Как найти интеграл икс квадрат

        И снова здравствуйте, друзья!

        Как я и обещал, с этого урока мы начнём бороздить бескрайние просторы поэтического мира интегралов и приступим к решению самых разнообразных (порой, очень красивых) примеров. 🙂

        Чтобы грамотно ориентироваться во всём интегральном многообразии и не заблудиться, нам потребуется всего четыре вещи:

        1) Таблица интегралов. Все подробности о ней — в предыдущем материале. Как именно с ней работать — в этом.

        2) Свойства линейности неопределённого интеграла (интеграл суммы/разности и произведения на константу).

        3) Таблица производных и правила дифференцирования.

        Да-да, не удивляйтесь! Без умения считать производные, в интегрировании ловить совершенно нечего. Согласитесь, бессмысленно, например, учиться делению, не умея умножать. 🙂 И очень скоро вы увидите, что без отточенных навыков дифференцирования не посчитать ни один сколь-нибудь серьёзный интеграл, выходящий за рамки элементарных табличных.

        4) Методы интегрирования.

        Их очень и очень много. Для конкретного класса функций — свой. Но среди всего их богатого разнообразия выделяется три базовых:

         метод подведения функции под знак дифференциала,

          метод замены переменной,

         метод интегрирования по частям.

        О каждом из них — в отдельных уроках.

        А теперь, наконец, приступим к решению долгожданных примеров. Чтобы не скакать из раздела в раздел, я продублирую ещё разок весь джентльменский набор, который пригодится для нашей дальнейшей работы. Пусть весь инструментарий будет под рукой.)

        Прежде всего, это таблица интегралов:

        Кроме того, нам понадобятся базовые свойства неопределённого интеграла (свойства линейности):

       Что ж, необходимая снаряга подготовлена. Пора в путь! 🙂

Прямое применение таблицы

        В данном параграфе будут рассматриваться самые простые и безобидные примеры. Алгоритм здесь прост до ужаса:

        1) Смотрим в таблицу и ищем нужную формулу (формулы);

        2) Применяем свойства линейности (где требуется);

        3) Осуществляем превращение по табличным формулам и прибавляем в конце константу С (не забываем!);

        4) Записываем ответ.

Итак, поехали.)

Пример 1

        Такой функции в нашей таблице нет. Зато есть интеграл от степенной функции в общем виде (вторая группа). В нашем случае n = 5. Вот и подставляем пятёрку вместо n и аккуратно считаем результат:

        Готово. 🙂

        Разумеется, этот пример совсем примитивный. Чисто для знакомства.) Зато умение интегрировать степени позволяет легко считать интегралы от любых многочленов и прочих степенных конструкций.

        Пример 2

        Под интегралом сумма. Ну и ладно. У нас на этот случай есть свойства линейности. 🙂 Разбиваем наш интеграл на три отдельных, выносим все константы за знаки интегралов и считаем каждый по таблице (группа 1-2):

           

           

        Прошу обратить внимание: константа С появляется именно в тот момент, когда исчезают ВСЕ знаки интеграла! Конечно, после этого приходится её постоянно таскать за собой. А что делать…

        Разумеется, так подробно расписывать обычно не требуется. Это чисто для понимания сделано. Чтобы суть уловить.)  

        Например, очень скоро, особо не раздумывая, вы в уме будете давать ответ к монстрам типа:

        Многочлены — самые халявные функции в интегралах.) А уж в диффурах, в физике, в сопромате и прочих серьёзных дисциплинах интегрировать многочлены придётся постоянно. Привыкайте.)

        Следующий примерчик будет чуть покруче.

        Пример 3

        Надеюсь, всем понятно, что наше подынтегральное выражение можно расписать вот так:

           

        Подынтегральная функция отдельно, а множитель dx (значок дифференциала) — отдельно.

        Замечание: в этом уроке множитель dx в процессе интегрирования пока никак не участвует, и мы на него пока что мысленно “забиваем”. 🙂 Работаем только с подынтегральной функцией. Но забывать про него не будем. Совсем скоро, буквально на следующем уроке, посвящённом подведению функции под знак дифференциала, мы про него вспомним. И ощутим всю важность и мощь этого значка в полную силу!)

        А пока наш взор обращён на подынтегральную функцию 

           

        Не очень похоже на степенную функцию, но это она. 🙂 Если вспомнить школьные свойства корней и степеней, то вполне можно преобразовать нашу функцию:

           

        А икс в степени минус две трети — это уже табличная функция! Вторая группа, n=-2/3. А константа 1/2 нам не помеха. Выносим её наружу, за знак интеграла, и прямо по формуле считаем:

           

        В этом примере нам помогли элементарные свойства степеней. И так надо делать в большинстве случаев, когда под интегралом стоят одинокие корни или дроби. Посему пара практических советов при интегрировании степенных конструкций:

        Заменяем дроби степенями с отрицательными показателями;

        Заменяем корни степенями с дробными показателями.

        А вот в окончательном ответе переход от степеней обратно к дробям и корням — дело вкуса. Лично я перехожу обратно — так эстетичнее, что ли.

        И, пожалуйста, аккуратно считаем все дроби! Внимательно следим за знаками и за тем, что куда идёт — что в числитель, а что знаменатель.

        Что? Надоели уже скучные степенные функции? Ну ладно! Берём быка за рога!

        Пример 4

        Если сейчас привести всё под интегралом к общему знаменателю, то можно застрять на этом примере всерьёз и надолго.) Но, присмотревшись повнимательнее к подынтегральной функции, можно заметить, что наша разность состоит из двух табличных функций. Так что не будем извращаться, а вместо этого разложим наш интеграл на два:

           

        Первый интеграл — обычная степенная функция, (2-я группа, n = -1): 1/x = x-1.

        Традиционная наша формула для первообразной степенной функции

           

        здесь не работает, но зато у нас для n = -1 есть достойная альтернатива — формула с натуральным логарифмом. Вот эта:

           

        Тогда, согласно этой формуле, первая дробь проинтегрируется так:

        

        А вторая дробь — тоже табличная функция! Узнали? Да! Это седьмая формула с “высоким” логарифмом:

       

        Константа “а” в этой формуле равна двойке: a=2.

           

        Важное замечание: Обратите внимание, константу С при промежуточном интегрировании я нигде не приписываю! Почему? Потому что она пойдёт в окончательный ответ всего примера. Этого вполне достаточно.) Строго говоря, константу надо писать после каждого отдельного интегрирования — хоть промежуточного, хоть окончательного: так уж неопределённый интеграл требует…) 

        Например, после первого интегрирования я должен был бы написать:

        

        После второго интегрирования:

        

        Но вся фишка в том, что сумма/разность произвольных констант — это тоже некоторая константа! В нашем случае для окончательного ответа нам надо из первого интеграла вычесть второй. Тогда у нас получится разность двух промежуточных констант:

        С12 

        И мы имеем полное право эту самую разность констант заменить одной константой! И просто переобозначить её привычной нам буквой “С”. Вот так:

        С12 = С

        Вот и приписываем эту самую константу С к окончательному результату и получаем ответ:

        Да-да, дроби они такие! Многоэтажные логарифмы при их интегрировании — самое обычное дело. Тоже привыкаем.)

        Запоминаем:

        При промежуточном интегрировании нескольких слагаемых константу С после каждого из них можно не писать. Достаточно включить её в окончательный ответ всего примера. В самом конце.

        Следующий пример тоже с дробью. Для разминки.)

        Пример 5

        В таблице, понятное дело, такой функции нет. Но зато есть похожая функция: 

           

        Это самая последняя, восьмая формула. С арктангенсом. 🙂

        Вот эта:

        И нам сам бог велел подстроить наш интеграл под эту формулу! Но есть одна проблемка: в табличной формуле перед х2 никакого коэффициента нету, а у нас – девятка. Не можем пока что напрямую воспользоваться формулой. Но в нашем случае проблема вполне решаема. Вынесем эту девятку сначала за скобки, а потом вообще уведём за пределы нашей дроби.)

           

        А новая дробь – уже нужная нам табличная функция под номером 8! Здесь а2=4/9. Или а=2/3.

        Всё. Выносим 1/9 за знак интеграла и пользуемся восьмой формулой:

           

        Вот такой ответ. Этот пример, с коэффициентом перед х2, я специально так подобрал. Чтобы ясно было, что делать в таких случаях. 🙂 Если перед х2 никакого коэффициента нет, то такие дроби тоже будут в уме интегрироваться.

        Например:

        Здесь а2 = 5, поэтому само “а” будет “корень из пяти”. В общем, вы поняли.)

        А теперь немного видоизменим нашу функцию: напишем знаменатель под корнем.) Вот такой интеграл теперь будем брать:

        Пример 6

        В знаменателе появился корень. Естественно, изменилась и соответствующая формула для интегрирования, да.) Опять лезем в таблицу и ищем подходящую. Корни у нас есть в формулах 5-й и 6-й групп. Но в шестой группе под корнями только разность. А у нас — сумма. Значит, работаем по пятой формуле, с “длинным” логарифмом:

        Число А у нас — пятёрка. Подставляем в формулу и получаем:

        И все дела. Это ответ. Да-да, так просто!)

        Если закрадываются сомнения, то всегда можно (и нужно) проверить результат обратным дифференцированием. Проверим? А то вдруг, лажа какая-нибудь?

        Дифференцируем (на модуль внимания не обращаем и воспринимаем его как обычные скобки):

        Всё честно. 🙂

        Кстати, если в подынтегральной функции под корнем поменять знак с плюса на минус, то формула для интегрирования останется той же самой. Не случайно в таблице под корнем стоит плюс/минус. 🙂

        Например:

        Важно! В случае минуса, на первом месте под корнем должно стоять именно х2, а на втором — число. Если же под корнем всё наоборот, то и соответствующая табличная формула будет уже другая!

        Пример 7

        Под корнем снова минус, но х2 с пятёркой поменялись местами. Похоже, но не одно и то же… На этот случай в нашей таблице тоже есть формулка.) Формула номер шесть, с ней мы ещё не работали:

        А вот теперь — аккуратно. В предыдущем примере у нас пятёрка выступала в роли числа A. Здесь же пятёрка будет выступать уже в роли числа а2!

        Поэтому для правильного применения формулы не забываем извлечь корень из пятёрки:  

           

        И теперь пример решается в одно действие. 🙂

        Вот так вот! Всего лишь поменялись местами слагаемые под корнем, а результат интегрирования изменился существенно! Логарифм и арксинус… Так что, пожалуйста, не путайте эти две формулы! Хотя подынтегральные функции и очень похожи…

        Бонус:

        В табличных формулах 7-8 перед логарифмом и арктангенсом присутствуют коэффициенты 1/(2а) и 1/а соответственно. И в тревожной боевой обстановке при записи этих формул даже закалённые учёбой ботаны частенько путаются, где просто 1/а, а где 1/(2а). Вот вам простой приёмчик для запоминания.

        В формуле №7       

           

        в знаменателе подынтегральной функции стоит разность квадратов х2 — а2. Которая, согласно боянной школьной формуле, раскладывается как (х-а)(х+а). На два множителя. Ключевое слово — два. И эти две скобки при интегрировании идут в логарифм: с минусом вверх, с плюсом — вниз.) И коэффициент перед логарифмом тоже 1/(2а).

        А вот в формуле №8   

           

        в знаменателе дроби стоит сумма квадратов. Но сумма квадратов x2+a2 неразложима на более простые множители. Поэтому, как ни крути, в знаменателе так и останется один множитель. И коэффициент перед арктангенсом тоже будет 1/а.

        А теперь для разнообразия проинтегрируем что-нибудь из тригонометрии.)

        Пример 8

         Пример простой. Настолько простой, что народ, даже не глядя в таблицу, тут же радостно ответ пишет и… приехали. 🙂

        Следим за знаками! Это самая распространённая ошибка при интегрировании синусов/косинусов. Не путаем с производными!

        Да, (sin x)’ = cos x и (cos x)’ = –sin x.

        Но!

        

        Поскольку производные народ обычно худо-бедно помнит, то, чтобы не путаться в знаках, приём для запоминания интегралов тут очень простой:

        Интеграл от синуса/косинуса = минус производная от тех же синуса/косинуса.

        Например, мы ещё со школы знаем, что производная синуса равна косинусу:

        (sin x)’ = cos x.

        Тогда для интеграла от того же синуса будет справедливо:

           

        И всё.) С косинусом то же самое.

        Исправляем теперь наш пример:

Предварительные элементарные преобразования подынтегральной функции

        До этого момента были самые простенькие примеры. Чтобы прочувствовать, как работает таблица и не ошибаться в выборе формулы.)

        Конечно, мы делали кое-какие простенькие преобразования — множители выносили, на слагаемые разбивали. Но ответ всё равно так или иначе лежал на поверхности.) Однако… Если бы вычисление интегралов ограничивалось только прямым применением таблицы, то вокруг была бы сплошная халява и жить стало бы скучно.)

        А теперь разберём примеры посолиднее. Такие, где впрямую, вроде бы, ничего и не решается. Но стоит вспомнить буквально пару-тройку элементарных школьных формул или преобразований, как дорога к ответу становится простой и понятной. 🙂

        Применение формул тригонометрии

        Продолжим развлекаться с тригонометрией.

        Пример 9

        Такой функции в таблице и близко нет. Зато в школьной тригонометрии есть такое малоизвестное тождество:

           

        Выражаем теперь из него нужный нам квадрат тангенса и вставляем под интеграл:

           

        Зачем это сделано? А затем, что после такого преобразования наш интеграл сведётся к двум табличным и будет браться в уме!

        Смотрите:

        А теперь проанализируем наши действия. На первый взгляд, вроде бы, всё проще простого. Но давайте задумаемся вот над чем. Если бы перед нами стояла задача продифференцировать ту же самую функцию, то мы бы точно знали, что именно надо делать — применять формулу производной сложной функции:

        И всё. Простая и безотказная технология. Работает всегда и гарантированно приводит к успеху.

        А что же с интегралом? А вот тут нам пришлось порыться в тригонометрии, откопать какую-то малопонятную формулу в надежде, что она нам как-то поможет выкрутиться и свести интеграл к табличному. И не факт, что помогла бы она нам, совсем не факт… Именно поэтому интегрирование — более творческий процесс, нежели дифференцирование. Искусство, я бы даже сказал. 🙂 И это ещё не самый сложный пример. То ли ещё будет!

        Пример 10

        Что, внушает? Таблица интегралов пока бессильна, да. Но, если снова заглянуть в нашу сокровищницу тригонометрических формул, то можно откопать весьма и весьма полезную формулу косинуса двойного угла:

        Вот и применяем эту формулу к нашей подынтегральной функции. В роли “альфа” у нас х/2.

        Получаем:

        Эффект потрясающий, правда?

        Эти два примера наглядно показывают, что предварительное преобразование функции перед интегрированием вполне допускается и порой колоссально облегчает жизнь! И в интегрировании эта процедура (преобразование подынтегральной функции) на порядок более оправдана, чем при дифференцировании. В дальнейшем всё увидите.)

        Разберём ещё парочку типовых преобразований.

        Формулы сокращённого умножения, раскрытие скобок, приведение подобных и метод почленного деления.

        Обычные банальные школьные преобразования. Но порой только они и спасают, да.)

        Пример 11

        Если бы мы считали производную, то никаких проблем: формула производной произведения и — вперёд. Но стандартной формулы для интеграла от произведения не существует. И единственный выход здесь — раскрыть все скобки, чтобы под интегралом получился многочлен. А уж многочлен мы как-нибудь проинтегрируем.) Но скобки раскрывать тоже будем с умом: формулы сокращённого умножения — штука мощная!

        (x2 — 1)2(x2 + 1)2 = ((x2 — 1)(x2 + 1))2 = ((x2)2 — 12)2 = (x4 — 1)2 = x8 — 2x4 + 1

           А теперь считаем:

И все дела.)

        Пример 12

        Опять же, стандартной формулы для интеграла от дроби не существует. Однако в знаменателе подынтегральной дроби стоит одинокий икс. Это в корне меняет ситуацию.) Поделим почленно числитель на знаменатель, сведя нашу жуткую дробь к безобидной сумме табличных степенных функций:

        Особо комментировать процедуру интегрирования степеней не буду: не маленькие уже.)

        Интегрируем сумму степенных функций. По табличке.)

        Вот и все дела.) Кстати, если бы в знаменателе сидел не икс, а, скажем, х+1, вот так:

        то этот фокус с почленным делением уже так просто не прошёл бы. Именно из-за наличия корня в числителе и единицы в знаменателе. Пришлось бы замену вводить и избавляться от корня. Но такие интегралы гораздо сложнее. О них — в других уроках.

        Видите! Стоит только чуть-чуть видоизменить функцию — тут же меняется и подход к её интегрированию. Порой кардинально!) Нету чёткой стандартной схемы. К каждой функции — свой подход. Иногда даже уникальный.)

        В некоторых случаях преобразования в дробях ещё более хитрые.

        Пример 13

        А здесь как можно свести интеграл к набору табличных? Здесь можно ловко извернуться добавлением и вычитанием выражения x2 в числителе дроби с последующим почленным делением. Очень искусный приём в интегралах! Смотрите мастер-класс! 🙂

        И теперь, если заменить исходную дробь на разность двух дробей, то наш интеграл распадается на два табличных — уже знакомую нам степенную функцию и арктангенс (формула 8):

        Ну, что тут можно сказать? Вау!

        Этот трюк с добавлением/вычитанием слагаемых в числителе — очень популярен в интегрировании рациональных дробей. Очень! Рекомендую взять на заметку.

        Пример 14

        Здесь тоже рулит эта же технология. Только добавлять/вычитать надо единичку, чтобы из числителя выделить выражение, стоящее в знаменателе:

        Вообще говоря, рациональные дроби (с многочленами в числителе и знаменателе) — отдельная очень обширная тема. Дело всё в том, что рациональные дроби – один из очень немногих классов функций, для которых универсальный способ интегрирования существует. Метод разложения на простейшие дроби вкупе с методом неопределённых коэффициентов. Но способ этот очень трудоёмкий и обычно применяется как тяжёлая артиллерия. Ему будет посвящён не один урок. А пока что тренируемся и набиваем руку на простых функциях.

        Подытожим сегодняшний урок.

        Сегодня мы подробно рассмотрели, как именно пользоваться таблицей, со всеми нюансами, разобрали множество примеров (и не самых тривиальных) и познакомились с простейшими приёмами сведения интегралов к табличным. И так мы теперь будем поступать всегда. Какая бы страшная функция ни стояла под интегралом, с помощью самых разнообразных преобразований мы будем добиваться того, чтобы, рано или поздно, наш интеграл, так или иначе, свёлся к набору табличных.

        Несколько практических советов.

        1) Если под интегралом дробь, в числителе которой сумма степеней (корней), а в знаменателе – одинокая степень икса, то используем почленное деление числителя на знаменатель. Заменяем корни степенями с дробными показателями и работаем по формулам 1-2.         

        2) В тригонометрических конструкциях в первую очередь пробуем базовые формулы тригонометрии — двойного/тройного угла, основные тригонометрические тождества: 

        

        Может очень крупно повезти. А может и нет…

        3) Где нужно (особенно в многочленах и дробях), применяем формулы сокращённого умножения:

(a+b)2 = a2+2ab+b2

(a-b)2 = a2-2ab+b2

(a-b)(a+b) = a2-b2 

        и так далее…

        4) При интегрировании дробей с многочленами пробуем искусственно выделить в числителе выражение(я), стоящее(щие) в знаменателе. Очень часто дробь упрощается и интеграл сводится к комбинации табличных.

        Ну что, друзья? Я вижу, интегралы вам начинают нравиться. 🙂 Тогда набиваем руку и решаем примеры самостоятельно.) Сегодняшнего материала вполне достаточно, чтобы успешно с ними справиться.

           

        Что? Не знаете, как интегрировать арксинус/арккосинус? Да! Мы этого ещё не проходили.) Но здесь их напрямую интегрировать и не нужно. И да поможет вам школьный курс!)

        Ответы (в беспорядке):

        

        Для лучших результатов настоятельно рекомендую приобрести сборник задач по матану Г.Н. Бермана. Классная штука!

        А у меня на сегодня всё. Успехов!

Первообразная (неопределенный интеграл)

Ранее мы по заданной функции, руководствуясь различными формулами и правилами, находили ее производную. Производная имеет
многочисленные применения: это скорость движения (или, обобщая, скорость протекания любого процесса); угловой коэффициент касательной
к графику функции; с помощью производной можно исследовать функцию на монотонность и экстремумы; она помогает решать задачи на
оптимизацию.

Но наряду с задачей о нахождении скорости по известному закону движения встречается и обратная задача — задача о восстановлении
закона движения по известной скорости. Рассмотрим одну из таких задач.

Пример 1. По прямой движется материальная точка, скорость ее движения в момент времени t задается формулой v=gt. Найти
закон движения.
Решение. Пусть s = s(t) — искомый закон движения. Известно, что s'(t) = v(t). Значит, для решения задачи нужно подобрать функцию
s = s(t), производная которой равна gt. Нетрудно догадаться, что ( s(t) = frac{gt^2}{2} ). В самом деле
( s'(t) = left( frac{gt^2}{2} right)’ = frac{g}{2}(t^2)’ = frac{g}{2} cdot 2t = gt )
Ответ: ( s(t) = frac{gt^2}{2} )

Сразу заметим, что пример решен верно, но неполно. Мы получили ( s(t) = frac{gt^2}{2} ). На самом деле задача имеет бесконечно
много решений: любая функция вида ( s(t) = frac{gt^2}{2} + C ), где C — произвольная константа, может служить законом движения,
поскольку ( left( frac{gt^2}{2} +C right)’ = gt )

Чтобы задача стала более определенной, нам надо было зафиксировать исходную ситуацию: указать координату движущейся точки в
какой-либо момент времени, например при t = 0. Если, скажем, s(0) = s0, то из равенства s(t) = (gt2)/2 + C
получаем: s(0) = 0 + С, т. е. C = s0. Теперь закон движения определен однозначно: s(t) = (gt2)/2 + s0.

В математике взаимно обратным операциям присваивают разные названия, придумывают специальные обозначения, например:
возведение в квадрат (х2) и извлечение квадратного корня ( ( sqrt{x} ) ), синус (sin x) и арксинус (arcsin x) и т. д.
Процесс нахождения производной по заданной функции называют дифференцированием, а обратную операцию, т. е. процесс нахождения
функции по заданной производной, — интегрированием.

Сам термин «производная» можно обосновать «по-житейски»: функция у = f(x) «производит на свет» новую функцию у’ = f'(x).
Функция у = f(x) выступает как бы в качестве «родителя», но математики, естественно, не называют ее «родителем» или «производителем»,
они говорят, что это, по отношению к функции у’ = f'(x), первичный образ, или первообразная.

Определение. Функцию y = F(x) называют первообразной для функции y = f(x) на промежутке X, если для ( x in X )
выполняется равенство F'(x) = f(x)

На практике промежуток X обычно не указывают, но подразумевают (в качестве естественной области определения функции).

Приведем примеры.
1) Функция у = х2 является первообразной для функции у = 2х, поскольку для любого х справедливо равенство
(x2)’ = 2х
2) Функция у = х3 является первообразной для функции у = 3х2, поскольку для любого х справедливо равенство
(x3)’ = 3х2
3) Функция у = sin(x) является первообразной для функции y = cos(x), поскольку для любого x справедливо равенство
(sin(x))’ = cos(x)

При нахождении первообразных, как и производных, используются не только формулы, но и некоторые правила. Они непосредственно
связаны с соответствующими правилами вычисления производных.

Мы знаем, что производная суммы равна сумме производных. Это правило порождает соответствующее правило нахождения первообразных.

Правило 1. Первообразная суммы равна сумме первообразных.

Мы знаем, что постоянный множитель можно вынести за знак производной. Это правило порождает соответствующее правило нахождения первообразных.

Правило 2. Если F(x) — первообразная для f(x), то kF(x) — первообразная для kf(x).

Теорема 1. Если y = F(x) — первообразная для функции y = f(x), то первообразной для функции у = f(kx + m) служит функция
( y=frac{1}{k}F(kx+m) )

Теорема 2. Если y = F(x) — первообразная для функции y = f(x) на промежутке X, то у функции у = f(x) бесконечно много
первообразных, и все они имеют вид y = F(x) + C.

Методы интегрирования

Метод замены переменной (метод подстановки)

Метод интегрирования подстановкой заключается во введении новой переменной интегрирования (то есть подстановки). При этом
заданный интеграл приводится к новому интегралу, который является табличным или к нему сводящимся. Общих методов подбора
подстановок не существует. Умение правильно определить подстановку приобретается практикой.
Пусть требуется вычислить интеграл ( textstyle int F(x)dx ). Сделаем подстановку ( x= varphi(t) ) где
( varphi(t) ) — функция, имеющая непрерывную производную.
Тогда ( dx = varphi ‘ (t) cdot dt ) и на основании свойства инвариантности формулы интегрирования неопределенного интеграла
получаем формулу интегрирования подстановкой:
( int F(x) dx = int F(varphi(t)) cdot varphi ‘ (t) dt )

Интегрирование выражений вида ( textstyle int sin^n x cos^m x dx )

Если m нечётное, m > 0, то удобнее сделать подстановку sin x = t.
Если n нечётное, n > 0, то удобнее сделать подстановку cos x = t.
Если n и m чётные, то удобнее сделать подстановку tg x = t.

Интегрирование по частям

Интегрирование по частям — применение следующей формулы для интегрирования:
( textstyle int u cdot dv = u cdot v – int v cdot du )
или:
( textstyle int u cdot v’ cdot dx = u cdot v – int v cdot u’ cdot dx )

Таблица неопределённых интегралов (первообразных) некоторых функций

$$ int 0 cdot dx = C $$

$$ int 1 cdot dx = x+C $$

$$ int x^n dx = frac{x^{n+1}}{n+1} +C ;; (n neq -1) $$

$$ int frac{1}{x} dx = ln |x| +C $$

$$ int e^x dx = e^x +C $$

$$ int a^x dx = frac{a^x}{ln a} +C ;; (a>0, ;; a neq 1) $$

$$ int cos x dx = sin x +C $$

$$ int sin x dx = -cos x +C $$

$$ int frac{dx}{cos^2 x} = text{tg} x +C $$

$$ int frac{dx}{sin^2 x} = -text{ctg} x +C $$

$$ int frac{dx}{sqrt{1-x^2}} = text{arcsin} x +C $$

$$ int frac{dx}{1+x^2} = text{arctg} x +C $$

$$ int text{ch} x dx = text{sh} x +C $$

$$ int text{sh} x dx = text{ch} x +C $$

Калькулятор интегралов

Интеграл от x^2 по x:
x^3/3  Нарисовать график     Редактировать LaTeX выражение     Прямая ссылка на страницу

Калькулятор Интегралов вычисляет неопределенный интеграл (первообразную) от функции по заданной переменной с использованием аналитического интегрирования. Также он позволяет построить график функции и её интеграла.

Показать правила синтаксиса

 

Калькулятор интегралов, примеры

Больше примеров неопределенных интегралов Математические настройки для вашего сайта Выберите язык:
Deutsch
English
Español
Français
Italiano
Nederlands
Polski
Português
Русский
中文
日本語
한국어 Империя чисел – мощные математические инструменты для каждого | Связь с веб-мастером
Используя этот сайт, вы подтверждаете свое согласие с Условиями и соглашениями и Политикой приватности.

© 2023
numberempire.com
Все права защищены
   

Неопределенный интеграл онлайн

В школе говорят, интеграл – это значок ∫, а вычисление интеграла, то есть процесс интегрирования, – это операция обратная дифференцированию. Согласитесь скучно!

Разумеется, у школьников возникает резонный вопрос: а нафиг он нам нужен?

Но если бы учитель уделил несколько минут на вводную про интегралы, такой вопрос всё равно бы возник, но уже не у всех!

Вводная к интегралам

В далеком 17 веке были на тот момент нерешенные насущные проблемы, а именно изучались закономерности движения тел. Много трудов было проделано Ньютоном, чтобы понять, как вычисляется скорость тела в любой момент времени. Но чем дальше, тем оказалось интереснее.

Допустим, мы знаем закон изменения скорости тела – это некая функция. Тогда площадь фигуры, ограниченная этой кривой и осью координат, будет равна пройденному пути. Вычисляя неопределенный интеграл от функции, мы как раз находим общий закон движения.

В этом заключается один из физических смыслов интеграла.

Как вы уже поняли, геометрический смысл интеграла – это площадь криволинейной трапеции. Соответственно с помощью кратного интеграла вычисляется объем тела.

Решение интегралов

Лейбниц и Ньютон заложили основы дифференциального и интегрального исчисления. В последующие десятилетия было много великих открытий, связанных с вычислением интегралов.

Поскольку подынтегральная функция может принимать различные виды, естественно это привело к разделению интегралов на свои типы, а главное были отрыты многочисленные методы решения интегралов.

Но не все так безоблачно. На практике часто происходит так, что в аналитическом виде вычислить интегралы невозможно, то есть используя какой-либо известный метод. Конечно, получить аналитическое решение это здорово, но, с другой стороны, главное ведь вычислить точное значение интеграла. В этом случае интегралы решаются численными методами. Благодаря компьютерным мощностям, такие задачи не представляют особых сложностей для современного человека.

Калькулятор решения интегралов

Теперь самое интересное. Еще каких-то 15 лет назад школьник и помыслить не мог, что под рукой будут такие калькуляторы интегралов, как, например, наш. Это безусловно облегчает процесс обучения. Можно проверять свои решения, находить допущенные ошибки и лучше усваивать образовательный курс.

И тут в который раз повторяем, калькулятор решения интегралов – это только ваш безотказный помощник, к которому можете обратиться в любое время. Но никак не подмена вашей головы. Старайтесь самостоятельно решать задачи, только так можно развивать мышление, а компьютер будет в помощь.

2

Интеграл Эйлера — Пуассона. Подробно о способах вычисления / Хабр

В статье подробно, вплоть до самых мелочей, рассмотрены три способа взятия интеграла Эйлера-Пуассона. В одном из способов выводится вспомогательная формула редукции. Для нахождения некоторых сложных интегралов можно использовать формулы редукции, которые позволяют понизить степень подынтегрального выражения и вычислить соответствующие интегралы за конечное число шагов.

Данный интеграл берется от гауссовой функции:
Здесь есть очень интересный математический способ. Чтобы найти исходный интеграл, сначала ищут квадрат этого интеграла, а потом от результата берут корень. Почему? Да потому что так гораздо проще и безболезненно можно перейти в полярный координаты. Поэтому, рассмотрим квадрат Гауссового интеграла:

Мы видим, что у нас получается двойной интеграл от некоторой функции . В конце этого поверхностного интеграла стоит элемент площади в декартовой системе координат .

Теперь давайте переходить в полярную систему координат:

Тут нужно заметить, что r может изменяться в пределах от 0 до +∞, т.к. x изменялось в таких же пределах. А вот угол φ изменяется от 0 до π/2, что описывают область интегрирования в первой четверти декартовой системы координат. Подставляя в исходный, получим:

В силу симметричности интеграла и положительной области значений подынтегральной функции, можно заключить, что

Давайте поищем ещё какие-нибудь решения? Это ведь интересно! 🙂

Рассмотрим функцию
А теперь вспомним школьную математику и проведем простейшее исследование функции с помощью производных и пределов. Не то, чтобы мы здесь будем считать сложные пределы (ведь в школе их не проходят), а просто порассуждаем что будет с функцией, если её аргумент стремится к нулю или к бесконечности, таким образом прикинем асимптотическое поведение, что в математике всегда очень важно.

Это похоже на качественную оценку того, что происходит.

Она ограничена сверху единицей на интервале (-∞;+∞) и нулем на интервале [-1;+∞).

Cделаем следующую замену переменных
И получим:

Ограничим в первом неравенстве изменение (0,1), а во втором — промежутком (0;+∞), возведём оба неравенства в степень n, так как неравенства с положительными членами можно возводить в любую положительную степень. Получим:

Давайте для наглядного доказательства неравенств построим графики при n = 1

Теперь попробуем проинтегрировать неравенства в пределах, которые указаны в соответствующих системах. И сразу объединим всё в одно неравенство:

Опять таки, если посмотреть на графики, то данное неравенство справедливо.

С учетом небольшой замены, легко увидеть, что:

Т. е. в том большом неравенстве в середине у нас интеграл Эйлера-Пуассона, а вот теперь нам нужно найти интегралы, которые стоят на границах данного неравенства.

Найдем интеграл от левой границы:

Для того, чтобы его посчитать и оценить, давайте сначала найдем интеграл общего вида. Сейчас я покажу вам как можно вывести формулу редукции ( в математике под такими формулами подразумевают понижения степени ) для данного интеграла.

Теперь если с помощью формулы редукции рассмотреть тот же интеграл, но с нашими пределами от 0 до π/2, то можно сделать некоторые упрощения:

Как мы видим, понижать можно до бесконечности (зависит от n). Однако, и тут есть одна тонкость. Формула изменяется в зависимости то того, является ли n четным числом или не является.
Для этого рассмотрим два случая.

Где n!! — двойной факториал. Двойной факториал числа n обозначается n!! и определяется как произведение всех натуральных чисел в отрезке [1, n], имеющих ту же чётность что и n

В силу того, что 2n+1 — нечетное число при любом значении n, получим для левой границы нашего неравенства:

Найдем интеграл от правой границы:
(здесь используем ту же формулу редукции, которую доказали ранее)

После того, как мы оценили левую и правую части неравенства, сделаем некоторые преобразования, чтобы оценить пределы левой и правой частей неравенства при условии, что n стремится к ∞:

Возведем обе части неравенства в квадрат:

Теперь сделаем небольшое лирическое отступление. В 1655 году Джон Валлис (английский математик, один из предшественников математического анализа.) предложил формулу для определения числа π. Дж. Валлис пришёл к ней, вычисляя площадь круга. Это произведение сходится крайне медленно, поэтому для практического вычисления числа π формула Валлиса мало пригодна. Но для оценки нашего выражения она отлично подходит 🙂

Теперь преобразуем наше неравенство так, чтобы мы могли увидеть где подставить формулу Валлиса:

Из формулы Валлиса следует, что и левое, и правое выражение стремятся к π/4 при n → ∞

В силу того, что функция exp[-x²] является четной, мы смело полагаем, что

Впервые одномерный гауссов интеграл вычислен в 1729 году Эйлером, затем Пуассон нашел простой приём его вычисления. В связи с этим он получил название интеграла Эйлера — Пуассона.

Давайте еще попробуем вычислить Гауссов интеграл. Его можно написать в разных видах. Ведь ничего не меняет изменение название переменной, по которой идет интегрирование.

Можно перейти от трехмерных декартовых к сферическим координатам и рассмотреть куб интеграла Гаусса.

Якобиан этого преобразования можно посчитать следующим образом:

Посчитаем интегралы последовательно, начиная с внутреннего.

Тогда в результате получим:

Интеграл Эйлера-Пуассона часто применяется в теории вероятностей.

Надеюсь, что для кого-нибудь статья будет полезной и поможет разобраться в некоторых математических приемах 🙂

2 (то есть интеграл от x 2 ), нам нужно найти произвольную функцию, производная которой равна x 2 . Мы можем вычислить этот интеграл, используя степенное правило интегрирования. Формула интеграла от x 2 записывается как ∫x 2 dx = x 3 /3 + C.

Вычислим интегрирование x 2 , используя различные методы интегрирования, в том числе интегрирование по метод частей и метод степенного правила интегрирования.

Добавить комментарий