Как найти информационный объем звукового файла

Рассмотрим задание, в котором подробно разберем как определить информационный объем звукового файла.

Для решения подобных задач досаточно знать одну простую формулу

I = H*b*t*k

где:

I — информационный объем звукового файла (иногда обозначают Q)

H — частота дискретизации (количество измерений в секунду времени)

b — глубина кодирования информации (количество уровней громкости в измерениях)

k — количество каналов по которым производится запись (моно — 1 канал, стерео — 2 канала, квадро — 4 канала)

При решении подобных задач, как и многих других нужно помнить, что чаще всего все расчеты удобнее производить в степенях двойки.

Кодирование звуковой информации

Звук – это волны, распространяющиеся в твердых телах, жидкостях и газах, вызванные колебаниями частиц среды. Изменения давления акустической волны на препятствия, позволяет слуховому аппарату человека регистрировать звук.

Основными характеристиками любой волны являются частота и амплитуда. Амплитуда акустического сигнала характеризует громкость звука, а частота – тон.

Акустическая волна является непрерывной, поэтому для обработки на компьютере ее необходимо преобразовать в цифровую форму. В ходе кодирования звуковая информация подвергается временной дискретизации и квантованию.

Процесс временной дискретизации заключается в регистрации параметров звука через определённые очень короткие промежутки времени, в пределах которых сигнал считается неизменным (см. рис. 1). Частоту измерения сигнала называют частотой дискретизации.

В течении временной дискретизации непрерывный диапазон значений амплитуды звуковой волны квантуется путем разбиения на дискретную последовательность значений амплитудных уровней (см. рис. 2).

Временная дискретизация звука

Количество бит, отводимых для записи номеров уровней называется глубиной кодирования звука.

Глубина кодирования звука связана с количеством уровней квантования по формуле:
N = 2 i
где N – количество уровней разбиения амплитуды сигнала,
i – число бит (глубина кодирования), отводимых для кодирования уровней амплитуды сигнала

Чем выше частота дискретизации и глубина кодирования звука, тем точнее цифровое представление оригинального непрерывного звукового сигнала.

Повышая частоту дискретизации и глубину кодирования звука, можно более точно сохранить, а затем восстановить форму оригинального звукового сигнала. Необходимо заметить, что в этом случае увеличивается объем сохраняемого файла. В различных ситуациях при цифровой записи звука используют разные значения частоты дискретизации и глубины кодирования звука.

Для расчета информационного объема звукового файла используется следующая формула:
I = i • ν • t • k
где i – глубина кодирования
ν – частота дискретизации
t – время звучания файла,
k – коэффициент, знaчение которого зависит от качества звука: моно – 1, стерео – 2, квадро – 4

Основные понятия

Частота дискретизации(f) определяет количество отсчетов, запоминаемых за
1 секунду;

1 Гц (один герц) – это один отсчет в секунду,

а 8 кГц – это 8000
отсчетов в секунду

Глубина кодирования (b) – это количество бит, которое
необходимо для кодирования 1 уровня громкости

Время звучания (t)

Объем памяти для хранения данных 1
канала (моно)

I=f·b·t

(для хранения информации о звуке
длительностью  t секунд, закодированном с частотой дискретизации f Гц и глубиной кодирования b бит требуется
I бит памяти)

При двухканальной записи
(стерео)
  объем памяти, необходимый для
хранения данных одного канала, умножается на 2
 

I=f·b·t·2
 

Единицы измерения I – биты, b -биты, f – Герцы,  t – секунды

Частота дискретизации 44,1
кГц, 22,05 кГц, 11,025 кГц

Кодирование звуковой информации

Основные
теоретические положения

Временная дискретизация звука. Для того чтобы компьютер мог обрабатывать звук,
непрерывный звуковой сигнал должен быть преобразован в цифровую дискретную
форму с помощью временной дискретизации. Непрерывная звуковая волна разбивается
на отдельные маленькие временные участки, для каждого такого участка
устанавливается определенная величина интенсивности звука.

Таким
образом, непрерывная зависимость громкости звука от времени A(t) заменяется на
дискретную последовательность уровней громкости. На графике это выглядит как
замена гладкой кривой на последовательность “ступенек”.

Частота дискретизации.
Для записи аналогового звука и его преобразования в цифровую форму
используется
микрофон, подключенный к звуковой плате. Качество полученного цифрового
звука
зависит от количества измерений уровня громкости звука в единицу
времени, т.е.
частоты дискретизации. Чем большее количество измерений производится за 1
секунду (чем больше частота дискретизации), тем точнее “лесенка”
цифрового звукового сигнала повторяет кривую аналогового сигнала.

Частота дискретизации звука – это количество измерений громкости звука за одну
секунду, измеряется
в герцах (Гц). Обозначим частоту дискретизации буквой
f.

Частота дискретизации звука может лежать в диапазоне от
8000 до 48 000 измерений громкости звука за одну секунду. Для кодировки выбирают одну из трех частот: 44,1 КГц, 22,05 КГц, 11,025 КГц.

Глубина кодирования звука. Каждой “ступеньке” присваивается определенное
значение уровня громкости звука. Уровни громкости звука можно рассматривать как
набор возможных состояний N, для кодирования которых необходимо определенное
количество информации
b, которое называется глубиной
кодирования звука

Глубина кодирования звука – это количество информации, которое необходимо для кодирования
дискретных уровней громкости цифрового звука.

Если известна глубина кодирования, то количество уровней
громкости цифрового звука можно рассчитать по формуле N = 2b. Пусть глубина кодирования звука составляет 16 битов,
тогда количество уровней громкости звука равно:

N = 2b = 216
= 65 536.

В процессе кодирования каждому уровню громкости звука
присваивается свой 16-битовый двоичный код, наименьшему уровню звука будет
соответствовать код 0000000000000000, а наибольшему – 1111111111111111.

Качество оцифрованного звука. Чем больше частота и глубина дискретизации звука, тем
более качественным будет звучание оцифрованного звука. Самое низкое качество
оцифрованного звука, соответствующее качеству телефонной связи, получается при
частоте дискретизации 8000 раз в секунду, глубине дискретизации 8 битов и
записи одной звуковой дорожки (режим “моно”). Самое высокое качество
оцифрованного звука, соответствующее качеству аудио-CD, достигается при частоте
дискретизации 48 000 раз в секунду, глубине дискретизации 16 битов и записи
двух звуковых дорожек (режим “стерео”).

Необходимо помнить, что чем выше качество цифрового звука,
тем больше информационный объем звукового файла.

Задачи для
самостоятельной подготовки
.

1. Рассчитайте  объём 
монофонического  аудиофайла  длительностью 
10 с  при  16-битном 
кодировании  и  частоте 
дискретизации 44,1 к Гц. 
(861  Кбайт)

2. Производится двухканальная (стерео) звукозапись с
частотой дискретизации 48 кГц и 24-битным разрешением. Запись длится 1 минуту,
ее результаты записываются в файл, сжатие данных не производится. Какое из
приведенных ниже чисел наиболее близко к размеру полученного файла, выраженному
в мегабайтах?

 1)0,3   2) 4   3) 16   4) 132

3.
Производится одноканальная (моно) звукозапись с частотой дискретизации 11 кГц и
глубиной кодирования 24 бита. Запись длится 7 минут, ее результаты записываются
в файл, сжатие данных не производится. Какое из приведенных ниже чисел наиболее
близко к размеру полученного файла, выраженному в мегабайтах?

 1) 11     2)
13    3) 
15              4)  22

4.
Производится двухканальная (стерео) звукозапись с частотой дискретизации 11 кГц
и глубиной кодирования 16 бит. Запись длится 6 минут, ее результаты
записываются в файл, сжатие данных не производится. Какое из приведенных ниже
чисел наиболее близко к размеру полученного файла, выраженному в мегабайтах?

1)
11                2) 12           3) 
13         4)  15

5. При 
16-битном  кодировании,  частоте 
дискретизации  32 кГц  и 
объёме моноаудиофайла 700 Кбайт время 
звучания  равно:

                          1)
20 с             2) 10 с             3) 1,5 мин                  4) 1,5 с

6. Одна минута
записи цифрового аудиофайла занимает на диске 1,3 Мб, разрядность звуковой
платы – 8. С какой частотой дискретизации записан звук?

7. Аналоговый звуковой сигнал  был 
дискретизирован  сначала  с 
использованием  256 уровней  интенсивности 
сигнала  (качество  звучания 
радиотрансляции),  а  затем 
65 536 уровней (качество звучания аудио-
CD). 
Во  сколько  раз 
различаются  информационные  объёмы 
оцифрованного  звука?

                          1)
16                2)
24               3) 4                 4) 2

Литература.

  1. http://wiki.iteach.ru/images/f/fe/Лазарева_примеры_реш_задач.pdf
  2. http://kpolyakov.narod.ru/school/ege.htm
  3. http://fipi.ru/view/sections/217/docs/514.html
  4. Диагностические
    и тренировочные работы МИОО 2011-2012 http://www.alleng.ru/d/comp/com_ege-tr.htm
  5. http://festival.1september.ru/articles/103548/
  6. http://www.5byte.ru/9/0009.php
  7. Информатика. Задачник-практикум в 2 т. /Под ред. И.Г. Семакина,
    Е.К. Хеннера: Том 1. – Лаборатория Базовых Знаний, 2008 г. – 304 с.: ил.
     
  8. Практикум по информатике и информационным
    технологиям. Учебное пособие для общеобразовательных учреждений / Н.Д.
    Угринович, Л.Л. Босова, Н.И. Михайлова. – М.: Бином. Лаборатория Знаний, 2002.
    400 с.: ил.

Определение объёма памяти, необходимого для хранения графической информации

Различают три вида компьютерной графики:

  • растровая графика;
  • векторная графика;
  • фрактальная графика.

Они различаются принципами формирования изображения при отображении на экране монитора или при печати на бумаге. Наименьшим элементом растрового изображения является точка (пиксель), векторное изображение строится из геометрических примитивов, фрактальная графика задаётся математическими уравнениями.

Расчёт информационного объёма растрового графического изображения основан на подсчёте количества пикселей в этом изображении и на определении глубины цвета (информационного веса одного пикселя).

Глубина цвета зависит от количества цветов в палитре:

N=2i

.
(N) — это количество цветов в палитре,
(i) — глубина цвета (или информационный вес одной точки, измеряется в битах).

Чтобы найти  информационный объём растрового графического изображения (I) (измеряется в битах), воспользуемся формулой

I=i⋅k

.
(k) — количество пикселей (точек) в изображении;
(i) — глубина цвета (бит).

Пример:

Полина увлекается компьютерной графикой. Для конкурса она создала рисунок размером (1024*768) пикселей, на диске он занял (900) Кбайт. Найди максимально возможное количество цветов в палитре изображения.

Дано

(k=1024*768);

(I=900) Кбайт.

Найти: (N).

Решение

Чтобы найти (N), необходимо знать (i):

N=2i

.

Из формулы

I=i⋅k

  выразим

i=Ik

, подставим числовые значения. Не забудем перевести (I) в биты.

Получим

i=900∗1024∗81024∗768≈9,3

.

Возьмём (i=9) битам. Обрати внимание, нельзя взять (i=10) битам, так как в этом случае объём файла (I) превысит (900) Кбайт. Тогда

N=29=512.

Ответ: (512) цветов.

На качество изображения влияет также разрешение монитора, сканера или принтера.

Разрешение — величина, определяющая количество точек растрового изображения на единицу длины.

Получается, если увеличить разрешение в (3) раза, то увеличится в (3) раза количество пикселей по горизонтали и увеличится в (3) раза количество пикселей по вертикали, т. е. количество пикселей в изображении увеличится в (9) раз.

Параметры PPI и DPI определяют разрешение или чёткость изображения, но каждый относится к отдельным носителям:
• цифровой (монитор) — PPI;
• печать (бумага) — DPI.
При решении задач величины PPI и DPI имеют одинаковый смысл.

При расчётах используется формула

I=k⋅i⋅ppi2

.
(I) — это информационный объём растрового графического изображения (бит);
(k) — количество пикселей (точек) в изображении;
(i) — глубина цвета (бит),
ppi (или dpi) — разрешение.

Пример:

для обучения нейросети распознаванию изображений фотографии сканируются с разрешением (600) ppi и цветовой системой, содержащей (16 777 216) цветов. Методы сжатия изображений не используются. Средний размер отсканированного документа составляет (18) Мбайт. В целях экономии было решено перейти на разрешение (300) ppi и цветовую систему, содержащую (65 536) цветов. Сколько Мбайт будет составлять средний размер документа, отсканированного с изменёнными параметрами?

Решение

Заметим, что

16777216=224

, значит,

i1=24

 бита.

 65536=216

, значит,

i2=16

 бит.

Воспользуемся формулой

I=k⋅i⋅ppi2

.

I1=24⋅k⋅6002;I2=16⋅k⋅3002;I1I2=24⋅k⋅600216⋅k⋅3002=6;18I2=6;I2=186=3.

Ответ: (3) Мбайта.

Определение объёма памяти, необходимого для хранения звуковой информации

Звук — это распространяющиеся в воздухе, воде или другой среде волны с непрерывно меняющейся амплитудой и частотой.
Чтобы компьютер мог обрабатывать звук, непрерывный звуковой сигнал должен быть преобразован в цифровую дискретную форму. Для этого его подвергают временной дискретизации и квантованию: параметры звукового сигнала измеряются не непрерывно, а через определённые промежутки времени (временная дискретизация); результаты измерений записываются в цифровом виде с ограниченной точностью (квантование).
Сущность временной дискретизации заключается в том, что через равные промежутки времени мы измеряем уровень аналогового сигнала. Количество таких измерений за одну секунду называется частотой дискретизации.

Частота дискретизации ((H)) — это количество измерений громкости звука за одну секунду.

Частота дискретизации измеряется в герцах (Гц) и килогерцах (кГц). (1) кГц (=) (1000) Гц. Частота дискретизации, равная (100) Гц, означает, что за одну секунду проводилось (100) измерений громкости звука.
Качество звукозаписи зависит не только от частоты дискретизации, но также и от глубины кодирования звука.

Глубина кодирования звука или разрешение ((i)) — это количество информации, которое необходимо для кодирования дискретных уровней громкости цифрового звука.

В результате измерений звукового сигнала будет получено некоторое значение громкости, при этом все результаты измерений будут лежать в некотором диапазоне — количество уровней дискретизации.

Обозначим за (N) количество уровней дискретизации, тогда глубину кодирования можно найти по формуле:

N=2i

.

Для решения задач на нахождение объёма памяти, необходимого для хранения звуковой информации, воспользуемся формулой:

I=H⋅i⋅t⋅k

, где
(I) — информационный объём звукового файла  (бит);
(H) — частота дискретизации (Гц);
(i) — глубина кодирования информации (бит);
(k) — количество каналов (моно — (1) канал, стерео — (2) канала, квадро — (4) канала).

Пример:

для распределения птиц по категориям обучают нейросеть. Для этого загружают звуки, издаваемые птицами. Каждый файл записан в формате монозвукозаписи с частотой дискретизации (128) Гц. При записи используется (64) уровня дискретизации. Запись длится (6) минут (24) секунды. Определи размер загружаемого файла в килобайтах.

Дано

(k=1);

(H=128) Гц;

(N=64);

(t=384) секунды.

Найти: (I) (Кбайт).

Решение

Воспользуемся формулой

N=2i

, (i=6) бит.

Подставим числовые значения в формулу

I=H⋅i⋅t⋅k

 и переведём биты в килобайты:

Ответ: (36) килобайт.

Любой файл может быть передан по каналу связи, тогда объём переданной информации вычисляется по формуле:

I=V⋅t

, где
(I) — объём информации (бит);
(V) — пропускная способность канала связи (бит/секунду);
(t) — время передачи (секунды).

Пример:

в дельте Волги орнитологи оцифровывают звуки птиц и записывают их в виде файлов без использования сжатия данных. Получившийся файл передают в Астраханский биосферный заповедник по каналу связи за (56) секунд. Затем тот же файл оцифровывают повторно с разрешением в (8) раз ниже и частотой дискретизации в (3) раза выше, чем в первый раз. Сжатие данных не производится. Полученный файл передают в Кавказский природный заповедник; пропускная способность канала связи с Кавказским заповедником в (2) раза ниже, чем канала связи с Астраханским заповедником. Сколько секунд длилась передача файла в Кавказский заповедник?

Решение

Воспользуемся формулой

I=H⋅i⋅t⋅k

.

I1=k⋅i⋅t⋅H;I2=k⋅i8⋅t⋅3⋅H;I2I1=38.По условиюV2=V12.

Выразим (V) из формулы

I=V⋅t

, получим

V=It

, учтём, что

t1=56 секунд.Тогда I2t2=I156⋅2;t2=56⋅2⋅I2I1=56⋅2⋅38=42.

Ответ: (42) секунды.

Обрати внимание!

1 Мбайт=220 байт=223 бит.1 Кбайт=210 байт=213 бит.

Расчёт иформационного объема аудио-файла

Расчёт
информационного объёма аудио-файла
можно производить по следующей формуле
(4):

Vaudio
=
D * T
* nканалов
*
i / kсжатия
, (4)

где
V

это информационный объём аудио-файла,
измеряющийся в байтах, килобайтах,
мегабайтах; D

частота дискретизации (количество точек
в секунду для описания аудио-записи); T

время аудио-файла; nканалов

число каналов аудио-файла (стерео — 2
канала, система 5.1 — 6 каналов); i

глубина звука, которая измеряется в
битах, kсжатия
– коэффициент сжатия данных, без сжатия
он равен 1.

Расчёт иформационного объема анимации

Расчёт
информационного объёма анимации можно
производить по следующей формуле (5):

Vanim
=
K * T
* v
* i / kсжатия
, (5)

где
Vanim

это информационный объём растрового
графического изображения, измеряющийся
в байтах, килобайтах, мегабайтах; K

количество пикселей (точек) в изображении,
определяющееся разрешающей способностью
носителя информации (экрана монитора,
сканера, принтера); T

время анимации; v


частота смены кадров в секунду; i

глубина цвета, которая измеряется в
битах на один пиксель, kсжатия
– коэффициент сжатия данных, без сжатия
он равен 1.

Расчёт иформационного объема видео-файла

Расчёт
информационного объёма видео-файла
можно производить по следующей формуле
(5):

Vvideo
=
Vanim
+ Vaudio
+ Vsub

, (5)

где
Vvideo

это информационный объём видео-файла,
измеряющийся в байтах, килобайтах,
мегабайтах; Vanim
– это информационный объём анимации
(видео-ряда), измеряющийся в байтах,
килобайтах, мегабайтах; Vaudio
– это информационный объём аудео-файла,
измеряющийся в байтах, килобайтах,
мегабайтах (в видео-ролике могут
содержатся файлы аудио-дорожек для
нескольких языков, тогда умножаем объем
аудио-файла на количество языковых
дорожек); Vsub
– это информационный объём файла
субтитров, измеряющийся в байтах,
килобайтах, мегабайтах (если несколько
файлов субтитров, то надо сложить размеры
каждого файла).

Практическая часть

1.
Рассчитать каков будет минимальный
размер сообщения «Гой ты Русь моя
Родная!»?

2.
Рассчитать размер видео-файла с указанными
параметрами (по вариантам).

Параметры / Варианты

1

2

3

4

5

6

7

8

9

10

Частота кадров

24

50

24

50

24

50

24

50

24

50

Размер изображения

1920х720

2560х1920

1024х720

1920х720

2560х1920

1920х720

2560х1920

1920х720

1024х720

1024х720

Глубина цвета, бит

32

32

16

32

32

32

32

32

16

32

Коэффициент сжатия изображения

1

2

1

4

1

3

1

1

2

1

Аудио-дорожка

стерео

5.1

стерео

стерео

5.1

стерео

8.1

стерео

моно

стерео

Число языков

2

2

2

1

1

1

4

3

1

2

Глубина звука, бит

16

24

16

16

24

16

16

16

16

16

Частота дискретизации
аудио-потока, Гц

44 100

44 100

44 100

44 100

44 100

44 100

44 100

44 100

44 100

44 100

Время, ч

2

2,2

3

1,5

1,7

1,3

1,6

1,7

2,5

1,9

Коэффициент сжатия
аудио-дорожки

1

1

2

1

2

1

2

1

2

1

Число субтитров, шт.

2

4

2

3

2

2

1

3

1

3

Кодировка текста субтитров

Unicode

Unicode

Unicode

Unicode

Unicode

Unicode

Unicode

Unicode

ASCII

Unicode

Число символов в файле
субтитров, шт.

24000

12000

32000

23000

24000

25000

27000

22000

21000

33300

73000

24000

31000

32000

43000

27000

21000

31000

43000

12000

31000

27000

34000

Коэффициент сжатия текста

1

2

1

13

4

1

2

1

3

1

9

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

    06.03.20161.42 Mб33ОТИ практическая 5.docx

  • #

Добавить комментарий