Есть ряд задач, в которых есть скорости в начале V, м/с и в конце Vo, м/с процесса, ускорения a, м/с ², пройденное расстояние S, м, а вот времени нет (секундомер забыли 🙂 )! В этом случае потребуется так называемая “Формула без времени”.
Эту формулу проще выучить, чем каждый раз выводить из “базовых” формул и поэтому её мы можем найти в наших шпаргалках (статья канала “Шпаргалки по Физике“). Но физический смысл этой формулы не очень понятен, да и выглядит она как-то сложновато. Попробуем понять откуда она взялась, может быть и не такой страшной будет.
Начнём с простых формул:
Выразим из 3-ой формулы время:
Вспоминаем формулу пройденного расстояния и переписываем
формулу 2:
В 5-ой формуле время заменяем правой частью формулы 4:
Упрощаем формулу 6
И вновь мы пришли к нашей формуле, но теперь она выглядит более понятой и физически законной:
Заключение
Надеюсь, одной сложной формулой стало меньше и мы двигаемся дальше по пути изучения физики ( Статья канала ” Работаем с Физикой на сайте “Решу ЕГЭ“).
Автор с благодарностью примет любые пожертвования на развитие канала “От сложного к простому” https://money.yandex.ru/to/4100170126360
Рассмотрим движение тела из точки (A) в точку (B) (рис. (1)). Траектория (AB) является криволинейной.
Введём понятие «средняя скорость».
На рисунке (1) показаны вектора перемещений тела (Delta{vec{r_3}}), (Delta{vec{r_2}}) и (Delta{vec{r_1}}) за различные сокращающиеся промежутки времени (Delta{t_3}), (Delta{t_2}) и (Delta{t_1}).
Рис. (1). Перемещения тела при криволинейном движении
Средняя скорость равна отношению перемещения за конечный промежуток времени:
Средняя скорость является векторной величиной:
- направление средней скорости υ ср→↑↑Δr→ находится согласно математической формуле определения данной физической величины (сравни математическое выражение (vec{a}) (=) (frac{vec{b}}{2}) и формулу средней скорости);
- числовое значение средней скорости (модуль, проекции на координатные оси) определяется согласно геометрическим правилам работы с векторами;
- физические понятия отличаются от математических понятий наличием единиц измерения ([(v_{ср})] (=) [(frac{м}{с})]).
Участки траектории (AB), (AD) и (AE) (рис. (1)) характеризуются, соответственно, средними скоростями:
(vec{v_{ср3}}), (vec{v_{ср2}}), (vec{v_{ср1}}).
(vec{v_{ср3}}) = (frac{Delta{vec{r_3}}}{Delta{t_3}}) | (vec{v_{ср2}}) = (frac{Delta{vec{r_2}}}{Delta{t_2}}) | (vec{v_{ср1}}) = (frac{Delta{vec{r_1}}}{Delta{t_1}}) |
Если уменьшать неограниченно промежуток времени (Delta{t}), то быстрота движения тела характеризуется понятием «мгновенная скорость» (или «скорость»).
Математическая запись уменьшения промежутка времени:
Δt→0
(в математике существует понятие «предел», символ данного понятия — «lim»).
Физический смысл принципа уменьшения промежутка времени: на определённом этапе данной процедуры значения средней скорости будут приблизительно одинаковыми и определение физического понятия «средняя скорость» изменится на физическое понятие «мгновенная скорость»
.
Мгновенная скорость является векторной величиной:
- вектор мгновенной скорости (далее — скорости) направлен по касательной к траектории в исследуемой точке (проверь, как на рисунке (1) «хорды — перемещения (Delta{vec{r_3}}), (Delta{vec{r_2}}) и (Delta{vec{r_1}})» при уменьшении промежутков времени (Delta{t_3}), (Delta{t_2}) и (Delta{t_1}) изображаются касательными, которые соответствуют векторам скоростей (vec{v_3}), (vec{v_2}), (vec{v_1})).
На рисунке (1) тело движется из точки (E) в точку (D), изменяя скорость от (v_2) до (v_3). Параллельным переносом перенесём вектор (vec{v_{3}}) к (vec{v_{2}}), тогда изменение скорости за промежуток времени (Delta{t}) равно разности векторов
((vec{v_{3}})(-)(vec{v_{2}})), что на рисунке (1) соответствует вектору ускорения (vec{a_{2}}).
Среднее ускорение равно отношению изменения скорости к промежутку времени:
Примечание:
1) в физических задачах при написании символа aср → индекс «ср», как правило, не прописывается;
2) в ситуации прямолинейного неравномерного движения используется термин «ускорение».
Характеристики физического понятия «среднее ускорение»:
- направление вектора среднего ускорения определяется согласно правилу aср→↑↑Δυ→;
- числовое значение ускорения (модуль, проекции на координатные оси) определяется согласно геометрическим правилам работы с векторами;
- единица измерения ([(a_{ср})] (=) [(frac{м}{с^2})]).
Участки траектории (AB), (AD) и (AE) (рис. (1)) характеризуются, соответственно, средними ускорениями (vec{a_{3}}), (vec{a_{2}}), (vec{a_{1}}).
(vec{a_{3}}) (=) (frac{Delta{vec{v_3}}}{Delta{t_3}}) | (vec{a_{2}}) (=) (frac{Delta{vec{v_2}}}{Delta{t_2}}) | (vec{a_{1}}) (=) (frac{Delta{vec{v_1}}}{Delta{t_1}}) |
Если уменьшать неограниченно промежуток времени (Delta{t}), то изменение скорости движения тела в конкретный момент времени характеризуется физическим понятием «мгновенное ускорение».
Вектор мгновенного ускорения при движении тела по криволинейной траектории представляет векторную сумму компонентов данного вектора, которые направлены по касательной и нормали (перпендикуляр к касательной).
Векторное и скалярное уравнения скорости материальной точки
1) Общий вид:
- векторное уравнение — (vec{v}) (=) (vec{v}(t));
- числовые (скалярные) уравнения — (v_x) (=) (v_x(t)), (v_y) (=) (v_y(t)), (v_z) (=) (v_z(t)).
2) Прямолинейное равноускоренное движение:
- векторное уравнение — (vec{v}(t)) (=) (vec{v}{_0}) (+) (vec{a}(t – t_0)),
где (vec{v}{_0}) — скорость тела в начальный момент времени ({t_0}), (vec{v}(t)) — скорость тела в произвольный момент
времени (t);
- числовые (скалярные) уравнения — (v_x(t)) (=) (v_{0x}) (+) (a_x(t – t_0)), (v_y(t)) (=) (v_{0y}) (+) (a_y(t – t_0)),
(v_z(t)) (=) (v_{0z}) (+) (a_z(t – t_0)).
Графическое изображение зависимости проекции скорости от времени ({v_х}(t))
При движении тела с постоянным ускорением проекция скорости изменяется по линейному закону в зависимости от времени (t): (v_x(t)) (=) (v_{0x}) (+) (a_x(t – t_0)) (рис. (2)).
Рис. (2). График зависимости проекции скорости от времени
Значение проекции ускорения по графику определяется как тангенс угла: (a_x) (=) (tgα) (=) (frac{Delta{v}}{Delta{t}}).
Перемещение
Проекции перемещений при равнопеременном движении в момент времени (t) определяются формулами:
(s_x(t)=x(t) – x_0), (s_y(t)=y(t) -y_0), (s_z(t)=z(t) – z_0).
(A) |
(B) |
Рис. (3). Определение модуля и проекций перемещения по графику зависимости проекции скорости от времени
Модуль и проекции перемещения тела определяются графическим способом с
использованием графика зависимости (v_x(t)).
Рисунок (3) (A) ((v_0) (=) (0)) |
Рисунок (3) (B) ((v_0) (≠) (0)) |
Модуль перемещения определяется как площадь прямоугольного треугольника (ABC) с катетами (c) и (b), где (b) (=) (t), (c) (=) (at). |
Модуль перемещения определяется как площадь трапеции (ABCD) с основаниями (d) (=) (v_0), (b) (=) (v_0+at) и высотой (h) (=) (t). S=12b+dh⇒S=υ0⋅t+a⋅t22 |
Проекция перемещения: (s_x) (=) (S) |
Проекция перемещения: (s_x) (=) (S) |
Примечание: если график проекции скорости состоит из участков, где площадь трапеции имеет отрицательное значение (например, (s_{x1}) (>) (0), (s_{x2}) (<) (0)), то модуль перемещения тела равен:
s=sx1+sx2
.
Источники:
Рис. 1. Перемещения тела при криволинейном движении. © ЯКласс.
Рис. 2. График зависимости проекции скорости от времени. © ЯКласс.
Рис. 3. Определение модуля и проекций перемещения по графику зависимости проекции скорости от времени. © ЯКласс.
Как находить изменение скорости
Для нахождения изменения скорости определитесь с типом движения тела. В случае если движение тела равномерно, изменение скорости равно нулю. Если тело движется с ускорением, то изменение его скорости в каждый момент времени можно узнать, если отнять от мгновенной скорости в данный момент времени его начальную скорость.
Вам понадобится
- секундомер, спидометр, радар, рулетка, акселерометр.
Инструкция
Определение изменения скорости произвольно движущегося по прямой траекторииС помощью спидометра или радара измерьте скорость тела в начале и конце отрезка пути. Затем от конечного результата отнимите начальный, это и будет изменение скорости тела.
Определение изменения скорости тела, движущегося с ускорениемНайдите ускорение тела. Используйте акселерометр или динамометр. Если известна масса тела, тогда силу, действующую на тело, поделите на его массу (a=F/m). После этого измерьте время, за которое происходил процесс изменения скорости. Чтобы найти изменение скорости, умножьте значение ускорения на время, за которое происходило это изменение (Δv=a•t). Если ускорение измерить в метрах на секунду в квадрате, а время – в секундах, то скорость получится в метрах на секунду. Если нет возможности замерить время, но известно, что скорость менялась на определенном отрезке пути, спидометром или радаром, измерьте скорость в начале этого отрезка, затем с помощью рулетки или дальномера измерьте длину этого пути и ускорение. Любым из вышеописанных методов измерьте ускорение, которое действовало на тело. После этого найдите конечную скорость тела в конце участка пути. Для этого возведите начальную скорость в квадрат, прибавьте к ней произведение длины участка на ускорение и число 2. Из результата извлеките квадратный корень. Чтобы найти изменение скорости, от полученного результата отнимите значение начальной скорости.
Определение изменения скорости тела при поворотеЕсли изменилась не только величина, но и направление скорости, то найдите ее изменение через векторную разность начальной и конечной скорости. Для этого измерьте угол между векторами. Затем от суммы квадратов скоростей отнимите удвоенное их произведение, умноженное на косинус угла между ними: v1²+v2²-2v1v2•Cos(α). Из полученного числа извлеките квадратный корень.
Видео по теме
Войти на сайт
или
Забыли пароль?
Еще не зарегистрированы?
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Кинематика — это специальный раздел теоретической механики. Направление сформировалось несколько позднее, чем статика и динамика: во второй половине XIX столетия. Первые исследования в области кинематики были посвящены огнестрельному оружию. Ученые стремились понять процесс полета снаряда, производили расчет траектории его движения. В дальнейшем кинематика как научное направление получило широкое распространение и существенно повлияло на развитие технического прогресса.
Кинематика — описание
Кинематика является разделом механики, цель которого — изучение механического движения тел с пренебрежением к причинам, вызывающим это движение.
Механика представляет собой научную область физики, которой посвящены исследования механического движения тел. Основной целью данного направления служит определение точного положения тела в пространстве в любой момент времени. Важным понятием этого раздела является материальная точка в виде тела с определенной массой и размерами, которыми можно пренебречь для решения задачи при наличии следующих условий:
- Путь, который преодолевает тело, существенно больше, чем его размеры.
- Расстояние между телами значительно превышает их размеры.
- Объект совершает поступательное движение.
Движение тела рассматривают в системе отсчета, состоящей из системы координат и прибора, измеряющего время. Траекторией называют линию, которую объект описывает, совершая движение. Путь является скалярной величиной, определяемой как длина траектории. Перемещением обозначают вектор, который соединяет начальное и конечное положение тела, преодолеваемое им в течение определенного промежутка времени.
Совершая движение, тело может только увеличивать пройденный путь, при этом перемещение увеличивается или уменьшается. К примеру, уменьшение перемещения наблюдается во время обратного движения тела. Если объект движется прямолинейно в одном направлении, то путь определяется модулем перемещения. В случае криволинейного движения — путь превышает перемещение. При рассмотрении замкнутой траектории перемещение будет равно нулю.
Теория и формулы
Благодаря многолетним исследованиям в области кинематики ученым удалось вывести определенные закономерности движения тела. С помощью справедливых уравнений представляется возможным ответить на многие вопросы о разных характеристиках, которые изменяются либо остаются постоянными во время движения объектов.
Путь, время, скорость
Расстояние представляет собой удаленность одной точки положения тела от другой. Тело преодолевает путь, который представляет собой важную характеристику механического движения. Общепринятым обозначением пути является латинская буква s. Данный параметр измеряют метрами и километрами, если речь идет о больших расстояниях.
Скорость представляет собой путь, который тело преодолело в течение единицы времени. В качестве единицы времени часто используют 1 час, 1 минуту, 1 секунду. Для расчета скорости необходимо определить отношение пути к времени движения. В случае, когда в условиях задачи расстояние измеряется в метрах, а время пути — в секундах, то скорость следует рассчитывать в метрах в секунду (м/с). Для обозначения скорости используют латинскую букву (v).
Нередко требуется определить время пути. Данный параметр обозначают с помощью латинской буквы (t).
Важно отметить, что скорость, путь и время взаимосвязаны. При известных характеристиках скорости и времени можно определить расстояние, которое преодолело тело. Путь в данном случае равен произведению скорости и времени, рассчитывается по формуле:
(s=vtimes t)
При известных величинах времени и расстояния достаточно просто определить скорость движения тела, руководствуясь следующим уравнением:
(v=frac{s}{t})
Равномерное движение
Равномерным движением называют движение тела, которое совершает равные перемещения в течение любых равных промежутков времени.
Скорость при равномерном движении определяется как отношение перемещения ко времени, в течение которого данное перемещение было совершено. Уравнение имеет следующий вид:
(vec{v}=frac{vec{s}}{t})
(vec{v}=const)
Проекция вектора скорости на ось ОХ выглядит таким образом:
(v_{x}=frac{s_{x}}{t})
(v_{x}=const)
Если вектор скорости спроецировать на ось координат, то она будет равна быстроте изменения данной координаты:
(v_{x}=frac{x-x_{0}}{t})
Прямолинейное равноускоренное движение
Прямолинейным равноускоренным движением называют движение по прямой траектории, для которого характерно постоянное ускорение.
Ускорение для прямолинейного равноускоренного движения обозначают следующим образом:
(vec{a}=const)
При таком движении можно наблюдать увеличение или уменьшение скорости. Чтобы определить скорость, необходимо выполнить следующий расчет:
(vec{v}=vec{v}_{0}+vec{a}t)
Если тело разгоняется в проекции оси ОХ, то скорость можно определить по формуле:
(v_{x}=v_{0x}+a_{x}t)
a>0, движение является равноускоренным.
Во время торможения в проекции на ось ОХ скорость рассчитывают следующим образом:
(v_{x}=v_{0x}-a_{x}t)
а<0, движение является равнозамедленным.
Графически зависимость ускорения от времени, то есть график ускорения во время равноускоренного движения тела, можно представить в виде:
График ускорения, характеризующий равноускоренное движение тела, представляет собой прямую, которая параллельна оси времени:
- график 1 находится над осью t, тело совершает разгон, ах>0;
- график 2 размещен под осью t, тело тормозит, ах<0.
Графически скорость или проекция скорости изображается в виде зависимости скорости от времени:
Графически скорость, характерная для равноускоренного движения тела, имеет вид прямой. График 1 направлен вверх, тело будет совершать равноускоренное движение в положительном направлении оси ОХ:
(v_{0x}>0)
(a_x>0)
(a_{1x} = tg α )
График 2 направлен вниз, тело будет двигаться равнозамедленно в положительном направлении оси ОХ:
(v_{0x}>0)
(a_x<0)
(a_{2x} = tg α )
График 3 направлен вниз, тело свершает равноускоренное движение против оси ОХ:
(v_{0x}<0)
(a_x<0)
Исходя из графика зависимости скорости от времени, определяют перемещение, которое тело преодолело в течение определенного промежутка времени (t_2-t_1). В этом случае целесообразно рассчитать площадь фигуры, расположенной под графиком. Формула для определения перемещения при равноускоренном движении имеет вид:
(S_{x}=v_{0x}t+frac{a_{x}t^{2}}{2})
(S_{x}=frac{v^{2}-v_{0}^{2}}{2a})
Перемещение в n-ую секунду во время равноускоренного движения можно определить по формуле:
(S_{n}=frac{a}{2}left(2n-1 right))
Определить координату тела, которое совершает равноускоренное движение, можно с помощью справедливого уравнения:
(x=x_{0}+v_{0x}t+frac{a_{x}t^{2}}{2})
Движение тела, брошенного вертикально вверх (вниз)
Во время падения тела вниз вектор его скорости направлен в ту же сторону, что и вектор ускорения свободного падения.
Формулы, описывающее это движения, имеют следующий вид:
(vec{v} ↑↑vec{g})
(h=v_{0}t+frac{gt^{2}}{2})
(v=v_{0}+gt)
(h=frac{v^{2}-v_{0}^{2}}{2g})
В случае, когда тело падает вниз и его начальная скорость равна нулю, (v_0=0). Время падения при этом можно рассчитать по формуле:
(t=sqrt{frac{2h_{0}}{g}})
(h) является начальной высотой.
Для брошенного вверх тела будут справедливы следующие равенства:
(h=v_{0}t-frac{gt^{2}}{2})
(v=v_{0}-gt)
(h=frac{v^{2}-v_{0}^{2}}{-2g})
В максимальной верхней точке тело, брошенное вверх, будет обладать нулевой скоростью, (v=0). Для расчета времени подъема можно воспользоваться формулой:
(t=frac{v_{0}}{g})
Свободно падающее тело
Свободным падением называют движение тела в условиях безвоздушного пространства под действием силы тяжести.
В условиях свободного падения ускорения тел с разной массой будут равны. Данный параметр называют ускорением свободного падения. Оно всегда направлено к центру нашей планеты, то есть вертикально вниз. Величина обозначается латинской буквой g, а единицами измерения являются м/с2.
Ускорение свободного падения равно 9,8 м/с2. В задачах по физике допускается использовать значение g=10 м/с2.
Движение по окружности с постоянной по модулю скоростью
Движением по окружности при постоянной по модулю скоростью называют простейшим видом криволинейного движения.
Траектория такого движения будет представлена в виде окружности. Вектор скорости тела приобретает направление по касательной к окружности. Модуль скорости тела при изменении времени остается постоянным, а направление движения в каждой точке изменяется. Из этого можно сделать вывод, что движение по окружности представляет собой движение с ускорением. В свою очередь ускорение, изменяющее направление скорости, носит название центростремительного.
Центростремительное ускорение направлено по радиусу окружности к ее центру.
Центростремительное ускорение является характеристикой быстроты изменения направления вектора линейной скорости. Параметр обозначается, как ацс. Единицами измерения центростремительного ускорения служат м/с2. Формула для расчета следующая:
(а_{цс} = frac{v^{2}}{R})
Движение тела по окружности при постоянной по модулю скорости называют периодическим движением. Таким образом, его координата будет повторяться через одинаковые периоды времени. Периодом называют время, в течение которого тело совершает один полный оборот. Обозначается величина как Т. Единицами измерения периода являются секунды, с. Для расчета справедливо равенство:
(T=frac{t}{N})
(N) является количеством оборотов, (t) — временем, за которое тело совершает обороты.
Частота вращения представляет собой количество оборотов за единицу времени. Обозначается параметр в виде латинской буквы (ν). Единицами измерения являются (с^{-1}) (Гц).
(nu=frac{N}{t})
Период и частота являются взаимно обратными величинами:
(T=frac{1}{nu})
(nu =frac{1}{T})
Линейная скорость представляет собой скорость движения тела по окружности. Параметр обозначают латинской буквой v, единицами измерения являются м/с. Линейная скорость направлена по касательной к окружности и рассчитывается по формуле:
(v=frac{2pi times R}{T})
(R) является радиусом окружности.
Угловой скоростью называют физическую величину, которая определяется как отношение угла поворота и времени, за которое тело совершает этот поворот. Обозначают параметр как ω. Единицами измерения угловой скорости являются рад/с. Угловая скорость определяется по формуле:
(omega =frac{varphi }{t})
(varphi) представляет собой угол поворота.
Направление угловой скорости определяют с помощью правила правого винта или буравчика. В случае, когда вращательное движение винта соотносится с направлением движения тела по окружности, то поступательное движение винта и направление угловой скорости совпадают. Связь параметров движения тела по окружности представлена следующими формулами:
(v=omega R)
(omega =frac{v}{R})
(a_{сц} = omega ^{2}R)
(omega = frac{2pi }{T})
(omega = 2pi v)
Во время равномерного движения тела по окружности точки, расположенные на радиусе, перемещаются с равной угловой скоростью, так как радиус за одно и то же время поворачивается на одинаковый угол. В это время линейная скорость разных точек радиуса отличается в зависимости от того, насколько близко или далеко от центра они размещены:
(v_{1}=omega r)
(v_{2}=omega R)
(frac{v_{1}}{v_{2}}=frac{r}{R})
При рассмотрении равномерного движения двух соединенных тел можно наблюдать отсутствие отличий в линейных скоростях, но при этом угловые скорости тел будут различны в зависимости от радиуса тела:
(omega _{1}=frac{v}{R_{1}})
(omega _{2}=frac{v}{R_{2}})
(frac{omega _{1}}{omega _{2}}=frac{R_{1}}{R_{2}})
Движение тела, брошенного под углом к горизонту
Движение тела, которое бросили под углом к горизонту, можно представить в виде суперпозиции двух движений:
- Равномерного горизонтального перемещения.
- Равноускоренного движения вертикально при ускорении свободного падения.
Формула скорости будет иметь следующий вид:
(v_{0x}=v_{x}=v_{0} cos alpha =const)
(v_{0y}=v_{0}sin alpha)
(v_{y}=v_{0}sin alpha-gt)
Уравнение координаты обладает следующим видом:
(x=v_{0}cos alpha times t)
(y=v_{0}sin alpha times t-frac{gt^{2}}{2})
Скорость тела в любое время будет равна:
(v=sqrt{v_{x}^{2}+v_{y}^{2}})
Найти угол между вектором скорости и осью ОХ можно по формуле:
(tan beta =frac{v_{y}}{v_{x}}=frac{v_{0}sin alpha -gt}{v_{0}cos alpha })
Время подъема на максимальную высоту равно:
(t=frac{v_{0}sin alpha }{g})
Максимальную высоту подъема можно рассчитать с помощью формулы:
(h_{max}=frac{v_{0}^{2}sin ^{2}alpha}{2g})
Время полета соответствует уравнению:
(t=frac{2v_{0}sin alpha }{g})
Максимальную дальность полета можно рассчитать по формуле:
(L_{max}=frac{v_{0}^{2}sin 2alpha }{g})
Движение тела, брошенного горизонтально
Движение тела, которое бросили горизонтально, представлено в виде суперпозиции двух движений:
- Равномерное горизонтальное движение со скоростью v0=v0x.
- Равноускоренное вертикальное движение при ускорении свободного падения g с нулевой начальной скоростью.
Уравнение скорости:
(v_{x}=v_{0x}=const)
(v_{y}=g_{y}t=-gt)
Уравнение координаты:
(x=v_{0x}t=v_{x}t)
(y=frac{g_{y}t^{2}}{2}=h_{0}-frac{gt^{2}}{2})
Скорость тела в любое время будет определяться по формуле:
(v=sqrt{v_{x}^{2}+v_{y}^{2}})
Дальность полета тела соответствует уравнению:
(l=v_{0x}t=v_{0x}sqrt{frac{2h_{0}}{g}})
Вычислить угол между вектором скорости и осью ОХ можно с помощью формулы:
(tan beta =frac{v_{y}}{v_{x}}=frac{-gt}{v_{0x}})
Задачи по кинематике, их решение
Задача 1
Рассмотрим путь велосипедиста из одного населенного пункта в другой. Половина расстояния была преодолена со скоростью 12 км/ч ((v_1)). Далее половину оставшегося времени он ехал со скоростью 6 км/ч ((v_2)). Остаток расстояния путник преодолел пешком со скоростью 4км/ч ((v_3)). Необходимо рассчитать среднюю скорость на всем пути следования велосипедиста.
Решение
Данный пример относится к теме равномерного прямолинейного движения одного тела. Процесс можно изобразить схематично:
(S = S_1 + S_2 + S_3)
(t = t_1 + t_2 + t_3)
На каждый отрезок пути необходимо составить уравнение движения:
(S_1 = v_1t_1)
(S_2 = v_2t_2)
(S_3 = v_3t_3)
Далее можно представить дополнительные условия задачи:
(S_1 = S_2 + S_3)
(t_2 = t_3)
(v_{sr}=frac{S}{t}=frac{S_{1}+S_{2}+S_{3}}{t_{1}+t_{2}+t_{3}})
Следует преобразить формулу и подставить числовые значения:
(v_{sr}=frac{2S_{1}}{frac{S_{1}}{v_{1}}+frac{2S_{1}}{v_{2}+v_{3}}}=frac{2v_{1}left(v_{2}+v_{3} right)}{2v_{1}+v_{2}+v_{3}})
(v_{sr}=frac{2times 12left(6+4 right)}{2times 12+6+4}=7)
Ответ: средняя скорость составляет (7) км/ч.
Задача 2
Тело подбросили вертикально вверх. Начальная скорость при этом составила 3,13 м/с ((v_0)). В момент, когда данное тело достигло максимальную высоту полета, из начального пункта подбросили второе тело с такой же начальной скоростью, как у первого. Необходимо определить на каком расстоянии от точки бросания встретятся тела. Сопротивлением воздуха при решении можно не учитывать.
Решение
Схематично перемещение тел можно представить следующим образом:
Формула, описывающая движение тела, которое подбросили вверх, необходима для вычисления координаты движущегося тела в любое время. Для первого тела справедливо уравнение:
(h=v_{0}t_{1}-frac{gt_{1}^{2}}{2})
Для второго тела можно представить следующую формулу:
(h=v_{0}t_{2}-frac{gt_{2}^{2}}{2})
Следующую формулу можно составить на основании условия задачи, в котором указано, что второе тело бросили позднее первого на время максимального подъема:
(t_{1}-t_{2}=frac{v_{0}}{g})
Объединяя уравнения в систему из трех формул относительно величины (h) получим:
(h=frac{3}{4}frac{v_{0}^{2}}{2g})
(h=frac{3}{4}frac{3.13^{2}}{2*9.8}=0.37)
Ответ: тела встретятся на высоте (0,37) м.
Задача 3
Камень, находясь в свободном падении, вторую часть пути преодолел за 1 секунду. Необходимо вычислить высоту (h), с которой упал камень.
Решение
Ось Y системы координат, в которых падает камень, направлена вертикально вниз. В качестве начала координат можно принять точку, из которой камень упал. Закон перемещения данного тела в проекции на ось будет обладать следующим видом:
(h=v_{0}t+frac{gt^{2}}{2})
(h=frac{gt^{2}}{2})
(v=v_{0}t+gt)
(v=gt)
Время падения камня рассчитывается по формуле:
(t=sqrt{frac{2h}{g}})
Для середины пути, который преодолел камень, справедливы уравнения:
(frac{h}{2}=frac{gt_{1}^{2}}{2})
(t_{1}=sqrt{frac{h}{g}})
Время (t_2), которое потребовалось телу на преодоление второй половины пути, указанное в условии задачи, рассчитывается по формуле:
(t_{2}=t-t_{1}=sqrt{frac{2h}{g}}-sqrt{frac{h}{g}})
(t_{2}^{2}=frac{h}{g}left(sqrt{2} -1right)^{2})
Исходя из данного уравнения, можно вычислить высоту:
(t_{2}^{2}=frac{h}{g}left(sqrt{2} -1right)^{2})
(h=frac{t_{2}^{2}g}{left(sqrt{2}-1 right)^{2}}=frac{9,81}{0,17}=57,7)
Ответ: камень упал с высоты (57,7) м.
Решение задач по кинематике основано на простых формулах. Успешность результата зависит от умения грамотно применять справедливые уравнения в том или ином случае. Бывают ситуации, когда в процессе изучения физики возникают некоторые трудности. Простым решением будет обратиться к порталу Феникс.Хелп.
Уравнение изменения скорости во времени
Графическое представление равномерного прямолинейного движения
Механическое движение представляют графическим способом. Зависимость физических величин выражают при помощи функций. Обозначают:
V (t) — изменение скорости со временем
S(t) — изменение перемещения (пути) со временем
a(t) — изменение ускорения со временем
За висимость ускорения от времени. Так как при равномерном движении ускорение равно нулю, то зависимость a(t) — прямая линия, которая лежит на оси времени.
Зависимость скорости от времени. Так как тело движется прямолинейно и равномерно ( v = const ), т.е. скорость со временем не изменяется, то график с зависимостью скорости от времени v(t) — прямая линия, параллельная оси времени.
Проекция перемещения тела численно равна площади прямоугольника АОВС под графиком, так как величина вектора перемещения равна произведению вектора скорости на время, за которое было совершено перемещение.
Правило определения пути по графику v(t): при прямолинейном равномерном движении модуль вектора перемещения равен площади прямоугольника под графиком скорости.
Зависимость перемещения от времени. График s(t) — наклонная линия :
Из графика видно, что проекция скорости равна:
Рассмотрев эту формулу, мы можем сказать, чем больше угол, тем быстрей движется тело и оно проходит больший путь за меньшее время.
Правило определения скорости по графику s(t): Тангенс угла наклона графика к оси времени равен скорости движения.
Неравномерное прямолинейное движение.
Равномерное движение это движение с постоянной скоростью. Если скорость тела меняется, говорят, что оно движется неравномерно.
Движение, при котором тело за равные промежутки времени совершает неодинаковые перемещения, называют неравномерным или переменным движением.
Для характеристики неравномерного движения вводится понятие средней скорости.
Средняя скорость движения равна отношению всего пути, пройденного материальной точкой к промежутку времени, за который этот путь пройден.
В физике наибольший интерес представляет не средняя, а мгновенная скорость, которая определяется как предел, к которому стремится средняя скорость за бесконечно малый промежуток времени Δt:
Мгновенной скоростью переменного движения называют скорость тела в данный момент времени или в данной точке траектории.
Мгновенная скорость тела в любой точке криволинейной траектории направлена по касательной к траектории в этой точке.
Различие между средней и мгновенной скоростями показано на рисунке.
Движение тела, при котором его скорость за любые равные промежутки времени изменяется одинаково, называют равноускоренным или равнопеременным движением.
Ускорение — это векторная физическая величина, характеризующая быстроту изменения скорости, численно равная отношению изменения скорости к промежутку времени, в течение которого это изменение произошло.
Если скорость изменяется одинаково в течение всего времени движения, то ускорение можно рассчитать по формуле:
Vx — Скорость тела при равноускоренном движении по прямой
Vx o — Начальная скорость тела
ax — Ускорение тела
t — Время движения тела
Ускорение показывает, как быстро изменяетcя скорость тела. Если ускорение положительно, значит скорость тела увеличивается, движение ускоренное. Если ускорение отрицательно, значит скорость уменьшается, движение замедленное.
Единица измерения ускорения в СИ [м/с 2 ].
Ускорение измеряют акселерометром
Уравнение скорости для равноускоренного движения: vx = vxo + axt
Уравнение равноускоренного прямолинейного движения (перемещение при равноускоренном движении):
Sx — Перемещение тела при равноускоренном движении по прямой
Vx o — Начальная скорость тела
Vx — Скорость тела при равноускоренном движении по прямой
ax — Ускорение тела
t — Время движения тела
Еще формулы, для нахождения перемещения при равноускоренном прямолинейном движении, которые можно использовать при решении задач:
— если известны начальная, конечная скорости движения и ускорение.
— если известны начальная, конечная скорости движения и время всего движения
Графическое представление неравномерного прямолинейного движения
Механическое движение представляют графическим способом. Зависимость физических величин выражают при помощи функций. Обозначают:
V(t) — изменение скорости со временем
S(t) — изменение перемещения (пути) со временем
a(t) — изменение ускорения со временем
Зависимость ускорения от времени. Ускорение со временем не изменяется, имеет постоянное значение, график a(t) — прямая линия, параллельная оси времени.
Зависимость скорости от времени. При равномерном движении скорость изменяется, согласно линейной зависимости vx = vxo + axt . Графиком является наклонная линия.
Правило определения пути по графику v(t): Путь тела — это площадь треугольника (или трапеции) под графиком скорости.
Правило определения ускорения по графику v(t): Ускорение тела — это тангенс угла наклона графика к оси времени. Если тело замедляет движение, ускорение отрицательное, угол графика тупой, поэтому находим тангенс смежного угла.
Зависимость пути от времени. При равноускоренном движении путь изменяется, согласно квадратной зависимости:
В координатах зависимость имеет вид:
I. Механика
Тестирование онлайн
Гармоническое колебание
Это периодическое колебание, при котором координата, скорость, ускорение, характеризующие движение, изменяются по закону синуса или косинуса.
График гармонического колебания
График устанавливает зависимость смещения тела со временем. Установим к пружинному маятнику карандаш, за маятником бумажную ленту, которая равномерно перемещается. Или математический маятник заставим оставлять след. На бумаге отобразится график движения.
Графиком гармонического колебания является синусоида (или косинусоида). По графику колебаний можно определить все характеристики колебательного движения.
Уравнение гармонического колебания
Уравнение гармонического колебания устанавливает зависимость координаты тела от времени
График косинуса в начальный момент имеет максимальное значение, а график синуса имеет в начальный момент нулевое значение. Если колебание начинаем исследовать из положения равновесия, то колебание будет повторять синусоиду. Если колебание начинаем рассматривать из положения максимального отклонения, то колебание опишет косинус. Или такое колебание можно описать формулой синуса с начальной фазой .
Изменение скорости и ускорения при гармоническом колебании
Не только координата тела изменяется со временем по закону синуса или косинуса. Но и такие величины, как сила, скорость и ускорение, тоже изменяются аналогично. Сила и ускорение максимальные, когда колеблющееся тело находится в крайних положениях, где смещение максимально, и равны нулю, когда тело проходит через положение равновесия. Скорость, наоборот, в крайних положениях равна нулю, а при прохождении телом положения равновесия — достигает максимального значения.
Если колебание описывать по закону косинуса
Если колебание описывать по закону синуса
Максимальные значения скорости и ускорения
Проанализировав уравнения зависимости v(t) и a(t), можно догадаться, что максимальные значения скорость и ускорение принимают в том случае, когда тригонометрический множитель равен 1 или -1. Определяются по формуле
Как получить зависимости v(t) и a(t)
Формулы зависимостей скорости от времени и ускорения от времени можно получить математически, зная зависимость координаты от времени. Аналогично равноускоренному движению, зависимость v(t) — это первая производная x(t). А зависимость a(t) — это вторая производная x(t).
При нахождении производной предполагаем, что переменной (то есть x в математике) является t, остальные физические величины воспринимаем как постоянные.
Скорость. Ускорение. Равноускоренное прямолинейное движение
1. Реальное механическое движение — это движение с изменяющейся скоростью. Движение, скорость которого стечением времени изменяется, называют неравномерным движением.
При неравномерном движении координату тола уже нельзя определить но формуле ( x=x_0+v_xt ) , так как значение скорости движения не является постоянным. Поэтому для характеристики быстроты изменения положения тела с течением времени при неравномерном движении вводят величину, называемую средней скоростью.
Средней скоростью ( vec_ <ср>) неравномерного движения называют физическую величину, равную отношению перемещении ( vec ) тела ко времени ( t ) , за которое оно произошло: ( vec_<ср>=frac) .
Записанная формула определяет среднюю скорость как векторную величину. В практических целях этой формулой можно воспользоваться для определения модуля средней скорости лишь в том случае, когда тело движется вдоль прямой в одну сторону. Если же нужно определить среднюю скорость движения автомобиля от Москвы до Санкт-Петербурга и обратно, чтобы рассчитать расход бензина, то эту формулу применить нельзя, поскольку перемещение в этом случае равно нулю и средняя скорость тоже равна нулю. Поэтому на практике при определении средней скорости пользуются величиной, равной отношению пути ( l ) ко времени ( t ) , за которое этот путь пройден: ( v_<ср>=frac) . Эта скорость обычно называется средней путевой скоростью.
2. Важно, что, зная среднюю скорость неравномерного движения на каком-либо участке траектории, нельзя определить положение тела на этой траектории в любой момент времени. Например, если средняя скорость движения автомобиля за 2 часа 50 км/ч, то мы не можем сказать, где он находился через 0,5 часа от начала движения, через 1 час, 1,5 часа и т.п., поскольку он мог первые полчаса двигаться со скоростью 80 км/ч, затем какое-то время стоять, а какое-то время ехать в пробке со скоростью 20 км/ч.
3. Двигаясь по траектории, тело проходит последовательно все её точки. В каждой точке траектории оно находится в определённые моменты времени и имеет какую-то скорость.
Мгновенной скоростью называют скорость тела в данный момент времени в данной точке траектории.
Предположим, некоторое тело совершает неравномерное прямолинейное движение (рис. 17), его скорость в точке О можно определить следующим образом: выделим на траектории участок AB, внутри которого находится точка О. Перемещение тела на этом участке — ( vec_1 ) совершено за время ( t_1 ) . Средняя скорость движения на этом участке – ( vec_<ср.1>=frac ) . Уменьшим перемещение тела. Пусть оно равно ( vec_2 ) , а время движения — ( t_2 ) . Тогда средняя скорость за это время: ( vec_<ср.2>=frac ) . Еще уменьшим перемещение, средняя скорость на этом участке: ( vec_<ср.3>=frac ) .
При дальнейшем уменьшении перемещения и соответственно времени движения тела они станут такими маленькими, что прибор, например спидометр, перестанет фиксировать изменение скорости, и движение за этот малый промежуток времени можно считать равномерным. Средняя скорость на этом участке и есть мгновенная скорость тела в т.О.
Таким образом, мгновенной скоростью называют векторную физическую величину, равную отношению малого перемещения ( ( Delta<vec> ) ) к малому промежутку времени ( Delta) , за которое это перемещение произошло: ( vec=frac<Delta><Delta> ) .
4. Одним из видов неравномерного движения является равноускоренное движение. Равноускоренным движением называют движение, при котором скорость тела за любые равные промежутки времени изменяется на одно и то же значение.
Слова «любые равные промежутки времени» означают, что какие бы равные промежутки времени (2 с, 1 с, доли секунды и т.п.) мы ни взяли, скорость всегда будет изменяться одинаково. При этом её модуль может как увеличиваться, так и уменьшаться.
5. Характеристикой равноускоренного движения, помимо скорости и перемещения, является ускорение.
Пусть в начальный момент времени ( t_0=0 ) скорость тела равна ( vec_0 ) . В некоторый момент времени ( t ) она стала равной ( vec ) . Изменение скорости за промежуток времени ( t-t_0=t ) равно ( vec-vec_0 ) (рис.18). Изменение скорости за единицу времени равно: ( frac<vec-vec_0>) . Эта величина и есть ускорение тела, она характеризует быстроту изменения скорости ( vec=frac<vec-vec_0>) .
Ускорение тела при равноускоренном движении — векторная физическая величина, равная отношению изменения скорости тела к промежутку времени, за который это изменение произошло.
Единица ускорения ( [a]=[v]/[t] ) ; ( [a] ) = 1 м/с/1 с = 1 м/с 2 . 1 м/с 2 — это такое ускорение, при котором скорость тела изменяется за 1 с на 1 м/с.
Направление ускорения совпадает с направлением скорости движения, если модуль скорости увеличивается, ускорение направлено противоположно скорости движения, если модуль скорости уменьшается.
6. Преобразовав формулу ускорения, можно получить выражение для скорости тела при равноускоренном движении: ( vec=vec_0+vect ) . Если начальная скорость тела ( v_0=0 ) , то ( vec = vect ) .
Чтобы определить значение скорости равноускоренного движения в любой момент времени, следует записать уравнение для проекции скорости на ось ОХ. Оно имеет вид: ( v_x = v_ <0x>+ a_xt ) ; если ( v_<0x>=0 ) , то ( v_x = a_xt ) .
7. Как видно из формулы скорости равноускоренного движения, она линейно зависит от времени. Графиком зависимости модуля скорости от времени является прямая, составляющая некоторый угол с осью абсцисс (осью времени). На рисунке 19 приведены графики зависимости модуля скорости от времени.
График 1 соответствует движению без начальной скорости с ускорением, направленным так же, как и скорость; график 2 — движению с начальной скоростью ( v_ <02>) и с ускорением, направленным так же, как и скорость; график 3 — движению с начальной скоростью ( v_ <03>) и с ускорением, направленным в сторону, противоположную направлению скорости.
8. На рисунке приведены графики зависимости проекции скорости равноускоренного движения от времени (рис. 20).
График 1 соответствует движению без начальной скорости с ускорением, направленным вдоль положительного направления оси X; график 2 — движению с начальной скоростью ( v_ <02>) , с ускорением и скоростью, направленными вдоль положительного направления оси X; график 3 — движению с начальной скоростью ( v_ <03>) : до момента времени ( t_0 ) направление скорости совпадает с положительным направлением оси X, ускорение направлено в противоположную сторону. В момент времени ( t_0 ) скорость равна нулю, а затем и скорость, и ускорение направлены в сторону, противоположную положительному направлению оси X.
9. На рисунке 21 приведены графики зависимости проекции ускорения равноускоренного движения от времени.
График 1 соответствует движению, проекция ускорения которого положительна, график 2 — движению, проекция ускорения которого отрицательна.
10. Формулу перемещения тела при равноускоренном движении можно получить, используя график зависимости проекции скорости этого движения от времени (рис. 22).
Выделим на графике малый участок ( ab ) и опустим перпендикуляры из точек ( a ) и ( b ) на ось абсцисс. Если промежуток времени ( Delta) , соответствующий участку ( cd ) на оси абсцисс мал, то можно считать, что скорость в течение этого промежутка времени не изменяется и тело движется равномерно. В этом случае фигура ( cabd ) мало отличается от прямоугольника и её площадь численно равна проекции перемещения тела за время, соответствующее отрезку ( cd ) .
На такие полоски можно разбить всю фигуру ОАВС, и её площадь равна сумме площадей всех полосок. Следовательно, проекция перемещения тела за время ( t ) численно равна площади трапеции ОАВС. Площадь трапеции равна произведению полусуммы её оснований на высоту: ( S_x= frac<1><2>(OA+BC)OC ) .
Как видно из рисунка, ( OA=v_<0x>,BC=v_x,OC=t ) . Отсюда следует, что проекция перемещения выражается формулой ( S_x= frac<1><2>(v_<0x>+v_x)t ) . Так как ( v_x = v_ <0x>+ a_ ) , то ( S_x= frac<1><2>(2v_ <0x>+ a_xt)t ) , отсюда ( S_x=v_<0x>t+ frac <2>) . Если начальная скорость равна нулю, то формула имеет вид ( S_x=frac <2>) . Проекция перемещения равна разности координат ( S_x=x-x_0 ) , поэтому: ( x-x_0=v_<0x>t+frac <2>) , или ( x=x_<0x>+v_<0x>t+frac <2>) .
Полученная формула позволяет определить положение (координату) тела в любой момент времени, если известны начальная скорость, начальная координата и ускорение.
11. На практике часто используют формулу или ( v^2_x-v^2_<0x>=2a_xs_x ) , или ( v^2-v^2_<0>=2as ) .
Если начальная скорость тела равна нулю, то: ( v^2_x=2a_xs_x ) .
Полученная формула позволяет рассчитать тормозной путь транспортных средств, т.е. путь, который проезжает, например, автомобиль до полной остановки. При некотором ускорении движения, которое зависит от массы автомобиля и силы тяги двигателя, тормозной путь тем больше, чем больше начальная скорость автомобиля.
ПРИМЕРЫ ЗАДАНИЙ
Часть 1
1. Hа рисунке приведены графики зависимости пути и скорости тела от времени. Какой график соответствует равноускоренному движению?
2. Автомобиль, начав двигаться из состояния покоя но прямолинейной дороге, за 10 с приобрел скорость 20 м/с. Чему равно ускорение автомобиля?
1) 200 м/с 2
2) 20 м/с 2
3) 2 м/с 2
4) 0,5 м/с 2
3. На рисунках представлены графики зависимости координаты от времени для четырёх тел, движущихся вдоль оси ( Оx ) . У какого из тел в момент времени ( t_1 ) скорость движения равна нулю?
4. На рисунке представлен график зависимости проекции ускорения от времени для тела, движущегося прямолинейно вдоль оси ( Оx ) .
Равноускоренному движению соответствует участок
1) только ОА
2) только АВ
3) только ОА и ВС
4) только CD
5. При изучении равноускоренного движения измеряли путь, пройденный телом из состояния покоя за последовательные равные промежутки времени (за первую секунду, за вторую секунду и т.д.). Полученные данные приведены в таблице.
Чему равен путь, пройденный телом за третью секунду?
1) 4 м
2) 4,5 м
3) 5 м
4) 9 м
6. На рисунке представлены графики зависимости скорости движения от времени для четырёх тел. Тела движутся по прямой.
Для какого(-их) из тел — 1, 2, 3 или 4 — вектор ускорения направлен противоположно вектору скорости?
1) только 1
2) только 2
3) только 4
4) 3 и 4
7. Используя график зависимости скорости движения тела от времени, определите его ускорение.
1) 1 м/с 2
2) -1 м/с 2
3) 2 м/с 2
4) -2 м/с 2
8. При изучении равноускоренного движения измеряли скорость тела в определённые моменты времени. Полученные данные, приведены в таблице. Чему равна скорость тела в момент времени 3 с?
1) 0 м/с
2) 2 м/с
3) 4 м/с
4) 14 м/с
9. На рисунке приведены графики зависимости скорости движения четырёх тел от времени. Ускорение какого из тел равно -1,5 м/с?
10. Используя график зависимости скорости движения тела от времени, определите скорость тела в конце 30-й секунды. Считать, что характер движения тела не изменился.
1) 14 м/с
2) 20 м/с
3) 62 м/с
4) 69,5 м/с
11. Два тела движутся по оси ( Оx ) . На рисунке представлены графики зависимости проекции скорости движения тел 1 и 2 от времени.
Используя данные графика, выберите из предложенного перечня два верных утверждения. Укажите их номера.
1) В промежутке времени ( t_3-t_5 ) тело 2 движется равноускоренно.
2) К моменту времени ( t_2 ) от начала движения тела прошли одинаковые пути.
3) В промежутке времени ( 0-t_3 ) тело 2 находится в покое.
4) В момент времени ( t_5 ) тело 1 останавливается.
5) В промежутке времени ( t_3-t_4 ) ускорение ( a_x ) тела 1 отрицательно.
12. На рисунке представлен график зависимости проекции скорости от времени для тела, движущегося вдоль оси Ох.
Используя данные графика, выберите из предложенного перечня два верных утверждения. Укажите их номера.
1) Участок ОА соответствует ускоренному движению тела.
2) Участок АВ соответствует состоянию покоя тела.
3) В момент времени ( t_1 ) тело имело максимальное по модулю ускорение.
4) Момент времени ( t_3 ) соответствует остановке тела.
5) В момент времени ( t_2 ) тело имело максимальное по модулю ускорение.
Часть 2
13. Зависимость координаты от времени для некоторого тела описывается уравнением ( x=12t-t^2 ) . В какой момент времени скорость движения равна нулю?
источники:
http://fizmat.by/kursy/kolebanija_volny/garmonicheskoe
http://fizi4ka.ru/ogje-2018-po-fizike/skorost-uskorenie-ravnouskorennoe-prjamolinejnoe-dvizhenie.html