Какова индуктивность витка проволоки, если при токе 6 А создается магнитный поток 12 мВб?
Задача 2
В катушке из 150 витков течет ток 7,5 А, и при этом создается магнитный поток 20 мВб.
Какова индуктивность катушки?
Задача 3
Через соленоид, индуктивность которого 0,4 мГн и площадь поперечного сечения 10 см2, проходит ток 0,5 А.
Какова индукция поля внутри соленоида, если он содержит 100 витков?
Задача 4
Определить индуктивность контура с током 1,2 А, если контур ограничивает площадь 20 см2, а магнитная индукция поля равна 0,8 Тл, причем вектор магнитной индукции направлен под углом 30o к плоскости контура.
Задача 5
Какая ЭДС самоиндукции возбуждается в обмотке электромагнита с индуктивностью 0,4 Гн при изменении силы тока на 5 А за 0,02 секунды?
Задача 6
Определить энергию магнитного поля катушки, если ее индуктивность 0,2 Гн, а ток в ней 12 А.
Задача 7
Какой должна быть сила тока в катушке с индуктивностью 0,5 Гн, чтобы энергия магнитного поля оказалась равной 1 Дж?
Задача 8
Найти энергию магнитного поля соленоида, индуктивность которого 0,02 Гн, а магнитный поток через него составляет 0,4 Вб.
-
Методики расчета индуктивности катушек
Основным
элементом катушек индуктивности является
токовод. Величина индуктивности
определяется конструкцией токовода и
его размерами.
Полная
индуктивность медного провода круглого
сечения длиной lПРи диаметромd0равна
(3.1)
Из
(3.1) следует, что индуктивность провода
уменьшается с ростом его диаметра. Это
свойство широко используют в УКВ
аппаратуре для уменьшения индуктивности
соединительных проводов за счет
увеличения их диаметра.
Если
одиночный проводник согнуть, например,
в кольцо, то его индуктивность уменьшится
из-за встречного направления токов в
соседних частях кольца. Однако, для
круглого кольца индуктивность будет
наибольшей по сравнению с индуктивностью
витка любой другой конфигурации,
поскольку круглый виток охватывает
наибольшую площадь, обеспечивая
наибольшее потокосцепление.
Индуктивность
круглого плоского витка диаметром Dиз провода круглого сечения длинойlПРи диаметромdПРравна
(3.2)
При
сворачивании проводника в несколько
витков wодинакового
диаметра образуется катушка, индуктивность
которой можно определить как суммарную
индуктивность всех витков с учетом
взаимоиндукцииMмежду
ними:
(3.3)
Индексы при Муказывают на взаимную индуктивность
между первым и вторым, вторым и третьим,
первым и третьим витками и т.д. Если
известен коэффициент связи, который
определяется равенством
,
(3.4)
то индуктивность
катушки с произвольным числом витков
определяется из
. (3.5)
Коэффициент связи
между витками, расположенными на
расстоянии τ, в однослойной катушке
определяется выражением
(3.6)
Для сплошной намотки
τ=d0.
Индуктивность
многослойной катушки незначительно
зависит от диаметра провода, так как
определяется в основном взаимоиндукцией
между витками.
Из-за трудности
определения коэффициента связи выражение
(3.5) обычно применяют для расчета катушек
индуктивности с небольшим числом витков
(обычно не более шести).
Для катушек с однородным
замкнутым магнитопроводом (с тороидальным
сердечником) выражение для определения
индуктивности принимает вид
, (3.7)
где μ– начальная магнитная
проницаемость сердечника (μ=1 для
диэлектрического каркаса или воздуха);
μ0=4π·10-7Гн/м – магнитная постоянная;
w– число витков обмотки;
S
– площадь поперечного сечения катушки;
– длина намотки катушки;
Таким
образом, увеличение индуктивности
катушки может быть достигнуто за счет
увеличения числа витков, магнитной
проницаемости сердечника, площади
поперечного сечения магнитопровода, а
также уменьшения длины намотки.
В
высокочастотных катушках замкнутый
магнитопровод как правило отсутствует,
поэтому индуктивность катушки будет
меньше, рассчитанной по (3.7). Для учета
рассеивания магнитного потока на краях
катушки вводится поправочный коэффициент
k, который зависит от
отношения диаметра катушки к длине
намотки
(3.8)
Для
практических расчетов однослойных
цилиндрических катушек, намотанных
виток к витку (рис.3.2 а),используют
выражение
, (3.9)
где
– коэффициент формы катушки, учитывающий
краевые эффекты;
μ– начальная магнитная
проницаемость сердечника (μ=1 для
катушек без магнитного сердечника);
μ0=4π·10-7Гн/м –
магнитная постоянная;
w– число витков обмотки;
– площадь поперечного сечения круглой
катушки;
D– диаметр катушки;
– длина намотки.
Для
практических расчетов однослойных
цилиндрических катушек без сердечника,
намотанных с принудительным шагом τ(рис.3.2 б),индуктивность
рассчитывают по (3.9), но полученный
результат уменьшают на поправкуΔL
, (3.10)
где τ– шаг намотки;
L–
индуктивность катушки, определенная
по (3.9) приμ=1.
Для
практических расчетов индуктивности
тороидальной однослойной катушки,
намотанной сплошным слоем на круглом
магнитном сердечнике прямоугольного
сечения (рис.3.2 в), используют
выражение
, (3.11)
где
– площадь поперечного сечения сердечника
тороида;
– средняя длина сердечника тороида;
D– внешний диаметр сердечника тороида;
d– внутренний диаметр сердечника тороида;
h– высота сердечника тороида.
Для практических
расчетов многослойных катушек без
сердечника(рис.3.2 г) используют
выражение
, (3.12)
гдеDCP
– средний диаметр катушки;
t– толщина катушки;
l– длина катушки.
Для
практических расчетов многослойных
секционированных катушек без сердечника
(рис.3.2 д) используют выражение
, (3.13)
где LC
– индуктивность одной секции катушки;
n– число секций;
kCB– коэффициент связи между смежными
секциями, зависящий от отношения(рис.3.3);
b
– расстояние между секциями.
Для
практических расчетов плоских круглых
спиральных катушек (рис.3.2 е) используют
выражение
, (3.14)
где DBH,DH –внутренний и наружный диаметры
катушки, соответственно.
Для
практических расчетов плоских
квадратных спиральных катушек (рис.3.2
ж) используют выражение
, (3.15)
где АBH,АH
–внутренняя и наружная стороны
катушки, соответственно.
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
10.02.20165.15 Mб192.doc
- #
- #
- #
- #
- #
- #
Содержание:
Индуктивность и ее расчет:
Основным соотношением для магнитного поля является принцип непрерывности магнитного потока:
На рис. 1.12, а и б проиллюстрировано различие между потоком и
потокосцеплением, причем число линий в условном масштабе равно
величине потока.
Индукция измеряется в тесла (тл), магнитный поток и потокосцепление — в веберах (вб).
Индуктивность уединенного контура, равная отношению потокосцепления к току:
пропорциональна магнитной проницаемости среды, в которой он находится, и определяется конфигурацией контура. Единицей индуктивности является генри (гн).
Для расчета индуктивности контура необходимо предварительно рассчитать его магнитное поле по основному соотношению — закону полного тока:
устанавливающему связь между напряженностью магнитного поля и полным током I — алгебраической суммой токов, сцепляющихся с путем интегрирования. При этом положительное направление тока I связано с направлением dI обхода правилом правого винта.
Напряженность магнитного поля измеряется в а/м, магнитная проницаемость — в гн/м.
Если потокосцепление контура изменяется во времени, то в контуре появляется э. д. с. индукции е, величина и направление которой определяется законом электромагнитной индукции:
где Е — вектор напряженности наведенного в контуре электрического поля.
Таким образом, закон электромагнитной индукции связывает между собой изменение магнитного поля с возникающим электрическим полем.
Максвеллом было постулировано обобщение этого закона, заключающееся в том, что электрическое поле возникает при изменении магнитного поля в любой среде, а не только в проводящем контуре.
Закон электромагнитной индукции, открытый Фарадеем в 1831 г., был дополнен Ленцем в 1832— 1834 гг. Им было установлено общее правило: з. д. с. индукции всегда стремится создать ток, направленный так, чтобы препятствовать изменению потока, сцепляющегося с контуром.
При изменении тока в контуре изменяется потокосцепление ψL созданное этим током, и в контуре наводится э. д. с. самоиндукции
Индуктивность тороида и соленоида
Если на кольцевой сердечник — тороид, выполненный из материала проницаемостью µ > µ0, нанести обмотку не по всей его длине (рис. 1.13), то только часть потока проходит по сердечнику, остальная часть — поток рассеяния — замыкается в воздухе. Тороид же, содержащий витки, плотно и равномерно распределенные по всей длине сердечника (рис. 1.14), замечателен тем, что практически весь магнитный поток сосредоточивается в сердечнике, т. е. потока рассеяния нет. Линии вектора напряженности поля представляют собой окружности, сцепляющиеся со всеми витками. Ввиду симметрии напряженность поля в каждой точке окружности по величине постоянна; по направлению она совпадает с касательной к окружности.
Тороиды широко применяются в трансформаторах, магнитных усилителях и электроизмерительных приборах.
Пусть тороид имеет прямоугольное сечение высотой Н, с радиусами г1 и г2, магнитная проницаемость материала µ.
По закону полного тока для окружности с радиусом
откуда
т. е. напряженность поля убывает по мере приближения к наружному краю тороида. Это в равной мере относится и к индукции
Поток в сердечнике тороида
а потокосцепление
Отсюда индуктивность тороида
Если расчет вести для средней линии I и приближенно считать поле в тороиде распределенным равномерно, то напряженность
где w0 — число витков на единицу длины, а магнитный поток и индуктивность, соответственно,
Обычно в реальных тороидах отношение что приводит при этих приближенных формулах к погрешности, не превышающей 1,2 %. Последняя формула для индуктивности может быть применена и к длинному соленоиду, рассматриваемому как часть тороида бесконечно большого радиуса. Для соленоида конечной длины µ=µ0
где k < 1 — коэффициент, учитывающий, что в таком соленоиде не весь поток пронизывает все витки.
Как показывает точный расчет, этот коэффициент зависит от отношения диаметра D катушки к ее длине I (рис. 1.15). При = 0,1 коэффициент k — 0,96, поэтому при < 0 ,1 приближенно принимают k = 1.
Индуктивность двухпроводной линии
Двухпроводная линия (рис. 1.16, а) состоит из двух параллельных проводов одинакового радиуса г0, имеющих большую длину I по сравнению с расстоянием d между ними. Магнитная проницаемость материала проводов (г, окружающей среды — µ0. Токи I в прямом и обратном проводах отличаются лишь направлением; начало координат взято в центре сечения левого провода.
Для отдельного провода ввиду его осевой симметрии, при пренебрежении искажением поля у его концов, применение закона полного тока к окружности радиуса дает:
При интегрировании по окружности, лежащей внутри отдельного провода охватывается лишь часть LХ всего тока, протекающая внутри круга радиуса х, равная при равномерном распределении тока по сечению
В воздухе между проводами на линии, соединяющей центры их сечений направления полей, создаваемых обоими токами согласно правилу правого винта, совпадают и напряженности поля и индукции складываются:
Эти же формулы справедливы и для т. е. снаружи линии, но здесь они дают разность полей.
Внутри левого провода линии напряженность поля и индукция от обоих проводов будут:
Внутри правого провода соответственно,
На рис. 1.16, б представлено распределение напряженности поля и индукции вдоль оси х для магнитной проницаемости материала проводов µ > µ0. Посередине между проводами поле минимально, но в нуль не обращается. Поле также не равно нулю на осях проводов.
На внутренней стороне проводов напряженность поля и индукция больше, чем на внешней. В отличие от напряженности поля индукция имеет разрыв у поверхности проводов. Для вычисления индуктивности линии необходимо найти потокосцепление. Элементарный поток, проходящий через площадку Idx в воздухе между проводами,
Весь поток между проводами – внешний поток
одновременно является внешним потокосцеплением, так как сцепляется с контуром один раз. Поэтому
а соответствующая ему внешняя индуктивность
Для большинства линий расстояние d между проводами значительно превышает радиус r0 проводов. В этом случае
Для определения внутренней индуктивности, соответствующей внутреннему потоку, при d > r0 поле внутри провода линии может вычисляться как поле уединенного провода, так как поле, создаваемое вторым проводом внутри первого, по сравнению с полем первого, пренебрежимо мало. Тогда элементарный поток внутри провода
Так как поток dФi охватывает не весь ток, а только его часть [см. формулу (1.3)], элементарное потокосцепление
Весь поток между проводами — внешний поток
Соответственно, внутренняя индуктивность
Суммарная индуктивность линии
При медных или алюминиевых проводах () в большинстве случаев вторым членом можно пренебречь по сравнению с первым и тогда
Для стальных проводов () основной частью потока является
внутренний поток и индуктивность
практически не будет зависеть от расстояния между проводами.
Взаимоиндуктивность и ее расчет
Для двух контуров, имеющих w1 и w2 витков с токами I1 и I2 (рис. 1.17), поток первого контура, определяемый током этого контура, — поток самоиндукции Ф1l—может быть разложен на поток рассеяния Ф1s, пронизывающий только этот контур, и поток взаимоиндукции Ф1m, пронизывающий также и второй контур:
Потокосцепление, соответствующее потоку Ф11 (при условии, что этот поток пронизывает все витки первого контура, равно
а потокосцепление рассеяния
Аналогично для второго контура
Потокосцепление второго контура, определяемое током первого,
а потокосцепление первого контура, определяемое током второго,
Можно показать, что
Величина M называется взаимоиндуктивностью и определяется конфигурацией контуров, их взаимным расположением и магнитной проницаемостью среды. Взаимоиндуктивность также измеряется в генри (гн).
Суммарный поток, пронизывающий первый контур,
Суммарное потокосцепление первого контура
и соответственно для второго контура
В этих алгебраических суммах первый член всегда положителен, а знак перед вторым членом определяется направлением токов в контурах; положительный знак соответствует случаю совпадения направлений потоков Ф1м и Ф2м (см. рис. 1.17).
Из изложенного видно, что
Таким образом, взаимоиндуктивность и индуктивности всегда удовлетворяют неравенству
а используемый в технических расчетах коэффициент связи двух контуров
Аналогично, в системе многих контуров потокосцепление контура определяется токами всех контуров:
где Lq — индуктивность q-то контура, Мqp = Мрq — взаимоиндуктивность q- и р-го контуров. Общий прием расчета взаимоиндуктивности контуров заключается
в нахождении потокосцепления, пронизывающего контур q, но созданного током р-го контура, и делении его на этот ток.
Взаимоиндуктивность двух параллельных двухпроводных линий
Пусть две параллельные двухпроводные линии расположены симметрично так, как это было показано на рис. 1.4. При условии d> г0 внутренним потоком в проводах по сравнению с внешним можно пренебречь.
Магнитный поток, пронизывающий первую линию и созданный током I2 второй, может быть найден как сумма потоков, создаваемых каждым из проводов второй линии в отдельности.
Тогда магнитный поток, пронизывающий первую линию,
расстояния от провода линии 1 до проводов линии 2 .
Магнитный поток Ф одновременно является потокосцеплением первой линии, так как сцепляется с ней один раз; поэтому
а взаимоиндуктивность
Для уменьшения коэффициента связи между линиями связи l и передачи 2 применяют транспозицию линии связи, заключающуюся в перекрещивании проводов линии связи через равные расстояния; тогда суммарное потокосцепление будет равно нулю.
Линейные и нелинейные катушки индуктивности
У линейных материалов магнитная проницаемость µ, не зависит от напряженности поля и характеристика для них изображается прямой линией (рис. 1.18, а). Магнитная проницаемость пропорциональна тангенсу угла а наклона этой прямой:
где k — масштабный коэффициент.
К нелинейным материалам относятся ферромагнетик и — железо, никель, кобальт и гадолиний. Важное значение в электротехнике имеют первые три элемента, главным образом в виде сплавов. У нелинейных материалов магнитная проницаемость очень велика и зависит от напряженности поля.
Подобно нелинейным диэлектрикам по кривой первоначальногo намагничивания В (Н) (рис. 1.18, б) могут быть определены статическая магнитная проницаемость
и дифференциальная, а при быстрых изменениях поля — динамическая магнитная проницаемость
На рис. 1.18, б эти проницаемости представлены в функции напряженности поля. Максимальные значения магнитной проницаемости в очень чистом железе и в некоторых сплавах, например в пермаллое (сплав железа и-никеля с различными присадками), в сотни тысяч раз превышают магнитную постоянную равную
магнитной проницаемости вакуума.
В переменных магнитных полях в ферромагнетиках имеет место явление магнитного гистерезиса (рис. 1.19), заключающееся в несовпадении кривой В (Н) при возрастании напряженности поля с кривой при убывании поля.
Кривая, соединяющая вершины петель гистерезиса, называется основной кривой намагничивания и практически совпадает с кривой первоначального намагничивания, Ферромагнитные свойства зависят от температуры и проявляются лишь в определенном ее интервале.
Для расчета индуктивности основной является зависимость потокосцепления ψ от тока I, называемая веберамперной характеристикой.
В зависимости от материала сердечника тороиды по виду своей веберамперной характеристики будут также линейными или нелинейными. В качестве примера рассматривается нелинейный тороид.
Для тороида и веберамперные характеристики ψ (I) в соответствующем масштабе совпадают с кривыми В (H); поэтому прямая и кривые на рис. 1.18 а и б соответствуют также веберамперным характеристикам при величинах, указанных в скобках.
Для нелинейных тороидов вводятся понятия статической индуктивности
и дифференциальной, а также динамической индуктивности
являющихся функциями тока (см. рис. 1.18, б); для линейных тороидов эти индуктивности совпадают.
Аналогично индуктивностям в нелинейных системах контуров вводятся статическая взаимоиндуктивность
и дифференциальная, взаимоиндуктивность, а также динамическая
Индуктивность нелинейного тороида
Расчет нелинейного тороида может быть произведен, если задана зависимость В (H) или µ(H). Так как эти зависимости теоретически не выводятся, то для приближенного решения подбирают по кривой В(H) аппроксимирующую функцию.
Пусть аппроксимирующая функция для характеристики В (H) (рис. 1.20)
материала сердечника тороида будет
где а и b — постоянные.
Так как для тороида с ферромагнитным однородным cердечником напряженность поля по-прежнему определяется формулой
то индукция будет равна
а потокосцепление
откуда статическая индуктивность
а дифференциальная индуктивность
Кривые зависимости этих индуктивностей от тока представлены
на рис. 1.20.
- Энергия в электрических цепях
- Линейные электрические цепи
- Нелинейные электрические цепи
- Магнитные цепи и их расчёт
- Электрическая ёмкость и ее расчет
- Линейные н нелинейные диэлектрики и конденсаторы
- Сопротивление и его расчет
- Линейные и нелинейные резисторы