- : x^a
модуль x: abs(x)
- : Sqrt[x]
- : x^(1/n)
- : a^x
- : Log[a, x]
- : Log[x]
- : cos[x] или Cos[x]
22:12 Калькулятор для исследования функций |
Полное исследование функции и построение графика.С помощью данных калькуляторов можно пошагово провести полное исследование функции, и построить график функции с асимптотами. Для этого вставляем исследуемую функцию в каждый калькулятор, как показано в примере, и получаем ответ. 1. Находим область определения функции. 2. Выясняем, не является ли функция: а) четной, нечетной • Функции, не являющиеся ни четными, ни нечетными (neither even nor odd), называются функциями общего вида. б) периодической 3. Находим точки пересечения графика функции с осями координат и интервалы знакопостоянства функции. Для того, чтобы найти точки пересечения с осью Ох выбираем знак “=”, для нахождения интервалов на которых функция положительна – зак “>”, для интервалов на которых функция отрицательна – знак “<“. 4. Находим вертикальные, наклонные, горизонтальные асимптоты графика функции. 6. Найти точки перегиба графика функции и интервалы его выпуклости и вогнутости.
Смотри также решенные примеры в авторском исполнении. В примере подробно изложена методика исследования функций. |
Категория: Исследовать функцию,построить график | Просмотров: 470199 | | Теги: построить график, найти асимптоты, исследовать функцию, найти экстремумы функции | Рейтинг: 3.2/50 |
Интервалы возрастания и убывания функции
С помощью данного сервиса можно найти интервалы возрастания и убывания функции в онлайн режиме с оформлением решения в Word.
- Решение онлайн
- Видеоинструкция
Исследование функции с помощью производной
Определение: Точка х0 называется точкой локального максимума, если для любого х из окрестности точки х0 выполняется неравенство: f(x0)>f(x).
Определение: Точка х0 называется точкой локального минимума, если для любого х из окрестности точки х0 выполняется неравенство: f(x0)<f(x).
Точки минимума и максимума функции называются точками экстремума данной функции, а значения функции в этих точках – экстремумами функции.
Точками экстремума могут служить только критические точки I рода, т.е. точки, принадлежащие области определения функции, в которых производная f′(x) обращается в нуль или терпит разрыв.
Правило нахождения экстремумов функции y=f(x)
с помощью первой производной
- Найти производную функции f′(x).
- Найти критические точки по первой производной, т.е. точки, в которых производная обращается в нуль или терпит разрыв.
- Исследовать знак первой производной в промежутках, на которые найденные критические точки делят область определения функции f(x). Если на промежутке f′(x)<0, то на этом промежутке функция убывает; если на промежутке f′(x)>0, то на этом промежутке функция возрастает.
- Если в окрестности критической точки f′(x) меняет знак с «+» на «-», то эта точка является точкой максимума, если с «-» на «+», то точкой минимума.
- Вычислить значения функции в точках минимума и максимума.
С помощью приведенного алгоритма можно найти не только экстремумы функции, но и промежутки возрастания и убывания функции.
Пример №1: Найти промежутки монотонности и экстремумы функции: f(x)=x3–3x2.
Решение: Найдем первую производную функции f′(x)=3x2–6x.
Найдем критические точки по первой производной, решив уравнение 3x2–6x=0; 3x(x-2)=0 ;x = 0, x = 2
Исследуем поведение первой производной в критических точках и на промежутках между ними.
x | (-∞, 0) | 0 | (0, 2) | 2 | (2, +∞) |
f′(x) | + | 0 | – | 0 | + |
f(x) | возрастает | max | убывает | min | возрастает |
f(0) = 03 – 3*02 = 0
f(2) = 23 – 3*22 = -4
Ответ: Функция возрастает при x∈(-∞ ; 0)∪(2; +∞); функция убывает при x∈(0;2);
точка минимума функции (2;-4); точка максимума функции (0;0).
Правило нахождения экстремумов функции y=f(x)
с помощью второй производной
- Найти производную f′(x).
- Найти стационарные точки данной функции, т.е. точки, в которых f′(x)=0.
- Найти вторую производную f″(x).
- Исследовать знак второй производной в каждой из стационарных точек. Если при этом вторая производная окажется отрицательной, то функция в такой точке имеет максимум, а если положительной, то – минимум. Если же вторая производная равна нулю, то экстремум функции надо искать с помощью первой производной.
- Вычислить значения функции в точках экстремума.
Отсюда следует, что дважды дифференцируемая функция f(x) выпукла на отрезке [a, b], если вторая производная f”(x) ≥ 0 при всех х [a, b].
Все вычисления можно проделать в онлайн режиме.
Пример №2. Исследовать на экстремум с помощью второй производной функцию: f(x) = x2 – 2x – 3.
Решение: Находим производную: f′(x) = 2x – 2.
Решая уравнение f′(x) = 0, получим стационарную точку х=1. Найдем теперь вторую производную: f″(x) = 2.
Так как вторая производная в стационарной точке положительна, f″(1) = 2 > 0, то при x = 1 функция имеет минимум: fmin = f(1) = -4.
Ответ: Точка минимума имеет координаты (1; -4).
Калькуляторы для исследования функции
В данном разделе представлены онлайн калькуляторы для
исследования функции. Например: вычисление области определения и области значения функции, нулей и экстремумов функции, точек разрыва и точек перегиба функции и др.
Исследование функций
12
Калькулятор области определения функции
Калькулятор позволяет найти область определения функции с подробным решением.
Калькулятор области значений функции
Калькулятор позволяет найти область значений практически любой функции.
Калькулятор асимптот функции
Калькулятор позволяет найти вертикальные, горизонтальные и наклонные асимптоты функции.
Вычисление экстремумов функции
Калькулятор находит экстремумы функции с описанием подробного хода решения.
Нули функции NEW
Калькулятор находит нули заданной функции с описанием подробного хода решения.
Калькулятор пересечений с осями NEW
Калькулятор находит точки пересечения заданной функции с осями координат.
Калькулятор точек перегиба функции
Калькулятор находит точки перегиба функции с описанием подробного хода решения.
Точки разрыва функции NEW
Калькулятор находит точки разрыва функции с подробным решением.
Построение графиков функций, заданных в декартовых координатах
Калькулятор строит графики двумерных функций, заданных в декартовых координатах.
Калькулятор координат вершины параболы
Калькулятор находит координаты точки вершины параболы с описанием подробного хода решения.
Исследование функции по-шагам
Примеры исследуемых функций
- График логарифмической функции
-
y = log(x)/x
- График показательной функции
-
y = 2^x - 3^x
- График степенной функции
-
f(x) = x^5 - x^4 + x^2 - x + 1
- График гиперболы
-
f(x) = (x - 1)/(x + 1)
-
y = 1/x
- График квадратичной функции
-
x^2 - x + 5
- График тригонометрической функции
-
sin(x) - 2*cos(x) + 3*sin(2*x)
- Функция Гомпертца
-
e/2*e^(-e^-x)
-
e^(-e^-x)
-
-1/2*e^(-e^-x)
-
e^(-1/4*e^(-x))
-
e^(-e^(-2*x))
- Логистическая кривая
-
1/(1 + exp(-x))
Что исследует?
- Область определения функции. Умеет определять только точки, в которых знаменатель функции обращается в нуль
- Умеет определять точки пересечения графика функции с осями координат
- Экстремумы функции: интервалы (отрезки) возрастания и убывания функции, а также локальные (или относительные) и глобальные (или абсолютные) минимумы и максимумы функции
- Точки перегибов графика функции: перегибы: интервалы выпуклости, вогнутости (впуклости)
- Вертикальные асимптоты: область определения функции, точки, где знаменатель функции обращается в нуль
- Горизонтальные асимптоты графика функции
- Наклонные асимптоты графика функции
- Четность и нечетность функции
Подробнее про Исследование функции
.
Указанные выше примеры содержат также:
- модуль или абсолютное значение: absolute(x) или |x|
-
квадратные корни sqrt(x),
кубические корни cbrt(x) -
тригонометрические функции:
синус sin(x), косинус cos(x), тангенс tan(x), котангенс ctan(x) - показательные функции и экспоненты exp(x)
-
обратные тригонометрические функции:
арксинус asin(x), арккосинус acos(x), арктангенс atan(x),
арккотангенс acot(x) -
натуральные логарифмы ln(x),
десятичные логарифмы log(x) -
гиперболические функции:
гиперболический синус sh(x), гиперболический косинус ch(x),
гиперболический тангенс и котангенс tanh(x), ctanh(x) -
обратные гиперболические функции:
гиперболический арксинус asinh(x), гиперболический арккосинус acosh(x),
гиперболический арктангенс atanh(x), гиперболический арккотангенс acoth(x) -
другие тригонометрические и гиперболические функции:
секанс sec(x), косеканс csc(x), арксеканс asec(x),
арккосеканс acsc(x), гиперболический секанс sech(x),
гиперболический косеканс csch(x), гиперболический арксеканс asech(x),
гиперболический арккосеканс acsch(x) -
функции округления:
в меньшую сторону floor(x), в большую сторону ceiling(x) -
знак числа:
sign(x) -
для теории вероятности:
функция ошибок erf(x) (интеграл вероятности),
функция Лапласа laplace(x) -
Факториал от x:
x! или factorial(x) - Гамма-функция gamma(x)
- Функция Ламберта LambertW(x)
-
Тригонометрические интегралы: Si(x),
Ci(x),
Shi(x),
Chi(x)
Правила ввода
Можно делать следующие операции
- 2*x
- – умножение
- 3/x
- – деление
- x^2
- – возведение в квадрат
- x^3
- – возведение в куб
- x^5
- – возведение в степень
- x + 7
- – сложение
- x – 6
- – вычитание
- Действительные числа
- вводить в виде 7.5, не 7,5
Постоянные
- pi
- – число Пи
- e
- – основание натурального логарифма
- i
- – комплексное число
- oo
- – символ бесконечности