Как найти изменение импульса тела по окружности

iSopromat.ru

Пример решения задачи по определению импульса сил, действующих, за определенное время, на материальную точку заданной массы, движущуюся по окружности с постоянной скоростью.

Задача

Материальная точка массой m=10 г движется по окружности с постоянной скоростью 40 см/с.

Найти импульс сил, действующих на точку за время прохождения точкой половины окружности (рисунок 2.3).

Импульс тела, закон сохранения импульса

теория по физике 🧲 законы сохранения

Импульс тела — векторная физическая величина, обозначаемая как p и равная произведению массы тела на его скорость:

Единица измерения импульса — килограмм на метр в секунду (кг∙м/с).

Направление импульса всегда совпадает с направлением скорости ( p ↑↓ v ), так как масса — всегда положительная величина (m > 0).

Пример №1. Определить импульс пули массой 10 г, вылетевшей со скоростью 300 м/с. Сопротивлением воздуха пренебречь.

Импульс пули есть произведение массы на ускорение. Прежде чем выполнить вычисления, нужно перевести единицы измерения в СИ:

p = mv = 0,01∙300 = 3 (кг∙м/с)

Относительный импульс

Относительный импульс — векторная физическая величина, равная произведению массы тела на относительную скорость:

p 1отн2— импульс первого тела относительно второго, m1 — масса первого тела, v 1отн2 — скорость первого тела относительно второго, v 1и v 2 — скорости первого и второго тела соответственно в одной и той же системе отсчета.

Пример №2. Два автомобиля одинаковой массы (15 т) едут друг за другом по одной прямой. Первый — со скоростью 20 м/с, второй — со скоростью 15 м/с относительно Земли. Вычислите импульс первого автомобиля в системе отсчета, связанной со вторым автомобилем.

Сначала переведем единицы измерения в СИ:

Изменение импульса тела

p — изменение импульса тела, p — конечный импульс тела, p 0 — начальный импульс тела

Частные случаи определения изменения импульса тела

Абсолютно неупругий удар

Конечный импульс тела:

Модуль изменения импульса тела равен модулю его начального импульса:

Абсолютно упругий удар

Модули конечной и начальной скоростей равны:

Модули конечного и начального импульсов равны:

Модуль изменения импульса тела равен удвоенному модулю начального (конечного) импульса:

Пуля пробила стенку

Модуль изменения импульса тела равен разности модулей начального и конечного импульсов:

Радиус-вектор тела повернул на 180 градусов

Модуль изменения импульса тела равен удвоенному модулю начального (конечного) импульса:

Абсолютно упругое отражение от горизонтальной поверхности под углом α к нормали

Модули конечной и начальной скоростей равны:

Модули конечного и начального импульсов равны:

Угол падения равен углу отражения:

Модуль изменения импульса в этом случае определяется формулой:

Пример №3. Шайба абсолютно упруго ударилась о неподвижную стену. При этом направление движения шайбы изменилось на 90 градусов. Импульс шайбы перед ударом равен 1 кг∙м/с. Чему равен модуль изменения импульса шайбы в результате удара? Ответ округлите до десятых.

В данном случае 90 градусов и есть 2α (угол между векторами начального и конечного импульсов), в то время как α — это угол между вектором импульса и нормалью. Учтем, что при абсолютно упругом отражении модули конечного и начального импульсов равны.

Вычисляем:

Второй закон Ньютона в импульсном виде

Второй закон Ньютона говорит о том, что ускорение тела прямо пропорционально силе, действующей на него. Записывается он так:

Но ускорение определяется отношением разности конечной и начальной скоростей ко времени, в течение которого менялась скорость:

Подставим это выражение во второй закон Ньютона и получим:

F ∆t — импульс силы, ∆ p — изменение импульса тела

Пример №4. Тело движется по прямой в одном направлении. Под действием постоянной силы за 3 с импульс тела изменился на 6 кг∙м/с. Каков модуль силы?

Из формулы импульса силы выразим модуль силы:

Реактивное движение

Реактивное движение — это движение, которое происходит за счет отделения от тела с некоторой скоростью какой-либо его части. В отличие от других видов движения реактивное движение позволяет телу двигаться и тормозить в безвоздушном пространстве, достигать первой космической скорости.

Ракета представляет собой систему двух тел: оболочки массой M и топлива массой m. v — скорость выброса раскаленных газов. ∆m/∆t — расход реактивного топлива, V — скорость ракеты.

Второй закон Ньютона в импульсном виде:

Второй закон Ньютона для ракеты:

Пример №5. Космический корабль массой 3000 кг начал разгон в межпланетном пространстве, включив реактивный двигатель. Из сопла двигателя каждую секунду выбрасывается 3 кг горючего газа со скоростью 600 м/с. Какой будет скорость корабля через 20 секунд после разгона? Изменением массы корабля во время разгона пренебречь. Принять, что поле тяготения, в котором движется корабль, пренебрежимо мало.

Корабль начинает движение из состояния покоя. Поэтому скорость будет равна:

Выразим ускорение из второго закона Ньютона для ракеты:

Изменение импульса определяется произведением суммарной массы выброшенного горючего на скорость его выброса. Так как мы знаем, сколько выбрасывалось горючего каждую секунду, формула примет

Вид — группа особей, сходных по морфолого-анатомическим, физиолого-экологическим, биохимическим и генетическим признакам, занимающих естественный ареал, способных свободно скрещиваться между собой и давать плодовитое потомство.

Отсюда ускорение равно:

Выразим формулу для скорости и сделаем вычисления:

Суммарный импульс системы тел

Суммарный импульс системы тел называется полным импульсом системы. Он равен векторной сумме импульсов всех тел, которые входят в эту систему:

Пример №6. Найти импульс системы, состоящей из двух тел. Векторы импульсов этих тел указаны на рисунке.

Между векторами прямой угол (его косинус равен нулю). Модуль первого вектора равен 4 кг∙м/с (т.к. занимает 2 клетки), а второго — 6 кг∙м/с (т.к. занимает 3 клетки). Отсюда:

Закон сохранения импульса

Левая часть выражения показывает векторную сумму импульсов системы, состоящей из двух тел, до их взаимодействия. Правая часть выражения показывает векторную сумму этой системы после взаимодействия тел, которые в нее входят.

Закон сохранения импульса в проекции на горизонтальную ось

Если до и после столкновения скорости тел направлены вдоль горизонтальной оси, то закон сохранения импульса следует записывать в проекциях на ось ОХ. Нельзя забывать, что знак проекции вектора:

  • положителен, если его направление совпадает с направлением оси ОХ;
  • отрицателен, если он направлен противоположно направлению оси ОХ.

При неупругом столкновении двух тел, движущихся навстречу друг другу, скорость совместного движения будет направлена в ту сторону, куда до столкновения двигалось тело с большим импульсом.

Частные случаи закона сохранения импульса (в проекциях на горизонтальную ось)

Неупругое столкновение с неподвижным телом m1v1 = (m1 + m2)v
Неупругое столкновение движущихся тел ± m1v1 ± m2v2 = ±(m1 + m2)v
В начальный момент система тел неподвижна 0 = m1v’1 – m2v’2
До взаимодействия тела двигались с одинаковой скоростью (m1 + m2)v = ± m1v’1 ± m2v’2

Сохранение проекции импульса

В незамкнутых системах закон сохранения импульса выполняется частично. Например, если из пушки под некоторым углом α к горизонту вылетает снаряд, то влияние силы реакции опоры не позволит орудию «уйти под землю». В момент отдачи оно будет откатываться от поверхности земли.

Пример №7. На полу лежит шар массой 2 кг. С ним сталкивается шарик массой 1 кг со скоростью 2 м/с. Определить скорость первого шара при условии, что столкновение было неупругим.

Если столкновение было неупругим, скорости первого и второго тел после столкновения будут одинаковыми, так как они продолжат двигаться совместно. Используем для вычислений следующую формулу:

Отсюда скорость равна:

Импульс частицы до столкновения равен − p 1, а после столкновения равен − p 2, причём p1 = p, p2 = 2p, − p 1⊥ − p 2. Изменение импульса частицы при столкновении Δ − p равняется по модулю:

Алгоритм решения

Решение

Запишем исходные данные:

Так как угол α = 90 о , вектор изменения импульса представляет собой гипотенузу треугольника, катами которого являются вектора начального и конечного импульсов. Поэтому изменение импульса можно вычислить по теореме Пифагора:

Δ p = √ p 2 1 + p 2 2

Подставим известные данные:

Δ p = √ p 2 + ( 2 p ) 2 = √ 5 p 2 = p √ 5

pазбирался: Алиса Никитина | обсудить разбор | оценить

На рисунке приведён график зависимости проекции импульса на ось Ox тела, движущегося по прямой, от времени. Как двигалось тело в интервалах времени 0–1 и 1–2?

а) в интервале 0–1 не двигалось, а в интервале 1–2 двигалось равномерно

б) в интервале 0–1 двигалось равномерно, а в интервале 1–2 двигалось равноускорено

в) в интервалах 0–1 и 1–2 двигалось равномерно

г) в интервалах 0–1 и 1–2 двигалось равноускорено

Материальная точка массой 1 кг равномерно движется по окружности со скоростью 10 м/с. Найти изменение импульса за одну четверть периода; половину периода; период

Ваш ответ

решение вопроса

Похожие вопросы

  • Все категории
  • экономические 43,282
  • гуманитарные 33,619
  • юридические 17,900
  • школьный раздел 607,061
  • разное 16,829

Популярное на сайте:

Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах.

Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте.

Как быстро и эффективно исправить почерк? Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.

Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.

[spoiler title=”источники:”]

http://www.soloby.ru/309399/%D0%BC%D0%B0%D1%82%D0%B5%D1%80%D0%B8%D0%B0%D0%BB%D1%8C%D0%BD%D0%B0%D1%8F-%D1%80%D0%B0%D0%B2%D0%BD%D0%BE%D0%BC%D0%B5%D1%80%D0%BD%D0%BE-%D0%BE%D0%BA%D1%80%D1%83%D0%B6%D0%BD%D0%BE%D1%81%D1%82%D0%B8-%D1%81%D0%BA%D0%BE%D1%80%D0%BE%D1%81%D1%82%D1%8C%D1%8E-%D0%B8%D0%B7%D0%BC%D0%B5%D0%BD%D0%B5%D0%BD%D0%B8%D0%B5

[/spoiler]

Пуля 22-го калибра имеет массу всего 2 г. Если кому-нибудь бросить такую пулю, то он легко сможет поймать ее даже без перчаток. Если же попытаться поймать такую пулю, вылетевшую из дула со скоростью 300 м/с, то даже перчатки тут не помогут.

Если на тебя катится игрушечная тележка, ты сможешь остановить ее носком ноги. Если на тебя катится грузовик, следует уносить ноги с его пути.

Импульс это векторная величина, которая определяется по формуле

Импульс служит мерой того, насколько велика должна быть сила, действующая в течение определенного времени, чтобы остановить или разогнать его с места до данной скорости. Направление вектора импульса всегда совпадает с направлением вектора скорости.

upsilon_2=25

Если тело покоится, импульс равен нулю. Ненулевым импульсом обладает любое, движущееся тело. Например, когда мяч покоится, его импульс равен нулю.

После удара он приобретает импульс. Импульс тела изменяется, так как изменяется скорость.

Импульс силы

Это векторная величина, которая определяется по формуле.

beta=45^{circ}

Изменение импульса тела равно импульсу равнодействующей всех сил, действующих на тело. Это иная формулировка второго закона Ньютона

Рассмотрим задачу, которая демонстрирует связь импульса силы и изменения импульса тела. Пример. Масса мяча равна 400 г, скорость, которую приобрел мяч после удара – 30 м/с.

Сила, с которой нога действовала на мяч – 1500 Н, а время удара 8 мс. Найти импульс силы и изменение импульса тела для мяча.

[custom_ads_shortcode1]

Изменение импульса тела

Как определить изменение импульса тела? Необходимо найти численное значение импульса в один момент времени, затем импульс через промежуток времени. От второй найденной величины отнять первую. Внимание! Вычитать надо вектора, а не числа. То есть из второго вектора импульса отнять первый вектор. Смотрите вычитание векторов. Пример. Оценить среднюю силу со стороны пола, действующую на мяч во время удара. 1) Во время удара на мяч действуют две силы: сила реакции опоры, сила тяжести.

Сила реакции изменяется в течение времени удара, поэтому возможно найти среднюю силу реакции пола. 2) Изменение импульса тела изображено на рисунке

3) Из второго закона Ньютона.

[custom_ads_shortcode2]

Главное запомнить

1) Формулы импульса тела, импульса силы; 2) Направление вектора импульса; 3) Находить изменение импульса тела

[custom_ads_shortcode3]

Вывод второго закона Ньютона в общем виде

[custom_ads_shortcode1]

График F(t). Переменная сила

Импульс силы численно равен площади фигуры под графиком F(t).

Если же сила непостоянная во времени, например линейно увеличивается F=kt, то импульс этой силы равен площади треугольника. Можно заменить эту силу такой постоянной силой, которая изменит импульс тела на ту же величину за тот же промежуток времени

Средняя равнодействующая сила.

Категория: Закон сохранения импульсаЗаконы сохранения энергии Импульсом тела называется произведение его массы на скорость. Также импульс называют количеством движения. Импульс является векторной величиной. Направление его совпадает с направлением скорости.

Изменение количества движения пропорционально приложенной силе и происходит по направлению той прямой, по которой эта сила действует:

Здесь – изменение импульса за время . Произведение силы на время ее действия называют импульсом силы. Сила здесь может быть и равнодействующей всех сил, действующих на тело.

Закон сохранения импульса – следствие второго и третьего законов Ньютона. Система, на которую не действуют никакие внешние силы или равнодействующая внешних сил равна нулю, называется замкнутой. В замкнутой системе суммарный импульс системы тел остается постоянным при любых взаимодействиях тел в системе между собой.

Система тел может быть не замкнута вдоль одной из осей, а вдоль другой – замкнута. Тогда закон сохранения импульса будет работать в такой системе вдоль этой оси. Например, если рассматривать столкновение лодок на озере и не принимать в расчет трение, то такая система может считаться замкнутой вдоль горизонтальной оси, и вдоль этой оси работает закон сохранения импульса. Вдоль вертикальной оси действует сила тяжести, и система не замкнута.

Также при решении задач, связанных с импульсом, очень важны такие понятия, как абсолютно упругий и абсолютно неупругий удары. При абсолютно упругом ударе  тело отскакивает от другого тела, сохраняя модуль импульса, и «угол падения равен углу отражения». При абсолютно неупругом ударе тела слипаются, образуя новое тело, масса которого равна сумме их масс. То, что  удар был неупругим  можно понять, например, если тело отскочило под углом, не равным углу падения, если о неупругом ударе специально не сказано в задаче.

Рассмотрим сначала простые задачи, где движение тел происходит вдоль одной прямой. Задача 1. Тело массой кг движется равномерно по окружности, со скоростью м/с. Определить изменение импульса тела после того, как оно пройдет четверть окружности, половину окружности.

Изменение импульсаПосле того, как тело пройдет четверть окружности, вектор его скорости повернется на 90 градусов, как показано на рисунке  – . Изменение скорости можно определить как , поэтому разворачиваем вектор скорости , чтобы получить вектор , и складываем его с по правилу параллелограмма. Зеленым показан вектор изменения скорости . По теореме Пифагора можно найти его длину – он будет равен м/с, тогда изменение импульса тела в этом случае кг*м/с.

Вектора импульсов тел системы.

Вектора импульсов и их сложениеКогда тело пройдет половину окружности, вектор его скорости развернется в противоположную сторону – . Точно так же изменение скорости можно определить как , поэтому разворачиваем вектор скорости , чтобы получить вектор , и складываем его с по правилу многоугольника. Зеленым показан вектор изменения скорости . Видно, что м/с.

[upsilon cdotcos{alpha}+u]

Изменение импульса тела в этом случае кг*м/с.

Ответ: кг*м/с, кг*м/с.

Задача Снаряд массой кг  вылетает из ствола орудия со скоростью м/с. Зная, что время движения снаряда внутри ствола равно с, определить среднюю силу давления пороховых газов.

На вылете из ствола пушки снаряд обладает импульсом, равным кг*м/с. Так как на систему не действуют никакие внешние силы, то импульс системы сохраняется, а до выстрела он был нулевым. После выстрела суммарный импульс системы также нулевой, а это значит, что импульс снаряда равен по модулю и противоположен по направлению изменению импульса пороховых газов в стволе. Таким образом, газы будут давить с силой кНОтвет: 1000 кНЗадача 3. На тело в течение времени с действовала сила Н. Найти массу тела, если изменение скорости тела в результате действия силы равно м/с.

Изменение импульса равно произведению изменения скорости на массу тела. Импульс силы равен , масса тела тогда   кг.

Ответ: 100 кгЗадача 4. Скорость реактивного самолета равна км/ч. На пути самолета оказалась птица массой кг.  Определить среднюю силу удара птицы о стекло кабины летчика, если длительность удара с. Каково среднее давление на стекло при ударе, если площадь соприкосновения птицы со стеклом см?

[upsilon_1=sqrt{4cdot 20^2+80cdot500cdot0,5+500^2}=521,2]

Среднюю силу удара можно определить так: Скорость самолета выразим в единицах СИ – метрах в секунду. км/ч м/сИли 500 кН. Можно теперь определить среднее давление на стекло при ударе, только прежде представить площадь в м:

см мПаскалей или 50 атмосфер.

Ответ: Па или 50 атмосфер. Задача 5. Падающий вертикально шарик массой кг ударился о пол и подпрыгнул на высоту 0,4 м. Найти среднюю силу, действующую со стороны пола на шарик, если длительность удара с, к моменту удара о пол скорость шарика м/с.

Шарик двигается равноускоренно, поэтому, когда он соприкоснется с полом, его вес будет больше силы тяжести. А его вес – это, собственно, и есть сила его давления на пол. При равноускоренном движении вес можно вычислить:

Определим ускорение шарика. Здесь – мера изменения скорости шарика, Так как шарик взлетел на высоту 0,4 метра, то определим его скорость при отрыве от пола по формуле:

Скорость шарика в наивысшей точке равна 0, поэтому:

Тогда изменение скоростиОтвет: 158 НЗадача 6. Шарик летит навстречу стенке со скоростью . Стенка движется навстречу шарику со скоростью . Какой станет скорость шарика после упругого удара о стенку?

Сначала рассмотрим полет шарика относительно стенки. Тогда (если мы представим себе, что смотрим от стенки, и вместе с ней двигаемся со скоростью , не замечая этого) нам будет казаться, что шарик летит на нас со скоростью . Тогда после отскока шарик изменит свою скорость на такую же по модулю, но противоположную по направлению: – это мы его от стенки наблюдаем. А вот теперь мы покинули движущуюся стенку и смотрим с  неподвижной земли – и тогда шарик летит уже со скоростью – минус показывает противоположное, относительно первоначального, направление полета.

Задача Мальчик массой 22 кг, бегущий со скоростью 2,5 м/c, вскакивает сзади на платформу массой 12 кг. Чему равна скорость платформы с мальчиком?

Импульс системы тел будет сохраняться вдоль горизонтальной оси. Поэтому суммарный импульс тележки (0) и мальчика () будет равен суммарному импульсу тележки с мальчиком на ней после прыжка:

Ответ: 1, 62 м/сЗадача 8. Два неупругих шара с массами 4 и 6 кг движутся со скоростями 8 м/с и 3 м/с соответственно, направленными вдоль одной прямой. С какой скоростью они будут двигаться после абсолютно неупругого удара, если первый догоняет второй? Если они двигаются навстречу?

Запишем закон сохранения в первом случае: Все слагаемые с плюсами, так как тела движутся в одну сторону.

Теперь тела двигаются навстречу друг другу:

Ответ: 5 м/с, 1,4 м/сЗадача 9. Тележка с песком катится со скоростью 1 м/с по горизонтальному пути без трения. Навстречу тележке летит шар массой 2 кг с горизонтальной скоростью 7 м/с.  Шар после попадания в песок застревает в нем.  В какую сторону и с какой скоростью покатится тележка после столкновения с шаром? Масса тележки 10 кг.

Записываем уравнение сохранения импульса системы тел вдоль горизонтальной оси: примем – масса камня, – скорость камня, – масса тележки, – скорость тележки.

За положительное направление примем направление полета камня, тогда скорость тележки будет со знаком «минус»Получили скорость тележки с камнем со знаком «плюс» – это значит, что она после «поимки» камня поедет в противоположную сторону.

Ответ: 2 м/cЗадача 10. Средневековая пушка массой 200 кг установлена у края плоской крыши  высокой башни. Пушка выпускает ядро массой 5 кг горизонтально, оно приземляется на расстоянии 300 м от стены башни. Пушка, двигаясь без трения, откатывается назад и падает на землю.  На каком расстоянии от основания башни она упадет?

Предположим, что высота стены башни . Ядро пушка выпустила горизонтально, и его полет подобен телу, брошенному горизонтально: по горизонтали ядро перемещается с постоянной скоростью, а по вертикали падает, то есть движется равноускоренно.

upsilon=4

Тогда ядро будет падать с этой высоты в течение времени, которое можно установить из формулы: Все это время ядро летит горизонтально с постоянной скоростью, и пролетает 300 метров. Тогда его скорость по горизонтали равна:

Импульс ядра равен импульсу пушки, поэтому пушка откатится назад со скоростью:

Здесь – масса ядра, – его скорость, – масса пушки, – ее скорость.

Найдем горизонтальную скорость пушки:

Пушка падает ровно столько же времени, как и ядро, так как все тела на Земле падают вниз с одним и тем же ускорением, поэтому пушка пролетит за время расстояние от стены до места падения, равное: мОтвет: 7,5 м

None Весь материал – в документе.

Проверка знания формул по темам:

«Движение по окружности с постоянной по модулю скоростью.

Импульс тела. Закон сохранения импульса».

Вопрос.

Формула.

Единица измерения.

  1. Центростремительное ускорение.

  1. Закон сохранения импульса. Проверка знания формул по темам:

«Движение по окружности с постоянной по модулю скоростью.

Импульс тела. Закон сохранения импульса».

Вопрос.

Формула.

Единица измерения.

  1. Центростремительное ускорение.

  1. Закон сохранения импульса. Проверка знания формул по темам:

«Движение по окружности с постоянной по модулю скоростью.

Импульс тела. Закон сохранения импульса».

Вопрос

Формула.

Единица измерения.

  1. Центростремительное ускорение.

  1. Закон сохранения импульса. Проверка знания формул по темам:

«Движение по окружности с постоянной по модулю скоростью.

Импульс тела. Закон сохранения импульса».

[-200sin 30^{circ}-15 sin 45^{circ}=21upsilon_y]

Вопрос.

Формула.

Единица измерения.

  1. Центростремительное ускорение.

  1. Закон сохранения импульса.

Источники:

  • fizmat.by
  • easy-physic.ru
  • videouroki.net

Импульсом тела называется произведение его массы на скорость. Также импульс называют количеством движения. Импульс является векторной величиной. Направление его совпадает с направлением скорости.

Импульс системы тел 1

Изменение количества движения пропорционально приложенной силе и происходит по направлению той прямой, по которой эта сила действует:

Импульс системы тел 1

Здесь Импульс системы тел 1 – изменение импульса за время Импульс системы тел 1. Произведение силы на время ее действия называют импульсом силы. Сила здесь может быть и равнодействующей всех сил, действующих на тело.

Закон сохранения импульса – следствие второго и третьего законов Ньютона. Система, на которую не действуют никакие внешние силы или равнодействующая внешних сил равна нулю, называется замкнутой.

В замкнутой системе суммарный импульс системы тел остается постоянным при любых взаимодействиях тел в системе между собой.

Система тел может быть не замкнута вдоль одной из осей, а вдоль другой – замкнута. Тогда закон сохранения импульса будет работать в такой системе вдоль этой оси. Например, если рассматривать столкновение лодок на озере и не принимать в расчет трение, то такая система может считаться замкнутой вдоль горизонтальной оси, и вдоль этой оси работает закон сохранения импульса. Вдоль вертикальной оси действует сила тяжести, и система не замкнута.

Также при решении задач, связанных с импульсом, очень важны такие понятия, как абсолютно упругий и абсолютно неупругий удары. При абсолютно упругом ударе  тело отскакивает от другого тела, сохраняя модуль импульса, и «угол падения равен углу отражения». При абсолютно неупругом ударе тела слипаются, образуя новое тело, масса которого равна сумме их масс. То, что  удар был неупругим  можно понять, например, если тело отскочило под углом, не равным углу падения, если о неупругом ударе специально не сказано в задаче.

Рассмотрим сначала простые задачи, где движение тел происходит вдоль одной прямой.

Задача 1.

Тело массой Импульс системы тел 1 кг движется равномерно по окружности, со скоростью Импульс системы тел 1 м/с. Определить изменение импульса тела после того, как оно пройдет четверть окружности, половину окружности.


Импульс1_2

Изменение импульса

После того, как тело пройдет четверть окружности, вектор его скорости повернется на 90 градусов, как показано на рисунке  – Импульс системы тел 1. Изменение скорости можно определить как Импульс системы тел 1, поэтому разворачиваем вектор скорости Импульс системы тел 1, чтобы получить вектор Импульс системы тел 1, и складываем его с Импульс системы тел 1 по правилу параллелограмма. Зеленым показан вектор изменения скорости Импульс системы тел 1. По теореме Пифагора можно найти его длину – он будет равен Импульс системы тел 1 м/с, тогда изменение импульса тела в этом случае Импульс системы тел 1 кг*м/с.

Импульс1_3

Вектора импульсов тел системы

Импульс1_4

Вектора импульсов и их сложение

Когда тело пройдет половину окружности, вектор его скорости развернется в противоположную сторону – Импульс системы тел 1. Точно так же изменение скорости можно определить как Импульс системы тел 1, поэтому разворачиваем вектор скорости Импульс системы тел 1, чтобы получить вектор Импульс системы тел 1, и складываем его с Импульс системы тел 1 по правилу многоугольника. Зеленым показан вектор изменения скорости Импульс системы тел 1. Видно, что Импульс системы тел 1 м/с.

Изменение импульса тела в этом случае Импульс системы тел 1 кг*м/с.

Ответ: Импульс системы тел 1 кг*м/с, Импульс системы тел 1 кг*м/с.

Задача 2.

Снаряд массой Импульс системы тел 1 кг  вылетает из ствола орудия со скоростью Импульс системы тел 1 м/с. Зная, что время движения снаряда внутри ствола равно Импульс системы тел 1 с, определить среднюю силу давления пороховых газов.


На вылете из ствола пушки снаряд обладает импульсом, равным Импульс системы тел 1 кг*м/с. Так как на систему не действуют никакие внешние силы, то импульс системы сохраняется, а до выстрела он был нулевым. После выстрела суммарный импульс системы также нулевой, а это значит, что импульс снаряда равен по модулю и противоположен по направлению изменению импульса пороховых газов в стволе. Таким образом, газы будут давить с силой Импульс системы тел 1 кН

Ответ: 1000 кН

Задача 3.

На тело в течение времени Импульс системы тел 1 с действовала сила Импульс системы тел 1 Н. Найти массу тела, если изменение скорости тела в результате действия силы равно Импульс системы тел 1 м/с.


Изменение импульса равно произведению изменения скорости на массу тела. Импульс силы равен Импульс системы тел 1, масса тела тогда  Импульс системы тел 1 кг.

Ответ: 100 кг

Задача 4.

Скорость реактивного самолета равна Импульс системы тел 1 км/ч. На пути самолета оказалась птица массой Импульс системы тел 1 кг.  Определить среднюю силу удара птицы о стекло кабины летчика, если длительность удара Импульс системы тел 1 с. Каково среднее давление на стекло при ударе, если площадь соприкосновения птицы со стеклом Импульс системы тел 1 смИмпульс системы тел 1?


Среднюю силу удара можно определить так: Импульс системы тел 1

Скорость самолета выразим в единицах СИ – метрах в секунду. Импульс системы тел 1 км/чИмпульс системы тел 1 м/с

Импульс системы тел 1

Или 500 кН. Можно теперь определить среднее давление на стекло при ударе, только прежде представить площадь в мИмпульс системы тел 1:

Импульс системы тел 1 смИмпульс системы тел 1 мИмпульс системы тел 1

Импульс системы тел 1

Паскалей или 50 атмосфер.

Ответ: Импульс системы тел 1 Па или 50 атмосфер.

Задача 5.

Падающий вертикально шарик массой Импульс системы тел 1 кг ударился о пол и подпрыгнул на высоту 0,4 м. Найти среднюю силу, действующую со стороны пола на шарик, если длительность удара Импульс системы тел 1 с, к моменту удара о пол скорость шарика Импульс системы тел 1 м/с.


Шарик двигается равноускоренно, поэтому, когда он соприкоснется с полом, его вес будет больше силы тяжести. А его вес – это, собственно, и есть сила его давления на пол.

При равноускоренном движении вес можно вычислить:

Импульс системы тел 1

Определим ускорение шарика. Здесь Импульс системы тел 1 – мера изменения скорости шарика, Импульс системы тел 1

Так как шарик взлетел на высоту 0,4 метра, то определим его скорость при отрыве от пола по формуле:

Импульс системы тел 1

Скорость шарика в наивысшей точке равна 0, поэтому:

Импульс системы тел 1

Импульс системы тел 1

Импульс системы тел 1

Тогда изменение скорости

Импульс системы тел 1

Импульс системы тел 1

Импульс системы тел 1

Ответ: 158 Н

Задача 6.

Шарик летит навстречу стенке со скоростью Импульс системы тел 1. Стенка движется навстречу шарику со скоростью Импульс системы тел 1. Какой станет скорость шарика после упругого удара о стенку?


Сначала рассмотрим полет шарика относительно стенки. Тогда (если мы представим себе, что смотрим от стенки, и вместе с ней двигаемся со скоростью Импульс системы тел 1, не замечая этого) нам будет казаться, что шарик летит на нас со скоростью Импульс системы тел 1. Тогда после отскока шарик изменит свою скорость на такую же по модулю, но противоположную по направлению: Импульс системы тел 1 – это мы его от стенки наблюдаем. А вот теперь мы покинули движущуюся стенку и смотрим с  неподвижной земли – и тогда шарик летит уже со скоростью Импульс системы тел 1 – минус показывает противоположное, относительно первоначального, направление полета.

Задача 7.

Мальчик массой 22 кг, бегущий со скоростью 2,5 м/c, вскакивает сзади на платформу массой 12 кг. Чему равна скорость платформы с мальчиком?


Импульс системы тел будет сохраняться вдоль горизонтальной оси. Поэтому суммарный импульс тележки (0) и мальчика (Импульс системы тел 1) будет равен суммарному импульсу тележки с мальчиком на ней после прыжка:

Импульс системы тел 1

Импульс системы тел 1

Ответ: 1, 62 м/с

Задача 8.

Два неупругих шара с массами 4 и 6 кг движутся со скоростями 8 м/с и 3 м/с соответственно, направленными вдоль одной прямой. С какой скоростью они будут двигаться после абсолютно неупругого удара, если первый догоняет второй? Если они двигаются навстречу?


Запишем закон сохранения в первом случае:

Импульс системы тел 1

Все слагаемые с плюсами, так как тела движутся в одну сторону.

Импульс системы тел 1

Импульс системы тел 1

Импульс системы тел 1

Теперь тела двигаются навстречу друг другу:

Импульс системы тел 1

Импульс системы тел 1

Импульс системы тел 1

Импульс системы тел 1

Ответ: 5 м/с, 1,4 м/с

Задача 9.

Тележка с песком катится со скоростью 1 м/с по горизонтальному пути без трения. Навстречу тележке летит шар массой 2 кг с горизонтальной скоростью 7 м/с.  Шар после попадания в песок застревает в нем.  В какую сторону и с какой скоростью покатится тележка после столкновения с шаром? Масса тележки 10 кг.


Записываем уравнение сохранения импульса системы тел вдоль горизонтальной оси: примем Импульс системы тел 1 – масса камня, Импульс системы тел 1 – скорость камня, Импульс системы тел 1 – масса тележки, Импульс системы тел 1 – скорость тележки.

Импульс системы тел 1

За положительное направление примем направление полета камня, тогда скорость тележки будет со знаком «минус»

Импульс системы тел 1

Импульс системы тел 1

Импульс системы тел 1

Получили скорость тележки с камнем со знаком «плюс» – это значит, что она после «поимки» камня поедет в противоположную сторону.

Ответ: 2 м/c

Задача 10.

Средневековая пушка массой 200 кг установлена у края плоской крыши  высокой башни. Пушка выпускает ядро массой 5 кг горизонтально, оно приземляется на расстоянии 300 м от стены башни. Пушка, двигаясь без трения, откатывается назад и падает на землю.  На каком расстоянии от основания башни она упадет?


Предположим, что высота стены башни Импульс системы тел 1. Ядро пушка выпустила горизонтально, и его полет подобен телу, брошенному горизонтально: по горизонтали ядро перемещается с постоянной скоростью, а по вертикали падает, то есть движется равноускоренно.

Тогда ядро будет падать с этой высоты в течение времени, которое можно установить из формулы: Импульс системы тел 1

Импульс системы тел 1

Все это время ядро летит горизонтально с постоянной скоростью, и пролетает 300 метров. Тогда его скорость по горизонтали равна:

Импульс системы тел 1

Импульс ядра равен импульсу пушки, поэтому пушка откатится назад со скоростью:

Импульс системы тел 1

Здесь Импульс системы тел 1 – масса ядра, Импульс системы тел 1 – его скорость, Импульс системы тел 1 – масса пушки, Импульс системы тел 1 – ее скорость.

Импульс системы тел 1

Найдем горизонтальную скорость пушки:

Импульс системы тел 1

Импульс системы тел 1

Пушка падает ровно столько же времени, как и ядро, так как все тела на Земле падают вниз с одним и тем же ускорением, поэтому пушка пролетит за время Импульс системы тел 1 расстояние от стены до места падения, равное: Импульс системы тел 1 м

Ответ: 7,5 м

Определение

Импульс тела — векторная физическая величина, обозначаемая как p и равная произведению массы тела на его скорость:

p = mv

Единица измерения импульса — килограмм на метр в секунду (кг∙м/с).

Направление импульса всегда совпадает с направлением скорости (p↑↓v), так как масса — всегда положительная величина (m > 0).

Пример №1. Определить импульс пули массой 10 г, вылетевшей со скоростью 300 м/с. Сопротивлением воздуха пренебречь.

Импульс пули есть произведение массы на ускорение. Прежде чем выполнить вычисления, нужно перевести единицы измерения в СИ:

10 г = 0,01 кг

Импульс равен:

p = mv = 0,01∙300 = 3 (кг∙м/с)

Относительный импульс

Определение

Относительный импульс — векторная физическая величина, равная произведению массы тела на относительную скорость:

p1отн2 = m1v1отн2 = m1(v1v2)

p1отн2 — импульс первого тела относительно второго, m1 — масса первого тела, v1отн2 — скорость первого тела относительно второго, v1 и v2 — скорости первого и второго тела соответственно в одной и той же системе отсчета.

Пример №2. Два автомобиля одинаковой массы (15 т) едут друг за другом по одной прямой. Первый — со скоростью 20 м/с, второй — со скоростью 15 м/с относительно Земли. Вычислите импульс первого автомобиля в системе отсчета, связанной со вторым автомобилем.

Сначала переведем единицы измерения в СИ:

15 т = 15000 кг

p1отн2 = m1(v1 – v2) = 15000(20 – 15) = 75000 (кг∙м/с) = 75∙103 (кг∙м/с)

Изменение импульса тела

ОпределениеИзменение импульса тела — векторная разность между конечным и начальным импульсом тела:

p = pp0 = p + (– p0)

p — изменение импульса тела, p — конечный импульс тела, p0 — начальный импульс тела

Частные случаи определения изменения импульса тела

Абсолютно неупругий удар

Конечная скорость после удара:

v = 0.

Конечный импульс тела:

p = 0.

Модуль изменения импульса тела равен модулю его начального импульса:

∆p = p0.

Абсолютно упругий удар

Модули конечной и начальной скоростей равны:

v = v0.

Модули конечного и начального импульсов равны:

p = p0.

Модуль изменения импульса тела равен удвоенному модулю начального (конечного) импульса:

∆p = 2p0 = 2p.

Пуля пробила стенку

Модуль изменения импульса тела равен разности модулей начального и конечного импульсов:

∆p = p0 – p = m(v0 – v)

Радиус-вектор тела повернул на 180 градусов

Модуль изменения импульса тела равен удвоенному модулю начального (конечного) импульса:

∆p = 2p0 = 2p = 2mv0

Абсолютно упругое отражение от горизонтальной поверхности под углом α к нормали

Модули конечной и начальной скоростей равны:

v = v0.

Модули конечного и начального импульсов равны:

p = p0.

Угол падения равен углу отражения:

α = α’

Модуль изменения импульса в этом случае определяется формулой:

Пример №3. Шайба абсолютно упруго ударилась о неподвижную стену. При этом направление движения шайбы изменилось на 90 градусов. Импульс шайбы перед ударом равен 1 кг∙м/с. Чему равен модуль изменения импульса шайбы в результате удара? Ответ округлите до десятых.

В данном случае 90 градусов и есть 2α (угол между векторами начального и конечного импульсов), в то время как α — это угол между вектором импульса и нормалью. Учтем, что при абсолютно упругом отражении модули конечного и начального импульсов равны.

Вычисляем:

Второй закон Ньютона в импульсном виде

Второй закон Ньютона говорит о том, что ускорение тела прямо пропорционально силе, действующей на него. Записывается он так:

Но ускорение определяется отношением разности конечной и начальной скоростей ко времени, в течение которого менялась скорость:

Подставим это выражение во второй закон Ньютона и получим:

Или:

F∆t — импульс силы, ∆p — изменение импульса тела

Пример №4. Тело движется по прямой в одном направлении. Под действием постоянной силы за 3 с импульс тела изменился на 6 кг∙м/с. Каков модуль силы?

Из формулы импульса силы выразим модуль силы:

Реактивное движение

Определение

Реактивное движение — это движение, которое происходит за счет отделения от тела с некоторой скоростью какой-либо его части. В отличие от других видов движения реактивное движение позволяет телу двигаться и тормозить в безвоздушном пространстве, достигать первой космической скорости.

Ракета представляет собой систему двух тел: оболочки массой M и топлива массой m. v — скорость выброса раскаленных газов. ∆m/∆t — расход реактивного топлива, V — скорость ракеты.

Второй закон Ньютона в импульсном виде:

Реактивная сила:

Второй закон Ньютона для ракеты:

Пример №5. Космический корабль массой 3000 кг начал разгон в межпланетном пространстве, включив реактивный двигатель. Из сопла двигателя каждую секунду выбрасывается 3 кг горючего газа со скоростью 600 м/с. Какой будет скорость корабля через 20 секунд после разгона? Изменением массы корабля во время разгона пренебречь. Принять, что поле тяготения, в котором движется корабль, пренебрежимо мало.

Корабль начинает движение из состояния покоя. Поэтому скорость будет равна:

V = a∆t

Выразим ускорение из второго закона Ньютона для ракеты:

Изменение импульса определяется произведением суммарной массы выброшенного горючего на скорость его выброса. Так как мы знаем, сколько выбрасывалось горючего каждую секунду, формула примет вид:

Отсюда ускорение равно:

Выразим формулу для скорости и сделаем вычисления:

Суммарный импульс системы тел

Определение

Суммарный импульс системы тел называется полным импульсом системы. Он равен векторной сумме импульсов всех тел, которые входят в эту систему:

Пример №6. Найти импульс системы, состоящей из двух тел. Векторы импульсов этих тел указаны на рисунке.

Между векторами прямой угол (его косинус равен нулю). Модуль первого вектора равен 4 кг∙м/с (т.к. занимает 2 клетки), а второго — 6 кг∙м/с (т.к. занимает 3 клетки). Отсюда:

Закон сохранения импульса

Закон сохранения импульсаПолный импульс замкнутой системы сохраняется:

Левая часть выражения показывает векторную сумму импульсов системы, состоящей из двух тел, до их взаимодействия. Правая часть выражения показывает векторную сумму этой системы после взаимодействия тел, которые в нее входят.

Закон сохранения импульса в проекции на горизонтальную ось

Если до и после столкновения скорости тел направлены вдоль горизонтальной оси, то закон сохранения импульса следует записывать в проекциях на ось ОХ. Нельзя забывать, что знак проекции вектора:

  • положителен, если его направление совпадает с направлением оси ОХ;
  • отрицателен, если он направлен противоположно направлению оси ОХ.

Важно!

При неупругом столкновении двух тел, движущихся навстречу друг другу, скорость совместного движения будет направлена в ту сторону, куда до столкновения двигалось тело с большим импульсом.

Частные случаи закона сохранения импульса (в проекциях на горизонтальную ось)

Неупругое столкновение с неподвижным телом m1v1 = (m1 + m2)v
Неупругое столкновение движущихся тел ± m1v1 ± m2v2 = ±(m1 + m2)v
В начальный момент система тел неподвижна 0 = m1v’1 – m2v’2
До взаимодействия тела двигались с одинаковой скоростью (m1 + m2)v = ± m1v’1 ± m2v’2

Сохранение  проекции импульса

В незамкнутых системах закон сохранения импульса выполняется частично. Например, если из пушки под некоторым углом α к горизонту вылетает снаряд, то влияние силы реакции опоры не позволит орудию «уйти под землю». В момент отдачи оно будет откатываться от поверхности земли.

Пример №7. На полу лежит шар массой 2 кг. С ним сталкивается шарик массой 1 кг со скоростью 2 м/с. Определить скорость первого шара при условии, что столкновение было неупругим.

Если столкновение было неупругим, скорости первого и второго тел после столкновения будут одинаковыми, так как они продолжат двигаться совместно. Используем для вычислений следующую формулу:

m2v2 = (m1 + m2)v

Отсюда скорость равна:

Задание EF17556

Импульс частицы до столкновения равен p1, а после столкновения равен p2, причём p1 = p, p2 = 2p, p1p2. Изменение импульса частицы при столкновении Δp равняется по модулю:

а) p

б) p√3

в) 3p

г) p√5


Алгоритм решения

1.Записать исходные данные.

2.Построить чертеж, обозначить векторы начального и конечного импульсов, а также вектор изменения импульса. Для отображения вектора изменения импульса использовать правило сложения векторов методом параллелограмма.

3.Записать геометрическую формулу для вычисления длины вектора изменения импульса.

4.Подставить известные значения и вычислить.

Решение

Запишем исходные данные:

 Модуль импульса частицы до столкновения равен: p1 = p.

 Модуль импульса частицы после столкновения равен: p2 = 2p.

 Угол между вектором начального и вектором конечного импульса: α = 90о.

Построим чертеж:

Так как угол α = 90о, вектор изменения импульса представляет собой гипотенузу треугольника, катами которого являются вектора начального и конечного импульсов. Поэтому изменение импульса можно вычислить по теореме Пифагора:

Δp=p21+p22

Подставим известные данные:

Δp=p2+(2p)2=5p2=p5

Ответ: г

pазбирался: Алиса Никитина | обсудить разбор

Задание EF17695

На рисунке приведён график зависимости проекции импульса на ось Ox тела, движущегося по прямой, от времени. Как двигалось тело в интервалах времени 0–1 и 1–2?

а) в интервале 0–1 не двигалось, а в интервале 1–2 двигалось равномерно

б) в интервале 0–1 двигалось равномерно, а в интервале 1–2 двигалось равноускорено

в) в интервалах 0–1 и 1–2 двигалось равномерно

г) в интервалах 0–1 и 1–2 двигалось равноускорено


Алгоритм решения

1.Записать формулу, связывающую импульс тема с его кинематическими характеристиками движения.

2.Сделать вывод о том, как зависит характер движения от импульса.

3.На основании вывода и анализа графика установить характер движения тела на интервалах.

Решение

Импульс тела есть произведение массы тела на его скорость:

p = mv

Следовательно, импульс и скорость тела — прямо пропорциональные величины. Если импульс с течением времени не меняется, то скорость тоже. Значит, движение равномерное. Если импульс растет линейно, то и скорость увеличивается линейно. В таком случае движение будет равноускоренным.

На участке 0–1 импульс тела не менялся. Следовательно, на этом участке тело двигалось равномерно. На участке 1–2 импульс тела увеличивался по линейной функции, следовательно, на этом участке тело двигалось равноускорено.

Верный ответ: б.

Ответ: б

pазбирался: Алиса Никитина | обсудить разбор

Задание EF22730

Камень массой 3 кг падает под углом α = 60° к горизонту в тележку с песком общей массой 15 кг, покоящуюся на горизонтальных рельсах, и застревает в песке (см. рисунок). После падения кинетическая энергия тележки с камнем равна 2,25 Дж. Определите скорость камня перед падением в тележку.


Алгоритм решения

1.Записать исходные данные.

2.Записать закон сохранения импульса применительно к задаче.

3.Записать формулу кинетической энергии тела.

4.Выполнить общее решение.

5.Подставить известные данные и вычислить искомую величину.

Решение

Запишем исходные данные:

 Масса камня: m1 = 3 кг.

 Масса тележки с песком: m2 = 15 кг.

 Кинетическая энергия тележки с камнем: Ek = 2,25 Дж.

Так как это абсолютно неупругий удар, закон сохранения импульса принимает вид:

m1v1+m2v2=(m1+m2)v

Учтем, что скорость тележки изначально была равна нулю, а к ее движению после столкновения привела только горизонтальная составляющая начальной скорости камня:

m1v1cosα=(m1+m2)v

Выразить конечную скорость системы тел после столкновения мы можем через ее кинетическую энергию:

Ek=(m1+m2)v22

Отсюда скорость равна:

v=2Ekm1+m2

Выразим скорость камня до столкновения через закон сохранения импульса и подставим в формулу найденную скорость:

v1=(m1+m2)vm1cosα=(m1+m2)m1cosα·2Ekm1+m2

Подставим известные данные и произведем вычисления:

v1=(3+15)3cos60o·2·2,253+15=12·0,25=12·0,5=6 (мс)

Ответ: 6

pазбирался: Алиса Никитина | обсудить разбор

Задание EF22520

Снаряд, имеющий в точке О траектории импульсp0, разорвался на два осколка. Один из осколков имеет импульс p1
. Импульс второго осколка изображается вектором:

а) AB

б) BC

в) CO

г) OD


Алгоритм решения

1.Сформулировать закон сохранения импульса и записать его в векторной форме.

2.Применить закон сохранения импульса к задаче.

3.Выразить из закона импульс второго осколка и найти на рисунке соответствующий ему вектор.

Решение

Согласно закону сохранения импульса, импульс замкнутой системы тел сохраняется. Записать его можно так:

p1+p2=p′
1
+p2

Можем условно считать осколки замкнутой системой, так как они не взаимодействуют с другими телами. Применяя к ним закон сохранения импульса, получим:

p0=p1+p2

Отсюда импульс второго осколка равен векторной разности импульса снаряда и импульса первого осколка:

p2=p0p1

Известно, что разностью двух векторов является вектор, начало которого соответствует вычитаемому вектору, а конец — вектору уменьшаемому. В нашем случае вычитаемый вектор — вектор импульса первого осколка. Следовательно, начало вектора импульса второго осколка лежит в точке А. Уменьшаемый вектор — вектор импульса снаряда. Следовательно, конец вектора лежит в точке В. Следовательно, искомый вектор — AB.

Ответ: а

pазбирался: Алиса Никитина | обсудить разбор

Задание EF18122

Летящая горизонтально со скоростью 20 м/с пластилиновая пуля массой 9 г попадает в груз неподвижно висящий на нити длиной 40 см, в результате чего груз с прилипшей к нему пулей начинает совершать колебания. Максимальный угол отклонения нити от вертикали при этом равен α = 60°. Какова масса груза?

Ответ:

а) 27 г

б) 64 г

в) 81 г

г) 100 г


Алгоритм решения

1.Записать исходные данные и перевести единицы измерения величин в СИ.

2.Сделать чертеж, отобразив начальное, промежуточное и конечное положение тел.

3.Записать закон сохранения импульса для момента столкновения и закон сохранения механической энергии для момента максимального отклонения нити от положения равновесия.

4.Выполнить решение задачи в общем виде.

5.Подставить известные данные и вычислить искомую величину.

Решение

Запишем исходные данные:

 Масса пластилиновой пули: m = 9 г.

 Скорость пластилиновой пули: v = 20 м/с.

 Максимальный угол отклонения нити: α = 60°.

Переведем единицы измерения величин в СИ:

Сделаем чертеж:

Нулевой уровень — точка А.

После неупругого столкновения пули с грузом они начинают двигаться вместе. Поэтому закон сохранения импульса для точки А выглядит так:

mv=(m+M)V

После столкновения система тел начинается двигаться по окружности. Точка В соответствует верхней точке траектории. В этот момент скорость системы на мгновение принимает нулевое значение, а потенциальная энергия — максимальное.

Закон сохранения энергии для точки В:

(m+M)V22=(m+M)gh

V22=gh

Высоту h можно определить как произведение длины нити на косинус угла максимального отклонения. Поэтому:

V=2glcosα

Подставим это выражение в закон сохранения импульса для точки А и получим:

Выразим массу груза:

Ответ: в

pазбирался: Алиса Никитина | обсудить разбор

Алиса Никитина | Просмотров: 20k

Вычислите модуль изменения импульса тела массой 2 кг через 0,15 с при равномерном движении по окружности радиуса 0,5 м со скоростью 5 м/с

Решение:

              Импульс – векторная величина,  модуль которой равен произведению массы  тела на его скорость, а направление этого вектора совпадает с направлением скорости. Модуль изменения импульса есть модуль разности векторов импульсов  тела в начальный и конечный момент.

            
             Следовательно, для определения разности векторов нам необходимо найти угол между векторами импульсов в начальный и конечный момент. Известно, что вектор скорости тела, движущегося равномерно по окружности, направлен по касательной к этой окружности и перпендикулярен ее радиусу.

         
            Определим на какой угол а от начального положения повернется вектор за время 0,15 с.

            Длина окружности                             $C=2pi R$

           Время на один полный оборот т.е. на 360 градусов (это по определению и есть период) при скорости v составит

                                                         $T =frac{C}{v}=frac{2pi R}{v}$.

$Т= 2*3,14*0,5/5 = 0,628$ с.

Тогда за время t=0,15 c  угол поворота составит

$a=frac{360^{circ}*t}{T}=frac{360^{circ}*0,15}{0,628}approx 86^{circ}$     

          Модуль изменения импульса найдем по теореме косинусов:

$dP=sqrt{(mv)^2+(mv)^2-2(mv)*(mv)*cos{a}}=sqrt{2m^2v^2-2m^2v^2cos{a}}$

$dP=sqrt{2*2^2*5^2-2*2^2*5^2cos{86^{circ}}}approx 13,6;text{кг*м/с}$

Добавить комментарий