Как найти истинную длину отрезка

Определение натуральной величины отрезка

Если отрезок параллелен плоскости, то он проецируется на неё без искажений. В остальных случаях для нахождения его натуральной величины применяют метод прямоугольного треугольника или способы преобразования ортогональных проекций.

Содержание

  1. Метод прямоугольного треугольника
  2. Способ параллельного переноса
  3. Поворот вокруг оси

Метод прямоугольного треугольника

Сущность данного метода заключается в нахождении гипотенузы прямоугольного треугольника, у которого один катет равен горизонтальной (или фронтальной) проекции отрезка, а величина другого катета представляет собой разность удаления концов отрезка от горизонтальной (или, соответственно, фронтальной) плоскости проекции.

Натуральная величина отрезка AB выделена красным

Для того чтобы найти натуральную величину отрезка AB (рисунок выше), строим прямоугольный треугольник A0A’B’. Его первый катет A’B’ – это горизонтальная проекция AB. Второй катет A’A0 равен величине ZA – ZB, то есть разности удаления точек A и B от горизонтальной плоскости П1.

Откладываем A’A0 = ZA – ZB перпендикулярно A’B’. Затем проводим гипотенузу A0B’ треугольника A0A’B’. На рисунке она обозначена красным цветом. Её величина соответствует настоящей длине AB.

Способ параллельного переноса

Параллельный перенос представляет собой перемещение геометрической фигуры параллельно одной из плоскостей проекций. При этом величина проекции фигуры на эту плоскость не меняется. Например, если перемещать отрезок EF параллельно горизонтальной плоскости П1, то длина его проекции E’F’ не изменится, когда она займет новое положение E’1F’1 (как это показано на рисунке ниже).

Еще одно важное свойство параллельного переноса заключается в том, что при любом перемещении точки параллельно горизонтальной плоскости проекции, её фронтальная проекция движется по прямой, параллельной оси X. Если точка перемещается параллельно фронтальной плоскости, то её горизонтальная проекция движется по прямой, параллельной оси X.

Пример построения

Чтобы определить действительный размер отрезка EF, на свободном месте чертежа строим его новую горизонтальную проекцию E’1F’1 = E’F’ так, чтобы она была параллельна оси X . Затем по линиям связи находим точки E”1 и F”1. Расстояние между ними и есть искомая величина, поскольку мы перенесли EF в положение, параллельное фронтальной плоскости.

Параллельный перенос отрезка EF

Метод параллельного переноса, описанный здесь, иногда называют параллельным перемещением. Посмотреть дополнительные примеры и получить более подробную информацию по данной теме можно в этой статье.

Поворот вокруг оси

Для того, чтобы отрезок стал параллелен плоскости проекции и без искажения отразился на ней, он может быть повернут вокруг проецирующей прямой, проходящей через один из его концов.

Пример построения

Определим длину произвольного отрезка MN. Для этого через точку N проводим горизонтально проецирующую прямую i. Вокруг неё поворачиваем MN так, чтобы его проекция M’N’ заняла положение M’1N’1, параллельное оси X.

По линиям связи находим точку M”1. При этом исходим из того, что M” в процессе вращения движется параллельно горизонтальной плоскости.

Точка N не изменит своего положения, так как лежит на оси поворота. Поэтому осталось только соединить N”1 и M”1 искомым отрезком. На рисунке он выделен красным цветом.

Поворот отрезка MN

Более подробную информацию о решении задач методом поворота вокруг оси вы можете получить, ознакомившись со следующим материалом.

Разделы

Уроки по теме

Рекомендуем

Доноры - детям

Как определить натуральную величину отрезка?

Автор: Moroz

Дата: 2010-11-08

Определение натуральной величины отрезка

Сегодня мы рассмотрим один из самых простых элементов теории, но важность его такова, что без него решение большинства задач по начертательной геометрии не представляется возможным. Если вы не знаете, как определить натуральную величину отрезка, то вы никогда не сможете доказать преподавателю, что решили задачи самостоятельно. Задача на определение натуральной величины отрезка в начертательной геометрии встречается как сама по себе, так и в качестве вспомогательных построений при решении сложных комплексных задач. В любом случае, каждый студент, который планирует получить зачетэкзамен по начерталке, обязан уметь определить натуральную величину отрезка, причем быстро и без заминок.

Имея две проекции прямой частного положения мы всегда можем определить натуральную величину любого отрезка отложенного на этой прямой. Для этого используется метод прямоугольного треугольника. На рисунке в начале статьи мы определили натуральную величину отрезка АВ построив прямоугольный треугольник на горизонтальной плоскости проекции, но вы должны знать, что построить прямоугольный треугольник мы можем как на горизонтальной, так и на фронтальной плоскостях. Это показано на анимированном рисунке ниже – на нем мы сначала определили натуральную величину АВ на горизонтальной плоскости проекции, а затем на фронтальной

Коротко же алгоритм определения натуральной величины отрезка сводится следующему: на любой проекции через любую из конечных точек отрезка проводят перпендикулярную прямую, и на ней откладывают расстояние, равное разнице значений по оси ординат этих двух точек на противоположной плоскости проекций. Т.е. если треугольник строим на горизонтальной плоскости, то разницу значений ищем на фронтальной, и наоборот. Если что-то непонятно из этого описания, то рассмотрев внимательно рисунок вы окончательно поймете, что имелось ввиду.

Как видите, ничего особо сложного в этом приеме нет, но знать его очень важно, и не менее важно уметь его применить, как минимум до получения зачета по начертательной геометрии и инженерной графике 🙂

Особым случаем этой задачи является определение натуральной величины отрезка лежащего в частном положении – например параллельно горизонтальной плоскости проекции. Тогда на его горизонтальная проекция будет сама по себе натуральной величиной и никаких дополнительных построений для ее определения не требуется:

Определение натуральной величины отрезка в частном положении

Внимание! Для этой темы есть видеоурок.

Просмотров: 208304

Вы можете сказать “спасибо!” автору статьи:

пройдите по любой из рекламных ссылок в левой колонке, этим вы поддержите проект “White Bird. Чертежи Студентам”

или

или запишите наш телефон и расскажите о нас своим друзьям – кто-то наверняка ищет способ выполнить чертежи

или создайте у себя на страничке или в блоге заметку про наши уроки – и кто-то еще сможет освоить черчение.

А вот это – не реклама. Это напоминание, что каждый из нас может сделать. Если хотите – это просьба. Мы действительно им нужны:

Доноры - детям

Комментарии:

спасибо) все понял за 10сек)

Спасибо Вам!!!Чтобы я без вас делал

Спасибо большое,всё понятно!)

Спасибо, наконец-то понятно!!!

Спасибо огромное:) все ясно и понятно:)

СПАСИБО!!! Я наконец то поняла!думаю сдам без косяков!!!

Всегда хотел донести до молодого поколения основы, которые отчего-то не могут донести штатные преподаватели. Успехов в учебе, всем сказавшим “спасибо”! А также и тем кто забыл сказать, но понял тему!

Спасибо. Наконец-то понял. Удачи завтра мне.

спасибо большое,сразу понял

Спасибо. Я все понял, и теперь я успешный дотер, который не пошел в армию, потому что все сдал.

Спасибо, все понял, а как на третьем виде строить? или там нельзя?

spasibo bolshoe

Забегайте! Тут еще много полезного:)

Спасибо огромное!
Очень доступно и понятно

Диана, спасибо вам за желание разобраться! Удачи!

Просто спасли!Огромное спасибо!

Ну… Примерно для этого я все это и пишу:) удачи!

Спасибо огромное, очень хорошее поясняющее видео!)

спасибо большое, обьяснения очень хорошие .

Всё доступно и понятно. Спасибо. Особенно за анимашку)

Спасибо большое! Всё объяснено просто и главное понятно!

Группа ЭМ-36у благодарит вас за простое и понятное обьяснение

Согласен с предыдущим оратором!

Приветы всем, кто хочет сам разобраться в предмете! Ищите меня во Вконтакте – ссылка в правом столбике выше. Подписывайтесь, вступайте в группу, будет нескучно и полезно для домашних заданий! Покуда вы будете в этом заинтересованы – совершенно бесплатно! Уникально, так сказать 🙂

да-да-да!!!
А кто это тут у нас конспекты не ведёт? Алексей и Никита, да?!

Мужики, ну вы даете 🙂 И прекрасные дамы!

https://vk.com/XXXX_XXXX
– чертежи
– 3D-модели
– оцифровка чертежей
– чертежи для студентов
– выполнение чертежей по фото, эскизам и деталям
– разработка чертежей на оснастку и металлоконструкции
Разрабатываем чертежи в г. Гомель. Начертательная геометрия и инженерная графика для учебных заведений Гомеля и не только. Другие услуги актуальны для города Гомель.
Работы выполняются карандашом, в программах КОМПАС-3D, AutoCAD, SolidWorks. Возможно сохранение в других популярных форматах.


Сергей, предложите мне что-нибудь выгодное. И ваша ссылка сможет жить здесь до скончания проекта 🙂

Добавьте свой комментарий:

Последние уроки

Как построить диметрию детали?

Построение наклонного сечения, заданного на виде слева

Определение линии пересечения двух плоскостей. Метод вспомогательных секущих плоскостей.

Наша почта:

zakaz@trivida.ru

Наша страница в ВК:

Инженерная графика и начертательная геометрия в Вконтакте

Случайный комментарий

Валерий:

Антон, помогите профессиональным советом)Я живу в Тагиле, и тоже делаю чертежи на заказ, но так как работать начал недавно, клиентов очень мало, пока что только в своём техникуме. Как мне раскрутиться? Буду очень благодарен, за пару советов)

Валерий, делайте свою работу хорошо и вскоре вы начнете тонуть в заказах 🙂

Если отрезок
прямой занимает общее положение, то
определить истинную величину прямой
на плоскостях проекций нельзя. Поэтому
для определения длины отрезка по его
проекциям используют способ прямоугольного
треугольника: длина отрезка измеряется
гипотенузой прямоугольного треугольника,
одним катетом которого является проекция
отрезка на плоскость, а другим – разность
расстояний концов его до этой плоскости.
Рассмотрим прямую общего положения в
пространстве.

Рис. 9

Треугольник АВВ1–прямоугольный.
Гипотенуза АВ является натуральной
длиной отрезка (рис.
9, а
), а проекция А1В1– катетом. Второй катет ВВ1определяет превышение одного конца
отрезка над другим относительно
плоскости проекций П1и проецируется
без искажения на фронтальную плоскость
проекций П2. Угол= ВАВ1– это угол наклона прямой
АВ к горизонтальной плоскости проекций.

Построения см. на
рис. 9, б.
Из точки В1
проведём перпендикуляр к проекции
А1В1, отложим на нём отрезок
В1Во= ВхВ2и
соединим прямой точки А1и Во.
Построенный треугольник А1ВоВ1=
АВВ1(рис.
9, а
), так как равны их катеты и
угол между ними составляет 90°.
Следовательно, отрезок А1Во
равен отрезку АВ и угол В1А1Воопределяет угол наклона отрезка АВ к
горизонтальной плоскости проекций.

Аналогичное
построение можно сделать на фронтальной
плоскости проекций, только в качестве
второго катета нужно будет взять
разность глубин его концов В1Вх(рис. 9, в).

Определение длины
отрезка с использованием способа замены
плоскостей проекций будем рассматривать
в вузе.

Вопросы для самопроверки

1. Какое положение
может занимать прямая относительно
плоскостей проекций ?

2. Прямая общего
положения (начертить комплексный
чертёж).

3. В каком случае
прямая обращается в точку и как называются
такие прямые ? Привести пример.

4. Какие точки
называются конкурирующими ?

5. Сформулировать
признак принадлежности точки, прямой
(см.
выше).

6. Сформулировать
правило прямоугольного треугольника.

4. Плоскость

Плоскость может
быть задана аналитически (уравнением)
или графически (проекциями). Для
графического задания плоскости достаточно
построить проекции определяющих её
элементов
(рис.
10
):

1) трёх точек, не
лежащих на одной прямой;

2) прямой и точки,
не лежащей на этой прямой;

3) двух пересекающихся
прямых;

4) двух параллельных
прямых;

5) любой плоской
фигурой.

Рис. 10

В зависимости от
положения плоскости относительно
плоскостей проекций различают плоскости
общего и частного положения.

Плоскость, не
перпендикулярную ни одной из основных
плоскостей проекций называют плоскостью
общего положения
(рис.
10.5
).

Плоскости частного
положения можно разделить на две группы:

проецирующие и
плоскости уровня.

4.1. Проецирующие плоскости

Проецирующие
плоскости
– это плоскости,
перпендикулярные к одной из плоскостей
проекций (рис.
11
). К ним относятся:

1) горизонтально-проецирующая
П1;

2) фронтально-проецирующая
П2;

3) профильно-проецирующая
П3.

Рис. 11

Отличительной
особенностью проецирующих плоскостей
является то, что все геометрические
образы, принадлежащие проецирующей
плоскости, проецируются на перпендикулярную
к ней плоскость в одну прямую, совпадая
с главной проекцией (следом):

горизонтально-проецирующая
плоскость А1В1С1(рис.
11, а
),

фронтально-проецирующая
плоскость А2В2С2(рис.
11, б
),

профильно-проецирующая
плоскость А3В3С3(рис.
11, в
).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Содержание:

К метрическим задачам относятся задачи на определение натуральной величины отрезков, расстояний углов, площадей плоских фигур.

Определение натуральной величины отрезка и углов наклона к плоскостям проекций методом прямоугольною треугольника Натуральная величина отрезка равна гипотенузе прямоугольного треугольника, одним катетом которого является проекция отрезка, а вторым – разность расстояний концов отрезка от той плоскости, на которой ведется построение. При этом угол между гипотенузой и катетом проекций является углом наклона отрезка к той плоскости, ряльной величины выполнено на горизонтальной проекции. Поэтому одним катетом прямоугольного треугольника, является горизонтальная проекцияРешение метрических задач в начертательной геометрии с примерами

Решение метрических задач в начертательной геометрии с примерами

Если необходимо определить угол наклона отрезка АВ к плоскостиРешение метрических задач в начертательной геометрии с примерами то построение прямоугольного треугольника ведется на фронтальной проекции.

Решение метрических задач методами преобразовании проекций

Положении геометрических образов, при которых расстоянии и углы не искажаются на плоскостях проекций

Метрические характеристики объектов на чертежах не искажаются, если геометрические образы занимают частное положение относительно плоскостей проекций.

Приведем некоторые из них.

1. Прямая проецируется в натуральную величину, если она параллельна плоскости проекций (рисунок 3.2).

Решение метрических задач в начертательной геометрии с примерами

Решение метрических задач в начертательной геометрии с примерами– угол наклона к плоскостиРешение метрических задач в начертательной геометрии с примерами

2. Расстояние от точки до прямой проецируется в натуральную величину, если прямая проецирующая (рисунок 3.3).

Решение метрических задач в начертательной геометрии с примерами

3. Расстояние между параллельными прямыми проецируется в натуральную величину, если прямые проецирующие (рисунок 3.4).

Решение метрических задач в начертательной геометрии с примерами

4. Расстояние между скрещивающимися прямыми проецируется в натуральную величину, если одна из прямых проецирующая (рисунок 3.5).

Решение метрических задач в начертательной геометрии с примерами

5.    Угол между плоскостями (двугранный угол) проецируется в натуральную величину, если ребро угла проецирующее (рисунок 3.6).

Решение метрических задач в начертательной геометрии с примерами

6.    Угол наклона плоскости к плоскости проекций проецируется в натуральную величину, если плоскость проецирующая (рисунок 3.7) Решение метрических задач в начертательной геометрии с примерами

7.    Расстояние от точки до плоскости проецируется в натуральную величину, если плоскость проецирующая (рисунок 3.8)

Решение метрических задач в начертательной геометрии с примерами

8.    Любая плоская фигура проецируется в натуральную величину, если она параллельна плоскости проекций (рисунок 3.9а,б)

Решение метрических задач в начертательной геометрии с примерами

Таким образом, для решения метрических задач целесообразно данный объект привести в частное положение с тем, чтобы на одной из новых проекций получить более простое решение задачи.

Для такого перехода и служат способы преобразования проекций.

Существует несколько способов преобразовании проекций: способ вращения вокруг осей перпендикулярных плоскостям проекций, способ плоскопараллельного перемещения, способ замены плоскостей проекций и др.  

Четыре основных задачи преобразовании проекций

Этими способами решаются четыре основные задачи:

  • Задача 1. Прямую общего положения преобразуем в линию уровня (одно преобразование).
  • Задача 2. Прямую общего положения преобразуем в проецирующую (два преобразования)
  • Задача 3. Плоскость общего положения преобразуем в проецирующую (одно преобразование)
  • Задача 4. Плоскость общего положения преобразуем в плоскость уровня (два преобразования)

Решение 1-ой и 2-ой задачи преобразовании проекций методом вращении, плоскопараллельного перемещении и замены плоскостей проекций

Способ вращения

Способ вращения заключается в том, что геометрические образы вращаются вокруг осей перпендикулярных плоскостям проекций до занятия ими какого-либо частного положения относительно плоскостей проекций. При этом одна проекция точки перемещается по окружности, вторая – но прямой параллельной оси проекций.

На рисунке 3.10 вокруг осиРешение метрических задач в начертательной геометрии с примерамивращаем отрезок ЛВ до положения параллельного плоскостиРешение метрических задач в начертательной геометрии с примерами(1 задача). Далее вращением вокруг осиРешение метрических задач в начертательной геометрии с примерамиполученный отрезок до положения перпендикулярного плоскости Решение метрических задач в начертательной геометрии с примерамиНа Решение метрических задач в начертательной геометрии с примерами отрезок с проецируется в точку Решение метрических задач в начертательной геометрии с примерами

Решение метрических задач в начертательной геометрии с примерами

Способ плоскопараллельного перемещения

Способ плоскопараллельного перемещения является разновидностью способа вращения (вращение без закрепленных осей), т.е. положение объекта можно преобразовывать путем перемещения его параллельно одной плоскости проекций, одновременно изменяя его положение относительно другой плоскости проекций до занятия им какого-либо частного положения.

На рисунке 3.11 сначала АВ переводим из общего положения в положение горизонтальное. При этом Решение метрических задач в начертательной геометрии с примерами должно быть равно по величина Решение метрических задач в начертательной геометрии с примерами находим в пересечении вертикальных линий связи и линий Решение метрических задач в начертательной геометрии с примерамипараллельных оси Решение метрических задач в начертательной геометрии с примерами(1 задача). Далее отрезок Решение метрических задач в начертательной геометрии с примерамиперемещаем до положения перпендикулярного оси Решение метрических задач в начертательной геометрии с примерами При этом Решение метрических задач в начертательной геометрии с примерами На фронтальной проекции отрезок с проецируется в точкуРешение метрических задач в начертательной геометрии с примерами (2 задача).

Решение метрических задач в начертательной геометрии с примерами

Решение метрических задач в начертательной геометрии с примерами

Способ замены плоскостей проекций

Сущность способа замены плоскостей проекций заключается в том, что старая система плоскостей проекций заменяется на новую, с таким расчетом, чтобы относительно новой системы плоскостей, геометрический образ занял какое-то частное положение. При этом нужно помнить, что линии связи будут перпендикулярны относительно новой оси проекций и расстояния от новой оси проекций до новой проекции точки равно расстоянию от старой проекции точки до старой оси.

На рисунке 3.12 произведена первая замена плоскость Решение метрических задач в начертательной геометрии с примерами заменена на новую фронтальную плоскость Решение метрических задач в начертательной геометрии с примерамипараллельную прямой АВ. При этом новая осьРешение метрических задач в начертательной геометрии с примерами проводится параллельно проекции Решение метрических задач в начертательной геометрии с примерамиЛинии связи проводятся перпендикулярно осиРешение метрических задач в начертательной геометрии с примерами и на них от Решение метрических задач в начертательной геометрии с примерами откладываются координаты z точек А и В (1 задача).

Решение метрических задач в начертательной геометрии с примерами

Далее прямую АВ преобразуем в проецирующую. Для этого проводим новую ось Решение метрических задач в начертательной геометрии с примерами перпендикулярно проекцииРешение метрических задач в начертательной геометрии с примерами. Т.к. Решение метрических задач в начертательной геометрии с примерами параллельна оси Решение метрических задач в начертательной геометрии с примерами, расстояние до проекций Решение метрических задач в начертательной геометрии с примерами будет одинаковое и прямая спроецируется в точкуРешение метрических задач в начертательной геометрии с примерами (2 задача)  

Решение 3-ой и 4-ой задачи преобразовании проекций методом плоскопараллельного перемещения и замены плоскостей проекций

Так как метод вращения является более громоздким, рассмотрим решение 3-ей и 4-ой задачи преобразования методом плоскопараллельного перемещения и методом замены плоскостей проекций.

Способ плоскопараллельного перемещения

Решение метрических задач в начертательной геометрии с примерами

Для того чтобы плоскость из общего положения перевести в проецирующее, нужно иметь ввиду, что при этом ее горизонталь или фронталь должна быть перпендикулярна плоскости проекций. Поэтому на рисунке 3.13 проведена горизонталь Решение метрических задач в начертательной геометрии с примерамиДалее Решение метрических задач в начертательной геометрии с примерами располагаем перпендикулярно оси Решение метрических задач в начертательной геометрии с примерами Откладываем на ней отрезок Решение метрических задач в начертательной геометрии с примерамии циркулем строим треугольник Решение метрических задач в начертательной геометрии с примерами равный по величине Решение метрических задач в начертательной геометрии с примерами На фронтальной проекции треугольник проецируется в линию (3 задача).

Чтобы плоскость треугольника перевести в положение плоскости уровня, достаточно полученную фронтальную проекцию Решение метрических задач в начертательной геометрии с примерами расположить параллельно оси Решение метрических задач в начертательной геометрии с примерамипри этом на горизонтальной проекции треугольник проецируется в натуральную величину (4-я задача)

Способ замены плоскостей проекций

При решении задачи методом замены (рисунок 3.14) новую ось Решение метрических задач в начертательной геометрии с примерами проводим перпендикулярно горизонтали Решение метрических задач в начертательной геометрии с примерами тогда на новую фронтальную плоскость Решение метрических задач в начертательной геометрии с примерами треугольник спроецируется в линию, т.е. станет перпендикулярным (3-я задача). Чтобы плоскость перевести в положение плоскости уровня, необходимо новую осьРешение метрических задач в начертательной геометрии с примерами провести параллельно плоскостиРешение метрических задач в начертательной геометрии с примерами На новую плоскость Решение метрических задач в начертательной геометрии с примерами треугольник спроецируется в натуральную величину.

Решение метрических задач в начертательной геометрии с примерами

Для того, чтобы методами преобразования решить любую метрическую задачу, необходимо определить какую из четырех основных задач преобразования необходимо решать в каждом конкретном случае.

Метрические задачи

Метрические задачи – это задачи на определение линейных или угловых размеров геометрических объектов, а также расстояний и углов между ними.

Главным вопросом метрических задач является вопрос о построении перпендикуляра к прямой или плоскости. Построение взаимно перпендикулярных прямых было рассмотрено ранее.

Из элементарной геометрии известно, что прямая перпендикулярна к плоскости, если она перпендикулярна двум пересекающимся прямым, принадлежащим этой плоскости. В качестве этих пересекающихся прямых наиболее целесообразно использовать горизонталь и фронталь плоскости. Это объясняется тем, что только в этом случае прямой угол будет проецироваться в натуральную величину на соответствующие плоскости проекций. На рисунке 5.1 приведен пространственный чертеж, на котором из плоскости а (из точки А) восстановлен перпендикуляр АВ. Из приведенного изображения можно выяснить методику построения проекций перпендикуляра к плоскости:    горизонтальная проекция перпендикуляра к плоскости проводится перпендикулярно горизонтальной проекции горизонтали или горизонтальному следу плоскости, а фронтальная проекция перпендикуляра проводится перпендикулярно фронтальной проекции фронтали или фронтальному следу плоскости. Таким образом, необходимо выполнить следующий алгоритм проведения проекций перпендикуляра к плоскости:

Решение метрических задач в начертательной геометрии с примерами

Решение метрических задач в начертательной геометрии с примерами

Построение перпендикуляра к плоскость и восстановление перпендикуляра из плоскости называется прямой задачей, а построение плоскости, перпендикулярной к прямой – обратной задачей. Обе задачи решаются по одному и тому же вышеописанному алгоритму. При этом плоскость, перпендикулярную заданной прямой, можно задать следами или пересекающимися горизонталью и фронталью.

На рисунке 5.2 показано решение прямой (а) и обратной (б) задач. В прямой задаче из точки A треугольника AВС восстановлен перпендикуляр, в обратной задаче через точку К проведена плоскость, перпендикулярная прямой АВ. Плоскость задана пересекающимися горизонталью и фронталью.

Здесь же приведены примеры прямой и обратной задач, если плоскость задана следами. В прямой задаче (в) из точки Л построен перпендикуляр на плоскость, в обратной (г) – через точку К проведена плоскость перпендикулярно прямой АВ. Решение метрических задач в начертательной геометрии с примерами

Определение расстояний между геометрическими объектами

Среди этих задач можно выделить следующие задачи: расстояние от точки до плоскости, расстояние от точки до прямой, расстояние между двумя параллельными прямыми, расстояние между двумя скрещивающимися прямыми, расстояние между двумя параллельными плоскостями и другие. В общем случае все задачи сводятся к определению расстояний между двумя точками.  

Чтобы определить расстояние от точки до плоскости, необходимо выполнить ряд логических действий:

  1. Из точки опустить перпендикуляр на заданную плоскость;
  2. Найти точку встречи перпендикуляра с плоскостью;
  3. Определить НВ расстояния между заданной и найденной точками.

Задача на определение расстояния от точки до прямой решается по следующему плану:

  1. Через точку к провести плоскость, перпендикулярную заданной прямой;
  2. Найти точку встречи М заданной прямой с проведенной плоскостью;
  3. Соединить полученные точки (это будет перпендикуляр из точки на прямую);
  4. Определить НВ перпендикуляра.

Пространственная модель решения второй задачи представлена на рисунке 5.3. Рассмотренная задача относится также к задачам на перпендикулярность двух прямых.

Решение метрических задач в начертательной геометрии с примерами

Другие упомянутые задачи на определение расстояний легче решаются методами преобразования эпюра, которые будут рассмотрены в последующих разделах.

Перпендикулярность плоскостей

Плоскость перпендикулярна другой плоскости, если она содержит прямую, перпендикулярную другой плоскости (рисунок 5.4а). Таким образом, для того, чтобы провести плоскость, перпендикулярную другой, необходимо сначала провести перпендикуляр к заданной плоскости, а затем через него провести искомую плоскость. На рисунке 5.46 представлена задача:    через точку К провести плоскость, перпендикулярную плоскости треугольника AВС. Искомая плоскость задана двумя пересекающимися прямыми, одна из которых перпендикулярна заданной плоскости.

Решение метрических задач в начертательной геометрии с примерами

Если две плоскости являются одноименными плоскостями частного положения (например, горизонтально- или фронтально-проецирующими), то при перпендикулярности плоскостей их собирательные следы будут перпендикулярны друг другу (рисунок 5.4в,г).

Если плоскости являются плоскостями общего положения, то при их перпендикулярности одноименные следы не будут взаимно перпендикулярны. Другими словами, перпендикулярность одноименных следов плоскостей общего положения не является достаточным условием для перпендикулярности самих плоскостей.

Определение углов между прямой и плоскостью и между двумя плоскостями

Определение углов между геометрическими объектами является трудоемкой задачей, если её решать традиционными геометрическими способами. Так, например, задачу на определение угла между прямой и плоскостью (рисунок 5.5) можно решить способом, алгоритм которого содержит следующие операции:

  1. Определить точку встречи прямой АВ с плоскостью а;
  2. Из точки В построить перпендикуляр на плоскость;
  3. Найти точку встречи перпендикуляра с плоскостью;
  4. Точки К и N соединить и определить НВ угла BKN.

Решение метрических задач в начертательной геометрии с примерами

Однако задача может быть значительно упрощена, если использовать способ решения задачи с помощью дополнительного угла. Дополнительным углом назовем угол между заданной прямой АВ и перпендикуляром BN, обозначенный через Решение метрических задач в начертательной геометрии с примерами Из приведенного рисунка видно, что, если из точки В прямой построить на плоскость перпендикуляр, определить НВ дополнительного угла Решение метрических задач в начертательной геометрии с примерами то искомый угол определится по формуле:

Решение метрических задач в начертательной геометрии с примерами

которую можно решить графически, достроив угол Решение метрических задач в начертательной геометрии с примерами до 90°.

То же самое можно сказать о задаче на определение двугранного угла, то есть угла между двумя плоскостями (рисунок 5.66). Первый способ (геометрический) достаточно трудоемок. Он заключается в пересечении угла вспомогательной плоскостью а, перпендикулярной ребру АВ, построении линий пересечения KN и KL и определении натуральной величины угла NKL.

Решение метрических задач в начертательной геометрии с примерами

С помощью дополнительного угла задача решается следующим образом. В растворе двугранного угла (рисунок 5.6в) берут любую точку К и строят из неё перпендикуляры на обе плоскости двугранного угла, которые образуют дополнительный угол Решение метрических задач в начертательной геометрии с примерамиДалее определяют НВ дополнительного угла и дополняют его (графически) до 180 градусов, исходя из формулы:

Решение метрических задач в начертательной геометрии с примерами

Дополненный угол будет искомым.

Натуральную величину дополнительного углаРешение метрических задач в начертательной геометрии с примерами в обеих задачах наиболее целесообразно определять методом вращения вокруг горизонтали или фронтали, который будет изложен в последующих темах.

Пример: Из любой вершины треугольника АВС восстановить перпендикуляр длиной 40 мм.

Решение метрических задач в начертательной геометрии с примерами

Решение: Сначала необходимо в плоскости треугольника АВС провести горизонталь и фронталь для того, чтобы построить проекции восстановленного перпендикуляра. Далее из точки С проводим проекции перпендикуляра согласно рассмотренному выше алгоритму о перпендикуляре к плоскости. Для того, чтобы отложить 40 мм, необходимо определить НВ ограниченного отрезка перпендикуляра CF (точку F берем произвольно). НВ отрезка CF определяем методом прямоугольного треугольника на горизонтальной проекции CF. Полученную точку К возвращаем на проекции по теореме Фалеса. Получаем проекции перпендикуляра длиной 40 мм (рисунок. 5.7).

Пример: Найти расстояние от точки А до плоскости, заданной следами

Решение метрических задач в начертательной геометрии с примерами

Решение: Из точки А строим перпендикуляр на заданную плоскость. Проекции перпендикуляра проводим перпендикулярно следам. Далее находим точку встречи перпендикуляра с заданной плоскостью с помощью вспомогательной фронтально-проецирующей плоскости Решение метрических задач в начертательной геометрии с примерамиНаходим линию пересечения плоскостей Решение метрических задач в начертательной геометрии с примерами (линия 1-2) и точку встречи Решение метрических задач в начертательной геометрии с примерами в месте пересечения горизонтальной проекции перпендикуляра с линией 1-2. Методом прямоугольного треугольника определяем НВ расстояния АК (рисунок 5.8).

Пример: Определить расстояние от точки К до прямой AВ.

Решение метрических задач в начертательной геометрии с примерами

Решение: Через точку К проводим плоскость, перпендикулярную заданной прямой. Плоскость задаем пересекающимися горизонталью и фронталью. Их проекции проводим согласно алгоритму о перпендикуляре к плоскости (обратная задача). Далее находим точку встречи прямой с проведенной плоскостью (точка М). Определяем натуральную величину КМ методом прямоугольного треугольника (рисунок 5.9).

Примеры метрических задач

Задачи, в которых определяются различные геометрические величины -расстояния между объектами, длины отрезков, углы, площади и т.д. называются метрическими. Решение многих метрических задач, например задач на определение кратчайших расстояний, требует построения перпендикулярных прямых и плоскостей.

Перпендикулярность является частным случаем пересечения прямых, прямой и плоскости или двух плоскостей. Необходимо установить соотношения, по которым строятся проекции перпендикулярных прямых и плоскостей.

Теорема о проекциях прямого угла

Прямой угол проецируется на плоскость без искажения, если одна из его сторон параллельна этой плоскости (рис. 10.1).

Решение метрических задач в начертательной геометрии с примерами

Рис. 10.1. Теорема о проекциях прямого угла

Дано :Решение метрических задач в начертательной геометрии с примерамиBAC = 90°; AB || П’
 

Доказать, что C’A’Решение метрических задач в начертательной геометрии с примерамиA’B’
 

Доказательство: если AB||П’, то A’B’||AB, но AA’Решение метрических задач в начертательной геометрии с примерамиП’^AA’Решение метрических задач в начертательной геометрии с примерамиA’B’ значит ABРешение метрических задач в начертательной геометрии с примерамиAA,AB Решение метрических задач в начертательной геометрии с примерамиплоскости CAA’C’, тогда и A’B’Решение метрических задач в начертательной геометрии с примерами CAA’C’. Следовательно,CA’Решение метрических задач в начертательной геометрии с примерамиA’B’.

На основании этой теоремы две взаимно перпендикулярные прямые (пересекающиеся или скрещивающиеся) проецируются на П1 в виде взаимно перпендикулярных прямых, если одна из них горизонталь, на П2 – если одна из них фронталь (рис. 10.2,а).

Условие перпендикулярности скрещивающихся прямых (рис. 10.2,б) сводятся к условиям перпендикулярности пересекающихся прямых, поведенных через произвольную точку и соответственно параллельных скрещивающимся прямым. Таким образом, понятие перпендикулярности можно отнести как к пересекающимся, так и к скрещивающимся прямым.

Решение метрических задач в начертательной геометрии с примерами

Рис. 10.2. Перпендикулярные прямые:
а -пересекающиеся a1 Решение метрических задач в начертательной геометрии с примерами h1 Решение метрических задач в начертательной геометрии с примерами a Решение метрических задач в начертательной геометрии с примерами h ;
б -скрещивающиеся b2 Решение метрических задач в начертательной геометрии с примерами Решение метрических задач в начертательной геометрии с примерами2 Решение метрических задач в начертательной геометрии с примерами b Решение метрических задач в начертательной геометрии с примерами Решение метрических задач в начертательной геометрии с примерами

Линии наибольшего наклона плоскости

Прямые, лежащие в плоскости и перпендикулярные линиям уровня этой плоскости, называются линиями наибольшего наклона к соответствующей плоскости проекций (рис. 10.3). Так, прямая, лежащая в плоскости и перпендикулярная горизонтали плоскости, называется линией наибольшего наклона к горизонтальной плоскости проекций, а прямая, перпендикулярная фронтали – линией наибольшего наклона к фронтальной плоскости проекций.

Угол между линией наибольшего наклона и ее проекцией на соответствующую плоскость равен углу наклона плоскости к плоскости проекций (см. рис. 9.15).
Решение метрических задач в начертательной геометрии с примерами

Рис. 10.3. Линия наибольшего наклона плоскости а к П1:
а – плоскость общего положения; h ∈α – горизонталь плоскости а; AB Решение метрических задач в начертательной геометрии с примерами h – линия наибольшего наклона;
φ = Решение метрических задач в начертательной геометрии с примерамиAB, AB 1 – угол наклона плоскости а к П1

Перпендикулярность прямой и плоскости

Прямая перпендикулярна плоскости, если она перпендикулярна двум пересекающимся прямым этой плоскости. На основании теоремы о проекциях прямого угла можно получить условие перпендикулярности прямой общего положения и плоскости общего положения:
Если прямая а перпендикулярна плоскости α(ABC), то ее горизонтальная проекция перпендикулярна горизонтальной проекции горизонтали плоскости, а фронтальная проекция – фронтальной проекции фронтали плоскости.

Например, при построении прямой а, перпендикулярной плоскости α(ABC) (рис. 10.4,а), в плоскости строятся линии уровня – горизонталь и фронталь, затем через произвольную точку в плоскости, в данном случае точку K(h×Решение метрических задач в начертательной геометрии с примерами), строится прямая, горизонтальная проекция которой перпендикулярна горизонтальной проекции горизонтали плоскости α(ABC), а фронтальная проекция – фронтальной проекции фронтали плоскости.

Решение метрических задач в начертательной геометрии с примерами

Рис. 10.4. Перпендикулярность прямой и плоскости:

а -построение прямой, перпендикулярной плоскости:  Решение метрических задач в начертательной геометрии с примерами

б -построение плоскости, перпендикулярной прямой: Решение метрических задач в начертательной геометрии с примерами

Аналогично решается задача о построении плоскости, перпендикулярной прямой общего положения (рис. 10.4,б)

Если плоскость проецирующая, проекции линий уровня совпадают со следом плоскости, перпендикулярность устанавливается по отношению к следу плоскости. Горизонтальная проекция перпендикуляра к горизонтально-проецирующей плоскости строится перпендикулярно горизонтальному следу плоскости (рис. 10.5,а). Прямая, перпендикулярная горизонтально-проецирующей плоскости, занимает положение горизонтальной линии уровня.
Аналогично, фронтальная проекция перпендикуляра к фронтально-проецирующей плоскости строится перпендикулярно фронтальному следу плоскости (рис. 10.5,б). Прямая, перпендикулярная фронтально-проецирующей плоскости, занимает положение фронтали.

Решение метрических задач в начертательной геометрии с примерами

Рис. 10.5. Перпендикулярность прямой и проецирующей плоскости:
а -построение прямой, перпендикулярной плоскости;
б -построение плоскости, перпендикулярной прямой

Взаимная перпендикулярность плоскостей

Две плоскости взаимно перпендикулярны, если одна из них проходит через перпендикуляр к другой. Таким образом, построение взаимно перпендикулярных плоскостей сводится к построению перпендикулярных прямой и плоскости. Например, чтобы через произвольную точку А провести плоскость, перпендикулярную плоскости a(Решение метрических задач в начертательной геометрии с примерами× h) (рис. 10.6), достаточно построить прямую n,перпендикулярную плоскости α(Решение метрических задач в начертательной геометрии с примерами×h): n1Решение метрических задач в начертательной геометрии с примерамиh1; n2Решение метрических задач в начертательной геометрии с примерамиРешение метрических задач в начертательной геометрии с примерами2. Вторая прямая m, определяющая искомую плоскость, может быть задана произвольно – как пересекающая прямую n или параллельная ей.

Решение метрических задач в начертательной геометрии с примерами

Рис. 10.6. Перпендикулярность двух плоскостей

Дано: α(h × Решение метрических задач в начертательной геометрии с примерами ) ; A (A1, A2).
 

Построить: A ∈ β Решение метрических задач в начертательной геометрии с примерами α .

Решение:
A ∈ n;

Решение метрических задач в начертательной геометрии с примерами

Определение метрических задач

Традиционно задачи, связанные с измерением длин, углов, площадей и объемов относят к метрическим. В основе решения этих задач лежит определение длины отрезка и, как производной от этого, площади плоской фигуры.

Определение длины отрезка

Одним из наиболее распространенных методов (рисунок 5.1) является метод прямоугольного треугольника (так его называют в начертательной геометрии) или метод ортогональных дополнений (название, принятое в линейной алгебре).
Решение метрических задач в начертательной геометрии с примерами

Идея метода базируется на следующем. Истинная величина отрезка AВ является гипотенузой прямоугольного треугольника, один из катетов которого, является проекцией отрезка AВ на плоскость проекции Решение метрических задач в начертательной геометрии с примерами а второй катет -разница координат Решение метрических задач в начертательной геометрии с примерамиконцов отрезка для оси, отсутствующей в рассматриваемой плоскости проекции (ортогональное дополнение). Угол между проекцией и гипотенузой этого треугольника (а) определяет наклон прямой к соответствующей плоскости проекции.

На комплексном чертеже возможно решение как на плоскости Решение метрических задач в начертательной геометрии с примерами так и на плоскости Решение метрических задач в начертательной геометрии с примерами При правильных построениях Решение метрических задач в начертательной геометрии с примерами. Углы а и Решение метрических задач в начертательной геометрии с примерами -углы наклона отрезка прямой АВ к плоскости Решение метрических задач в начертательной геометрии с примерами соответственно.

Определение площади треугольника

Определение площади треугольника и величины плоского угла можно свести к известной задаче построения треугольника по трем сторонам.

Для этого достаточно, используя рассмотренный выше способ прямоугольного треугольника, найти по порядку истинные величины сторон Решение метрических задач в начертательной геометрии с примерами (в соответствии с рисунком 5.2), а затем на свободном месте построить треугольник по трем сторонам.

Решение метрических задач в начертательной геометрии с примерами
Величина плоского угла между двумя любыми сторонами этой фигуры может быть измерена на истинной величине треугольника.

Проецирование прямого угла

Решение многих задач Начертательной геометрии связано с необходимостью построения на чертеже взаимно перпендикулярных прямых и плоскостей. Базой для этого служит умение строить прямые углы на комплексном чертеже.

Решение метрических задач в начертательной геометрии с примерами
Известная в теории чертежа теорема (приведем ее без доказательства) утверждает, что прямой угол (в соответствии с рисунком 5.3) проецируется на

соответствующую плоскость проекций вез искажения, если одна из его сторон параллельна этой плоскости проекций, а вторая – ей не перпендикулярна.

  • Заказать чертежи

Перпендикулярность прямых и плоскостей

Выше уже отмечалось, что в трехмерном Евклидовом пространстве отсутствует полная параллельность, то же самое можно сказать и о перпендикулярности. Понятие перпендикулярности так же, как и параллельности, вводится через определение.

Перпендикулярность прямой и плоскости

Считают, что прямая перпендикулярна плоскости, если она перпендикулярна двум пересекающимся (любым) прямым этой плоскости.

При решении задачи возможны два варианта: проведение перпендикулярной прямой к плоскости из внешней точки и из точки, лежащей в плоскости.
Рассмотрим возможность проведения перпендикуляра из точки К, лежащей в плоскости общего положения Р, заданной следами (рисунок 5.4).

Решение метрических задач в начертательной геометрии с примерами
Рисунок 5.4 – Перпендикулярность прямой и плоскости

В плоскости Р (через точку К) проводятся горизонталь h и фронталь f. Прямые, перпендикулярные соответствующим проекциям линий уровня Решение метрических задач в начертательной геометрии с примерамив соответствии с теоремой о проецировании прямого угла и данным выше определением, могут быть приняты за проекции прямой Решение метрических задач в начертательной геометрии с примерами.

В том случае, когда точка К не лежит в плоскости Р, решение задачи аналогично (рисунок 5.5).

Поскольку положение точки пересечения искомого перпендикуляра не определено, решение соответствует следующей схеме:

а) в плоскости проводятся горизонталь h (через точку В) и фронталь f (через точку A), в случае задания плоскости следами за фронталь и горизонталь принимаются соответствующие следы плоскости Решение метрических задач в начертательной геометрии с примерами

Решение метрических задач в начертательной геометрии с примерами

Рисунок 5.5 – Перпендикуляр к плоскости

б)    из внешней точки К к соответствующим проекциям линий уровня (следам) проводятся перпендикулярные прямыеРешение метрических задач в начертательной геометрии с примерами– Линия t принимается за перпендикуляр, опущенный из точки К к плоскости Р;

в)    определяется точка S пересечения этого перпендикуляра t и плоскости.

Расстояние от точки до плоскости

Решение метрических задач в начертательной геометрии с примерами
Рисунок 5.6 – Расстояние от точки до плоскости

Задачу на определение расстояние от точки до плоскости (рисунок 5.6) можно свести к решению уже известных задач на построение перпендикуляра к плоскости (рисунок 5.5) и определения натуральной величины отрезка прямой (рисунок 5.1)

Перпендикулярность плоскостей

Считают, что две плоскости взаимно перпендикулярны, если одна из них проходит через прямую, перпендикулярную другой плоскости.

Задача может ставиться, как проведение плоскости, перпендикулярной заданной, проходящей через точку или прямую.

При проведении искомой плоскости через точку, как и в предыдущем случае, возможны два варианта проведения плоскости перпендикулярной заданной: через точку, лежащую в плоскости и через точку вне ее (рисунок 5.7).

Точно такой же вариант возникает и при проведении перпендикулярной плоскости через прямую (лежащую в исходной плоскости или не лежащую).

Рассмотрим вариант построения плоскости, проходящей через точку. Пусть точка А лежит в плоскости Р. Линии Решение метрических задач в начертательной геометрии с примерами перпендикулярные соответствующим проекциям линий уровня (следам), определят перпендикуляр t к плоскости Р.

Решение метрических задач в начертательной геометрии с примерами
Рисунок 5.7 – Перпендикулярность плоскостей
Проведение через точку А произвольной прямой s позволяет определить плоскость Q, которая будет перпендикулярна плоскости Р.

Если точка А лежит вне плоскости Р, то решение аналогично. Проведение через точку А перпендикуляра t и произвольной прямой s определит плоскость Q, которая также, по определению, будет перпендикулярна плоскости Р.

Решение задачи на проведение плоскости через прямую аналогично решению задачи по проведению плоскости через точку. Достаточно вместо произвольной прямой s использовать заданную прямую АВ. И тогда, в соответствии с рисунком 5.8, задача сведется к проведению перпендикуляра t к плоскости Р (из точки, лежащей в плоскости или лежащей вне ее).
Решение метрических задач в начертательной геометрии с примерами

Рисунок 5.8 – Перпендикулярность плоскостей

Определение натуральных величин геометрических элементов

1. Определить натуральную величину отрезка общего положения:

  • способом прямоугольного треугольника;
  • способом замены плоскостей проекций преобразовать в прямую уровня;
  • способом вращения вокруг проецирующей оси преобразовать в прямую уровня.

2. Определить натуральную величину плоскости общего положения (замкнутого отсека):

  • способом замены плоскостей проекций преобразовать в плоскость уровня;
  • способом вращения вокруг линии уровня преобразовать в плоскость уровня;
  • способом плоскопараллельного перемещения преобразовать в плоскость уровня.

Определение расстояния между геометрическими элементами (образами)

1. Определить расстояние от точки до прямой общего положения:

  • способом замены плоскостей проекций преобразовать плоскость, заданную прямой и точкой, в плоскость уровня (задачи 3 и 4 преобразования; прямую и точку рассматривать как плоскость);
  • способом замены плоскостей проекций преобразовать прямую общего положения в проецирующую прямую (задачи 1 и 2 преобразования);
  • способом вращения вокруг линии уровня преобразовать плоскость, заданную прямой и точкой, в плоскость уровня;
  • способом плоскопараллельного перемещения преобразовать плоскость, заданную прямой и точкой, в плоскость уровня;
  • способом задания плоскости, перпендикулярной к прямой (3-й тип задач), построить через заданную точку плоскость, перпендикулярную к прямой, и определить точку пересечения последней с плоскостью.

2. Определить расстояние между параллельными прямыми:

  • способом замены плоскостей проекций преобразовать плоскость, заданную параллельными прямыми, в плоскость уровня (задачи 3 и 4 преобразования);
  • способом замены плоскостей проекций преобразовать две параллельные общего положения в проецирующие прямые (задачи 1 и 2 преобразования);
  • способом вращения вокруг линии уровня преобразовать плоскость, заданную параллельными прямыми, в плоскость уровня, ограничив ее замкнутым отсеком;
  • способом плоскопараллельного перемещения преобразовать плоскость, заданную параллельными прямыми, в плоскость уровня;
  • способом задания плоскости, перпендикулярной к прямой (3-й тип задач), построить плоскость через любую точку, принадлежащую одной из прямых, перпендикулярную ко второй прямой, и определить точку пересечения этой плоскости со второй прямой.

3. Определить расстояние между скрещивающимися прямыми, преобразовав одну из прямых в проецирующую (задачи 1 и 2 преобразования).

4. Определить расстояние от точки до плоскости:

  • по теме «Перпендикулярность» – провести перпендикуляр к плоскости, построить точку пересечения этого перпендикуляра с заданной плоскостью и найти любым способом натуральную величину построенного отрезка (см. пункт 1);
  • способом замены плоскостей проекций преобразовать плоскость общего положения в плоскость проецирующую.

5. Определить расстояние от точки до поверхности вращения:

  • способом замены плоскостей проекций преобразовать плоскость, проведенную через точку и ось вращения поверхности, в плоскость уровня (задача 4 преобразования);
  • способом вращения вокруг проецирующей оси повернуть плоскость, проведенную через точку и ось вращения поверхности, в плоскость уровня.

Определение углов наклона геометрических элементов к плоскостям проекций H и V

1. Определить углы наклона прямой общего положения к плоскостям проекций H и V:

  • способом прямоугольного треугольника построить на двух проекциях натуральные величины отрезка и определить углы наклона прямой;
  • способом замены плоскостей проекций преобразовать прямую общего положения в горизонтальную, а затем во фронтальную прямую (задача 1 преобразования);
  • способом вращения вокруг соответствующей проецирующей оси преобразовать прямую общего положения в горизонтальную и во фронтальную прямые.

2. Определить угол наклона прямой к заданной плоскости общего положения:

  • из любой точки прямой опустить перпендикуляр к плоскости;
  • способом вращения вокруг линии уровня преобразовать построенную плоскость, заданную прямой и перпендикуляром, в плоскость уровня;
  • искомый угол будет дополнять построенный угол до 90°.

3. Определить величину двухгранного угла, если на чертеже есть линии пересечения плоскостей, образующих двухгранный угол (ребро):

  • способом замены плоскостей проекций преобразовать ребро двухгранного угла в проецирующую прямую (задачи 1 и 2 преобразования).

4. Определить угол между двумя плоскостями общего положения, если на чертеже нет линии пересечения заданных плоскостей (ребра):

  • задача решается косвенным путем, для чего из любой точки пространства следует опустить перпендикуляры к заданным плоскостям, которые, в свою очередь, задают вспомогательную плоскость, перпендикулярную к этим плоскостям;
  • эту вспомогательную плоскость способом вращения вокруг линии уровня следует преобразовать в плоскость уровня, определив угол между перпендикулярами (преобразование вспомогательной плоскости в плоскость уровня возможно и другими способами – ее плоскопараллельным перемещением или заменой плоскостей проекций);
  • искомый угол будет дополнять построенный угол до 180° (углом между плоскостями считают угол острый).

Структуризация материала тринадцатой лекции в рассмотренном объеме схематически представлена на рис. 13.1 (лист 1). На последующих листах 2–7 компактно приведены иллюстрации к этой схеме для визуального повторения изученного материала при его повторении (рис. 13.2–13.7).

Метрические задачи:

Решение метрических задач в начертательной геометрии с примерами

Определение натуральной величины геометрических элементов:

1. Определение длины отрезка

Способ прямоугольного треугольника

Решение метрических задач в начертательной геометрии с примерами

Способ замены плоскостей проекций (задача 1)

Решение метрических задач в начертательной геометрии с примерами

Способ вращения вокруг проецирующей оси

Решение метрических задач в начертательной геометрии с примерами

2. Определение площади замкнутого отсека

Способ замены плоскостей проекций (задачи 3 и 4)

Решение метрических задач в начертательной геометрии с примерами

Способ вращения вокруг прямой уровня (горизонтали)

Решение метрических задач в начертательной геометрии с примерами

Способ вращения вокруг проецирующей оси i(i Решение метрических задач в начертательной геометрии с примерамиV)

Решение метрических задач в начертательной геометрии с примерами

Способ плоско-параллельного перемещения (переноса)

Решение метрических задач в начертательной геометрии с примерами

Определение расстояний:

1. Расстояние между точками – определяется величиной отрезка, соединяющего эти точки

См. рис. 13.2, а, б, в

2. Расстояние от точки до прямой – определяется величиной перпендикуляра, опущенного из точки к прямой

а. Прямой путь (перпендикулярность)

б. Способ замены плоскостей проекций: определить натуральную величину плоскости, которую определяют точка и прямая (см.рис. 13.2, г) 

в. Способ вращения вокруг прямой уровня: определить натуральную величину  плоскости, которую определяют точка и прямая (см.рис.13.2, д)

г. Способ плоскопараллельного переноса: определить натуральную величину плоскости, которую определяют точка и прямая (см.рис.13.2, ж)

Решение метрических задач в начертательной геометрии с примерами

3. Расстояние между параллельными прямыми – определяется величиной перпендикуляра, проведённого из произвольной точки одной прямой к другой прямой

а. Способ замены плоскостей проекции (рассматриваем две прямые) – задачи 1 и 2 (преобразовать прямые общего положения AB и CD в проецирующие)

б. Способ замены плоскостей проекции (рассматриваем плоскость, которую определяют параллельные прямые) – задачи 3 и 4 (определить натуральную величину плоскости ? (AB//СВ))

Решение метрических задач в начертательной геометрии с примерами

Решение метрических задач в начертательной геометрии с примерами

4. Расстояние между скрещивающимися прямыми – определяется  величиной перпендикуляра, проведённого от одной из прямых, преобразованной в точку, к другой прямой (задачи 1 и 2 замены плоскостей проекции).

Способ замены плоскостей проекций – задачи 1 и 2

Решение метрических задач в начертательной геометрии с примерами

5. Расстояние от точки до плоскости – определяется величиной перпендикуляра, проведённого из точки на плоскость до точки его пересечения с этой плоскостью.

а. Прямой путь (перпендикулярность)

Решение метрических задач в начертательной геометрии с примерами

б. Способ замены плоскостей проекций (плоскость преобразовать в проецирующую – задача 3)

Решение метрических задач в начертательной геометрии с примерами

6. Расстояние между прямой и параллельной ей плоскостью – определяется величиной перпендикуляра, проведённого из произвольной точки на прямой к плоскости.

См. рис. 13.4, б, в

7. Расстояние между параллельными плоскостями – определяется величиной отрезка перпендикуляра, опущенного из точки одной плоскости на другую плоскость (до точки пересечения с другой плоскостью).

См. рис. 13.4, б, в

8. Расстояние от точки до поверхности

a. Cпособ вращения вокруг проецирующей оси

Решение метрических задач в начертательной геометрии с примерами

Решение метрических задач в начертательной геометрии с примерами

Решение метрических задач в начертательной геометрии с примерами

б. Способ замены плоскостей проекции

Решение метрических задач в начертательной геометрии с примерами

Решение метрических задач в начертательной геометрии с примерами

Определение величин углов:

1. Угол φ между скрещивающимися прямыми – определяется плоским углом, образованным  двумя пересекающимися прямыми, проведёнными из произвольной точки пространства параллельно скрещивающимся прямым (рис. 13.6, а)

Способ вращения вокруг линии уровня

Дано:
а и b – скрещивающиеся прямые
Требуется:

φ – ?
 

Решение:
1.
Решение метрических задач в начертательной геометрии с примерами
2. φ – вращением вокруг фронтали, проведённой в построенной плоскости α(d с)

Решение метрических задач в начертательной геометрии с примерами

2. Угол φ между прямой и плоскостью – определяется углом между прямой и её проекцией на эту плоскость.

Дано:
 α(h ∩ f);
AB – прямая общего положения
Требуется:
φ – ?

Решение метрических задач в начертательной геометрии с примерами

Решение:
1. l Решение метрических задач в начертательной геометрии с примерами α(h ∩ f);
  lРешение метрических задач в начертательной геометрии с примерамиРешение метрических задач в начертательной геометрии с примерами f”;
  lРешение метрических задач в начертательной геометрии с примерамиРешение метрических задач в начертательной геометрии с примерами h’;
2. ∠φ  – вращением вокруг фронтали, проведённой в построенной плоскости β(AB∩l)

3. Угол φ между плоскостями α и β – определяется линейным углом, образованным двумя прямыми, по которым некоторая плоскость γ, перпендикулярная плоскостям (или их ребру), пересекает эти плоскости (углом между плоскостями считают острый угол).

а. Если на чертеже нет ребра (линии пересечения заданных плоскостей) – угол φ определяется способом вращения вокруг линии уровня (рис. а)

Решение метрических задач в начертательной геометрии с примерами

Дано:
 (m // h);   (а 
∩ b).
Требуется:
 
φ – ?
Решение:
1. провести в заданной плоскости фронтали и горизонтали;

2. из произвольной точки пространства D (D’, D”) провести перпендикуляры l1 и l2 к заданными плоскостям, которые определяют плоскость γ(l1 ∩ l2);
3.
φ – вращением вокруг горизонтали h3, проведённой в построенной плоскости γ(l1 ∩ l2).

Решение метрических задач в начертательной геометрии с примерами

б. Если на чертеже есть ребро (линия пересечения заданных плоскостей) – угол φ определяется способом замены плоскостей проекций (задачи 1 и 2, рис. б)

Решение метрических задач в начертательной геометрии с примерами

Решение:

ребро АВ двугранного угла преобразовать двумя заменами в проецирующую прямую.

  • Тени в ортогональных проекциях
  • Кривые поверхности
  • Пересечения криволинейных поверхностей
  • Пересечения поверхностей с прямой и плоскостью
  • Пересечение поверхности плоскостью и прямой
  • Развертки поверхностей
  • Способы преобразования проекций
  • Взаимное положение прямой и плоскости

Определение натуральной величины отрезка прямой общего положения.

Одна из практических задач начертательной геометрии – определение натуральных величин объектов. Натуральную величину отрезков (Н.В.) можно определять различными способами. Определим натуральную величину отрезка АВ из предыдущего параграфа методом прямоугольного треугольника.

Отрезок АВ задан двумя точками А(10, 18, 30) и В(55, 25, 10). В основу этого метода положен прямоугольный треугольник, образованный самим отрезком (гипотенуза треугольника), одной из его проекций (первый катет) и отрезком, равным разнице между координатами на второй проекции. На рисунке 9 один из катетов – это горизонтальная проекция отрезка АВ, а второй катет – это разница между координатами z концов отрезка.

Рисунок 9. Определение натуральной величины отрезка АВ методом прямоугольного треугольника.
Рисунок 9. Определение натуральной величины отрезка АВ методом прямоугольного треугольника.

Проекция А1В1 лежит на горизонтальной плоскости проекций. Чтобы легче понять суть метода прямоугольного треугольника, представим себе, что мы треугольник АВК поворачиваем вокруг отрезка А1В1, как бы «укладывая» его на плоскость Н. Тогда гипотенуза нашего треугольника окажется лежащей на горизонтальной плоскости и отразится в натуральную величину. Задача решена, отрезок А0В1 является натуральной величиной отрезка АВ.

Выполним построение на эпюре.

1. На эпюре отрезка АВ от точки В2 проведем горизонтальную прямую и отметим расстояние Δz – это разница между координатами z точек А и В. (Рисунок 10).

Рисунок 10. Определение величины Δz.
Рисунок 10. Определение величины Δz.

2. От точки А1 отложим перпендикуляр – проведем прямую под углом 90° (рисунок 11).

Рисунок 11. Восстановление перпендикуляра из точки А1.
Рисунок 11. Восстановление перпендикуляра из точки А1.

3. На проведенном перпендикуляре отложим расстояние Δz и отметим точку А0. Соединим точки В1 и А0 . Мы получили решение задачи (рисунок 12).

Рисунок 12. Определение натуральной величины отрезка АВ.
Рисунок 12. Определение натуральной величины отрезка АВ.

Упражнение 3.

Исправьте ошибку, допущенную на рисунке 13 при определении натуральной величины отрезка CD.

Рисунок 3. Исправьте ошибку, допущенную на эпюре.
Рисунок 3. Исправьте ошибку, допущенную на эпюре.

Добавить комментарий