Как найти к какому промежутку принадлежит дробь

Всего: 11    1–11

Добавить в вариант

Какому из данных промежутков принадлежит число  дробь: числитель: 2, знаменатель: 9 конец дроби ?

1) [0,1; 0,2] 2) [0,2; 0,3] 3) [0,3; 0,4] 4) [0,4; 0,5]

Источник: Банк за­да­ний ФИПИ


Какому из данных промежутков принадлежит число   дробь: числитель: 5, знаменатель: 9 конец дроби ?

В ответе укажите номер правильного варианта.

1)  [0,5;0,6]

2)  [0,6;0,7]

3)  [0,7;0,8]

4)  [0,8;0,9]

Источник: Банк за­да­ний ФИПИ


Какому промежутку принадлежит число  корень из: начало аргумента: 53 конец аргумента ?

В ответе укажите номер правильного варианта.

1)  [4; 5]

2)  [5; 6]

3)  [6; 7]

4)  [7; 8]


Какое из данных чисел принадлежит промежутку [6; 7]?

В ответе укажите номер правильного варианта.

1)   корень из: начало аргумента: 6 конец аргумента

2)   корень из: начало аргумента: 7 конец аргумента

3)   корень из: начало аргумента: 35 конец аргумента

4)   корень из: начало аргумента: 42 конец аргумента


Какому из данных промежутков принадлежит число  дробь: числитель: 7, знаменатель: 11 конец дроби ?

1) [0,4; 0,5] 2) [0,5; 0,6] 3) [0,6; 0,7] 4) [0,7; 0,8]

Какое из данных ниже чисел принадлежит отрезку [3; 4]?

1)   дробь: числитель: 45, знаменатель: 19 конец дроби

2)   дробь: числитель: 52, знаменатель: 19 конец дроби

3)   дробь: числитель: 68, знаменатель: 19 конец дроби

4)   дробь: числитель: 77, знаменатель: 19 конец дроби


Какое из данных ниже чисел принадлежит отрезку [3; 4]?

1)   дробь: числитель: 47, знаменатель: 14 конец дроби

2)   дробь: числитель: 57, знаменатель: 14 конец дроби

3)   дробь: числитель: 61, знаменатель: 14 конец дроби

4)   дробь: числитель: 65, знаменатель: 14 конец дроби


Какое из данных ниже чисел принадлежит отрезку [8; 9]?

1)   дробь: числитель: 46, знаменатель: 7 конец дроби

2)   дробь: числитель: 53, знаменатель: 7 конец дроби

3)   дробь: числитель: 55, знаменатель: 7 конец дроби

4)   дробь: числитель: 61, знаменатель: 7 конец дроби


Какое из данных ниже чисел принадлежит отрезку [4; 5]?

1)   дробь: числитель: 58, знаменатель: 17 конец дроби

2)   дробь: числитель: 72, знаменатель: 17 конец дроби

3)   дробь: числитель: 87, знаменатель: 17 конец дроби

4)   дробь: числитель: 91, знаменатель: 17 конец дроби


Какое из данных чисел принадлежит промежутку [7; 8]?

В ответе укажите номер правильного варианта.

1)   корень из 7

2)   корень из 8

3)   корень из: начало аргумента: 42 конец аргумента

4)   корень из: начало аргумента: 61 конец аргумента


Какое из данных чисел принадлежит промежутку [7; 8]?

В ответе укажите номер правильного варианта.

1)   корень из 7

2)   корень из 8

3)   корень из: начало аргумента: 48 конец аргумента

4)   корень из: начало аргумента: 56 конец аргумента

Всего: 11    1–11

Как находить промежуток числа?

fssd dfsfsdf



Знаток

(276),
на голосовании



8 лет назад

Имеется задание: Какому из данных промежутков принадлежит число 2/9?

Вопрос. В какой теме это относиться. Что бы разобраться в этом самому

Голосование за лучший ответ

Елена

Мастер

(1521)


8 лет назад

тема “Числовые промежутки”

Источник: [ссылка заблокирована по решению администрации проекта]

fssd dfsfsdfЗнаток (276)

8 лет назад

спасибо

Алексей Замятин

Искусственный Интеллект

(128830)


8 лет назад

Спрашивается между какими числами находится дробь 2/9.
Делим 2/9=0,22. Это БОЛЬШЕ 0 и МЕНЬШЕ 1. Дробь (правильная) всегда больше 0 и меньше 1. Если она БОЛЬШЕ, то уже не правильная.

Похожие вопросы

Числовые промежутки

Числовые промежутки или просто промежутки — это числовые множества, которые можно изобразить на координатной прямой. К числовым промежуткам относятся лучи, отрезки, интервалы и полуинтервалы.

Виды числовых промежутков

Название Изображение Неравенство Обозначение
Открытый луч открытый луч x > a (a; +∞)
интервал отрезок луч открытый луч x < a (-∞; a)
Замкнутый луч замкнутый луч x &ges; a [a; +∞)
промежутки числовой прямой x &les; a (-∞; a]
Отрезок неравенства числовые промежутки a &les; x &les; b [a; b]
Интервал виды числовых промежутков a < x < b (a; b)
Полуинтервал числовые промежутки примеры a < x &les; b (a; b]
a &les; x < b [a; b)

В таблице a и b — это граничные точки, а x — переменная, которая может принимать координату любой точки, принадлежащей числовому промежутку.

Граничная точка — это точка, определяющая границу числового промежутка. Граничная точка может как принадлежать числовому промежутку, так и не принадлежать ему. На чертежах граничные точки, не принадлежащие рассматриваемому числовому промежутку, обозначают незакрашенным кругом, а принадлежащие — закрашенным кругом.

Открытый и замкнутый луч

Открытый луч — это множество точек прямой, лежащих по одну сторону от граничной точки, которая не входит в данное множество. Открытым луч называется именно из-за граничной точки, которая ему не принадлежит.

Рассмотрим множество точек координатной прямой, имеющих координату, большую 2, а, значит, расположенных правее точки 2:

множества точек на координатной прямой 7 класс

Такое множество можно задать неравенством x > 2. Открытые лучи обозначаются с помощью круглых скобок — (2; +∞), данная запись читается так: открытый числовой луч от двух до плюс бесконечности .

Множество, которому соответствует неравенство x < 2, можно обозначить (-∞; 2) или изобразить в виде луча, все точки которого лежат с левой стороны от точки 2:

множество точек на числовой прямой

Замкнутый луч — это множество точек прямой, лежащих по одну сторону от граничной точки, принадлежащей данному множеству. На чертежах граничные точки, принадлежащие рассматриваемому множеству, обозначаются закрашенным кругом.

Замкнутые числовые лучи задаются нестрогими неравенствами. Например, неравенства x &ges; 2 и x &les; 2 можно изобразить так:

замкнутый луч с началом в точке 2

Обозначаются данные замкнутые лучи так: [2; +∞) и (-∞; 2], читается это так: числовой луч от двух до плюс бесконечности и числовой луч от минус бесконечности до двух . Квадратная скобка в обозначении показывает, что точка 2 принадлежит числовому промежутку.

Отрезок

Отрезок — это множество точек прямой, лежащих между двумя граничными точками, принадлежащими данному множеству. Такие множества задаются двойными нестрогими неравенствами.

Рассмотрим отрезок координатной прямой с концами в точках -2 и 3:

Множество точек, из которых состоит данный отрезок, можно задать двойным неравенством -2 &les; x &les; 3 или обозначить [-2; 3], такая запись читается так: отрезок от минус двух до трёх .

Интервал и полуинтервал

Интервал — это множество точек прямой, лежащих между двумя граничными точками, не принадлежащими данному множеству. Такие множества задаются двойными строгими неравенствами.

Рассмотрим отрезок координатной прямой с концами в точках -2 и 3:

числовые промежутки интервал

Множество точек, из которых состоит данный интервал, можно задать двойным неравенством -2 < x < 3 или обозначить (-2; 3). Такая запись читается так: интервал от минус двух до трёх .

Полуинтервал — это множество точек прямой, лежащих между двумя граничными точками, одна из которых принадлежит множеству, а другая не принадлежит. Такие множества задаются двойными неравенствами:

Обозначаются данные полуинтервалы так: (-2; 3] и [-2; 3). Читается это так: полуинтервал от минус двух до трёх, включая 3 , и полуинтервал от минус двух до трёх, включая минус два .

Числовые промежутки — что такое?

Числовая прямая (или, что то же самое, числовая ось) — понятие нехитрое. Более того, числовая прямая — главный помощник в решении любых заданий с неравенствами! Любых. От примитивных линейных неравенств до сложных показательных или логарифмических неравенств, систем неравенств и метода интервалов. Освоим темку, пока всё просто?)

Что такое числовая прямая? Что такое координатная прямая?

С понятием числовой прямой вы все уже сталкивались, когда изучали такие темы как координаты точек (5-й класс), страшное понятие модуля числа (6-й класс), и особенно когда рисовали графики функций (7-й класс). Вспомним ещё разок?)

Всё то же самое, ничего нового! Первым делом возьмём и нарисуем в тетрадке самую обычную прямую и дополнительно укажем на ней:

1) Начало отсчёта или начало координат (точку О);

2) Положительное направление (стрелочкой);

3) Масштаб или единицу измерения длины (например, одна тетрадная клетка).

Вот и всё. Про устройство числовой прямой вы тоже давно в курсе (надеюсь). Но на всякий случай напоминаю. Начало координат всегда соответствует числу 0. Все положительные числа изображаются на положительной полуоси справа от нуля, в направлении стрелочки. А все отрицательныеслева от нуля, на отрицательной полуоси. Большее число всегда располагается правее меньшего, а меньшее — левее большего. Элементарно, Ватсон!)

Ну хорошо, прямая и прямая. Но почему — числовая? Ответ очевиден. Каждой точке на прямой соответствует какое-то число. Положительное, отрицательное, целое, дробное, иррациональное — какое угодно. Но — число! Поэтому и прямая — числовая. Это число имеет специальное и вполне научное название — координата точки. Отсюда следует, что числовая прямая — и координатная прямая тоже. Вот так. Два термина в одном флаконе.)

А вот теперь мы с вами колоссально расширяем наши возможности. Начинаем работать с числовой прямой на полную катушку! Готовы?)

Что такое числовой промежуток? Виды числовых промежутков.

В уравнениях было всё просто. Нашли икс, да и записали в ответ. Например, х=2. В неравенствах же ответом обычно служит не одно-два числа, а промежуток. Числовой промежуток. Или даже несколько числовых промежутков. Это и смущает поначалу…) Что это за зверь такой — числовой промежуток?

Числовой промежуток — это просто какой-то кусочек числовой прямой. И всё!

Сейчас начинается самое весёлое. Сейчас мы нашу числовую прямую будем пилить.) Пилить не на дрова, а на… числовые промежутки.)

Вот прям берём числовую прямую и вырезаем из неё какой-то кусочек какими-то точками. Которые, напоминаю, соответствуют каким-то числам. Вот и получаем — числовой промежуток. Разумеется, вырезать конкретный кусочек числовой прямой можно по-разному, да…)

Соответственно, и числовые промежутки в математике бывают разных видов.

Вот они, эти виды (подкрашены красным цветом):

Смотрим на табличку и… мама родная! Какие-то непонятные кружочки (пустые внутри и закрашенные), какой-то странный иероглиф «∞», да ещё и со знаками плюс/минус, круглые и квадратные скобочки.

Вам и вправду страшно? Возможно… Но сейчас вы увидите, насколько всё просто! Читаем дальше.)

Граничные точки

Я разгадала знак бесконечность… (Земфира)

Те точки, которые нам указывают, в каких местах мы выпиливаем кусочек прямой, так и называются — граничные точки. В таблице эти самые граничные точки обозначены буковками a и b. Точка aлевая граница (меньшее число), точка bправая граница (большее число).

А может ли числовой промежуток в каком-то направлении быть неограниченным?

А почему — нет? Запросто! Можно распилить числовую прямую не в двух точках, а в какой-то одной точке. И забрать себе одну часть — левую или правую. Бесконечную… Или — луч. Только для обозначения этой бесконечной границы буквы или числа не годятся. Зато есть специальный значок ««. Значок этот так и называется — «бесконечность». Очевидно, бесконечность бывает двух видов (точнее, двух знаков) — плюс (+∞) или минус (-∞). В зависимости от того, какой именно луч, какая часть прямой, правая или левая, берётся на дальнейшее рассмотрение.

Кружочки и скобочки…

Граничная точка — это, как и намекает название, точка, задающая границу числового промежутка. Слева или справа. Естественно, у думающих тут же возникает вполне логичный и важный вопрос: А куда относить саму граничную точку? Включать её в состав промежутка или нет?

Именно для ответа на этот вопрос нам и служат всякие кружочки и скобочки в обозначениях и на рисунках!

Запоминаем:

Если граничная точка в числовой промежуток НЕ ВХОДИТ, то на числовой прямой она рисуется НЕЗАКРАШЕННОЙ. Т.е. пустой внутри. В математике такие точки называются выколотыми точками. В обозначениях выколотые точки всегда соседствуют с круглыми скобками «(» или «)».

Если же граничная точка в числовой промежуток ВХОДИТ, то на числовой прямой она рисуется ЗАКРАШЕННОЙ, а в записи обозначается квадратной скобкой «[» или «]».

Вот и вся расшифровка.) Кстати говоря, специальные названия промежутков (луч, отрезок, интервал, полуинтервал) запоминать пока не обязательно. Всё равно поначалу будете путаться. Это для общей эрудиции сделано.) На практике обычно не заморачиваются и говорят «числовой промежуток такой-то…», без уточнения вида — луч, отрезок и т.д. А иногда и совсем кратко — просто «промежуток». Если и вы путаетесь — говорите так же. Не ошибётесь! А спецназвания оставим для старших классов. Но если запомнили (и поняли!) названия промежутков — что ж, только респект!)

Теперь можно потренироваться в записи и чтении числовых промежутков. Чтобы не мычать… Ну что, потренируемся?

Читаем числовые промежутки и рисуем их на оси!

С чтением и рисованием числовых промежутков обычно никаких проблем нет. Нужно только чётко понимать, что означают все эти скобочки и кружочки, что разбирались в предыдущем параграфе.

Например, задан числовой промежуток (0; 5].

Словами эта запись звучит так: числовой промежуток от нуля до пяти, не включая ноль и включая пять.

Читаем (и пишем) именно в таком порядке — от левой границы до правой.

Левая граница (т.е. число 0) соседствует с круглой скобкой «(«, о чём нам и говорят слова «не включая». Этот факт означает, что число 0 в наш промежуток не входит. Например, число 0,1 входит, и даже 0,000001 — ещё входит. Хоть чуть-чуть, да больше нуля. А вот ровно ноль — уже нет…

Пятёрка же — напротив, соседствует с квадратной скобкой «]», что говорит нам о том, что сама она также входит в наш промежуток. И отражено словом «включая» в словесной расшифровке.

А теперь нарисуем наш промежуток на оси. Для этого рисуем числовую прямую и отмечаем на ней граничные точки 0 и 5.

Заметили разницу между нулём и пятёркой? Ну да, трудно не заметить! 😉 Точка 0 изображена белой, т.е. незакрашенной. Пустой внутри. Или, по-математически, выколотой точкой. Это, как мы с вами уже выяснили, означает, что ноль — не входит в наш промежуток. В отличие от пятёрки, которая входит в промежуток. И на рисунке, соответственно, нарисованной чёрной. Закрашенной.) Я специально точки такими здоровыми изобразил. Чтобы хорошенько врезались в память…

Итак, мы отметили на оси границы промежутка. Осталось лишь отметить все остальные числа, которые входят в этот промежуток. Вы спросите: Как? Ведь между нулём и пятёркой находится бесконечно много чисел! Это и 1, и 2,5, и 3,14, и 4,9999 и так далее… И что? Все-все отмечать)?

Нет, конечно. Всё гораздо проще!) Сейчас мы с вами отметим на прямой все интересующие нас числа одним махом! Тут есть два варианта. Вариант первый — штриховка. Просто берём и подштриховываем весь кусочек прямой между 0 и 5.

Вариант второй рассмотрим на следующем примере.

В этот раз дан промежуток такой: [-3; +∞).

Для начала читаем словами название промежутка с гордо поднятой головой: Числовой промежуток от минус трёх до плюс бесконечности, включая минус три!

Вот так. А теперь вопрос на засыпку: почему я оборвал чтение на словах «включая минус три…» и не продолжил мысль гениальными словами «…и не включая плюс бесконечность»?

Всё очень просто. Бесконечность (что плюс, что минус) не может включаться никогда. Это не число, это — символ. Поэтому в подобных записях бесконечность всегда соседствует с круглой скобкой, а в расшифровке говорится просто: «до плюс бесконечности». Или «до минус бесконечности». И всё.

А теперь всё как обычно, рисуем прямую, отмечаем на ней одну единственную точку минус три. Закрашенную, естественно, раз уж скобочка перед минус тройкой — квадратная. Вот так:

И отмечаем все остальные числа, входящие в промежуток от минус тройки до плюс бесконечности. На этот раз я отмечу нужный кусок оси дужкой (от слова дуга) вместо штриховки. Вот так:

Особой разницы между штриховкой и дужками нет. Рисуйте как удобнее. Но в сложных заданиях с неравенствами, где надо постоянно пересекать и объединять много промежутков, дужки предпочтительнее, ибо штриховка куда менее наглядна. Запутаться можно.

Я предпочитаю совмещать оба способа. Получается красиво и наглядно! В следующем уроке, на примерах, сами увидите.)

Вот так рисуются числовые промежутки на оси.

Входит и выходит… ))

А какая нам разница, входит число в указанный промежуток или не входит?

Вопрос смешной. Огромная! Ответ на этот вопрос (входит/не входит) — это ключевой этап в работе с промежутками и с неравенствами вообще! Даже значки специальные придуманы для этого. Вот такие:

За этими странными значками скрываются безобидные слова «принадлежит» и «не принадлежит».

Возьмём, к примеру, промежуток (1; 3].

Входит в этот промежуток, допустим, двойка? Конечно! Раз уж она посерёдке между единичкой и тройкой… А единичка? Э-э-э… Скобка перед ней — круглая! Не входит единичка в наш промежуток. Тройка входит? Попадает на границу, но скобочка — квадратная. Значит, входит! А вот три с половиной — снова не входит. 3,5 строго больше, чем тройка. Выпадает 3,5 из нашего промежутка…

Математически, с помощью значков принадлежности, эти факты можно записать вот так:

А словами можно прочитать вот так:

Два принадлежит промежутку от одного (не включая) до трёх (включая).

Один не принадлежит промежутку от одного (не включая) до трёх (включая).

В этом уроке было простое чтение и рисование промежутков на оси. Пока — цветочки. Переходим к ягодкам. К операциям над числовыми промежутками. Те ещё грабли, да…) Об этом — в следующем уроке.

Какое из данных чисел принадлежит промежутку

Какое из данных чисел принадлежит промежутку N — это задание из ОГЭ под номером 7. Давайте разберемся, как решать такие задачи и решим некоторые из них. В этих задачах вам нужно уметь представлять числовую ось и расположение чисел на ней. А также знать операции и функции, которые при вычислении могут дать искомое число.

Задание 1

  1. sqrt{5}
  2. sqrt{6}
  3. sqrt{24}
  4. sqrt{32}

Решение: Итак нам даны квадратные корни, которые при извлечении должны нам дать число из указанного промежутка. Каким же должно быть число под корнем? Чтобы ответить на этот вопрос возведем в квадрат границы промежутка:

5^2=25и 6^2=36.

То есть, искомое число лежит между 25-ю и 36-ю под корнем. Из представленных вариантов ответов нам подходит только число sqrt{32}. Это число под номером 4. Поэтому в ответ мы запишем 4.

Задание 2

  1. sqrt{6}
  2. sqrt{7}
  3. sqrt{38}
  4. sqrt{50}

Нам снова даны не уже готовые числа, а функции от числа, при выполнении которых получаются какие то числа, одно из них должно попасть в промежуток [6; 7]. Сделаем обратную операцию — возведем в квадрат числа — границы промежутка — и определим в каким пределах находится число под корнем в списке вариантов ответов.

6^2=36и 7^2=49

Нам подходит число sqrt{38}. В перечне ответов оно под номером 3.

Задание 3

  1. frac{69}{11}
  2. frac{80}{11}
  3. frac{90}{11}
  4. frac{92}{11}

Решение: В вариантах ответов даны дроби. Значит частное должно быть числом, в промежутке от 7 до 8. Все дроби в знаменателе имеют 11. Давайте определим числитель, исходя из определения промежутка, в котором он может находиться. То есть умножим числа — границы указанного промежутка — на 11:

7 cdot 11=77и 8 cdot 11=88.

Таким образом, числитель дроби должен быть в промежутке от 77 до 88. Это число 80 и, соответственно, искомое число frac{80}{11}. Оно стоит под номером 2.

Задание 4

  1. -frac{60}{7}
  2. -frac{50}{7}
  3. -frac{40}{7}
  4. -frac{30}{7}

Решение: По аналогии с предыдущим заданием, мы должны определить числитель, умножим границы отрезка на 7.

7 cdot (-6)=-42и 7 cdot (-5)=-35

Нам подходит дробь -frac{40}{7}. Она под номером 3. Значит, в ответ мы запишем 3.

Какое из данных чисел принадлежит промежутку

Опубликовано 03.06.2021

Какое из данных чисел принадлежит промежутку N – это задание из ОГЭ под номером 7. Давайте разберемся, как решать такие задачи и решим некоторые из них. В этих задачах вам нужно уметь представлять числовую ось и расположение чисел на ней. А также знать операции и функции, которые при вычислении могут дать искомое число.

Задание 1

Какое из данных чисел принадлежит промежутку [5; 6] ?

Варианты ответов:

  1. sqrt{5}
  2. sqrt{6}
  3. sqrt{24}
  4. sqrt{32}

Решение: Итак нам даны квадратные корни, которые при извлечении должны нам дать число из указанного промежутка. Каким же должно быть число под корнем? Чтобы ответить на этот вопрос возведем в квадрат границы промежутка:

5^2=25 и 6^2=36.

То есть, искомое число лежит между 25-ю и 36-ю под корнем. Из представленных вариантов ответов нам подходит только число sqrt{32}. Это число под номером 4. Поэтому в ответ мы запишем 4.

Ответ: 4

Задание 2

Какое из данных чисел принадлежит промежутку [6; 7] ?

Варианты ответов:

  1. sqrt{6}
  2. sqrt{7}
  3. sqrt{38}
  4. sqrt{50}

Решение:

Нам снова даны не уже готовые числа, а функции от числа, при выполнении которых получаются какие то числа, одно из них должно попасть в промежуток [6; 7]. Сделаем обратную операцию – возведем в квадрат числа – границы промежутка – и определим в каким пределах находится число под корнем в списке вариантов ответов.

6^2=36 и 7^2=49

Нам подходит число sqrt{38}. В перечне ответов оно под номером 3.

Ответ: 3

Задание 3

Какое из данных чисел принадлежит отрезку [7;8]?

  1. frac{69}{11}
  2. frac{80}{11}
  3. frac{90}{11}
  4. frac{92}{11}

Решение: В вариантах ответов даны дроби. Значит частное должно быть числом, в промежутке от 7 до 8. Все дроби в знаменателе имеют 11. Давайте определим числитель, исходя из определения промежутка, в котором он может находиться. То есть умножим числа – границы указанного промежутка – на 11:

7 cdot 11=77 и 8 cdot 11=88.

Таким образом, числитель дроби должен быть в промежутке от 77 до 88. Это число 80 и, соответственно, искомое число frac{80}{11}. Оно стоит под номером 2.

Ответ: 2

Задание 4

Какое из данных ниже чисел принадлежит отрезку [-6; -5]?

  1. -frac{60}{7}
  2. -frac{50}{7}
  3. -frac{40}{7}
  4. -frac{30}{7}

Решение: По аналогии с предыдущим заданием, мы должны определить числитель, умножим границы отрезка на 7.

7 cdot (-6)=-42 и 7 cdot (-5)=-35

Нам подходит дробь -frac{40}{7}. Она под номером 3. Значит, в ответ мы запишем 3.

Ответ: 3

( 2 оценки, среднее 5 из 5 )

Метод интервалов, примеры, решения

Метод интервалов принято считать универсальным для решения неравенств. Иногда этот метод также называют методом промежутков. Применим он как для решения рациональных неравенств с одной переменной, так и для неравенств других видов. В нашем материале мы постарались уделить внимание всем аспектам вопроса.

Что ждет вас в данном разделе? Мы разберем метод промежутков и рассмотрим алгоритмы решения неравенств с его помощью. Затронем теоретические аспекты, на которых основано применение метода.

Особое внимание мы уделяем нюансам темы, которые обычно не затрагиваются в рамках школьной программы. Например, рассмотрим правила расстановки знаков на интервалах и сам метод интервалов в общем виде без его привязки к рациональным неравенствам.

Алгоритм

Кто помнит, как происходит знакомство с методом промежутков в школьном курсе алгебры? Обычно все начинается с решения неравенств вида f ( x ) 0 (знак неравенства может быть использован любой другой, например, ≤ , > или ≥ ). Здесь f ( x ) может быть многочленом или отношением многочленов. Многочлен, в свою очередь, может быть представлен как:

  • произведение линейных двучленов с коэффициентом 1 при переменной х ;
  • произведение квадратных трехчленов со старшим коэффициентом 1 и с отрицательным дискриминантом их корней.

Приведем несколько примеров таких неравенств:

( x + 3 ) · ( x 2 − x + 1 ) · ( x + 2 ) 3 ≥ 0 ,

( x – 2 ) · ( x + 5 ) x + 3 > 0 ,

( x − 5 ) · ( x + 5 ) ≤ 0 ,

( x 2 + 2 · x + 7 ) · ( x – 1 ) 2 ( x 2 – 7 ) 5 · ( x – 1 ) · ( x – 3 ) 7 ≤ 0 .

Запишем алгоритм решения неравенств такого вида, как мы привели в примерах, методом промежутков:

  • находим нули числителя и знаменателя, для этого числитель и знаменатель выражения в левой части неравенства приравниваем к нулю и решаем полученные уравнения;
  • определяем точки, которые соответствуют найденным нулям и отмечаем их черточками на оси координат;
  • определяем знаки выражения f ( x ) из левой части решаемого неравенства на каждом промежутке и проставляем их на графике;
  • наносим штриховку над нужными участками графика, руководствуясь следующим правилом: в случае, если неравенство имеет знаки или ≤ изображается, штрихуются «минусовые» промежутки, если же мы работаем с неравенством, имеющим знаки > или ≥ , то выделяем штриховкой участки, отмеченные знаком « + ».

Четреж, с которым мы будем работать, может иметь схематический вид. Излишние подробности могут перегружать рисунок и затруднять решение. Нас будет мало интересовать маштаб. Достаточно будет придерживаться правильного расположения точек по мере роста значений их координат.

При работе со строгими неравенствами мы будем использовать обозначение точки в виде круга с незакрашенным (пустым) центром. В случае нестрогих неравенств точки, которые соответствуют нулям знаменателя, мы будем изображать пустыми, а все остальные обычными черными.

Отмеченные точки разбивают координатную прямую на несколько числовых промежутков. Это позволяет нам получить геометрическое представление числового множества, которое фактически является решением данного неравенства.

Научные основы метода промежутков

Основан подход, положенный в основу метода промежутков, основан на следующем свойстве непрерывной функции: функция сохраняет постоянный знак на интервале ( a , b ) , на котором эта функция непрерывна и не обращается в нуль. Это же свойство характерно для числовых лучей ( − ∞ , a ) и ( a , + ∞ ) .

Приведенное свойство функции подтверждается теоремой Больцано-Коши, которая приведена во многих пособиях для подготовки к вступительным испытаниям.

Обосновать постоянство знака на промежутках также можно на основе свойств числовых неравенств. Например, возьмем неравенство x – 5 x + 1 > 0 . Если мы найдем нули числителя и знаменателя и нанесем их на числовую прямую, то получим ряд промежутков: ( − ∞ , − 1 ) , ( − 1 , 5 ) и ( 5 , + ∞ ) .

Возьмем любой из промежутков и покажем на нем, что на всем промежутке выражение из левой части неравенства будет иметь постоянный знак. Пусть это будет промежуток ( − ∞ , − 1 ) . Возьмем любое число t из этого промежутка. Оно будет удовлетворять условиям t − 1 , и так как − 1 5 , то по свойству транзитивности, оно же будет удовлетворять и неравенству t 5 .

Используя оба полученных неравенства и свойство числовых неравенств, мы можем предположить, что t + 1 0 и t − 5 0 . Это значит, что t + 1 и t − 5 – это отрицательные числа независимо от значения t на промежутке ( − ∞ , − 1 ) .

Используя правило деления отрицательных чисел, мы можем утверждать, что значение выражения t – 5 t + 1 будет положительным. Это значит, что значение выражения x – 5 x + 1 будет положительным при любом значении x из промежутка ( − ∞ , − 1 ) . Все это позволяет нам утверждать, что на промежутке, взятом для примера, выражение имеет постоянный знак. В нашем случае это знак « + ».

Нахождение нулей числителя и знаменателя

Алгоритм нахождения нулей прост: приравниваем выражения из числителя и знаменателя к нулю и решаем полученные уравнения. При возникновении затруднений можно обратиться к теме «Решение уравнений методом разложения на множители». В этом разделе мы ограничимся лишь рассмотрением примера.

Рассмотрим дробь x · ( x – 0 , 6 ) x 7 · ( x 2 + 2 · x + 7 ) 2 · ( x + 5 ) 3 . Для того, чтобы найти нули числителя и знаменателя, приравняем их к нулю для того, чтобы получить и решить уравнения: x · ( x − 0 , 6 ) = 0 и x 7 · ( x 2 + 2 · x + 7 ) 2 · ( x + 5 ) 3 = 0 .

В первом случае мы можем перейти к совокупности двух уравнений x = 0 и x − 0 , 6 = 0 , что дает нам два корня 0 и 0 , 6 . Это нули числителя.

Второе уравнение равносильно совокупности трех уравнений x 7 = 0 , ( x 2 + 2 · x + 7 ) 2 = 0 , ( x + 5 ) 3 = 0 . Проводим ряд преобразований и получаем x = 0 , x 2 + 2 · x + 7 = 0 , x + 5 = 0 . Корень первого уравнения 0 , у второго уравнения корней нет, так как оно имеет отрицательный дискриминант, корень третьего уравнения – 5 . Это нули знаменателя.

0 в данном случае является одновременно и нулем числителя, и нулем знаменателя.

В общем случае, когда в левой части неравенства дробь, которая не обязательно является рациональной, числитель и знаменатель точно также приравниваются к нулю для получения уравнений. Решение уравнений позволяет найти нули числителя и знаменателя.

Определение знаков на интервалах

Определить знак интервала просто. Для этого можно найти значение выражения из левой части неравенства для любой произвольно выбранной точки из данного интервала. Полученный знак значения выражения в произвольно выбранной точке промежутка будет совпадать со знаком всего промежутка.

Рассмотрим это утверждение на примере.

Возьмем неравенство x 2 – x + 4 x + 3 ≥ 0 . Нулей числителя выражение, расположенное в левой части неравенства, нулей не имеет. Нулем знаменателя будет число – 3 . Получаем два промежутка на числовой прямой ( − ∞ , − 3 ) и ( − 3 , + ∞ ) .

Для того, чтобы определить знаки промежутков, вычислим значение выражения x 2 – x + 4 x + 3 для точек, взятых произвольно на каждом из промежутков.

Из первого промежутка ( − ∞ , − 3 ) возьмем − 4 . При x = − 4 имеем ( – 4 ) 2 – ( – 4 ) + 4 ( – 4 ) + 3 = – 24 . Мы получили отрицательное значение, значит весь интервал будет со знаком « – ».

Для промежутка ( − 3 , + ∞ ) проведем вычисления с точкой, имеющей нулевую координату. При x = 0 имеем 0 2 – 0 + 4 0 + 3 = 4 3 . Получили положительное значение, что значит, что весь промежуток будет иметь знак « + ».

Можно использовать еще один способ определения знаков. Для этого мы можем найти знак на одном из интервалов и сохранить его или изменить при переходе через нуль. Для того, чтобы все сделать правильно, необходимо следовать правилу: при переходе через нуль знаменателя, но не числителя, или числителя, но не знаменателя мы можем поменять знак на противоположный, если степень выражения, дающего этот нуль, нечетная, и не можем поменять знак, если степень четная. Если мы получили точку, которая является одновременно нулем числителя и знаменателя, то поменять знак на противоположный можно только в том случае, если сумма степеней выражений, дающих этот нуль, нечетная.

Если вспомнить неравенство, которое мы рассмотрели в начале первого пункта этого материала, то на крайнем правом промежутке мы можем поставить знак « + ».

Теперь обратимся к примерам.

Возьмем неравенство ( x – 2 ) · ( x – 3 ) 3 · ( x – 4 ) 2 ( x – 1 ) 4 · ( x – 3 ) 5 · ( x – 4 ) ≥ 0 и решим его методом интервалов. Для этого нам необходимо найти нули числителя и знаменателя и отметить их на координатной прямой. Нулями числителя будут точки 2 , 3 , 4 , знаменателя точки 1 , 3 , 4 . Отметим их на оси координат черточками.

Нули знаменателя отметим пустыми точками.

Так как мы имеем дело с нестрогим неравенством, то оставшиеся черточки заменяем обычными точками.

Теперь расставим точки на промежутках. Крайний правый промежуток ( 4 , + ∞ ) будет знак + .

Продвигаясь справа налево будем проставлять знаки остальных промежутков. Переходим через точку с координатой 4 . Это одновременно нуль числителя и знаменателя. В сумме, эти нули дают выражения ( x − 4 ) 2 и x − 4 . Сложим их степени 2 + 1 = 3 и получим нечетное число. Это значит, что знак при переходе в данном случае меняется на противоположный. На интервале ( 3 , 4 ) будет знак минус.

Переходим к интервалу ( 2 , 3 ) через точку с координатой 3 . Это тоже нуль и числителя, и знаменателя. Мы его получили благодаря двум выражениям ( x − 3 ) 3 и ( x − 3 ) 5 , сумма степеней которых равна 3 + 5 = 8 . Получение четного числа позволяет нам оставить знак интервала неизменным.

Точка с координатой 2 – это нуль числителя. Степень выражения х – 2 равна 1 (нечетная). Это значит, что при переходе через эту точку знак необходимо изменить на противоположный.

У нас остался последний интервал ( − ∞ , 1 ) . Точка с координатой 1 – это нуль знаменателя. Он был получен из выражения ( x − 1 ) 4 , с четной степенью 4 . Следовательно, знак остается прежним. Итоговый рисунок будет иметь вот такой вид:

Применение метода интервалов особенно эффективно в случаях, когда вычисление значения выражения связано с большим объемом работы. Примером может стать необходимость вычисления значения выражения

x + 3 – 3 4 3 · x 2 + 6 · x + 11 2 · x + 2 – 3 4 ( x – 1 ) 2 · x – 2 3 5 · ( x – 12 )

в любой точке интервала 3 – 3 4 , 3 – 2 4 .

Будем считать, что с правилами определения знаков для промежутков мы разобрались. Идем дальше.

Метод интервалов

Метод интервалов – простой способ решения дробно-рациональных неравенств. Так называются неравенства, содержащие рациональные (или дробно-рациональные) выражения, зависящие от переменной.

1. Рассмотрим, например, такое неравенство

Метод интервалов позволяет решить его за пару минут.

В левой части этого неравенства – дробно-рациональная функция. Рациональная, потому что не содержит ни корней, ни синусов, ни логарифмов – только рациональные выражения. В правой – нуль.

Метод интервалов основан на следующем свойстве дробно-рациональной функции.

Дробно-рациональная функция может менять знак только в тех точках, в которых она равна нулю или не существует.

Найдем нули функции в левой части нашего неравенства. Для этого разложим числитель на множители. (Если вы не помните, что такое нули функции и знак функции на промежутке – смотрите статью «Исследование графика функции»).

Напомним, как раскладывается на множители квадратный трехчлен, то есть выражение вида .

, где и — корни квадратного уравнения .

Рисуем ось и расставляем точки, в которых числитель и знаменатель обращаются в нуль.

Нули знаменателя и – выколотые точки, так как в этих точках функция в левой части неравенства не определена (на нуль делить нельзя). Нули числителя и – закрашены, так как неравенство нестрогое. При и наше неравенство выполняется, так как обе его части равны нулю.

Эти точки разбивают ось на промежутков.

Определим знак дробно-рациональной функции в левой части нашего неравенства на каждом из этих промежутков. Мы помним, что дробно-рациональная функция может менять знак только в тех точках, в которых она равна нулю или не существует. Это значит, что на каждом из промежутков между точками, где числитель или знаменатель обращаются в нуль, знак выражения в левой части неравенства будет постоянным – либо “плюс”, либо “минус”.

И поэтому для определения знака функции на каждом таком промежутке мы берем любую точку, принадлежащую этому промежутку. Ту, которая нам удобна.
. Возьмем, например, и проверим знак выражения в левой части неравенства. Каждая из “скобок” отрицательная. Левая часть имеет знак .

Следующий промежуток: . Проверим знак при . Получаем, что левая часть поменяла знак на .

. Возьмем . При выражение положительно – следовательно, оно положительно на всем промежутке от до .

При левая часть неравенства отрицательна.

И, наконец, 7′ alt=’x>7′ /> . Подставим и проверим знак выражения в левой части неравенства. Каждая “скобочка” положительна. Следовательно, левая часть имеет знак .

Мы нашли, на каких промежутках выражение положительно. Осталось записать ответ:

Обратите внимание: знаки на промежутках чередуются. Это произошло потому, что при переходе через каждую точку ровно один из линейных множителей поменял знак, а остальные сохранили его неизменным.

Мы видим, что метод интервалов очень прост. Чтобы решить дробно-рациональное неравенство методом интервалов, приводим его к виду:

(в левой части – дробно-рациональная функция, в правой – нуль).

Затем – отмечаем на числовой прямой точки, в которых числитель или знаменатель обращаются в нуль.
Эти точки разбивают всю числовую прямую на промежутки, на каждом из которых дробно-рациональная функция сохраняет свой знак.
Остается только выяснить ее знак на каждом промежутке.
Мы делаем это, проверяя знак выражения в любой точке, принадлежащей данному промежутку. После этого – записываем ответ. Вот и всё.

Но возникает вопрос: всегда ли знаки чередуются? Нет, не всегда! Надо быть внимательным и не расставлять знаки механически и бездумно.

Ты нашел то, что искал? Поделись с друзьями!

2. Рассмотрим еще одно неравенство.

Снова расставляем точки на оси . Точки и – выколотые, поскольку это нули знаменателя. Точка – тоже выколота, поскольку неравенство строгое.

При числитель положителен, оба множителя в знаменателе отрицательны. Это легко проверить, взяв любое число с данного промежутка, например, . Левая часть имеет знак :

При числитель положителен; первый множитель в знаменателе положителен, второй множитель отрицателен. Левая часть имеет знак :

При ситуация та же! Числитель положителен, первый множитель в знаменателе положителен, второй отрицателен. Левая часть имеет знак :

Наконец, при 3′ alt=’x>3′ /> все множители положительны, и левая часть имеет знак :

Почему нарушилось чередование знаков? Потому что при переходе через точку “ответственный” за неё множитель не изменил знак. Следовательно, не изменила знак и вся левая часть нашего неравенства.

Вывод: если линейный множитель стоит в чётной степени (например, в квадрате), то при переходе через точку знак выражения в левой части не меняется. В случае нечётной степени знак, разумеется, меняется.

3. Рассмотрим более сложный случай. От предыдущего отличается тем, что неравенство нестрогое:

Левая часть та же, что и в предыдущей задаче. Та же будет и картина знаков:

Может, и ответ будет тем же? Нет! Добавляется решение Это происходит потому, что при и левая, и правая части неравенства равны нулю – следовательно, эта точка является решением.

В задаче на ЕГЭ по математике такая ситуация встречается часто. Здесь абитуриенты попадают в ловушку и теряют баллы. Будьте внимательны!

4. Что делать, если числитель или знаменатель не удается разложить на линейные множители? Рассмотрим такое неравенство:

Квадратный трехчлен на множители разложить нельзя: дискриминант отрицателен, корней нет. Но ведь это и хорошо! Это значит, что знак выражения при всех одинаков, а конкретно – положителен. Подробнее об этом можно прочитать в статье о свойствах квадратичной функции.

И теперь мы можем поделить обе части нашего неравенства на величину , положительную при всех . Придём к равносильному неравенству:

– которое легко решается методом интервалов.

Обратите внимание – мы поделили обе части неравенства на величину, о которой точно знали, что она положительна. Конечно, в общем случае не стоит умножать или делить неравенство на переменную величину, знак которой неизвестен.

5. Рассмотрим еще одно неравенство, на вид совсем простое:

Так и хочется умножить его на . Но мы уже умные, и не будем этого делать. Ведь может быть как положительным, так и отрицательным. А мы знаем, что если обе части неравенства умножить на отрицательную величину – знак неравенства меняется.

Мы поступим по другому — соберём всё в одной части и приведём к общему знаменателю. В правой части останется нуль:

И после этого – применим метод интервалов.

Дробно рациональные неравенства

Дробно рациональное неравенство – это неравенство, в котором есть дробь, в знаменателе которой стоит переменная, т.е. неравенство одного из следующих видов:

f ( x ) g ( x ) 0 f ( x ) g ( x ) ≤ 0 f ( x ) g ( x ) > 0 f ( x ) g ( x ) ≥ 0

Дробно рациональное неравенство не обязательно сразу выглядит так. Иногда, для приведения его к такому виду, приходится потрудиться (перенести слагаемые в левую часть, привести к общему знаменателю).

Примеры дробно рациональных неравенств:

x − 1 x + 3 0 3 ( x + 8 ) ≤ 5 x 2 − 1 x > 0 x + 20 x ≥ x + 3

Как же решать эти дробно рациональные неравенства? Да всё при помощи того же всемогущего метода интервалов.

Алгоритм решения дробно рациональных неравенств:

  1. Привести неравенство к одному из следующих видов (в зависимости от знака в исходном неравенстве):

f ( x ) g ( x ) 0 f ( x ) g ( x ) ≤ 0 f ( x ) g ( x ) > 0 f ( x ) g ( x ) ≥ 0

  1. Приравнять числитель дроби к нулю f ( x ) = 0. Найти нули числителя .
  1. Приравнять знаменатель дроби к нулю g ( x ) = 0. Найти нули знаменателя .

В этом пункте алгоритма мы будем делать всё то, что нам запрещали делать все 9 лет обучения в школе – приравнивать знаменатель дроби к нулю. Чтобы как-то оправдать свои буйные действия, полученные точки при нанесении на ось x будем всегда рисовать выколотыми, вне зависимости от того, какой знак неравенства.

  1. Нанести нули числителя и нули знаменателя на ось x .

Вне зависимости от знака неравенства
при нанесении на ось x нули знаменателя всегда выколотые .

Если знак неравенства строгий ,
при нанесении на ось x нули числителя выколотые .

Если знак неравенства нестрогий ,
при нанесении на ось x нули числителя жирные.

  1. Расставить знаки на интервалах.
  1. Выбрать подходящие интервалы и записать ответ.

Примеры решения дробно рациональных неравенств:

№1. Решить неравенство x − 1 x + 3 > 0.

Решение:

Будем решать данное неравенство в соответствии с алгоритмом.

  1. Первый шаг алгоритма уже выполнен. Неравенство приведено к виду f ( x ) g ( x ) > 0.
  1. Приравниваем числитель к нулю f ( x ) = 0.

x = 1 – это ноль числителя . Поскольку знак неравенства строгий, ноль числителя при нанесени на ось x будет выколотым. Запомним это.

  1. Приравниваем знаменатель к нулю g ( x ) = 0.

x = − 3 – это ноль знаменателя . При нанесении на ось x точка будет всегда выколотой (вне зависимости от знака неравенства).

  1. Наносим нули числителя и нули знаменателя на ось x .

При нанесении нулей числителя обращаем внимание на знак неравенства. В данном случае знак неравенства строгий, значит нули числителя будут выколотыми. Ну а нули знаменателя выколоты всегда.

  1. Расставляем знаки на интервалах.

Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 2 . Подставляем эту точку в исходное выражение f ( x ) g ( x ) : x − 1 x + 3 = 2 − 1 2 + 3 = 1 5 > 0,

Это значит, что знак на интервале, в котором лежит точка 2 будет +.

Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.

  1. Выбираем подходящие интервалы и записываем ответ.

Поскольку знак неравенства > , выбираем в ответ интервалы со знаком +.

В ответ пойдут два интервала. Точки -3 и 1 будут в круглых скобках, так как обе они выколотые.

Ответ: x ∈ ( − ∞ ; − 3 ) ∪ ( 1 ; + ∞ )

№2. Решить неравенство 3 ( x + 8 ) ≤ 5.

Решение:

Будем решать данное неравенство в соответствии с алгоритмом.

  1. Привести неравенство к виду f ( x ) g ( x ) ≤ 0.

3 ( x + 8 ) − 5 x + 8 ≤ 0

3 x + 8 − 5 ( x + 8 ) x + 8 ≤ 0

3 − 5 ( x + 8 ) x + 8 ≤ 0

3 − 5 x − 40 x + 8 ≤ 0

− 5 x − 37 x + 8 ≤ 0

  1. Приравнять числитель к нулю f ( x ) = 0.

x = − 37 5 = − 37 5 = − 7,4

x = − 7,4 – ноль числителя . Поскольку знак неравенства нестрогий, при нанесении этой точки на ось x точка будет жирной.

  1. Приравнять знаменатель к нулю g ( x ) = 0.

x = − 8 – это ноль знаменателя . При нанесении на ось x , точка будет всегда выколотой (вне зависимости от знака неравенства).

  1. Наносим нули числителя и нули знаменателя на ось x .

При нанесении нулей числителя обращаем внимание на знак неравенства. В данному случае знак неравенства нестрогий, значит нули числителя будут жирными. Ну а нули знаменателя выколоты всегда.

  1. Расставляем знаки на интервалах.

Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 0 . Подставляем эту точку в исходное выражение f ( x ) g ( x ) :

− 5 x − 37 x + 8 = − 5 ⋅ 0 − 37 0 + 8 = − 37 8 0

Это значит, что знак на интервале, в котором лежит точка 0 будет -.

Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.

  1. Выбираем подходящие интервалы и записываем ответ.

Поскольку знак неравенства ≤ , выбираем в ответ интервалы со знаком -.

В ответ пойдут два интервала. Точка -8 будет в круглой скобке, так как она выколотая, точка -7,4 будет в квадратных скобках, так как она жирная.

Ответ: x ∈ ( − ∞ ; − 8 ) ∪ [ − 7,4 ; + ∞ )

№3. Решить неравенство x 2 − 1 x > 0.

Решение:

Будем решать данное неравенство в соответствии с алгоритмом.

  1. Первый шаг алгоритма уже выполнен. Неравенство приведено к виду f ( x ) g ( x ) > 0.
  1. Приравнять числитель к нулю f ( x ) = 0.

( x − 1 ) ( x + 1 ) = 0 ⇒ [ x − 1 = 0 x + 1 = 0 [ x = 1 x = − 1

x 1 = 1, x 2 = − 1 – нули числителя . Поскольку знак неравенства строгий, при нанесении этих точек на ось x точки будут выколотыми.

  1. Приравнять знаменатель к нулю g ( x ) = 0.

x = 0 – это ноль знаменателя . При нанесении на ось x , точка будет всегда выколотой (вне зависимости от знака неравенства).

  1. Наносим нули числителя и нули знаменателя на ось x .

При нанесении нулей числителя обращаем внимание на знак неравенства. В данному случае знак неравенства строгий, значит нули числителя будут выколотыми. Ну а нули знаменателя и так выколоты всегда.

  1. Расставляем знаки на интервалах.

Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 2 . Подставляем эту точку в исходное выражение f ( x ) g ( x ) :

x 2 − 1 x = 2 2 − 1 2 = 4 − 1 2 = 3 2 > 0, Это значит, что знак на интервале, в котором лежит точка 2, будет +.

Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.

  1. Выбираем подходящие интервалы и записываем ответ.

Поскольку знак неравенства > , выбираем в ответ интервалы со знаком +.

В ответ пойдут два интервала. Все точки будут в круглых скобках, так как они выколотые.

Ответ: x ∈ ( − 1 ; 0 ) ∪ ( 1 ; + ∞ )

Если вас интересуют более сложные неравенства (с корнем чётной степени кратности, например), посмотрите видео «Метод интервалов: сложные случаи».

Спасибо за просмотр этого урока! Если у вас остались вопросы, напишите их в комментариях.

[spoiler title=”источники:”]

http://ege-study.ru/ru/ege/materialy/matematika/metod-intervalov/

[/spoiler]

Добавить комментарий