Как найти изменение температуры газа в физике

Определение

Идеальный газ — газ, удовлетворяющий трем условиям:

  • Молекулы — материальные точки.
  • Потенциальная энергия взаимодействия молекул пренебрежительно мала.
  • Столкновения между молекулами являются абсолютно упругими.

Реальный газ с малой плотностью можно считать идеальным газом.

Измерение температуры

Температуру можно измерять по шкале Цельсия и шкале Кельвина. По шкале Цельсия за нуль принимается температура, при которой происходит плавление льда. По шкале Кельвина за нуль принимается абсолютный нуль — температура, при котором давление идеального газа равно нулю, и его объем тоже равен нулю.

Обозначение температуры

  1. По шкале Цельсия — t. Единица измерения — 1 градус Цельсия (1 oC).
  2. По шкале Кельвина — T. Единица измерения — 1 Кельвин (1 К).

Цена деления обеих шкал составляет 1 градус. Поэтому изменение температуры в градусах Цельсия равно изменению температуры в Кельвинах:

∆t = ∆T

При решении задач в МКТ используют значения температуры по шкале Кельвина. Если в условиях задачи температура задается в градусах Цельсия, нужно их перевести в Кельвины. Это можно сделать по формуле:

T = t + 273

Если особо важна точность, следует использовать более точную формулу:

T = t + 273,15

Пример №1. Температура воды равна oC. Определить температуру воды в Кельвинах.

T = t + 273 = 2 + 273 = 275 (К)

Основное уравнение МКТ идеального газа

Давление идеального газа обусловлено беспорядочным движением молекул, которые сталкиваются друг с другом и со стенками сосуда. Основное уравнение МКТ идеального газа связывает давление и другие макропараметры (объем, температуру и массу) с микропараметрами (массой молекул, скоростью молекул и кинетической энергией).

Основное уравнение МКТ

Давление идеального газа пропорционально произведению концентрации молекул на среднюю кинетическую энергию поступательного движения молекулы.

p=23nEk

p — давление идеального газа, n — концентрация молекул газа, Ek — средняя кинетическая энергия поступательного движения молекул.

Выражая физические величины друг через друга, можно получить следующие способы записи основного уравнения МКТ идеального газа:

p=13m0nv2

m0— масса одной молекулы газа;

n — концентрация молекул газа;

v2 — среднее значение квадрата скорости молекул газа.

Среднее значение квадрата скорости не следует путать со среднеквадратичной скоростью v, которая равна корню из среднего значения квадрата скорости:

v=v2

p=13ρv2

ρ — плотность газа

p=nkT

k — постоянная Больцмана (k = 1,38∙10–3 Дж/кг)

T — температура газа по шкале Кельвина

Пример №2. Во сколько раз уменьшится давление идеального одноатомного газа, если среднюю кинетическую энергию теплового движения молекул и концентрацию уменьшить в 2 раза?

Согласно основному уравнению МКТ идеального газа, давление прямо пропорционально произведению средней кинетической энергии теплового движения молекул и концентрации его молекул. Следовательно, если каждая из этих величин уменьшится в 2 раза, то давление уменьшится в 4 раза:

Следствия из основного уравнения МКТ идеального газа

Через основное уравнение МКТ идеального газа можно выразить скорость движения молекул (частиц газа):

v=3kTm0=3RTM

R — универсальная газовая постоянная, равная произведения постоянной Авогадро на постоянную Больцмана:

R=NAk=8,31 Дж/К·моль

Температура — мера кинетической энергии молекул идеального газа:

Ek=32kT

T=2Ek3k

Полная энергия поступательного движения молекул газа определяется формулой:

E=NEk

Пример №3. При уменьшении абсолютной температуры на 600 К средняя кинетическая энергия теплового движения молекул неона уменьшилась в 4 раза. Какова начальная температура газа?

Запишем формулу, связывающую температуру со средней кинетической энергией теплового движения молекул, для обоих случаев, с учетом что:

Следовательно:

Составим систему уравнений:

Отсюда:

Задание EF19012

На графике представлена зависимость объёма постоянного количества молей одноатомного идеального газа от средней кинетической энергии теплового движения молекул газа. Опишите, как изменяются температура и давление газа в процессах 1−2 и 2−3. Укажите, какие закономерности Вы использовали для объяснения.


Алгоритм решения

1.Указать, в каких координатах построен график.

2.На основании основного уравнения МКТ идеального газа и уравнения Менделеева — Клапейрона выяснить, как меняются указанные физические величины во время процессов 1–2 и 2–3.

Решение

График построен в координатах (V;Ek). Процесс 1–2 представляет собой прямую линию, исходящую из начала координат. Это значит, что при увеличении объема растет средняя кинетическая энергия молекул. Но из основного уравнения МКТ идеального газа следует, что мерой кинетической энергии молекул является температура:

T=2Ek3

Следовательно, когда кинетическая энергия молекул растет, температура тоже растет.

Запишем уравнение Менделеева — Клапейрона:

pV=νRT

Так как количество вещества одинаковое для обоих состояния 1 и 2, запишем:

νR=p1V1T1=p2V2T2

Мы уже выяснили, что объем и температура увеличиваются пропорционально. Следовательно, давление в состояниях 1 и 2 равны. Поэтому процесс 1–2 является изобарным, давление во время него не меняется.

Процесс 2–3 имеет график в виде прямой линии, перпендикулярной кинетической энергии. Так как температуры прямо пропорциональна кинетической энергии, она остается постоянной вместе с этой энергией. Следовательно, процесс 2–3 является изотермическим, температура во время него не меняется. Мы видим, что объем при этом процессе уменьшается. Но так как объем и давление — обратно пропорциональные величины, то давление на участке 2–3 увеличивается.

Ответ:

 Участок 1–2 — изобарный процесс. Температура увеличивается, давление постоянно.

 Участок 2–3 — изотермический процесс. Температура постоянно, давление увеличивается.

pазбирался: Алиса Никитина | обсудить разбор

Задание EF17560

Первоначальное давление газа в сосуде равнялось р1. Увеличив объём сосуда, концентрацию молекул газа уменьшили в 3 раза, и одновременно в 2 раза увеличили среднюю энергию хаотичного движения молекул газа. В результате этого давление р2 газа в сосуде стало равным

Ответ:

а) 13p1

б) 2p1

в) 23p1

г) 43p1


Алгоритм решения

1.Записать исходные данные.

2.Записать основное уравнение МКТ идеального газа.

3.Составить уравнения для состояний 1 и 2.

4.Выразить искомую величину.

Решение

Исходные данные:

 Начальное давление: p0.

 Начальная концентрация молекул: n1 = 3n.

 Конечная концентрация молекул: n2 = n.

 Начальная средняя энергия хаотичного движения молекул: Ek1 = Ek.

 Конечная средняя энергия хаотичного движения молекул: Ek2 = 2Ek.

Основное уравнение МКТ:

p=23nEk

Составим уравнения для начального и конечного состояний:

p1=23n1Ek1=233nEk=2nEk

p2=23n2Ek2=23n2Ek=43nEk

Отсюда:

nEk=p12=3p24

p2=4p16=23p1

Ответ: в

pазбирался: Алиса Никитина | обсудить разбор

Задание EF18416

Цилиндрический сосуд разделён неподвижной теплоизолирующей перегородкой. В одной части сосуда находится кислород, в другой – водород, концентрации газов одинаковы. Давление кислорода в 2 раза больше давления водорода. Чему равно отношение средней кинетической энергии молекул кислорода к средней кинетической энергии молекул водорода?


Алгоритм решения

1.Записать исходные данные.

2.Записать основное уравнение МКТ идеального газа.

3.Составить уравнения для обоих газов.

4.Найти отношение средней кинетической энергии молекул кислорода к средней кинетической энергии молекул водорода.

Решение

Анализируя условия задачи, можно выделить следующие данные:

 Концентрации кислорода и водорода в сосуде равны. Следовательно, n1 = n2 = n.

 Давление кислорода вдвое выше давления водорода. Следовательно, p1 = 2p, а p2 = p.

Запишем основное уравнение идеального газа:

p=23nEk

Применим его для обоих газов и получим:

p1=23n1Ek1 или 2p=23nEk1 

p2=23n2Ek2 или p=23nEk2 

Выразим среднюю кинетическую энергию молекул газа из каждого уравнения:

Ek1=3pn

Ek2=3p2n

Поделим уравнения друг на друга и получим:

Ek1Ek2=3pn·2n3p=2

Ответ: 2

pазбирался: Алиса Никитина | обсудить разбор

Задание EF18824

В одном сосуде находится аргон, а в другом – неон. Средние кинетические энергии теплового движения молекул газов одинаковы. Давление аргона в 2 раза больше давления неона. Чему равно отношение концентрации молекул аргона к концентрации молекул неона?


Алгоритм решения

1.Записать исходные данные.

2.Записать основное уравнение МКТ идеального газа.

3.Составить уравнения для обоих газов.

4.Найти отношение концентрации молекул аргона к концентрации молекул неона.

Решение

Анализируя условия задачи, можно выделить следующие данные:

 Средние кинетические энергии теплового движения молекул газов одинаковы. Следовательно, Ek1=Ek2=Ek.

 Давление аргона в 2 раза больше давления неона. Следовательно, p1 = 2p, а p2 = p.

Запишем основное уравнение идеального газа:

p=23nEk

Применим его для обоих газов и получим:

p1=23n1Ek1 или 2p=23n1Ek 

p2=23n2Ek2 или p=23n2Ek 

Выразим концентрации молекул газа из каждого уравнения:

n1=3pEk

n2=3p2Ek

Поделим уравнения друг на друга и получим:

n1n2=3pEk·2Ek3p=2

Ответ: 2

pазбирался: Алиса Никитина | обсудить разбор

Алиса Никитина | Просмотров: 10.8k

Температура – термодинамическая макроскопическая характеристика, которая играет важную роль практически во всех физических процессах. В данной статье сосредоточим свое внимание на освещении вопросов, что такое абсолютная температура газа идеального и как ее можно вычислить.

Абсолютная шкала температур

Для начала познакомимся со шкалой, которая используется в физике для описания температуры. Она называется абсолютной или шкалой Кельвина. Впервые ее ввел в использование английский физик лорд Кельвин в 1848 году. При этом ученый основывался на завоевавшей популярность шкале Цельсия.

Лорд Кельвин

Абсолютная температура так называется потому, что она имеет нижний предел – 0 кельвин, при котором считается “замороженным” любой вид движения (на самом деле при 0 К существуют так называемые нулевые колебания). Верхнего предела у этой шкалы нет.

С градусами Цельсия C абсолютная шкала T связана следующим простым равенством:

T = C + 273,15.

В отличие от других температурных шкал, например, от шкалы Фаренгейта, кельвин имеет точно такой же масштаб, что и градус Цельсия. Последнее означает, что для перевода в абсолютную любой температуры по Цельсию достаточно добавить к ней число 273,15. Так, по шкале Кельвина вода замерзает при 273,15 К, а кипит при 373,15 К.

Термометр с абсолютной шкалой

Краткое понятие о газе идеальном

Поскольку далее будет рассмотрена формула для определения абсолютной температуры газа идеального, то будет полезным познакомиться с этим понятием поближе. Под идеальным понимают такой газ, молекулы которого практически не взаимодействуют друг с другом, обладают большой кинетической энергией по сравнению с потенциальной, и расстояния между которыми значительно превышают их собственные размеры.

Все реальные газы проявляют поведение идеальных при небольших давлениях и высоких температурах. Примерами могут служить благородные газы, воздух, метан и другие. В то же время пар H2O даже при низких давлениях сильно отличается от идеального газа, поскольку в нем всегда присутствуют значительные водородные связи между полярными молекулами воды.

Газы реальные и идеальные

Температура абсолютная идеального газа

Существует два подхода к определению температуры в газах. Рассмотрим каждый из них.

Первый подход заключается в привлечении положений молекулярно-кинетической теории (МКТ) и физического смысла самой температуры T. Последний заключается в кинетической энергии частиц газа. Чем больше эта энергия, тем выше температура, причем зависимость является прямо пропорциональной. Используя формулу из механики для энергии кинетической и постоянную Больцмана kB можно записать следующее равенство МКТ:

m*v2/2 = 3/2*kB*T.

Где m – масса движущейся поступательно частицы. Выражая из этого равенства величину T, получаем формулу:

T = m*v2/(3*kB).

Чем меньше масса частицы и чем больше ее скорость, тем выше абсолютная температура.

Второй подход в определении величины T заключается в использовании универсального уравнения Клапейрона-Менделеева. Это уравнение было записано в XIX веке Эмилем Клапейроном (впоследствии модифицировано Д. И. Менделеевым) как результат обобщения открытых экспериментально в XVII-XIX веках газовых законов (Шарля, Гей-Люссака, Бойля-Мариотта, Авогадро). Математически универсальное уравнение записывается так:

P*V = n*R*T.

Как видно, оно связывает три основных термодинамических величины системы: давление P, объем V и температуру абсолютную T. Две другие величины, присутствующие в уравнении, – это n – количество вещества и R – газовая постоянная.

Не представляет особого труда получить формулу для температуры из Клапейрона-Менделеева закона:

T = P*V/(n*R).

В закрытой системе (n = const) температура газа прямо пропорциональна произведению объема на давление.

Пример задачи

Воздух, которым мы дышим, является смесью газов идеальных. Известно, что молярная масса воздуха составляет 29 г/моль. Необходимо определить температуру воздуха, если средняя скорость его молекул составляет 530 м/с.

Очевидно, что решение этой задачи можно получить, если воспользоваться следующим выражением:

T = m*v2/(3*kB).

Массу одной молекулы m воздуха можно получить, если поделить величину M на число Авогадро NA. Произведение же числа NA на константу Больцмана kB – это не что иное, как газовая постоянная R, которая равна 8,314 Дж/(К*моль). Учитывая эти рассуждения, получаем рабочую формулу:

T = M*v2/(3*R ) = 0,029*6002/(3*8,314) = 326,60 К.

Пустыня Сахара

В градусах Цельсия найденной температуре соответствует значение 53,45 oC. На нашей планете такие температуры характерны для жарких песчаных пустынь в полдень.

1

Формула выглядит следующим образом: p•Vm = R•T, где p — это давление, Vm — молярный объем газа, R — это универсальная газовая постоянная, а Т — абсолютная температура идеального газа.
2

Выясняем, какие данные нам доступны для того, чтобы использовать формулу, таким образом: Т = (p•Vm)/ R.
3

В случае если нам не известен молярный объем газа, мы можем найти его по формуле:
Vm = V/ν. В этой формуле ν представляет собой количество вещества, Найти эту величину можно разделив массу газа на его молярную массу.
4

Формула, которая носит название закон Менделеева-Клапейрона, записывается именно в таком виде: p•V = (m/М) • R•T.
5

Видоизменяем эту формулу, чтобы найти температуру газа: T = (p•V • М) /(R• m).
6

Находим все величины, которые требуются нам для подстановки в формулу. Выполняем расчеты и находим искомую температуру идеального газа.

Уравне́ние состоя́ния идеа́льного га́за (иногда уравнение Менделеева — Клапейрона) — формула, устанавливающая зависимость между давлением, молярным объёмом и абсолютной температурой идеального газа. Уравнение имеет вид:

{displaystyle pV=nu RT},

где

Уравнение состояния идеального газа можно записать в виде:

{displaystyle pcdot V={frac {m}{M}}Rcdot T} ,

где m — масса, M — молярная масса, (так как количество вещества {displaystyle nu ={frac {m}{M}}}):

или в виде

p=nkT,

где n=N/V — концентрация частиц (атомов или молекул) N – количество частиц, k={frac  {R}{N_{A}}} — постоянная Больцмана.

Эта форма записи носит имя уравнения (закона) Клапейрона — Менделеева.

Уравнение, выведенное Клапейроном, содержало некую неуниверсальную газовую постоянную {displaystyle r,} значение которой необходимо было измерять для каждого газа:

{displaystyle pcdot V=rcdot T.}

Менделеев обнаружил, что r прямо пропорциональна nu , коэффициент пропорциональности R он назвал универсальной газовой постоянной.[источник не указан 1459 дней]

Связь с другими законами состояния идеального газа[править | править код]

В случае постоянной массы газа уравнение можно записать в виде:

frac{pcdot V}{T}=nucdot R,
frac{pcdot V}{T}=mathrm{const}.

Последнее уравнение называют объединённым газовым законом. Из него получаются законы Бойля — Мариотта, Шарля и Гей-Люссака:

T=mathrm{const}Rightarrow pcdot V=mathrm{const} — закон Бойля — Мариотта — Изотермический процесс.
p=mathrm{const}Rightarrowfrac{V}{T}=mathrm{const} — Закон Гей-Люссака — Изобарный процесс.
V=mathrm{const}Rightarrowfrac{p}{T}=mathrm{const} — закон Шарля (второй закон Гей-Люссака, 1808 г.) — Изохорный процесс

В форме пропорции frac{p_1cdot V_1}{T_1}= frac{p_2cdot V_2}{T_2} этот закон удобен для расчёта перевода газа из одного состояния в другое.

С точки зрения химика этот закон может звучать несколько иначе: объёмы вступающих в реакцию газов при одинаковых условиях (температуре, давлении) относятся друг к другу и к объёмам образующихся газообразных соединений как целые числа. Например, 1 объём водорода соединяется с 1 объёмом хлора, при этом образуются 2 объёма хлороводорода:

{displaystyle {ce {H2 + Cl2 -> 2HCl}}}.

1 объём азота соединяется с 3 объёмами водорода с образованием 2 объёмов аммиака:

{displaystyle {ce {N2 + 3H2 -> 2NH3}}}.
Закон Бойля — Мариотта

Закон Бойля — Мариотта

T=mathrm{const}Rightarrow pcdot V=mathrm{const}

назван в честь ирландского физика, химика и философа Роберта Бойля (1627—1691), открывшего его в 1662 г., а также в честь французского физика Эдма Мариотта (1620—1684), который открыл этот закон независимо от Бойля в 1677 году.

В некоторых случаях (в газовой динамике) уравнение состояния идеального газа удобно записывать в форме

p=(gamma-1)rhovarepsilon,

где gamma  — показатель адиабаты, varepsilon  — внутренняя энергия единицы массы вещества.

Эмиль Амага обнаружил, что при высоких давлениях поведение газов отклоняется от закона Бойля — Мариотта. Это обстоятельство может быть прояснено на основании молекулярных представлений.

С одной стороны, в сильно сжатых газах размеры самих молекул являются сравнимыми с расстояниями между молекулами. Таким образом, свободное пространство, в котором движутся молекулы, меньше, чем полный объём газа. Это обстоятельство увеличивает число ударов молекул в стенку, так как благодаря ему сокращается расстояние, которое должна пролететь молекула, чтобы достигнуть стенки.

С другой стороны, в сильно сжатом и, следовательно, более плотном газе молекулы заметно притягиваются к другим молекулам гораздо большую часть времени, чем молекулы в разреженном газе. Это, наоборот, уменьшает число ударов молекул в стенку, так как при наличии притяжения к другим молекулам молекулы газа движутся по направлению к стенке с меньшей скоростью, чем при отсутствии притяжения. При не слишком больших давлениях более существенным является второе обстоятельство и произведение {displaystyle Pcdot V} немного уменьшается. При очень высоких давлениях большую роль играет первое обстоятельство и произведение {displaystyle Pcdot V} увеличивается.

См. также[править | править код]

  • Совершенный газ
  • Реальный газ
  • Уравнение состояния реального газа

Примечания[править | править код]

Литература[править | править код]

  • Стромберг А. Г., Семченко Д. П. Физическая химия: Учеб. для хим. спец. вузов / Под ред. А. Г. Стромберга. — 7-е изд., стер. — М.: Высшая школа, 2009. — 527 с. — ISBN 978-5-06-006161-1.

Содержание:

Температура:

Перед тем как, например, пойти на пляж, многие интересуются прогнозом погоды. И если ожидается температура воздуха 10 °С, то, скорее всего, планы будут изменены. А стоит ли отказываться от прогулки, если прогнозируется температура 300 К (кельвинов)? И что на самом деле вкладывают физики в понятие «температура»?

Температура в физике - основные понятия, формулы и определение с примерами

Что такое температура

Эксперименты показывают, что макроскопическая система может переходить из одного состояния в другое. Например, если в морозный день занести в комнату шарик, наполненный гелием, то гелий в шарике будет нагреваться и при этом будут изменяться давление, объем и некоторые другие параметры газа. После того как шарик пробудет в комнате некоторое время, изменения прекратятся. Один из постулатов молекулярной физики и термодинамики — его еще называют нулевое начало термодинамики — гласит: любое макроскопическое тело или система тел при неизменных внешних условиях самопроизвольно переходит в термодинамическое равновесное состояние (состояние теплового равновесия), после достижения которого все части системы имеют одинаковую температуру. Нулевое начало термодинамики фактически вводит и определяет понятие температуры.

Температура — физическая величина, характеризующая состояние теплового равновесия макроскопической системы.

Состояние теплового равновесия — это такое состояние макроскопической системы, при котором все макроскопические параметры системы остаются неизменными сколь угодно долго.

В состоянии теплового равновесия все части системы имеют одинаковую температуру; другие макроскопические параметры неизменны, но могут быть разными. Вспомните пример с шариком: после того как установится тепловое равновесие, температура окружающего воздуха и температура гелия в шарике будут одинаковыми, а давление, плотность и объем — разными.

Как работают термометры

Температура — это физическая величина, и ее можно измерять. Для этого нужно установить шкалу температур. Самые распространенные температурные шкалы — шкалы Цельсия, Кельвина, Фаренгейта (рис. 29.1).

Температура в физике - основные понятия, формулы и определение с примерами

Построение шкалы температур начинается с выбора реперных (опорных) точек, которые должны быть однозначно связаны с какими-либо физическими процессами, которые легко воспроизвести. Например, за нулевую точку температурной шкалы Цельсия принята температура таяния льда при нормальном атмосферном давлении ( t = 0 °С). Температуре кипения воды при нормальном атмосферном давлении приписывают значение t =100 °С. Единица температуры по шкале Цельсия — градус Цельсия: Температура в физике - основные понятия, формулы и определение с примерами.

Температура в физике - основные понятия, формулы и определение с примерами

Рис. 29.2. различные виды термометров: а — жидкостный (принцип действия: изменение объема жидкости при изменении температуры); б — термометр сопротивления (изменение электрического сопротивления проводника при изменении температуры); в — биметаллический деформационный (изменение длин двух разных металлических пластин при изменении температуры)

Приборы для измерения температуры — термометры (рис. 29.2). Основные части любого термометра — термометрическое тело (ртуть или спирт в жидкостном термометре, биметаллическая пластина в металлическом деформационном термометре и т. д.) и шкала. Если термометрическое тело привести в контакт с телом, температуру которого нужно измерить, система придет в неравновесное состояние. При переходе в равновесное состояние будут изменяться некоторые параметры термометрического тела (объем, сопротивление и т. п.). Зная, как эти параметры зависят от температуры, определяют температуру тела.

Обратите внимание!

  • Термометр фиксирует собственную температуру, равную температуре тела, с которым термометр находится в термодинамическом равновесии.
  • Термометрическое тело не должно быть массивным, иначе оно существенно изменит температуру тела, с которым контактирует.

Температура и средняя кинетическая энергия молекул

То, что температура тела должна быть связана с кинетической энергией его молекул, следует из простых соображений. Например, с увеличением температуры увеличивается скорость движения броуновских частиц, ускоряется диффузия, повышается давление газа, а это значит, что молекулы движутся быстрее и их кинетическая энергия становится больше. Можно предположить: если газы находятся в состоянии теплового равновесия, средние кинетические энергии молекул этих газов одинаковы. Но как это доказать, ведь непосредственно измерить эти энергии невозможно?

Обратимся к основному уравнению МКТ идеального газа: Температура в физике - основные понятия, формулы и определение с примерами. По определению Температура в физике - основные понятия, формулы и определение с примерами, поэтому Температура в физике - основные понятия, формулы и определение с примерами. После преобразований получим: Температура в физике - основные понятия, формулы и определение с примерами.

Таким образом, чтобы экспериментально убедиться в равенстве средних кинетических энергий молекул различных газов при одинаковой температуре, нужно измерить объемы (V), давления (p) и массы (m) газов и, зная их молярную массу (M), найти число молекул каждого газа (N) по формуле Температура в физике - основные понятия, формулы и определение с примерами.

Чтобы обеспечить одинаковую температуру, можно, например, погрузить баллоны с различными газами в сосуд с водой и дождаться состояния теплового равновесия (рис. 29.3).

Температура в физике - основные понятия, формулы и определение с примерами

Рис. 29.3. опыт, позволяющий установить связь между температурой и средней кинетической энергией поступательного движения молекул газа. Газы в сосудах находятся в состоянии теплового равновесия со средой, а следовательно, и друг с другом

Эксперименты показывают, что для всех газов в состоянии теплового равновесия отношение Температура в физике - основные понятия, формулы и определение с примерами одинаково, а следовательно, одинаковыми являются и средние кинетические энергии молекул газов. (Отношение Температура в физике - основные понятия, формулы и определение с примерами часто обозначают символом θ (тета).)

Например, при температуре 0 °С (сосуды с газами погрузили в тающий лед) Температура в физике - основные понятия, формулы и определение с примерами, Дж, то естьТемпература в физике - основные понятия, формулы и определение с примерами Дж; при температуре 100 °С (сосуды погрузили в кипящую воду) Температура в физике - основные понятия, формулы и определение с примерамиТемпература в физике - основные понятия, формулы и определение с примерамиДж. Так как в состоянии теплового равновесия значение θ для любых газов одинаково, то температуру можно измерять в джоулях.

Абсолютная шкала температур

Понятно, что в джоулях представлять температуру неудобно (прежде всего потому, что значения θ очень малы), к тому же неудобно полностью отказываться от шкалы Цельсия. В 1848 г. английский физик Уильям Томсон (лорд Кельвин) (1824–1907) предложил абсолютную шкалу температур (сейчас ее называют шкалой Кельвина).

Температуру Т, измеренную по шкале кельвина, называют абсолютной температурой.

Единица абсолютной температуры — кельвин — основная единица СИ: [T] = 1 К (К).

Шкала Кельвина построена следующим образом:

  • изменение температуры по шкале Кельвина равно изменению температуры по шкале Цельсия: ∆ = T t ∆ , то есть цена деления шкалы Кельвина равна цене деления шкалы Цельсия: 1 °С = 1 К; температуры, измеренные по шкалам Кельвина и Цельсия, связаны соотношениями: Температура в физике - основные понятия, формулы и определение с примерами
  • температура по шкале Кельвина связана с величиной Температура в физике - основные понятия, формулы и определение с примерами соотношением θ = kT, где k — постоянная Больцмана — коэффициент пропорциональности, не зависящий ни от температуры, ни от состава и количества газа: Температура в физике - основные понятия, формулы и определение с примерами
  • абсолютная температура имеет глубокий физический смысл: средняя кинетическая энергия поступательного движения молекул идеального газа прямо пропорциональна абсолютной температуре: Температура в физике - основные понятия, формулы и определение с примерами (1) То есть, если газ охладить до температуры T= 0 К, движение его молекул должно прекратиться (Температура в физике - основные понятия, формулы и определение с примерами). Таким образом, нулевая точка шкалы Кельвина — это самая низкая теоретически возможная температура. На самом деле движение молекул не прекращается никогда, поэтому достичь температуры 0 К (–273 °С) невозможно.

Абсолютный нижний предел температуры, при котором движение молекул и атомов должно прекратиться, называют абсолютным нулем температуры. Давление p газа полностью определяется его абсолютной температурой T и концентрацией n молекул газа: p=nkT (2).

Выводы:

  • Физическая величина, характеризующая состояние теплового равновесия макроскопической системы, называется температурой. Абсолютный нижний предел температуры, при котором движение молекул и атомов должно прекратиться, называют абсолютным нулем температуры. Шкала, за нулевую точку которой взят абсолютный нуль температуры, называется абсолютной шкалой температур (шкалой Кельвина). Единица абсолютной температуры — кельвин (К) — основная единица СИ. Температуры по шкале Кельвина и Цельсия связаны соотношением: T=t + 273; t=T – 273.
  • Средняя кинетическая энергия поступательного движения молекул идеального газа прямо пропорциональна абсолютной температуре, а давление газа определяется абсолютной температурой и концентрацией молекул газа:Температура в физике - основные понятия, формулы и определение с примерами— постоянная Больцмана.
  • Парообразование и конденсация 
  • Тепловое равновесие в физике
  • Изопроцессы в физике
  • Твердые тела и их свойства в физике
  • Механизмы, работающие на основе правила моментов 
  • Идеальный газ в физике
  • Уравнение МКТ идеального газа
  • Уравнение состояния идеального газа

Добавить комментарий