Как найти изотопы бора

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 28 октября 2020 года; проверки требуют 4 правки.

Изото́пы бо́ра — разновидности атомов (и ядер) химического элемента бора, имеющие разное содержание нейтронов в ядре.

Природный бор состоит из двух стабильных изотопов, — бора-10 с концентрацией около 20 ат.% и остальное — бора-11. Соотношение этих двух изотопов варьируется в различных природных источниках в результате естественных природных процессов обогащения тем или иным изотопом. Усреднённые по разным природным источникам бора концентрации бора−10 и бора-11 составляют 19,97 ат.% и 80,17 ат.% соответственно с вариацией в пределах 18,929—20,386 и 79,614—81,071 ат.% соответственно.

Все остальные изотопы бора радиоактивны, самый долгоживущий из них — бор-8 с периодом полураспада 770 мс.

Таблица изотопов бора[править | править код]

Символ
нуклида
Z(p) N(n) Масса изотопа[1]
(а. е. м.)
Период
полураспада[2]
(T1/2)
Канал распада Продукт распада Спин и чётность
ядра[2]
Распространённость
изотопа в природе
Диапазон изменения изотопной распространённости в природе
Энергия возбуждения
7
B
5 2 7,029 712 ± (27) (570 ± (14))⋅10-24 с
[801 ± (20) кэВ]
p 6
Be
(3/2−)
8
B
5 3 8,0 246 073 ± (11) 771,9 ± (9) мс β+, α 4
He
2+
8m
B
10 624 ± (8) кэВ 0+
9
B
5 4 9,0 133 296 ± (10) (800 ± (300))⋅10-21 с p 8
Be
3/2−
10
B
5 5 10,012 936 862 ± (16) стабилен 3+ [0,189, 0,204][3]
11
B
5 6 11,009 305 167 ± (13) стабилен 3/2− [0,796, 0,811][3]
11m
B
12 560 ± (9) кэВ 1/2+, (3/2+)
12
B
5 7 12,0 143 526 ± (14) 20,20 ± (2) мс β (99,40 ± (2)%) 12
C
1+
β, α (0,60 ± (2)%) 8
Be
13
B
5 8 13,0 177 800 ± (11) 17,16 ± (18) мс β (99,734 ± (36)%) 13
C
3/2−
β, n (0,266 ± (36)%) 12
C
14
B
5 9 14,025 404 ± (23) 12,36 ± (29) мс β (93,96 ± (23)%) 14
C
2−
β, n (6,04 ± (23)%) 13
C
14m
B
17 065 ± (29) кэВ (4,15 ± (1,90))⋅10-21 с 0+
15
B
5 10 15,031 087 ± (23) 10,18 ± (35) мс β, n (> 98,7 ± (1,0)%) 14
C
3/2−
β (< 1,3%) 15
C
β, 2n (< 1,5%) 13
C
16
B
5 11 16,039 841 ± (26) > 4,6⋅10-21 с n 15
B
0−
17
B
5 12 17,04 693 ± (22) 5,08 ± (5) мс β, n (63 ± (1)%) 16
C
(3/2−)
β (21,1 ± (2,4)%) 17
C
β, 2n (12 ± (2)%) 15
C
β, 3n (3,5 ± (7)%) 14
C
β, 4n (0,4 ± (3)%) 13
C
18
B
5 13 18,05 560 ± (22) < 26 нс n 17
B
(2−)
19
B
5 14 19,06 417 ± (56) 2,92 ± (13) мс β, n (71 ± (9)%) 18
C
(3/2−)
β, 2n (17 ± (5)%) 17
C
β, 3n (< 9,1%) 16
C
β (> 2,9%) 19
C
20
B
[4]
5 15 20,07 451 ± (59) > 912,4⋅10-24 с n 19
B
(1−, 2−)
21
B
[4]
5 16 21,08 415 ± (60) > 760⋅10-24 с 2n 19
B
(3/2−)

Пояснения к таблице[править | править код]

  • Распространённость изотопов приведена для большинства природных образцов. Для других источников значения могут сильно отличаться.
  • Индексами ‘m’, ‘n’, ‘p’ (рядом с символом) обозначены возбужденные изомерные состояния нуклида.
  • Символами, выделенными жирным шрифтом, обозначены стабильные продукты распада. Символами, выделенными жирным курсивом, обозначены радиоактивные продукты распада, имеющие периоды полураспада, сравнимые с возрастом Земли или превосходящие его и вследствие этого присутствующие в природной смеси.
  • Значения, помеченные решёткой (#), получены не из одних лишь экспериментальных данных, а (хотя бы частично) оценены из систематических трендов у соседних нуклидов (с такими же соотношениями Z и N). Неуверенно определённые значения спина и/или чётности заключены в скобки.
  • Погрешность приводится в виде числа в скобках, выраженного в единицах последней значащей цифры, означает одно стандартное отклонение (за исключением распространённости и стандартной атомной массы изотопа по данным ИЮПАК, для которых используется более сложное определение погрешности). Примеры: 29770,6(5) означает 29770,6 ± 0,5; 21,48(15) означает 21,48 ± 0,15; −2200,2(18) означает −2200,2 ± 1,8.

Применение[править | править код]

Сечения захвата нейтрона, барн, у изотопов 10В (красная линия) и 11В (синяя линия) в зависимости от энергии нейтрона, эВ

Бор-10 имеет очень высокое сечение захвата тепловых нейтронов, равное 3837 барн (для большинства изотопов других элементов это сечение близко к единицам или долям барна), причём при захвате нейтрона образуется возбуждённое ядро бора-11 (11B*) сразу распадающееся на два стабильных ядра (альфа-частицу и ядро лития-7), эти ядра очень быстро тормозятся в среде, а проникающая радиация (гамма-излучение и нейтроны) при этом отсутствуют, в отличие от аналогичных реакций захвата нейтронов другими изотопами:

{displaystyle {ce {^{10}B+n->^{11}{B^{ast }}->^{4}{He}+^{7}{Li}}}} + 2,31 МэВ.

Поэтому 10В в составе раствора борной кислоты и других химических соединений, например, карбида бора применяется в атомных реакторах для регулирования реактивности, а также для биологической защиты персонала от тепловых нейтронов. Для повышения эффективности поглощения нейтронов бор, применяемый в реакторах, иногда специально обогащают изотопом бор-10.

Кроме того, соединения бора применяются в нейтрон-захватной терапии некоторых видов рака мозга, пробег ионизирующих быстрых ядер гелия-4 и лития-7 в тканях организма очень мал и поэтому при этом не поражаются ионизирующим излучением здоровые ткани.

Газообразное химическое соединение бора BF3 используется в качестве рабочей среды в ионизационных камерах детекторов тепловых нейтронов.

В 2015 году в опубликованной в журнале Science статье[5] было предложено применить измерение соотношения изотопов бора в древних осадочных породах позднего пермского периода и начала триасового периодов для определения изменения кислотности воды (pH) палеоокеанов в те эпохи, для объяснения возможных причин массового пермского вымирания в основном водных организмов, вызванное, вероятно, глобальным усилением вулканической деятельности, сопровождающейся выбросом углекислого газа в атмосферу. Этот метод определения кислотности древних океанов, по-видимому, более точен, чем ранее применявшийся метод определения кислотности по соотношению изотопов кальция[6] и изотопов углерода.

Примечания[править | править код]

  1. Данные приведены по Meng Wang, Huang W. J., Kondev F. G., Audi G., Naimi S. The Ame2020 atomic mass evaluation (II). Tables, graphs and references (англ.) // Chinese Physics C. — 2021. — Vol. 43, iss. 3. — P. 030003-1—030003-512. — doi:10.1088/1674-1137/abddaf.
  2. 1 2 Данные приведены по Kondev F. G., Wang M., Huang W. J., Naimi S., Audi G. The Nubase2020 evaluation of nuclear properties (англ.) // Chinese Physics C. — 2021. — Vol. 45, iss. 3. — P. 030001-1—030001-180. — doi:10.1088/1674-1137/abddae.Открытый доступ
  3. 1 2 Atomic Weight of Boron. CIAAW. Дата обращения: 13 февраля 2022. Архивировано 20 марта 2022 года.
  4. 1 2 Leblond, S.; et al. (2018). “First observation of 20B and 21B”. Physical Review Letters. 121 (26): 262502–1–262502–6. arXiv:1901.00455. DOI:10.1103/PhysRevLett.121.262502. PMID 30636115.
  5. Clarkson, M. O. et al. (2015) Science 348, 229—232.
  6. Witze, Alexandra (2015) Acidic oceans linked to greatest extinction ever; Rocks from 252 million years ago suggest that carbon dioxide from volcanoes made sea water lethal. Journal Nature; News publiée le 09 avril 2015

From Wikipedia, the free encyclopedia

Isotopes of boron (5B)

Main isotopes Decay
abun­dance half-life (t1/2) mode pro­duct
10B 19.65% stable
11B 80.35% stable
Standard atomic weight Ar°(B)
  • [10.80610.821]
  • 10.81±0.02 (abridged)[1][2]
  • view
  • talk
  • edit

Boron (5B) naturally occurs as isotopes 10
B
and 11
B
, the latter of which makes up about 80% of natural boron. There are 13 radioisotopes that have been discovered, with mass numbers from 7 to 21, all with short half-lives, the longest being that of 8
B
, with a half-life of only 771.9(9) ms and 12
B
with a half-life of 20.20(2) ms. All other isotopes have half-lives shorter than 17.35 ms. Those isotopes with mass below 10 decay into helium (via short-lived isotopes of beryllium for 7
B
and 9
B
) while those with mass above 11 mostly become carbon.

A chart showing the abundances of the naturally occurring isotopes of boron.

List of isotopes[edit]

Nuclide[3]
[n 1]
Z N Isotopic mass (Da)[4]
[n 2][n 3]
Half-life

[resonance width]

Decay
mode
[n 4]
Daughter
isotope
[n 5]
Spin and
parity
[n 6][n 7]
Natural abundance (mole fraction)
Excitation energy Normal proportion Range of variation
6
B
?[n 8]
5 1 6.050800(2150) p-unstable 2p? 6
Li
?
2−#
7
B
5 2 7.029712(27) 570(14) ys
[801(20) keV]
p 6
Be
[n 9]
(3/2−)
8
B
[n 10]
5 3 8.0246073(11) 771.9(9) ms β+α 4
He
2+
8m
B
10624(8) keV 0+
9
B
5 4 9.0133296(10) 800(300) zs p 8
Be
[n 11]
3/2−
10
B
[n 12]
5 5 10.012936862(16) Stable 3+ [0.189, 0.204][5]
11
B
5 6 11.009305167(13) Stable 3/2− [0.796, 0.811][5]
11m
B
12560(9) keV 1/2+, (3/2+)
12
B
5 7 12.0143526(14) 20.20(2) ms β (99.40(2)%) 12
C
1+
βα (0.60(2)%) 8
Be
[n 13]
13
B
5 8 13.0177800(11) 17.16(18) ms β (99.734(36)%) 13
C
3/2−
βn (0.266(36)%) 12
C
14
B
5 9 14.025404(23) 12.36(29) ms β (93.96(23)%) 14
C
2−
βn (6.04(23)%) 13
C
β2n ?[n 14] 12
C
 ?
14m
B
17065(29) keV 4.15(1.90) zs IT ?[n 14] 0+
15
B
5 10 15.031087(23) 10.18(35) ms βn (98.7(1.0)%) 14
C
3/2−
β (< 1.3%) 15
C
β2n (< 1.5%) 13
C
16
B
5 11 16.039841(26) > 4.6 zs n ?[n 14] 15
B
 ?
0−
17
B
[n 15]
5 12 17.04693(22) 5.08(5) ms βn (63(1)%) 16
C
(3/2−)
β (21.1(2.4)%) 17
C
β2n (12(2)%) 15
C
β3n (3.5(7)%) 14
C
β4n (0.4(3)%) 13
C
18
B
5 13 18.05560(22) < 26 ns n 17
B
(2−)
19
B
[n 15]
5 14 19.06417(56) 2.92(13) ms βn (71(9)%) 18
C
(3/2−)
β2n (17(5)%) 17
C
β3n (< 9.1%) 16
C
β (> 2.9%) 19
C
20
B
[6]
5 15 20.07451(59) > 912.4 ys n 19
B
(1−, 2−)
21
B
[6]
5 16 21.08415(60) > 760 ys 2n 19
B
(3/2−)
This table header & footer:

  • view

  1. ^ mB – Excited nuclear isomer.
  2. ^ ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. ^ # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. ^
    Modes of decay:
  5. ^ Bold symbol as daughter – Daughter product is stable.
  6. ^ ( ) spin value – Indicates spin with weak assignment arguments.
  7. ^ # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  8. ^ This isotope has not yet been observed; given data is inferred or estimated from periodic trends.
  9. ^ Subsequently decays by double proton emission to 4
    He
    for a net reaction of 7
    B
    4
    He
    + 3 1
    H
  10. ^ Has 1 halo proton
  11. ^ Immediately decays into two α particles, for a net reaction of 9
    B
    → 2 4
    He
    + 1
    H
  12. ^ One of the few stable odd-odd nuclei
  13. ^ Immediately decays into two α particles, for a net reaction of 12
    B
    → 3 4
    He
    + e
  14. ^ a b c Decay mode shown is energetically allowed, but has not been experimentally observed to occur in this nuclide.
  15. ^ a b Has 2 halo neutrons
  • Neutrinos from boron-8 beta decays within the Sun are an important background to dark matter direct detection experiments.[7] They are the first component of the neutrino floor that dark matter direct detection experiments are expected to eventually encounter.

Applications[edit]

Boron-10[edit]

Boron-10 is used in boron neutron capture therapy as an experimental treatment of some brain cancers.

References[edit]

  1. ^ “Standard Atomic Weights: Boron”. CIAAW. 2009.
  2. ^ Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; et al. (2022-05-04). “Standard atomic weights of the elements 2021 (IUPAC Technical Report)”. Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
  3. ^ Half-life, decay mode, nuclear spin, and isotopic composition is sourced in:
    Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). “The NUBASE2020 evaluation of nuclear properties” (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  4. ^ Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). “The AME 2020 atomic mass evaluation (II). Tables, graphs and references*”. Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf.
  5. ^ a b “Atomic Weight of Boron”. CIAAW.{{cite web}}: CS1 maint: url-status (link)
  6. ^ a b Leblond, S.; et al. (2018). “First observation of 20B and 21B”. Physical Review Letters. 121 (26): 262502–1–262502–6. arXiv:1901.00455. doi:10.1103/PhysRevLett.121.262502. PMID 30636115. S2CID 58602601.
  7. ^ Cerdeno, David G.; Fairbairn, Malcolm; Jubb, Thomas; Machado, Pedro; Vincent, Aaron C.; Boehm, Celine (2016). “Physics from solar neutrinos in dark matter direct detection experiments”. JHEP. 2016 (5): 118. arXiv:1604.01025. Bibcode:2016JHEP…05..118C. doi:10.1007/JHEP05(2016)118. S2CID 55112052.

Бор
Тёмно-коричневое или чёрное вещество
Бор

Элементарный бор

Название, символ, номер Бор / Borum (B), 5
Атомная масса
(молярная масса)
[10,806; 10,821]а. е. м. (г/моль)
Электронная конфигурация [He] 2s2 2p1
Радиус атома 98 пм
Ковалентный радиус 82 пм
Радиус иона 23 (+3e) пм
Электроотрицательность 2,04 (шкала Полинга)
Степени окисления -3;0;+3
Энергия ионизации
(первый электрон)
 800,2(8,29) кДж/моль (эВ)
Плотность (при н. у.) 2,34 г/см³
Температура плавления 2 348 K (2075 °C)
Температура кипения 4 138 K (3865 °C)
Уд. теплота плавления 23,60 кДж/моль
Уд. теплота испарения 504,5 кДж/моль
Молярная теплоёмкость 11,09 Дж/(K·моль)
Молярный объём 4,6 см³/моль
Структура решётки ромбоэдрическая
Параметры решётки a=10,17; α=65,18 Å
Отношение c/a 0,576
Температура Дебая 1250 K
Теплопроводность (300 K) 27,4 Вт/(м·К)
Номер CAS 7440-42-8

Бор (B, лат. borum) — химический элемент 13-й группы, второго периода периодической системы (по устаревшей короткой форме периодической системы принадлежит к главной подгруппе III группы, или к группе IIIA) с атомным номером 5. Бесцветное, серое или красное кристаллическое либо тёмное аморфное вещество. Известно более 10 аллотропных модификаций бора, образование и взаимные переходы которых определяются температурой, при которой бор был получен.

Содержание

  • 1 История и происхождение названия
  • 2 Нахождение в природе
  • 3 Получение
  • 4 Физические свойства
    • 4.1 Изотопы бора
  • 5 Происхождение
  • 6 Химические свойства
  • 7 Применение
    • 7.1 Элементарный бор
    • 7.2 Соединения бора
    • 7.3 Бороводороды и борорганические соединения
    • 7.4 Боразон и его гексагидрид
  • 8 Биологическая роль

Бор

История и происхождение названия

Впервые получен в 1808 году французскими химиками Ж. Гей-Люссаком и Л. Тенаром нагреванием борного ангидрида B2O3 с металлическим калием. Через несколько месяцев бор получил Хэмфри Дэви электролизом расплавленного B2O3.

Название элемента произошло от арабского слова бурак (араб. بورق‎) или персидского бурах (перс. بوره‎), которые использовались для обозначения буры.

Нахождение в природе

Среднее содержание бора в земной коре составляет 4 г/т. Несмотря на это, известно около 100 собственных минералов бора; в «чужих» минералах он почти не встречается. Это объясняется, прежде всего, тем, что у комплексных анионов бора (а именно в таком виде он входит в большинство минералов) нет достаточно распространённых аналогов. Почти во всех минералах бор связан с кислородом, а группа фторсодержащих соединений совсем малочисленна. Элементарный бор в природе не встречается. Он входит во многие соединения и широко распространён, особенно в небольших концентрациях; в виде боросиликатов и боратов, а также в виде изоморфной примеси в минералах входит в состав многих изверженных и осадочных пород. Бор известен в нефтяных и морских водах (в морской воде 4,6 мг/л), в водах соляных озёр, горячих источников и грязевых вулканов.

Основные минеральные формы бора:

  • Боросиликаты: датолит CaBSiO4OH, данбурит CaB2Si2O8
  • Бораты: бура Na2B4O7·10H2O, ашарит MgBO2(OH), гидроборацит (Ca, Mg)B6O11·6H2O, иниоит Ca2B6O11·13H2O, калиборит KMg2B11O19·9H2O.

Также различают несколько типов месторождений бора:

Бор

Образец датолита. Дальнегорское боросиликатное месторождение

  • Месторождения боратов в магнезиальных скарнах:
    • людвигитовые и людвигито-магнетитовые руды;
    • котоитовые руды в доломитовых мраморах и кальцифирах;
    • ашаритовые и ашарито-магнетитовые руды.
  • Месторождения боросиликатов в известковых скарнах (датолитовые и данбуритовые руды);
  • Месторождения боросиликатов в грейзенах, вторичных кварцитах и гидротермальных жилах (турмалиновые концентрации);
  • Вулканогенно-осадочные:
    • борные руды, отложенные из продуктов вулканической деятельности;
    • переотложенные боратовые руды в озёрных осадках;
    • погребённые осадочные боратовые руды.
  • Галогенно-осадочные месторождения:
    • месторождения боратов в галогенных осадках;
    • месторождения боратов в гипсовой шляпе над соляными куполами.

Крупнейшее месторождение России находится в Дальнегорске (Приморье). Оно относится к боросиликатному типу. В этом одном компактном месторождении сосредоточено не менее 3 % всех мировых запасов бора. На действующем при месторождении горно-химическом предприятии выпускается боросодержащая продукция, которая удовлетворяет потребности отечественной промышленности. При этом 75 % продукции идёт на экспорт в Корею, Японию и Китай.

Получение

  • Наиболее чистый бор получают пиролизом бороводородов. Такой бор используется для производства полупроводниковых материалов и тонких химических синтезов.
 B2H6 2B + 3H2
  • Метод металлотермии (чаще восстановление магнием или натрием):
 B2O3 + 3Mg ⟶ 3MgO + 2B 
 KBF4 + 3Na ⟶ 3NaF + KF + B
  • Термическое разложение паров бромида бора на раскалённой (1000—1200 °C) вольфрамовой проволоке в присутствии водорода (метод Ван-Аркеля):
 2BBr3 + 3H2W 2B + 6HBr

Физические свойства

Бор

Сечения захвата нейтронов изотопами 10B (верхняя кривая) и 11B (нижняя кривая).

Чрезвычайно твёрдое вещество (уступает только алмазу, нитриду бора (боразону), карбиду бора, сплаву бор-углерод-кремний, карбиду скандия-титана). Обладает хрупкостью и полупроводниковыми свойствами (широкозонный полупроводник).

У бора — самый высокий предел прочности на разрыв 5,7 ГПа.

Изотопы бора

Основная статья: Изотопы бора

В природе бор находится в виде двух изотопов 10B (19,8 %) и 11B (80,2 %).

10B имеет очень высокое сечение захвата тепловых нейтронов, равное 3837 барн (для большинства нуклидов это сечение близко к единицам или долям барна), причём при захвате нейтрона образуются два нерадиоактивных ядра (альфа-частица и литий-7), очень быстро тормозящиеся в среде, а проникающая радиация (гамма-кванты) при этом отсутствует, в отличие от аналогичных реакций захвата нейтронов другими нуклидами:

10B + n → 11B* → α + 7Li + 2,31 МэВ.

Поэтому 10B в составе борной кислоты и других химических соединений применяется в атомных реакторах для регулирования реактивности, а также для биологической защиты от тепловых нейтронов. Кроме того, бор применяется в нейтрон-захватной терапии рака.

Кроме двух стабильных, известно ещё 12 радиоактивных изотопов бора, из них самым долгоживущим является 8B с периодом полураспада 0,77 с.

Происхождение

Все изотопы бора возникли в межзвёздном газе в результате расщепления тяжелых ядер космическими лучами, или при взрывах сверхновых.

Химические свойства

Бор

Ионы бора окрашивают пламя в зелёный цвет

По многим физическим и химическим свойствам неметалл бор напоминает кремний.

Химически бор довольно инертен и при комнатной температуре взаимодействует только со фтором:

 2B + 3F2 ⟶ 2BF3

При нагревании бор реагирует с другими галогенами с образованием тригалогенидов, с азотом образует нитрид бора BN, с фосфором — фосфид BP, с углеродом — карбиды различного состава (B4C, B12C3, B13C2). При нагревании в атмосфере кислорода или на воздухе бор сгорает с большим выделением теплоты, образуется оксид B2O3:

 4B + 3O2 ⟶ 2B2O3

С водородом бор напрямую не взаимодействует, хотя известно довольно большое число бороводородов (боранов) различного состава, получаемых при обработке боридов щелочных или щелочноземельных металлов кислотой:

 Mg3B2 + 6HCl ⟶ B2H6↑ + 3MgCl2

При сильном нагревании бор проявляет восстановительные свойства. Он способен, например, восстановить кремний или фосфор из их оксидов:

 3SiO2 + 4B ⟶ 3Si + 2B2O3
 3P2O5 + 10B ⟶ 5B2O3 + 6P

Данное свойство бора можно объяснить очень высокой прочностью химических связей в оксиде бора B2O3.

При отсутствии окислителей бор устойчив к действию растворов щелочей. Растворяется в расплаве смеси гидроксида и нитрата калия:

 2B + 2KOH + 3KNO3ot 2KBO2 + 3KNO2 + H2O

В горячей азотной, серной кислотах и в царской водке бор растворяется с образованием борной кислоты H3BO3.

Оксид бора B2O3 — типичный кислотный оксид. Он реагирует с водой с образованием борной кислоты:

 B2O3 + 3H2O ⟶ 2H3BO3

При взаимодействии борной кислоты со щелочами возникают соли не самой борной кислоты — бораты (содержащие анион BO33−), а тетрабораты, например:

 4H3BO3 + 2NaOH ⟶ Na2B4O7 + 7H2O

В 2014 г. исследователями из Германии был получен бис(диазаборолил) бериллия, в котором атомы бериллия и бора образуют двухцентровую двухэлектронную связь (2c-2e), впервые полученную и нехарактерную для соседних элементов в Периодической таблице.

Применение

Элементарный бор

Бор (в виде волокон) служит упрочняющим веществом многих композиционных материалов.

Также бор часто используют в электронике в качестве акцепторной добавки для изменения типа проводимости кремния.

Бор применяется в металлургии в качестве микролегирующего элемента, значительно повышающего прокаливаемость сталей.

Бор применяется и в медицине при бор-нейтронозахватной терапии (способ избирательного поражения клеток злокачественных опухолей).

Соединения бора

Карбид бора применяется в компактном виде для изготовления газодинамических подшипников.

Пербораты / пероксобораты (содержат ион [B2(O2)2(OH)4]2) [B4O12H8]) применяются как окислительные агенты. Технический продукт содержит до 10,4 % «активного кислорода», на их основе производят отбеливатели, не содержащие хлор («персиль», «персоль» и др.).

Отдельно также стоит указать на то, что сплавы бор-углерод-кремний обладают сверхвысокой твёрдостью и способны заменить любой шлифовальный материал (кроме алмаза, нитрида бора по микротвёрдости), а по стоимости и эффективности шлифования (экономической) превосходят все известные человечеству абразивные материалы.

Сплав бора с магнием (диборид магния MgB2) обладает, на данный момент, рекордно высокой критической температурой перехода в сверхпроводящее состояние среди сверхпроводников первого рода. Появление вышеуказанной статьи стимулировало большой рост работ по этой тематике.

Борная кислота (B(OH)3) широко применяется в атомной энергетике в качестве поглотителя нейтронов в ядерных реакторах типа ВВЭР (PWR) на «тепловых» («медленных») нейтронах. Благодаря своим нейтронно-физическим характеристикам и возможности растворяться в воде применение борной кислоты делает возможным плавное (не ступенчатое) регулирование мощности ядерного реактора путём изменения её концентрации в теплоносителе — так называемое «борное регулирование».

Борная кислота применяется также в медицине и ветеринарии.

Нитрид бора, активированный углеродом, является люминофором со свечением от синего до жёлтого цвета под действием ультрафиолета. Обладает самостоятельной фосфоресценцией в темноте и активируется органическими веществами при нагреве до 1000 °C. Изготовление люминофоров из нитрида бора, состава BN/C не имеет промышленного назначения, но широко практиковалось химиками-любителями в первой половине XX века.

Боросиликатное стекло — стекло обычного состава, в котором заменяют щелочные компоненты в исходном сырье на окись бора (B2O3).

Фторид бора BF3 при нормальных условиях является газообразным веществом, используется как катализатор в оргсинтезе, а также как рабочее тело в газонаполненных детекторах тепловых нейтронов благодаря захвату нейтронов бором-10 с образованием ядер лития-7 и гелия-4, ионизирующих газ (см. реакцию выше).

Бороводороды и борорганические соединения

Ряд производных бора (бороводороды) являются эффективными ракетными топливами (диборан B2H6, пентаборан, тетраборан и др.), а некоторые полимерные соединения бора с водородом и углеродом стойки к химическим воздействиям и высоким температурам (как широко известный пластик Карборан-22).

Боразон и его гексагидрид

Нитрид бора (боразон) подобен (по составу электронов) углероду. На его основе образуется обширная группа соединений, в чём-то подобных органическим.

Так, гексагидрид боразона (H3BNH3, похож на этан по строению) при обычных условиях твёрдое соединение с плотностью 0,78 г/см3, содержит почти 20 % водорода по массе. Его могут использовать водородные топливные элементы, питающие электромобили.

Биологическая роль

Основная статья: Биологическая роль бора

Бор — важный микроэлемент, необходимый для нормальной жизнедеятельности растений. Недостаток бора останавливает их развитие, вызывает у культурных растений различные болезни. В основе этого лежат нарушения окислительных и энергетических процессов в тканях, снижение биосинтеза необходимых веществ. При дефиците бора в почве в сельском хозяйстве применяют борные микроудобрения (борная кислота, бура и другие), повышающие урожай, улучшающие качество продукции и предотвращающие ряд заболеваний растений.

Роль бора в животном организме не выяснена. В мышечной ткани человека содержится (0,33—1)⋅10−4 % бора, в костной ткани (1,1—3,3)⋅10−4 %, в крови — 0,13 мг/л. Ежедневно с пищей человек получает 1—3 мг бора. Токсичная доза — 4 г. ЛД₅₀ ≈ 6 г/кг массы тела.

Один из редких типов дистрофии роговицы связан с геном, кодирующим белок-транспортер, предположительно регулирующий внутриклеточную концентрацию бора.

Изотопы бора

Изотопы бора

Изотопы бора — разновидности атомов (и ядер) химического элемента бора, имеющие разное содержание нейтронов в ядре.

Таблица изотопов бора

Символ
нуклида
Z(p) N(n) Масса изотопа[1]
(а. е. м.)
Период
полураспада[2]
(T1/2)
Спин и чётность
ядра[2]
Энергия возбуждения
6B 5 1 6,04681
7B 5 2 7,02992 350 ис 3/2-
8B 5 3 8,0246072 770 мс 2+
9B 5 4 9,0133288 800 зс 3/2-
10B 5 5 10,0129370 стабилен 3+
11B 5 6 11,0093054 стабилен 3/2-
12B 5 7 12,0143521 20,20 мс 1+
13B 5 8 13,0177802 17,33 мс 3/2-
14B 5 9 14,025404 12,5 мс 2-
15B 5 10 15,031103 9,87 мс 3/2-
16B 5 11 16,03981 190 пс 0-
17B 5 12 17,04699 5,08 мс 3/2-
18B 5 13 18,05617 26 нс 4-
19B 5 14 19,06373 2,92 мс 3/2-

Примечания

  1. Данные приведены по G. Audi, A.H. Wapstra, and C. Thibault (2003). «The AME2003 atomic mass evaluation (II). Tables, graphs, and references.». Nuclear Physics A 729: 337—676. DOI:10.1016/j.nuclphysa.2003.11.003.
  2. 1 2 Данные приведены по G. Audi, O. Bersillon, J. Blachot and A. H. Wapstra (2003). «The NUBASE evaluation of nuclear and decay properties». Nuclear Physics A 729: 3–128. DOI:10.1016/j.nuclphysa.2003.11.001.

Изотопы бериллия • Периодическая таблица по изотопам элементов • Изотопы углерода

Wikimedia Foundation.
2010.

Полезное

Смотреть что такое “Изотопы бора” в других словарях:

  • ИЗОТОПЫ БОРА В ГЕОЛОГИИ — природный бор имеет два стабильных изотопа: В10 и В11, соотношение масс которых (В11/В10) в п. литосферы в среднем равно 4,05. Большая относительная разница в массах изотопов бора в сочетании с его высокой миграционной способностью обусловливает… …   Геологическая энциклопедия

  • Изотопы углерода — разновидности атомов (и ядер) химического элемента углерода, имеющие разное содержание нейтронов в ядре. Углерод имеет два стабильных изотопа 12C и 13C. Содержание этих изотопов в природном углероде равно соответственно 98,93 % и 1,07 % …   Википедия

  • Изотопы бериллия — разновидности атомов (и ядер) химического элемента бериллия, имеющие разное содержание нейтронов в ядре. На данный момент известны 12 изотопов бериллия. Таблица изотопов бериллия Символ нуклида Z(p) N(n) Масса изотопа[1] (а …   Википедия

  • Подгруппа бора — Группа → 13 ↓ Период 2 5 Бор …   Википедия

  • Актиноиды — Общие сведения Состав группы торий, протактиний, уран, нептуний, плутоний, америций, кюрий, берклий, калифорний, эйнштейний, фермий, менделевий, нобелий …   Википедия

  • Второй период периодической системы — Ко второму периоду периодической системы относятся элементы второй строки (или второго периода) периодической системы химических элементов. Строение периодической таблицы основано на строках для иллюстрации повторяющихся (периодических) трендов в …   Википедия

  • Важнейшие открытия в физике — История технологий По периодам и регионам: Неолитическая революция Древние технологии Египта Наука и технологии древней Индии Наука и технологии древнего Китая Технологии Древней Греции Технологии Древнего Рима Технологии исламского мира… …   Википедия

  • АТОМНОГО ЯДРА СТРОЕНИЕ — Ядро представляет собой центральную часть атома (см. также АТОМА СТРОЕНИЕ). В нем сосредоточены положительный электрический заряд и основная часть массы атома; по сравнению с радиусом электронных орбит размеры ядра чрезвычайно малы: 10 15 10 14 м …   Энциклопедия Кольера

  • ВВЭР-1000 — Монтаж корпуса реактора ВВЭР 1000 на Балаковской АЭС Тип реактора водо водяной …   Википедия

  • Полоний — У этого термина существуют и другие значения, см. Полоний (значения). 84 Висмут ← Полоний → Астат …   Википедия

Эта статья нужны дополнительные цитаты для проверка. Пожалуйста помоги улучшить эту статью к добавление цитат в надежные источники. Материал, не полученный от источника, может быть оспорен и удален.
Найдите источники: «Изотопы бора»  – Новости  · газеты  · книги  · ученый  · JSTOR
(Май 2018) (Узнайте, как и когда удалить этот шаблон сообщения)

Основные изотопы бор  (5Б)

Изотоп Разлагаться
изобилие период полураспада (т1/2) Режим продукт
10B 20% стабильный[1]
11B 80% стабильный[1]

10Содержание B может составлять от 19,1% до 20,3% в природных образцах. 11B – остаток в таких случаях.[2]

Стандартный атомный вес Аr, стандарт(В)
  • [10.806, 10.821][3]
  • Обычный: 10,81
  • Посмотреть
  • разговаривать
  • редактировать

Бор (5Б) естественно встречается как изотопы 10Группа 11B, последний из которых составляет около 80% природного бора. Всего 13 радиоизотопы которые были обнаружены, с массовыми числами от 7 до 21, все с короткими период полураспада, самый длинный из которых 8B, с периодом полураспада всего 770 миллисекунды (мс) и 12B с периодом полураспада 20,2 мс. Все остальные изотопы имеют период полураспада менее 17,35 мс. Изотопы с массой менее 10 распадаются на гелий (через недолговечный изотопы бериллия за 7Группа 9Б) в то время как те, у кого масса больше 11, в основном становятся углерод.

Диаграмма, показывающая распространенность встречающихся в природе изотопов бора.

Список изотопов

Нуклид[4]
[n 1]
Z N Изотопная масса (Да )[5]
[n 2][n 3]
Период полураспада

[ширина резонанса ]

Разлагаться
Режим
[n 4]
Дочь
изотоп
[n 5]
Вращение и
паритет
[n 6][n 7]
Природное изобилие (мольная доля)
Энергия возбуждения Нормальная пропорция Диапазон вариации
7B 5 2 7.029712(27) 570(14) × 10−24 s
[801 (20) кэВ]
п 6
Быть
[n 8]
(3/2−)
8B[n 9] 5 3 8.0246073(11) 770 (3) мс β+, α 2 4
Он
2+
9B 5 4 9.0133296(10) 800(300)×10−21 s
[0,54 (21) кэВ]
п, α 2 4
Он
3/2−
10B[n 10] 5 5 10.012936862(16) Стабильный 3+ 0.199(7) 18.929–20.386
11B 5 6 11.009305167(13) Стабильный 3/2− 0.801(7) 79.614–81.071
12B 5 7 12.0143526(14) 20.20 (2) мс β (98.4%) 12
C
1+
β, α (1.6%) 8
Быть
[n 11]
13B 5 8 13.0177800(11) 17,33 (17) мс β (99.72%) 13
C
3/2−
β, п (0,28%) 12
C
14B 5 9 14.025404(23) 12,5 (5) мс β (93.96%) 14
C
2−
β, п (6,04%) 13
C
15B 5 10 15.031088(23) 9,93 (7) мс β, п (93,6%) 14
C
3/2−
β (6.0%) 15
C
β, 2n (0,4%) 13
C
16B 5 11 16.039842(26) > 4.6 × 10−21 s п 15
B
0−
17B[n 12] 5 12 17.04693(22) 5,08 (5) мс β, п (63,0%) 16
C
(3/2−)
β (22.1%) 17
C
β, 2n (11.0%) 15
C
β, 3н (3,5%) 14
C
β, 4n (0,4%) 13
C
18B 5 13 18.05560(22) <26 нс п 17
B
(2−)
19B[n 12] 5 14 19.06417(56) 2,92 (13) мс β, п (71%) 18
C
3/2−#
β, 2н (17%) 17
C
β (12%) 19
C
20B[6] 5 15 20.07348(86)# [2.50(9) МэВ ] п 19
B
(1−, 2−)
21B[6] 5 16 21.08302(97)# <260 нс
[2,47 (19) МэВ]
2n 19
B
(3/2−)#
  1. ^ мB – Возбужден ядерный изомер.
  2. ^ () – Неопределенность (1σ) дается в сжатой форме в скобках после соответствующих последних цифр.
  3. ^ # – Атомная масса, отмеченная #: значение и погрешность, полученные не из чисто экспериментальных данных, а, по крайней мере, частично из трендов от массовой поверхности (ТМС ).
  4. ^ Режимы распада:
  5. ^ Жирный символ как дочка – Дочерний продукт стабильный.
  6. ^ () значение вращения – указывает вращение со слабыми аргументами присваивания.
  7. ^ # – Значения, отмеченные #, получены не только из экспериментальных данных, но, по крайней мере, частично из трендов соседних нуклидов (TNN ).
  8. ^ Впоследствии распадается путем двойного испускания протона до 4Он для чистой реакции 7B → 4Он + 3 1ЧАС
  9. ^ Имеет 1 гало протон
  10. ^ Один из немногих стабильных нечетно-нечетные ядра
  11. ^ Немедленно распадается на две α-частицы, в результате чего возникает чистая реакция 12В → 34Он + е
  12. ^ а б Имеет 2 нейтрона гало
  • Нейтрино бета-распады бора-8 на Солнце являются важным фоном для темной материи прямое обнаружение эксперименты.[7] Они являются первым компонентом нейтринного дна, с которым, как ожидается, в конечном итоге столкнутся эксперименты по прямому обнаружению темной материи.

Приложения

Бор-10

Бор-10 используется в борная нейтронозахватная терапия (BNCT) в качестве экспериментального лечения некоторых видов рака мозга.

Рекомендации

  1. ^ а б «Атомный вес и изотопный состав для всех элементов». Национальный институт стандартов и технологий. Получено 2008-09-21.
  2. ^ Szegedi, S .; Варади, М .; Buczkó, Cs. М .; Варнаги, М .; Sztaricskai, T. (1990). «Определение бора в стекле методом нейтронного пропускания». Журнал радиоаналитической и ядерной химии Letters. 146 (3): 177. Дои:10.1007 / BF02165219.
  3. ^ Мейя, Юрис; и другие. (2016). «Атомный вес элементов 2013 (Технический отчет IUPAC)». Чистая и прикладная химия. 88 (3): 265–91. Дои:10.1515 / pac-2015-0305.
  4. ^ Период полураспада, мода распада, ядерный спин и изотопный состав происходят из:
    Audi, G .; Кондев, Ф. Г .; Wang, M .; Huang, W. J .; Наими, С. (2017). «Оценка ядерных свойств NUBASE2016» (PDF). Китайская физика C. 41 (3): 030001. Bibcode:2017ЧФК..41с0001А. Дои:10.1088/1674-1137/41/3/030001.
  5. ^ Wang, M .; Audi, G .; Кондев, Ф. Г .; Huang, W. J .; Naimi, S .; Сюй, X. (2017). «Оценка атомной массы AME2016 (II). Таблицы, графики и ссылки» (PDF). Китайская физика C. 41 (3): 030003-1–030003-442. Дои:10.1088/1674-1137/41/3/030003.
  6. ^ а б Leblond, S .; и другие. (2018). “Первое наблюдение 20Группа 21B “. Письма с физическими проверками. 121 (26): 262502–1–262502–6. arXiv:1901.00455. Дои:10.1103 / PhysRevLett.121.262502. PMID  30636115.
  7. ^ Cerdeno, David G .; Fairbairn, Малькольм; Джубб, Томас; Мачадо, Педро; Винсент, Аарон С .; Бем, Селин (2016). «Физика солнечных нейтрино в экспериментах по прямому обнаружению темной материи». JHEP. 2016 (5): 118. arXiv:1604.01025. Bibcode:2016JHEP … 05..118C. Дои:10.1007 / JHEP05 (2016) 118.

Добавить комментарий