Как найти каноническое уравнение стороны треугольника

По известным координатам вершин треугольника  А(4;4), В(-6;-1), С(-2;-4) записать для его сторон уравнения в общем виде и уравнение в общем виде биссектрисы угла АВС. 

Решение

Так как нам известны координаты вершин, то проще всего получить уравнение стороны в канонической форме – формула, от которого легко перейти к уравнению в общей форме. Для канонического уравнения нам нужны координаты точки, принадлежащей стороне и координаты направляющего вектора (параллельного рассматриваемому).

1. Найдем уравнение стороны АВ. В качестве точки прямой можно взять точку А с заданными координатами, а в качестве направляющего вектора – вектор АВ. Найдем координаты вектора АВ:

2. Тогда каноническое уравнение стороны АВ запишется:

3. Аналогично можно получить уравнения остальных сторон треугольника: для стороны ВС: координаты вектора 

4. Откуда каноническое уравнение:

Следовательно, общее уравнение: 3x+4y+22=0.

5. Для стороны CА: координаты направляющего вектора

6. Каноническое уравнение: 

7. Выведем общее уравнение для биссектрисы. Известно, что биссектриса делит угол пополам. Если на сторонах АВ и ВС треугольника отложить орты (соответственно a и b) и построить на них ромб, то диагональ ромба также поделит угол пополам (по своему свойству) и, значит, ее можно будет взять направляющей биссектрисы. Вектор, построенный на диагонали ромба, равен сумме векторов a и b).

8. Для нахождения орта a необходимо знать координаты вектора BA:

соответственно a определится как:

9. Аналогично определим орт b:

Теперь определим их сумму:

10. Тогда каноническое уравнение биссектрисы:

Примечание: дробные числа записывайте
через точку, а не запятую.

Округлять до -го знака после запятой.

Канонические уравнения прямой в пространстве: теория, примеры, решение задач

Одним из видов уравнений прямой в пространстве является каноническое уравнение. Мы рассмотрим это понятие во всех подробностях, поскольку знать его необходимо для решения многих практических задач.

В первом пункте мы сформулируем основные уравнения прямой, расположенной в трехмерном пространстве, и приведем несколько примеров. Далее покажем способы вычисления координат направляющего вектора при заданных канонических уравнениях и решение обратной задачи. В третьей части мы расскажем, как составляется уравнение прямой, проходящей через 2 заданные точки в трехмерном пространстве, а в последнем пункте укажем на связи канонических уравнений с другими. Все рассуждения будут проиллюстрированы примерами решения задач.

Что такое каноническое уравнение прямой в пространстве

О том, что вообще из себя представляют канонические уравнения прямой, мы уже говорили в статье, посвященной уравнениям прямой на плоскости. Случай с трехмерным пространством мы разберем по аналогии.

Допустим, у нас есть прямоугольная система координат O x y z , в которой задана прямая. Как мы помним, задать прямую можно разными способами. Используем самый простой из них – зададим точку, через которую будет проходить прямая, и укажем направляющий вектор. Если обозначить прямую буквой a , а точку M , то можно записать, что M 1 ( x 1 , y 1 , z 1 ) лежит на прямой a и направляющим вектором этой прямой будет a → = ( a x , a y , a z ) . Чтобы множество точек M ( x , y , z ) определяло прямую a , векторы M 1 M → и a → должны быть коллинеарными,

Если мы знаем координаты векторов M 1 M → и a → , то можем записать в координатной форме необходимое и достаточное условие их коллинеарности. Из первоначальных условий нам уже известны координаты a → . Для того чтобы получить координаты M 1 M → , нам необходимо вычислить разность между M ( x , y , z ) и M 1 ( x 1 , y 1 , z 1 ) . Запишем:

M 1 M → = x – x 1 , y – y 1 , z – z 1

После этого нужное нам условие мы можем сформулировать так: M 1 M → = x – x 1 , y – y 1 , z – z 1 и a → = ( a x , a y , a z ) : M 1 M → = λ · a → ⇔ x – x 1 = λ · a x y – y 1 = λ · a y z – z 1 = λ · a z

Здесь значением переменной λ может быть любое действительное число или ноль. Если λ = 0 , то M ( x , y , z ) и M 1 ( x 1 , y 1 , z 1 ) совпадут, что не противоречит нашим рассуждениям.

При значениях a x ≠ 0 , a y ≠ 0 , a z ≠ 0 мы можем разрешить относительно параметра λ все уравнения системы x – x 1 = λ · a x y – y 1 = λ · a y z – z 1 = λ · a z

Между правыми частями после этого можно будет поставить знак равенства:

x – x 1 = λ · a x y – y 1 = λ · a y z – z 1 = λ · a z ⇔ λ = x – x 1 a x λ = y – y 1 a y λ = z – z 1 a z ⇔ x – x 1 a x = y – y 1 a y = z – z 1 a z

В итоге у нас получились уравнения x – x 1 a x = y – y 1 a y = z – z 1 a z , с помощью которых можно определить искомую прямую в трехмерном пространстве. Это и есть нужные нам канонические уравнения.

Такая запись используется даже при нулевых значениях одного или двух параметров a x , a y , a z , поскольку она в этих случаях она также будет верна. Все три параметра не могут быть равны 0 , поскольку направляющий вектор a → = ( a x , a y , a z ) нулевым не бывает.

Если один-два параметра a равны 0 , то уравнение x – x 1 a x = y – y 1 a y = z – z 1 a z носит условный характер. Его следует считать равным следующей записи:

x = x 1 + a x · λ y = y 1 + a y · λ z = z 1 + a z · λ , λ ∈ R .

Частные случаи канонических уравнений мы разберем в третьем пункте статьи.

Из определения канонического уравнения прямой в пространстве можно сделать несколько важных выводов. Рассмотрим их.

1) если исходная прямая будет проходить через две точки M 1 ( x 1 , y 1 , z 1 ) и M 2 ( x 2 , y 2 , z 2 ) , то канонические уравнения примут следующий вид:

x – x 1 a x = y – y 1 a y = z – z 1 a z или x – x 2 a x = y – y 2 a y = z – z 2 a z .

2) поскольку a → = ( a x , a y , a z ) является направляющим вектором исходной прямой, то таковыми будут являться и все векторы μ · a → = μ · a x , μ · a y , μ · a z , μ ∈ R , μ ≠ 0 . Тогда прямая может быть определена с помощью уравнения x – x 1 a x = y – y 1 a y = z – z 1 a z или x – x 1 μ · a x = y – y 1 μ · a y = z – z 1 μ · a z .

Вот несколько примеров таких уравнений с заданными значениями:

x – 3 2 = y + 1 – 1 2 = z ln 7

Тут x 1 = 3 , y 1 = – 1 , z 1 = 0 , a x = 2 , a y = – 1 2 , a z = ln 7 .

x – 4 0 = y + 2 1 = z + 1 0

Тут M 1 ( 4 , – 2 , – 1 ) , a → = ( 0 , 1 , 0 ) .

Как составить каноническое уравнение прямой в пространстве

Мы выяснили, что канонические уравнения вида x – x 1 a x = y – y 1 a y = z – z 1 a z будут соответствовать прямой, проходящей через точку M 1 ( x 1 , y 1 , z 1 ) , а вектор a → = ( a x , a y , a z ) будет для нее направляющим. Значит, если мы знаем уравнение прямой, то можем вычислить координаты ее направляющего вектора, а при условии заданных координат вектора и некоторой точки, расположенной на прямой, мы можем записать ее канонические уравнения.

Разберем пару конкретных задач.

У нас есть прямая, заданная в трехмерном пространстве с помощью уравнения x + 1 4 = y 2 = z – 3 – 5 . Запишите координаты всех направляющих векторов для нее.

Решение

Чтобы получить координаты направляющего вектора, нам надо просто взять значения знаменателей из уравнения. Мы получим, что одним из направляющих векторов будет a → = ( 4 , 2 , – 5 ) , а множество всех подобных векторов можно сформулировать как μ · a → = 4 · μ , 2 · μ , – 5 · μ . Здесь параметр μ – любое действительное число (за исключением нуля).

Ответ: 4 · μ , 2 · μ , – 5 · μ , μ ∈ R , μ ≠ 0

Запишите канонические уравнения, если прямая в пространстве проходит через M 1 ( 0 , – 3 , 2 ) и имеет направляющий вектор с координатами – 1 , 0 , 5 .

Решение

У нас есть данные, что x 1 = 0 , y 1 = – 3 , z 1 = 2 , a x = – 1 , a y = 0 , a z = 5 . Этого вполне достаточно, чтобы сразу перейти к записи канонических уравнений.

x – x 1 a x = y – y 1 a y = z – z 1 a z ⇔ x – 0 – 1 = y – ( – 3 ) 0 = z – 2 5 ⇔ ⇔ x – 1 = y + 3 0 = z – 2 5

Ответ: x – 1 = y + 3 0 = z – 2 5

Эти задачи – самые простые, потому что в них есть все или почти все исходные данные для записи уравнения или координат вектора. На практике чаще можно встретить те, в которых сначала нужно находить нужные координаты, а потом записывать канонические уравнения. Примеры таких задач мы разбирали в статьях, посвященных нахождению уравнений прямой, проходящей через точку пространства параллельно заданной, а также прямой, проходящей через некоторую точку пространства перпендикулярно плоскости.

Канонические уравнения с одним или двумя a, равными нулю

Ранее мы уже говорили, что одно-два значения параметров a x , a y , a z в уравнениях могут иметь нулевые значения. При этом запись x – x 1 a x = y – y 1 a y = z – z 1 a z = λ приобретает формальный характер, поскольку мы получаем одну или две дроби с нулевыми знаменателями. Ее можно переписать в следующем виде (при λ ∈ R ):

x = x 1 + a x · λ y = y 1 + a y · λ z = z 1 + a z · λ

Рассмотрим эти случаи подробнее. Допустим, что a x = 0 , a y ≠ 0 , a z ≠ 0 , a x ≠ 0 , a y = 0 , a z ≠ 0 , либо a x ≠ 0 , a y ≠ 0 , a z = 0 . В таком случае нужные уравнения мы можем записать так:

    В первом случае:
    x – x 1 0 = y – y 1 a y = z – z 1 a z = λ ⇔ x – x 1 = 0 y = y 1 + a y · λ z = z 1 + a z · λ ⇔ x – x 1 = 0 y – y 1 a y = z – z 1 a z = λ

Во втором случае:
x – x 1 a x = y – y 1 0 = z – z 1 a z = λ ⇔ x = x 1 + a x · λ y – y 1 = 0 z = z 1 + a z · λ ⇔ y – y 1 = 0 x – x 1 a x = z – z 1 a z = λ

В третьем случае:
x – x 1 a x = y – y 1 a y = z – z 1 0 = λ ⇔ x = x 1 + a x · λ y = y 1 + a y · λ z – z 1 = 0 ⇔ z – z 1 = 0 x – x 1 a x = y – y 1 a y = λ

Получается, что при таком значении параметров нужные прямые находятся в плоскостях x – x 1 = 0 , y – y 1 = 0 или z – z 1 = 0 , которые располагаются параллельно координатным плоскостям (если x 1 = 0 , y 1 = 0 либо z 1 = 0 ). Примеры таких прямых показаны на иллюстрации.

Следовательно, мы сможем записать канонические уравнения немного иначе.

  1. В первом случае: x – x 1 0 = y – y 1 0 = z – z 1 a z = λ ⇔ x – x 1 = 0 y – y 1 = 0 z = z 1 + a z · λ , λ ∈ R
  2. Во втором: x – x 1 0 = y – y 1 a y = z – z 1 0 = λ ⇔ x – x 1 = 0 y = y 1 + a y · λ , λ ∈ R z – z 1 = 0
  3. В третьем: x – x 1 a x = y – y 1 0 = z – z 1 0 = λ ⇔ x = x 1 + a x · λ , λ ∈ R y = y 1 = 0 z – z 1 = 0

Во всех трех случаях исходные прямые будут совпадать с координатными осями или окажутся параллельными им: x 1 = 0 y 1 = 0 , x 1 = 0 z 1 = 0 , y 1 = 0 z 1 = 0 . Их направляющие векторы имеют координаты 0 , 0 , a z , 0 , a y , 0 , a x , 0 , 0 . Если обозначить направляющие векторы координатных прямых как i → , j → , k → , то направляющие векторы заданных прямых будут коллинеарными по отношению к ним. На рисунке показаны эти случаи:

Покажем на примерах, как применяются эти правила.

Найдите канонические уравнения, с помощью которых можно определить в пространстве координатные прямые O z , O x , O y .

Решение

Координатные векторы i → = ( 1 , 0 , 0 ) , j → = 0 , 1 , 0 , k → = ( 0 , 0 , 1 ) будут для исходных прямых направляющими. Также мы знаем, что наши прямые будут обязательно проходить через точку O ( 0 , 0 , 0 ) , поскольку она является началом координат. Теперь у нас есть все данные, чтобы записать нужные канонические уравнения.

Для прямой O x : x 1 = y 0 = z 0

Для прямой O y : x 0 = y 1 = z 0

Для прямой O z : x 0 = y 0 = z 1

Ответ: x 1 = y 0 = z 0 , x 0 = y 1 = z 0 , x 0 = y 0 = z 1 .

В пространстве задана прямая, которая проходит через точку M 1 ( 3 , – 1 , 12 ) . Также известно, что она расположена параллельно оси ординат. Запишите канонические уравнения этой прямой.

Решение

Учитывая условие параллельности, мы можем сказать, что вектор j → = 0 , 1 , 0 будет для нужной прямой направляющим. Следовательно, искомые уравнения будут иметь вид:

x – 3 0 = y – ( – 1 ) 1 = z – 12 0 ⇔ x – 3 0 = y + 1 1 = z – 12 0

Ответ: x – 3 0 = y + 1 1 = z – 12 0

Как записать каноническое уравнение прямой, которая проходит через две заданные точки

Допустим, что у нас есть две несовпадающие точки M 1 ( x 1 , y 1 , z 1 ) и M 2 ( x 2 , y 2 , z 2 ) , через которые проходит прямая. Как в таком случае мы можем сформулировать для нее каноническое уравнение?

Для начала примем вектор M 1 M 2 → (или M 2 M 1 → ) за направляющий вектор данной прямой. Поскольку у нас есть координаты нужных точек, сразу вычисляем координаты вектора:

M 1 M 2 → = x 2 – x 1 , y 2 – y 1 , z 2 – z 1

Далее переходим непосредственно к записи канонического уравнения, ведь все нужные данные у нас уже есть. Исходная прямая будет определяться записями следующего вида:

x – x 1 x 2 – x 1 = y – y 1 y 2 – y 1 = z – z 1 z 2 – z 1 x – x 2 x 2 – x 1 = y – y 2 y 2 – y 1 = z – z 2 z 2 – z 1

Получившиеся равенства – это и есть канонические уравнения прямой, проходящей через две заданные точки. Взгляните на иллюстрацию:

Приведем пример решения задачи.

в пространстве есть две точки с координатами M 1 ( – 2 , 4 , 1 ) и M 2 ( – 3 , 2 , – 5 ) , через которые проходит прямая. Запишите канонические уравнения для нее.

Решение

Согласно условиям, x 1 = – 2 , y 1 = – 4 , z 1 = 1 , x 2 = – 3 , y 2 = 2 , z 2 = – 5 . Нам требуется подставить эти значения в каноническое уравнение:

x – ( – 2 ) – 3 – ( – 2 ) = y – ( – 4 ) 2 – ( – 4 ) = z – 1 – 5 – 1 ⇔ x + 2 – 1 = y + 4 6 = z – 1 – 6

Если мы возьмем уравнения вида x – x 2 x 2 – x 1 = y – y 2 y 2 – y 1 = z – z 2 z 2 – z 1 , то у нас получится: x – ( – 3 ) – 3 – ( – 2 ) = y – 2 2 – ( – 4 ) = z – ( – 5 ) – 5 – 1 ⇔ x + 3 – 1 = y – 2 6 = z + 5 – 6

Ответ: x + 3 – 1 = y – 2 6 = z + 5 – 6 либо x + 3 – 1 = y – 2 6 = z + 5 – 6 .

Преобразование канонических уравнений прямой в пространстве в другие виды уравнений

Иногда пользоваться каноническими уравнениями вида x – x 1 a x = y – y 1 a y = z – z 1 a z не очень удобно. Для решения некоторых задач лучше использовать запись x = x 1 + a x · λ y = y 1 + a y · λ z = z 1 + a z · λ . В некоторых случаях более предпочтительно определить нужную прямую с помощью уравнений двух пересекающихся плоскостей A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 2 = 0 . Поэтому в данном пункте мы разберем, как можно перейти от канонических уравнений к другим видам, если это требуется нам по условиям задачи.

Понять правила перехода к параметрическим уравнениям несложно. Сначала приравняем каждую часть уравнения к параметру λ и разрешим эти уравнения относительно других переменных. В итоге получим:

x – x 1 a x = y – y 1 a y = z – z 1 a z ⇔ x – x 1 a x = y – y 1 a y = z – z 1 a z ⇔ ⇔ x – x 1 a x = λ y – y 1 a y = λ z – z 1 a z = λ ⇔ x = x 1 + a x · λ y = y 1 + a y · λ z = z 1 + a z · λ

Значение параметра λ может быть любым действительным числом, ведь и x , y , z могут принимать любые действительные значения.

В прямоугольной системе координат в трехмерном пространстве задана прямая, которая определена уравнением x – 2 3 = y – 2 = z + 7 0 . Запишите каноническое уравнение в параметрическом виде.

Решение

Сначала приравниваем каждую часть дроби к λ .

x – 2 3 = y – 2 = z + 7 0 ⇔ x – 2 3 = λ y – 2 = λ z + 7 0 = λ

Теперь разрешаем первую часть относительно x , вторую – относительно y , третью – относительно z . У нас получится:

x – 2 3 = λ y – 2 = λ z + 7 0 = λ ⇔ x = 2 + 3 · λ y = – 2 · λ z = – 7 + 0 · λ ⇔ x = 2 + 3 · λ y = – 2 · λ z = – 7

Ответ: x = 2 + 3 · λ y = – 2 · λ z = – 7

Следующим нашим шагом будет преобразование канонических уравнений в уравнение двух пересекающихся плоскостей (для одной и той же прямой).

Равенство x – x 1 a x = y – y 1 a y = z – z 1 a z нужно для начала представить в виде системы уравнений:

x – x 1 a x = y – y 1 a y x – x 1 a x = z – z 1 a x y – y 1 a y = z – z 1 a z

Поскольку p q = r s мы понимаем как p · s = q · r , то можно записать:

x – x 1 a x = y – y 1 a y x – x 1 a x = z – z 1 a z y – y 1 a y = z – z 1 a z ⇔ a y · ( x – x 1 ) = a x · ( y – y 1 ) a z · ( x – x 1 ) = a x · ( z – z 1 ) a z · ( y – y 1 ) = a y · ( z – z 1 ) ⇔ ⇔ a y · x – a x · y + a x · y 1 – a y · x 1 = 0 a z · x – a x · z + a x · z 1 – a z · x 1 = 0 a z · y – a y · z + a y · z 1 – a z · y 1 = 0

В итоге у нас вышло, что:

x – x 1 a x = y – y 1 a y = z – z 1 a z ⇔ a y · x – a x · y + a x · y 1 – a y · x 1 = 0 a z · x – a x · z + a x · z 1 – a z · x 1 = 0 a z · y – a y · z + a y · z 1 – a z · y 1 = 0

Выше мы отмечали, что все три параметра a не могут одновременно быть нулевыми. Значит, ранг основной матрицы системы будет равен 2 , поскольку a y – a x 0 a z 0 – a x 0 a z – a y = 0 и один из определителей второго порядка не равен 0 :

a y – a x a z 0 = a x · a z , a y 0 a z – a x = a x · a y , – a x 0 0 – a x = a x 2 a y – a x 0 a z = a y · a z , a y 0 0 – a y = – a y 2 , – a x 0 a z – a y = a x · a y a z 0 0 a z = a z 2 , a z – a x 0 – a y = – a y · a z , 0 – a x a z – a y = a x · a z

Это дает нам возможность исключить одно уравнение из наших расчетов. Таким образом, канонические уравнения прямой можно преобразовать в систему из двух линейных уравнений, которые будут содержать 3 неизвестных. Они и будут нужными нам уравнениями двух пересекающихся плоскостей.

Рассуждение выглядит довольно сложным, однако на практике все делается довольно быстро. Продемонстрируем это на примере.

Прямая задана каноническим уравнением x – 1 2 = y 0 = z + 2 0 . Напишите для нее уравнение пересекающихся плоскостей.

Решение

Начнем с попарного приравнивания дробей.

x – 1 2 = y 0 = z + 2 0 ⇔ x – 1 2 = y 0 x – 1 2 = z + 2 0 y 0 = z + 2 0 ⇔ ⇔ 0 · ( x – 1 ) = 2 y 0 · ( x – 1 ) = 2 · ( z + 2 ) 0 · y = 0 · ( z + 2 ) ⇔ y = 0 z + 2 = 0 0 = 0

Теперь исключаем из расчетов последнее уравнение, потому что оно будет верным при любых x , y и z . В таком случае x – 1 2 = y 0 = z + 2 0 ⇔ y = 0 z + 2 = 0 .

Это и есть уравнения двух пересекающихся плоскостей, которые при пересечении образуют прямую, заданную с помощью уравнения x – 1 2 = y 0 = z + 2 0

Ответ: y = 0 z + 2 = 0

Прямая задана уравнениями x + 1 2 = y – 2 1 = z – 5 – 3 , найдите уравнение двух плоскостей, пересекающихся по данной прямой.

Решение

Приравниваем дроби попарно.

x + 1 2 = y – 2 1 = z – 5 – 3 ⇔ x + 1 2 = y – 2 1 x + 1 2 = z – 5 – 3 y – 2 1 = z – 5 – 3 ⇔ ⇔ 1 · ( x + 1 ) = 2 · ( y – 2 ) – 3 · ( x + 1 ) = 2 · ( z – 5 ) – 3 · ( y – 2 ) = 1 · ( z – 5 ) ⇔ x – 2 y + 5 = 0 3 x + 2 z – 7 = 0 3 y + 7 – 11 = 0

Получаем, что определитель основной матрицы полученной системы будет равен 0 :

1 – 2 0 3 0 2 0 3 1 = 1 · 0 · 1 + ( – 2 ) · 2 · 0 + 0 · 3 · 3 – 0 · 0 · 0 – 1 · 2 · 3 – ( – 2 ) · 3 · 1 = 0

Минор второго порядка нулевым при этом не будет: 1 – 2 3 0 = 1 · 0 – ( – 2 ) · 3 = 6 . Тогда мы можем принять его в качестве базисного минора.

В итоге мы можем вычислить ранг основной матрицы системы x – 2 y + 5 = 0 3 x + 2 z – 7 = 0 3 y + z – 11 = 0 . Это будет 2. Третье уравнение исключаем из расчета и получаем:

x – 2 y + 5 = 0 3 x + 2 z – 7 = 0 3 y + z – 11 = 0 ⇔ x – 2 y + 5 = 0 3 x + 2 z – 7 = 0

Ответ: x – 2 y + 5 = 0 3 x + 2 z – 7 = 0

[spoiler title=”источники:”]

http://mathhelpplanet.com/static.php?p=onlain-reshit-treugolnik

http://zaochnik.com/spravochnik/matematika/prjamaja-ploskost/kanonicheskie-uravnenija-prjamoj-v-prostranstve/

[/spoiler]

Как составить уравнение сторон треугольника по  координатам его вершин?

Зная координаты вершин треугольника, можно составить уравнение прямой, проходящей через 2 точки.

Пример.

Дано: ΔABC, A(-5;1), B(7;-4), C(3;7)

Составить уравнения сторон треугольника.

Решение:

1) Составим уравнение прямой AB, проходящей через 2 точки A и B.

Для этого в уравнение прямой y=kx+b подставляем координаты точек A(-5;1), B(7;-4) и из полученной системы уравнений находим k и b:

    [left{ begin{array}{l} 1 = k cdot ( - 5) + b; \ - 4 = k cdot 7 + b; \ end{array} right. Rightarrow k = - frac{5}{{12}};b = - frac{{13}}{{12}}.]

Таким образом, уравнение стороны AB

    [y = - frac{5}{{12}}x - frac{{13}}{{12}}.]

2) Прямая BC проходит через точки B(7;-4) и C(3;7):

    [left{ begin{array}{l} - 4 = k cdot 7 + b; \ 7 = k cdot 3 + b; \ end{array} right. Rightarrow k = - frac{{11}}{4};b = frac{{61}}{4}.]

Отсюда уравнение стороны BC —

    [y = - frac{{11}}{4}x + frac{{61}}{4}.]

3) Прямая AC проходит через точки A(-5;1) и C(3;7):

    [left{ begin{array}{l} 1 = k cdot ( - 5) + b; \ 7 = k cdot 3 + b; \ end{array} right. Rightarrow k = frac{3}{4};b = frac{{19}}{4}.]

Уравнение стороны AC —

    [y = frac{3}{4}x + frac{{19}}{4}.]

Решить треугольник Онлайн по координатам

Данный онлайн-сервис вычисляет (показываются промежуточные расчёты) следующие параметры треугольника:

1) длины и уравнения сторон, медиан, средних линий, высот, серединных перпендикуляров, биссектрис;

2) система линейных неравенств, определяющих треугольник;

2) уравнения прямых, проходящих через вершины параллельно противолежащим сторонам;

3) внутренние углы по теореме косинусов;

4) площадь треугольника;

5) точка пересечения медиан (центроид) и точки пересечения медиан со сторонами;

10) параметры вписанной и описанной окружностей и их уравнения.

Внимание! Этот сервис не работает в браузере IE (Internet Explorer).

Запишите координаты вершин треугольника и нажмите кнопку.

Математический форум (помощь с решением задач, обсуждение вопросов по математике).

Кнопка "Поделиться"

Если заметили ошибку, опечатку или есть предложения, напишите в комментариях.

Как найти уравнения сторон треугольника

Чтобы найти уравнения сторон треугольника, прежде всего надо постараться решить вопрос о том, как найти уравнение прямой на плоскости, если известен ее направляющий вектор s(m, n) и некоторая точка М0(x0, y0), принадлежащая прямой.

Как найти уравнения сторон треугольника

Инструкция

Возьмите произвольную (переменную, плавающую) точку М(x, y) и постройте вектор М0M ={x-x0, y-y0} (можно записать и М0M(x-x0, y-y0)), который, очевидно будет коллинеарен (параллелен) по отношению к s. Тогда, можно заключить, что координаты этих векторов пропорциональны, поэтому можно составить каноническое уравнение прямой: (x-x0)/m = (y-y0)/n. Именно это соотношение будет использоваться в дальнейшем при решении поставленной задачи.

Все дальнейшие действия определяются исходя из способа задания треугольника.1-й способ. Треугольник задан координатами точек трех его вершин, что в школьной геометрии соответствует заданию длин трех его сторон (см. рис. 1). То есть в условии даны точки M1(x1, y1), M2(x2, y2), M3(x3, y3). Им соответствуют их радиус-векторы ) OM1, 0M2 и ОМ3 с такими же, как и у точек, координатами. Для получения уравнения стороны М1М2 требуется ее направляющий вектор М1М2=ОМ2 – ОМ1=М1М2(x2-x1, y2-y1) и любая из точек М1 или М2 (здесь взята точка с меньшим индексом).

Итак, для стороны М1М2 каноническое уравнение прямой (x-x1)/(x2-x1)=(y-y1)/(y2-y1). Действуя чисто индуктивно можно записать уравнения остальных сторон.Для стороны М2М3: (x-x2)/(x3-x2)=(y-y2)/(y3-y2). Для стороны М1М3: (x-x1)/(x3-x1)=(y-y1)/(y3-y1).

2-й способ. Треугольник задан двумя точками (теми же, что и ранее М1(x1, y1) и M2(x2, y2)), а также ортами направлений двух других сторон. Для стороны М2М3: p^0(m1, n1). Для М1М3: q^0(m2, n2). Поэтому ответ для стороны М1М2 будет тем же, что и в первом способе:(x-x1)/(x2-x1)=(y-y1)/(y2-y1).

Для стороны М2М3 в качестве точки (x0, y0) канонического уравнения берется (x1, y1), а направ-ляющий вектор – это p^0(m1, n1). Для стороны М1М3 в качестве точки (x0, y0) берется (x2, y2), направляющий вектор – q^0(m2, n2). Таким образом, для М2М3: уравнение (x-x1)/m1=(y-y1)/n1.Для М1М3: (x-x2)/m2=(y-y2)/n2.

Видео по теме

Войти на сайт

или

Забыли пароль?
Еще не зарегистрированы?

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Добавить комментарий