Как найти каноническую систему координат поверхности

Канонические уравнения поверхностей второго порядка

Рассмотрим задачу приведения уравнения поверхности второго порядка к наиболее простому (каноническому) виду.

Напомним, что алгебраической поверхностью второго порядка называется геометрическое место точек плоскости, которое в какой-либо аффинной системе координат Ox_{1}x_{2}x_{3} может быть задано уравнением вида

begin{gathered} a_{11}cdot x_{1}^2+ a_{22}cdot x_{2}^2+a_{33}cdot x_{3}^2+ 2cdot a_{12}cdot x_{1}cdot x_{2}+ 2cdot a_{13}cdot x_{1}cdot x_{3} + 2cdot a_{23}cdot x_{2}cdot x_{3},+hfill\[2pt] +,2cdot a_{1}cdot x_{1}+ 2cdot a_{2}cdot x_{2}+ 2cdot a_{3}cdot x_{3}+ a_{0}=0, end{gathered}

(4.41)

где левая часть — многочлен трех переменных x_{1},x_{2},x_{3} второй степени. Коэффициенты при первых степенях переменных x_{1},x_{2},x_{3}, а также при их произведениях x_{1}cdot x_{2},,x_{1}cdot x_{3},,x_{2}cdot x_{3} взяты удвоенными просто для удобства дальнейших преобразований.

Уравнение (4.41) можно записать в матричном виде: x^Tcdot Acdot x+2cdot a^Tcdot x+a_{0}=0, где A=begin{pmatrix} a_{11}&a_{12}&a_{13}\ a_{12}&a_{22}&a_{23}\ a_{13}&a_{23}&a_{33} end{pmatrix} — матрица квадратичной формы, a=begin{pmatrix}a_{1}&a_{2}&a_{3}end{pmatrix}^T — столбец коэффициентов линейной формы (см. пункты 5,6, замечаний 4.1).

Требуется найти прямоугольную систему координат Oxyz, в которой уравнение поверхности приняло бы наиболее простой вид.

Результатом решения поставленной задачи является следующая основная теорема.


Классификация алгебраических поверхностей второго порядка

Теорема 4.3. Для любой алгебраической поверхности второго порядка существует прямоугольная система координат Oxyz, в которой уравнение этой поверхности принимает один из следующих семнадцати канонических видов:

Поверхности второго порядка: уравнения и чертежи

В этих уравнениях a>0,,b>0,,c>0,,p>0, причем ageqslant bgeqslant c в уравнениях 1,2; ageqslant b в уравнениях 3,4,5,6,7,9,10.

Теорема 4.3 дает аналитические определения поверхностей второго порядка. Согласно п.2 замечаний 4.1, поверхности (1),(4),(5),(6),(7),(8),(9), (12),(13),(14),(15),(17) называются вещественными (действительными), а поверхности (2),(3),(10),(11),(16) — мнимыми.

Поясним доказательство теоремы. Оно аналогично доказательству теоремы 3.3 и фактически содержит алгоритм решения поставленной задачи.

Без ограничения общности можно предполагать, что уравнение поверхности второго порядка задано в прямоугольной системе координат. В противном случае можно перейти от непрямоугольной системы координат Ox_{1}x_{2}x_{3} к прямоугольной Oxyz, при этом уравнение линии будет иметь тот же вид и ту же степень согласно теореме 4.1.

Пусть в прямоугольной системе координат Ox_{1}x_{2}x_{3} алгебраическая поверхность второго порядка задана уравнением (4.41), в котором хотя бы один из старших коэффициентов ап, a_{11}, a_{22}, a_{33}, a_{12}, a_{13}, a_{23} отличен от нуля,n поскольку левая часть уравнения — многочлен трех переменных x_{1},x_{2},x_{3} второй степени.

Упрощение общего уравнения (4.41) производится в два этапа. На первом этапе при помощи однородного ортогонального преобразования координат “уничтожаются” члены с произведением неизвестных, как и в случае уравнения линии второго порядка, при этом достаточно сделать три поворота (см. углы Эйлера).

Докажем, что существует однородная ортогональная замена переменных

begin{cases} x_{1}=s_{11}cdot x'_{1}+s_{12}cdot x'_{2}+s_{13}cdot x'_{3},\ x_{2}=s_{21}cdot x'_{1}+s_{22}cdot x'_{2}+s_{23}cdot x'_{3},\ x_{3}=s_{31}cdot x'_{1}+s_{32}cdot x'_{2}+s_{33}cdot x'_{3}, end{cases}Leftrightarrow quad x=Scdot x',,

(4.42)

где x=begin{pmatrix}x_{1}\x_{2}\x_{3}end{pmatrix}!,~ x'=begin{pmatrix}x'_{1}\x'_{2}\x'_{3}end{pmatrix} — столбцы старых и новых переменных, S=begin{pmatrix} s_{11}&s_{12}&s_{13}\ s_{21}&s_{22}&s_{23}\ s_{31}&s_{32}&s_{33} end{pmatrix} — ортогональная матрица (S^T=S^{-1}), при которой квадратичная форма

x^Tcdot Acdot x=a_{11}cdot x_{1}^2+a_{22}cdot x_{2}^2+a_{33}cdot x_{3}^2+ 2cdot a_{12}cdot x_{1}cdot x_{2}+2cdot a_{13}cdot x_{1}cdot x_{3} +2cdot a_{23}cdot x_{2}cdot x_{3}

приводится к каноническому виду

(x')^TcdotLambdacdot x'=lambda_{1}cdot(x'_{1})^2+ lambda_{2}cdot(x'_{2})^2+ lambda_{3}cdot(x'_{3})^2,

для которого матрица квадратичной формы диагональная: Lambda=begin{pmatrix}lambda_{1}&0&0\0&lambda_{2}&0\0&0&lambda_{3}end{pmatrix}

Действительно, подставляя x=Scdot x' в квадратичную форму x^Tcdot Acdot x, получаем

x^Tcdot Acdot x=(Scdot x')^Tcdot Acdot Scdot x'=(x')^Tcdot S^Tcdot Acdot Scdot x'=(x')^Tcdot A'cdot x',,

т.е. при однородной ортогональной замене переменных (4.42) матрица квадратичной формы преобразуется по закону

A'=S^Tcdot Acdot S,.

(4.43)

Составим характеристическое уравнение для матрицы A (см. пункт 3 замечаний 3.12):

det(A-lambdacdot E)=,,vlinebegin{matrix}a_{11}-lambda&a_{12}&a_{13}\ a_{12}&a_{22}-lambda&a_{23}\ a_{13}&a_{23}&a_{33}-lambdaend{matrix},vline,=0.

Так как это уравнение третьей степени, то оно имеет хотя бы один действительный корень. Обозначим его lambda_{3}. Однородная система уравнений

begin{cases} (a_{11}-lambda_{3})cdot x_{1}+a_{12}cdot x_{2}+a_{13}cdot x_{3}=0,\ a_{12}cdot x_{1}+(a_{22}-lambda_{3})cdot x_{2}+a_{23}cdot x_{3}=0,\ a_{13}cdot x_{1}+a_{23}cdot x_{2}+(a_{33}-lambda_{3})cdot x_{3}=0, end{cases} или (A-lambda_{3}cdot E)cdot x=o,

определитель которой равен нулю, имеет бесконечно много ненулевых решений. Обозначим через vec{s}_{3} вектор, координатный столбец которого совпадает с ненулевым решением s=begin{pmatrix}s_{13}& s_{23}& s_{33}end{pmatrix}^T системы, удовлетворяющим условию нормировки |vec{s}_{3}|= sqrt{langle,vec{s}_{3},vec{s}_{3},rangle}= sqrt{s_{3}^Tcdot s_{3}}=1. Дополним этот единичный вектор vec{s}_{3} векторами vec{s}_{1},vec{s}_{2} до ортонормированного базиса vec{s}_{1},vec{s}_2,vec{s}_{3} пространства. Координатные столбцы s_{1},s_{2},s_{3} векторов vec{s}_{1},vec{s}_2,vec{s}_{3} удовлетворяют условиям

begin{matrix} langle,vec{s}_{1},vec{s}_{1},rangle=s_{1}^Tcdot s_{1}=1,& langle,vec{s}_{2},vec{s}_{2},rangle=s_{2}^Tcdot s_{2}=1,& langle,vec{s}_{3},vec{s}_{3},rangle=s_{3}^Tcdot s_{3}=1,\[7pt] langle,vec{s}_{1},vec{s}_{2},rangle=s_{1}^Tcdot s_{2}=0,& langle,vec{s}_{1},vec{s}_{3},rangle=s_{1}^Tcdot s_{3}=0,& langle,vec{s}_{2},vec{s}_{3},rangle=s_{2}^Tcdot s_{3}=0,end{matrix}

(4.44)

кроме того столбец s_{3} удовлетворяет равенству (A-lambda_{3}E)cdot s_{3}=o или, что то же самое, Acdot s_{3}=lambda_{3}cdot s_{3}. Из координатных столбцов s_{1},s_{2},s_{3} базисных векторов составим матрицу S=(s_{1}mid s_{2}mid s_{3}), которая в силу (4.44) является ортогональной, так как

S^Tcdot S= begin{pmatrix}dfrac{dfrac{s_{1}^T}{s_{2}^T}}{s_{3}^T}end{pmatrix}cdot begin{pmatrix}s_{1}mid s_{2}mid s_{3}end{pmatrix}= begin{pmatrix} dfrac{dfrac{s_{1}^Tcdot s_{1}~~vline~~s_{1}^Tcdot s_{2}~~vline~~s_{1}^Tcdot s_{3}}{s_{2}^Tcdot s_{1}~~vline~~s_{2}^Tcdot s_{2}~~vline~~s_{2}^Tcdot s_{3}}}{s_{3}^Tcdot s_{1}~~vline~~s_{3}^Tcdot s_{2}~~vline~~s_{3}^Tcdot s_{3}}end{pmatrix}= begin{pmatrix} 1&0&0\0&1&0\0&0&1end{pmatrix}=E

и, следовательно, S^T=S^{-1}. Сделаем в квадратичной форме x^Tcdot Acdot x замену переменных x=Scdot x' с ортогональной матрицей S=begin{pmatrix}s_{1}mid s_{2}mid s_{3}end{pmatrix}. По закону (4.43) находим

A'=S^Tcdot Acdot S=S^Tcdot Acdot begin{pmatrix}s_{1}mid s_{2}mid s_{3}end{pmatrix}=begin{pmatrix}S^Tcdot Acdot s_{1}mid S^Tcdot Acdot s_{2}mid S^Tcdot Acdot s_{3}end{pmatrix}.

Последний столбец этой матрицы, учитывая равенство Acdot s_{3}=lambda_{3}cdot s_{3} и ортогональность S, имеет вид

S^Tcdot Acdot s_{3}= lambda_{3}cdot S^Tcdot s_{3}= lambda_{3}cdot!begin{pmatrix}dfrac{dfrac{s_{1}^T}{s_{2}^T}}{s_{3}^T}end{pmatrix}!cdot s_{3}= lambda_{3}cdot!begin{pmatrix}dfrac{dfrac{s_{1}^Tcdot s_{3}}{s_{2}^Tcdot s_{3}}}{s_{3}^Tcdot s_{3}}end{pmatrix}= lambda_{3}cdot!begin{pmatrix}0\0\1end{pmatrix}=begin{pmatrix}0\0\lambda_{3}end{pmatrix}!.

Следовательно, в матрице A' элементы a'_{13}=a'_{23}=0 и a'_{33}=lambda_{3}. Поэтому квадратичная форма имеет вид

(x')^Tcdot A'cdot x'= a'_{11}cdot(x'_{1})^2+2cdot a'_{11}cdot x'_{1}cdot x'_{2}+a'_{22}cdot(x'_{2})^2+lambda_{3}cdot(x'_{3})^2.

Как показано при доказательстве теоремы 3.3, многочлен a'_{11}cdot(x'_{1})^2+2cdot a'_{11}cdot x'_{1}cdot x'_{2}+a'_{22}cdot(x'_{2})^2 двух переменных при помощи поворота системы координат Ox'_{1}x'_{2} можно привести к виду lambda_{1}cdot(x''_{2})^2+lambda_{2}cdot(x''_{2})^2. Этот поворот соответствует повороту найденной системы координат Ovec{s}_{1}vec{s}_{2}vec{s}_{3} вокруг оси аппликат.

Таким образом, существует преобразование прямоугольной системы координат, приводящее квадратичную форму к каноническому виду. При этом уравнение (4.41) не содержит членов с произведением неизвестных:

lambda_{1}cdot x^2+lambda_{2}cdot y^2+lambda_{3}cdot z^2+2cdot a'_{1}cdot x+2cdot a'_{2}cdot y+2cdot a'_{3}cdot z+a_{0}=0.

(4.45)

На втором этапе, при помощи параллельного переноса “уничтожаются” один, два или все три члена первой степени. В результате всех преобразований получаем систему координат O'x'y'z', в которой уравнение (4.45) становится приведенным (одного из следующих пяти типов):

begin{aligned} mathsf{(I)}colon&~ lambda_{2}cdot(y')^2+a'_{0}=0, quad lambda_{2}ne0;\[2pt] mathsf{(II)}colon&~ lambda_{2}cdot(y')^2+2cdot a'_{1}cdot x'=0, quad lambda_{2}ne0,~a'_{1}ne0;\[2pt] mathsf{(III)}colon&~ lambda_{1}cdot(x')^2+ lambda_{2}cdot(y')^2+ a'_{0}=0, quad lambda_{1}ne0,~ lambda_{2}ne0;\[2pt] mathsf{(IV)}colon&~ lambda_{1}cdot(x')^2+ lambda_{2}cdot(y')^2+ a'_{3}cdot z'=0, quad lambda_{1}ne0,~ lambda_{2}ne0,~a'_{3}ne0;\[2pt] mathsf{(V)}colon&~ lambda_{1}cdot(x')^2+ lambda_{2}cdot(y')^2+ lambda_{3}cdot(z')^2+a'_{0}=0, quad lambda_{1}ne0,~ lambda_{2}ne0,~lambda_{3}ne0. end{aligned}

Уравнения (I), (II), (II) совпадают с приведенными уравнениями линии второго порядка, поскольку не зависят от неизвестной z. В разделе показано, что они сводятся к каноническим уравнениям эллипсов, гиперболы, параболы или пар прямых. Поэтому уравнения (I), (II), (III) соответственно сводятся к каноническим уравнениям цилиндров (9), (10), (12), (14): эллиптического, гиперболического, параболического, или пар плоскостей (11), (13), (15), (16), (17).

Уравнение (IV) в зависимости от знаков коэффициентов сводится к каноническим уравнениям параболоидов (7) или (8). Например, если все коэффициенты lambda_{1},lambda_{2},a'_{3} положительны, то, перенося линейный член a'_{3}cdot z' в правую часть и разделив обе части уравнения на frac{1}{2}a'_{3}, получим frac{2lambda_{1}}{a'_{3}}(x')^2+frac{2lambda_{2}}{a'_{3}}(y')^2=-2z'. Обозначим положительные величины a^2=frac{a'_{3}}{2lambda_{1}}, b^2=frac{a'_{3}}{2lambda_{2}} и изменим направление оси аппликат, т.е. сделаем замену: x'=x'', y'=y'', z'=z''. В результате получим уравнение эллиптического параболоида (7): frac{(x'')^2}{a^2}+frac{(y'')^2}{b^2}=2z'' Если окажется, что a<b, то переименуем координатные оси: x''=y''', y''=x'''.

Уравнение (V) в зависимости от знаков коэффициентов сводится к каноническим уравнениям эллипсоидов (1),(2), гиперболоидов (4),(5) или конусов (3),(6).


Замечания 4.7.

1. Система координат, в которой уравнение алгебраической поверхности второго порядка имеет канонический вид, называется канонической. Каноническая система координат определяется неоднозначно. Например, изменяя направление оси ординат на противоположное, снова получаем каноническую систему координат, так как замена переменной y на (-y) не изменяет уравнений (1)–(17).

2. Поверхности второго порядка, приведенные в формулировке теоремы 4.3, изображены в канонической системе координат. Изображение мнимых поверхностей дается штриховыми линиями только для иллюстрации.

3. В случаях (11),(13),(15)-(17) поверхности называются распадающимися, поскольку соответствующие им многочлены второй степени разлагаются в произведение многочленов первой степени.

4. Напомним, что ненулевой столбец x=begin{pmatrix}x_{1}&x_{2}&x_{3}end{pmatrix}^T, удовлетворяющий равенству Acdot x=lambdacdot x, называется собственным вектором матрицы A, а число lambdaсобственным значением этой матрицы. Говорят, что собственный вектор x соответствует (принадлежит) собственному значению lambda.

Как показано при доказательстве теоремы 4.3, при помощи однородной ортогональной замены переменных (4.42) x=Scdot x' или, что то же самое, при помощи поворотов прямоугольной системы координат Ox_{1}x_{2}x_{3} вокруг ее начала O, квадратичную форму

x^Tcdot Acdot x=a_{11}cdot x_{1}^2+a_{22}cdot x_{2}^2+a_{33}cdot x_{3}^2+2cdot a_{12}cdot x_{1}cdot x_{2}+2cdot a_{13}cdot x_{1}cdot x_{3}+2cdot a_{23}cdot x_{2}cdot x_{3}

можно привести к каноническому виду

(x')^Tcdot Lambdacdot x'= lambda_{1}cdot(x'_{1})^2+lambda_{2}cdot(x'_{2})^2+lambda_{3}cdot(x'_{3})^2,

где lambda_{1},lambda_{2},lambda_{3} — собственные числа матрицы A квадратичной формы, т.е. корни характеристического уравнения: det(A-lambda E)=0, а матрица S=(s_{1}mid s_{2}mid s_{3}) замены переменных составлена из попарно ортогональных единичных собственных векторов s_{1},s_{2},s_{3} матрицы A, соответствующих собственным значениям lambda_{1},lambda_{2},lambda_{3}. Другими словами, для любой квадратичной формы x^Tcdot Acdot x (трех переменных) существует ортонормированный базис vec{s}_{1},vec{s}_{2},vec{s}_{3}, составленный из собственных векторов матрицы A, в котором квадратичная форма имеет канонический вид.

5. При ортогональном преобразовании координат собственные векторы матрицы A квадратичной формы не изменяются, а именно, если s_{1} собственный вектор матрицы A (соответствующий собственному значению lambda_{1}), то вектор s'_{1}=S^{-1}cdot s_{1} является собственным для матрицы A'=S^Tcdot Acdot S, где S — ортогональная матрица.

Действительно, учитывая, что S^T=S^{-1},~s_{1}=Scdot s'_{1} и Acdot s_{1}=lambda_{1}cdot s_{1}, получаем

A'cdot s'_{1}= underbrace{S^Tcdot Acdot S}_{A'}cdot underbrace{S^{-1}cdot s_{1}}_{s'_{1}}= S^Tcdot Acdotunderbrace{Scdot S^{-1}}_{E}cdot s_{1}= S^Tcdotunderbrace{Acdot s_{1}}_{lambda_{1}cdot s_{1}}= lambda_{1}cdotunderbrace{S^{-1}cdot s_{1}}_{s'_{1}}= lambda_{1}cdot s'_{1},,

т.е. A'cdot s'_{1}=lambda_{1}cdot s'_{1}. Следовательно, s'_{1} — собственный вектор, соответствующий собственному значению lambda_{1}.

6. При однородной невырожденной замене переменных x=Scdot x' линейная форма a^Tcdot x=a_{1}x_{1}+a_{2}x_{2}+a_{3}x_{3} меняется следующим образом a^Tcdot Scdot x'=(a')^Tx', т.е. столбец коэффициентов линейной формы изменяется по закону a'=S^Tcdot a. Свободный член квадратичной функции при однородной замене переменных x=Scdot x' не изменяется.

Продолжение Порядок приведения уравнения поверхности второго порядка к каноническому виду

Математический форум (помощь с решением задач, обсуждение вопросов по математике).

Кнопка "Поделиться"

Если заметили ошибку, опечатку или есть предложения, напишите в комментариях.

11.3.1. Классификация поверхностей второго порядка

Алгебраической поверхностью
второго порядка называется
геометрическое место точек пространства,
которое в какой-либо аффинной системе
координат

может быть задано уравнением вида


,

где старшие коэффициенты

,

,

,

,

,

не равны нулю одновременно. Без ограничения
общности можно считать, что система
координат, в которой задано уравнение
поверхности второго порядка, прямоугольная.
Для каждой поверхности второго порядка
существует прямоугольная система
координат

,
в которой уравнение принимает наиболее
простой (канонический) вид. Она
называется канонической, а
уравнение – каноническим.

Канонические уравнения поверхностей второго порядка

1.

– уравнение эллипсоида;

2.


уравнение мнимого эллипсоида;

3.


уравнение мнимого конуса;

4.


уравнение однополостного

гиперболоида;

5.


уравнение двуполостного

гиперболоида;

6.


уравнение конуса;

7.


уравнение эллиптического

параболоида;

8.


уравнение гиперболического

параболоида;

9.


уравнение эллиптического

цилиндра;

10.


уравнение мнимого

эллиптического цилиндра;

11.

уравнение пары мнимых

пересекающихся плоскостей;

1
2.

уравнение гиперболического


цилиндра;

13.

уравнение пары пересекающихся

плоскостей;

14.

уравнение параболического

цилиндра;

15.

уравнение пары параллельных

плоскостей;

16.

уравнение пары мнимых

параллельных плоскостей;

17.

уравнение пары совпадающих

плоскостей.

В этих уравнениях

,

,

,

,
причем

в уравнениях п.1–3;

в уравнениях п.4–7,9–11.

Поверхности (1),(4)–(9), (12)–(15),(17) называются
вещественными (действительными),
а поверхности (2),(3),(10),(11),(16) – мнимыми.
Вещественные поверхности изображены
в канонических системах координат.
Изображения мнимых поверхностей даются
штриховыми линиями только для иллюстрации.

Поверхность второго порядка называется
центральной, если она имеет
единственный центр (симметрии). В
противном случае, если центр отсутствует
или не является единственным, поверхность
называется нецентральной. К
центральным поверхностям относятся
эллипсоиды (вещественный и мнимый),
гиперболоиды (однополостный и
двуполостный), конусы (вещественный и
мнимый). Остальные поверхности –
нецентральные.

Алгоритм составления канонического уравнения поверхности второго порядка

Пусть в прямоугольной системе координат

поверхность второго порядка описывается
уравнением

.

Требуется определить ее название и
составить каноническое уравнение. Для
этого нужно выполнить следующие действия:

1. Вычислить ортогональные инварианты


,


,


,


.

Если

,
то вычислить семиинвариант


.

Если

и

,
то вычислить семиинвариант


.

2. По табл. 11.1 определить название
поверхности, а по названию –каноническое
уравнение поверхности второго порядка.

3. Составить характеристическое уравнение


,

используя коэффициенты, вычисленные в
п.1, либо разлагая определитель


.

Найти корни

,
,

(с учетом кратности) характеристического
уравнения.

4. Занумеровать корни

,
,

характеристического уравнения в
соответствии с правилами:

а) если поверхность эллиптического
типа, то

;

б) если поверхность гиперболического
типа, то обозначить через

и

корни одного знака так, чтобы

,
а через

– корень противоположного знака;

в) если поверхность параболического
типа, то

– если нулевой корень двойной, то

и

;

– если нулевой корень простой, а
ненулевые корни одного знака, то

и

;

– если нулевой корень простой, а
ненулевые корни разных знаков, то

и либо

,
если

или

,
либо

,
если

и

.

5. Вычислить коэффициенты канонического
уравнения и записать его в канонической
системе координат

:

а) для поверхностей эллиптического
типа:

(1) – при

– уравнение эллипсоида

с коэффициентами

,


,


;

Таблица
11.1. Классификация
поверхностей второго порядка

Признаки

Название
поверхности

Центральные
поверхности

Эллиптический

тип

Эллипсоид

1

Мнимый эллипсоид

2

Мнимый конус

3

Гиперболический

тип

Однополостный
гиперболоид

4

Двуполостный
гиперболоид

5

Конус

6

Нецентральные
поверхности

Параболический
тип

Эллиптический
параболоид

7

Гиперболический
параболоид

8

Эллиптический
цилиндр

9

Мнимый эллиптический

цилиндр

10

Пара мнимых
пересекающихся плоскостей

11

Гиперболический
цилиндр

12

Пара пересекающихся

плоскостей

13

Параболический
цилиндр

14

Пара параллельных

плоскостей

15

Пара мнимых
параллельных

плоскостей

16

Пара совпадающих

плоскостей

17

(2) при

– уравнение мнимого эллипсоида

с коэффициентами

,


,


;

(3) при

– уравнение мнимого конуса

с коэффициентами

,


,


;

б) для поверхностей гиперболического
типа:

(4) при

– уравнение однополостного гиперболоида

с коэффициентами

,

,

;

(5) при

– уравнение двуполостного гиперболоида

с коэффициентами

,


,


;

(6) при

– уравнение конуса

с коэффициентами

,

,

;

в) для поверхностей параболического
типа:

(7) при

– уравнение эллиптического параболоида

с коэффициентами

,


;

(8) при

– уравнение гиперболического
параболоида

с коэффициентами

,

;

(9) при

,

,

– уравнение эллиптического цилиндра

с коэффициентами

,


;

(10) при

,

,

– уравнение мнимого эллиптического
цилиндра

с коэффициентами

,


;

(11) при

,

,

– уравнение пары мнимых пересекающихся
плоскостей

с коэффициентами

,

;

(12) при

,

,

– уравнение гиперболического цилиндра

с коэффициентами

,

;

(13) при

,

,

– уравнение пары пересекающихся
плоскостей

с коэффициентами

,


;

(14) при

,

,

– уравнение параболического цилиндра

с коэффициентом

;

(15) при

,

,

,

– уравнение пары параллельных
плоскостей

с коэффициентом

;

(16) при

,

,

,

– уравнение пары мнимых параллельных
плоскостей

с коэффициентом

;

(17) при

,

,

,

– уравнение пары совпадающих плоскостей

.

Пример 11.10. Определить названия и
составить канонические уравнения
алгебраических поверхностей второго
порядка, заданных в прямоугольной
системе координат

уравнениями:

а)

;

б)

при

,

или

;

в)

;

г)

;

д)

;

е)

при

или

;

ж)

;

з)

;

и)

.

 а)
Определяем коэффициенты уравнения:

,

,

,

,

,

,

,

,

,

.

1. Вычисляем инварианты:

,


,


,


.

2. По табл. 11.1 определяем, что уравнение
задает эллипсоид, так как

,

,

.

3. Составляем характеристическое
уравнение

и находим его корни:

(двойной корень),

(простой корень).

4. Поскольку поверхность эллиптического
типа, то корни уравнения обозначим

,

,
чтобы выполнялось условие

.

5. Вычисляем коэффициенты канонического
уравнения эллипсоида:


,

,

.

Таким образом, каноническое уравнение
(1) заданной поверхности имеет вид


.

б) Определяем коэффициенты уравнения:

,

,

,

,

,

,

,

,

.

1. Вычисляем инварианты:

,


,


,


.

2. По табл. 11.1 определяем, что уравнение
задает поверхность гиперболического
типа, так как

.
При

получаем уравнение однополостного
гиперболоида
, так как

,
при

– уравнение конуса, так как

,
при

– уравнение двуполостного гиперболоида,
так как

.

3. Составляем характеристическое
уравнение

и находим его корни:

,

,

(все корни простые).

4. Поскольку поверхность гиперболического
типа, то корни уравнения обозначим

,

,
т.е.

и

корни одного знака, причем

,
а

– корень противоположного знака.

5. Вычисляем коэффициенты канонического
уравнения:

– однополостного гиперболоида (при


):


,

,

,

следовательно, каноническое уравнение
(4) имеет вид


;

– конуса (при

):


,


,


;

следовательно, каноническое уравнение
(6) имеет вид


;

– двуполостного гиперболоида (при


):


,


,


;

следовательно, каноническое уравнение
(5) имеет вид


.

в) Определяем коэффициенты уравнения:

,

,

,

,

,

,

,

,

,

.

1. Вычисляем инварианты:

,


,


,


.

2. По табл. 11.1 определяем, что уравнение
задает эллиптический параболоид,
так как

,

.

3. Составляем характеристическое
уравнение

и находим его корни:

(двойной корень),

(простой корень).

4. Поскольку поверхность параболического
типа, то корни уравнения обозначим
следующим образом:

– единственный нулевой корень; так как
ненулевые корни одного знака, то

,
чтобы выполнялось условие

.

5. Вычисляем коэффициенты канонического
уравнения эллиптического параболоида:


,


.

Таким образом, каноническое уравнение
(7) заданной поверхности имеет вид


.

г) Определяем коэффициенты уравнения:

,

,

,

,

,

,

,

,

,

.

1. Вычисляем инварианты:

,


,


,


.

2. По табл. 11.1 определяем, что уравнение
задает гиперболический параболоид,
так как

,

.

3. Составляем характеристическое
уравнение

и находим его корни:

,

,

(все корни простые).

4. Поскольку поверхность параболического
типа, то корни характеристического
уравнения обозначим следующим образом:

– единственный нулевой корень; так как
ненулевые корни разных знаков и

,
то

,
тогда

.

5. Вычисляем коэффициенты канонического
уравнения гиперболического параболоида:


,

.

Таким образом, каноническое уравнение
(8) заданной поверхности имеет вид


.

д) Определяем коэффициенты уравнения:

,

,

,

,

,

,

,

,

,

.

1. Вычисляем инварианты:

,


,


,


.

Так как

,
то вычисляем семиинвариант:


.

2. По табл. 11.1 определяем, что уравнение
задает эллиптический цилиндр, так
как

,

,

,

.

3. Составляем характеристическое
уравнение

и находим его корни:

,

,

(все корни простые).

4. Поскольку поверхность параболического
типа, то корни уравнения обозначим
следующим образом:

– единственный нулевой корень; так как
ненулевые корни одного знака, то

,

,
чтобы выполнялось условие

.

5. Вычисляем коэффициенты канонического
уравнения эллиптического цилиндра:


,


.

Таким образом, каноническое уравнение
(9) заданной поверхности имеет вид


.

е) Определяем коэффициенты уравнения:

,

,

,

,

,

,

,

,

.

1. Вычисляем инварианты:

,


,


,


.

Так как

,
то вычисляем семиинвариант:


.

2. По табл. 11.1 определяем, что уравнение
задает поверхность параболического
типа, так как

.
При

получаем уравнение гиперболического
цилиндра
, так как

,

,

;
при

– уравнение пары пересекающихся
плоскостей
, так как

,

,

.

3. Составляем характеристическое
уравнение

и находим его корни:

,

,

(все корни простые).

4. Поскольку поверхность параболического
типа, то корни характеристического
уравнения обозначим следующим образом:

– единственный нулевой корень; так как
ненулевые корни разных знаков и

,
то

,
тогда

(при

имеем

и

,
а при

имеем

).

5. Вычисляем коэффициенты канонического
уравнения:

– гиперболического цилиндра (при


):


,


;

следовательно,
каноническое уравнение (12) имеет вид


;

– пары пересекающихся плоскостей (при

):


,


;

следовательно, каноническое уравнение
(13) имеет вид


.

ж) Определяем коэффициенты уравнения:

,

,

,

,

,

,

,

,

,

.

1. Вычисляем инварианты:

,


,


,


.

Так как

,
то вычисляем


.

2. По табл. 11.1 определяем, что уравнение
задает параболический цилиндр, так
как

,

,

,

.

3. Составляем характеристическое
уравнение

и находим его корни:

(двойной корень),

(простой корень).

4. Поскольку поверхность параболического
типа, то корни уравнения обозначим
следующим образом:

– двойной нулевой корень, а

– ненулевой корень.

5. Вычисляем коэффициент канонического
уравнения параболического цилиндра:


.

Таким образом, каноническое уравнение
(14) заданной поверхности имеет вид


.

з) Определяем коэффициенты уравнения:

,

,

,

,

,

,

,

,

,

.

1. Вычисляем инварианты:

,


,


,


.

Так как

,
то вычисляем


.

Так как

и

,
то вычисляем


.

2. По табл. 11.1 определяем, что уравнение
задает пару параллельных плоскостей,
так как

,

,

,

,

.

3. Составляем характеристическое
уравнение

и находим его корни:

(двойной корень),

(простой корень).

4. Поскольку поверхность параболического
типа, то корни уравнения обозначим
следующим образом:

– двойной нулевой корень, а

– ненулевой корень.

5. Вычисляем коэффициент канонического
уравнения пары параллельных плоскостей:


.

Таким образом, каноническое уравнение
(15) заданной поверхности имеет вид


.

и) Определяем коэффициенты уравнения:

,

,

,

,

,

,

,

,

,

.

1. Вычисляем инварианты:

,


,


,


.

Так как

,
то вычисляем


.

Так как

и

,
то вычисляем


.

2. По табл. 11.1 определяем, что уравнение
задает пару совпадающих плоскостей,
так как

,

,

,

,

.

3. Составляем характеристическое
уравнение

и находим его корни:

(двойной корень),

(простой корень).

4. Поскольку поверхность параболического
типа, то корни уравнения обозначим
следующим образом:

– двойной нулевой корень, а

– ненулевой корень.

5. Записываем каноническое уравнение
(17) пары совпадающих плоскостей:

.

      б) ;

      в)
;

      г)
;

      д)
;

      е)
.

§ 8.5.
ПОВЕРХНОСТИ ВТОРОГО ПОРЯДКА

      Геометрическое
место точек 3 – мерного пространства, координаты которых в некоторой
прямоугольной системе координат  удовлетворяют уравнению

                                        
(8.5.1)

где
хотя бы один из коэффициентов  не равен нулю, называется поверхностью второго порядка.

      Для
любой поверхности второго порядка существует прямоугольная система координат
, в
которой уравнение этой поверхности имеет один из следующих 17 видов:

      1)
эллипсоид
(рис. 8.4);

      2)
мнимый эллипсоид
;

      3)
однополостный гиперболоид
(рис.
8.5);

      4)
двуполостный гиперболоид
(рис.
8.6);

      5)
конус
(рис. 8.7);

      6)
мнимый конус
;

      7)
эллиптический параболоид
(рис.
8.8);

      8)
гиперболический параболоид
(рис.
8.9);

      9)
эллиптический цилиндр
(рис.
8.10);

      10)
мнимый эллиптический цилиндр
;

      11)
гиперболический цилиндр
(рис.
8.11);

      12)
параболический цилиндр
(рис.
8.12);

      13)
пара пересекающихся плоскостей
;

      14)
пара мнимых пересекающихся плоскостей
;

      15)
пара параллельных плоскостей
;

      16)
пара мнимых параллельных плоскостей
;

      17)
пара совпадающих плоскостей
.

      Уравнения
1) – 17) называются каноническими уравнениями поверхностей второго порядка.

 

                             
Рис. 8.4                                                    Рис. 8.5

                      
Рис. 8.6                                                       Рис. 8.7

 

 

                              Рис. 8.8                                                 Рис.
8.10 

                                                         
Рис. 8.9

 

                   Рис.
8.11                                                          Рис. 8.12

      При преобразовании уравнения поверхности второго порядка (8.5.1)
можно, как и в случае кривой второго порядка, использовать инварианты. Инвариантами
поверхностей второго порядка
являются

          ,

          ,

          ,

          .

Их
значения не меняются при повороте и параллельном переносе осей координат.

      Пример
1.
Поверхность задана уравнением в
прямоугольной системе координат

      .

Найдите
каноническую систему координат и каноническое уравнение этой поверхности.
Определите тип поверхности.

      Решение.
Найдем сначала ортогональное преобразование переменных, приводящее матрицу А
квадратичной формы  к диагональному виду.

      .

      Ее
характеристический многочлен

.

Следовательно,
матрица А имеет собственные значения   .

      Для
нахождения собственных векторов матрицы А решаем однородные системы линейных
уравнений с матрицами  соответственно и выделяем по одному ненулевому решению:

                    ;

,     

              ;

,    

                   
.

Векторы
 ортогональны
друг другу как собственные векторы симметричной матрицы, соответствующие
различным собственным значениям. Нормируя их, получаем

      ,

      ,

     

и
матрицу перехода Р к новому ортонормированному базису

      .

      Проверим
правильность нахождения матрицы Р:

Матрица
Р найдена верно.

      Применяя
к исходному уравнению ортогональное преобразование координат

      ,

получаем
новое уравнение поверхности в прямоугольной системе координат со старым центром
О и направляющими векторами :

     

     

     

        

         .

      Выполняя
параллельный перенос системы координат  по формулам

     

приходим
к уравнению

     

или

      .

Это
– каноническое уравнение двуполостного гиперболоида в прямоугольной системе
координат .

      Вычислим
координаты начала  канонической системы координат в старой прямоугольной системе
координат. Поскольку

      ,

      .

      Пример
2.
Исследуйте поверхность второго порядка, заданную в прямоугольной системе
координат уравнением

      .

      Решение.
Начнем с приведения квадратичной формы  к каноническому виду. Матрицей этой квадратичной
формы является матрица

Содержание:

Аналитическая геометрия

В этой главе все геометрические объекты мы будем определять и изучать с помощью соответствующих уравнений этих объектов и, следовательно, в принципе геометрия может быть изложена без единого чертежа. И, действительно, все чертежи, которые мы будем использовать, будут служить лишь для визуальной иллюстрации наших рассуждений.

Уравнение поверхности в выбранной декартовой системе координат Аналитическая геометрия - примеры с решением заданий и выполнением задач

Аналитическая геометрия - примеры с решением заданий и выполнением задач

т. е. в виде связи или зависимости между координатами х, у, z произвольной точки поверхно-аналогично, уравнение

Аналитическая геометрия - примеры с решением заданий и выполнением задач

определяет некоторую линию (кривую) в системе координат Аналитическая геометрия - примеры с решением заданий и выполнением задач на плоскости.

Кривая в пространстве может быть задана как пересечение двух поверхностей и, следовательно, она определяется системой из уравнений этих поверхностей:

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Кроме того, кривую на плоскости или в пространстве можно также задать с помощью зависимостей координат произвольной то’жи этой кривой от некоторого параметра, т. е. с помощью параметрических уравнений:

Аналитическая геометрия - примеры с решением заданий и выполнением задач

где t – действительный параметр.

Плоскость в пространстве. Различные виды уравнения плоскости

Найдем уравнение плоскости в пространстве с выбранной в нем декартовой системой координат Аналитическая геометрия - примеры с решением заданий и выполнением задач. Будем исходить из того, что положение этой плоскости полностью определяется точкой Аналитическая геометрия - примеры с решением заданий и выполнением задач. через которую проходит плоскость и ненулевым вектором Аналитическая геометрия - примеры с решением заданий и выполнением задач. ей перпендикулярным. Вектор Аналитическая геометрия - примеры с решением заданий и выполнением задач называется нормальным вектором плоскости.Аналитическая геометрия - примеры с решением заданий и выполнением задач

Пусть Аналитическая геометрия - примеры с решением заданий и выполнением задач— произвольная точка плоскости П. Тогда вектор Аналитическая геометрия - примеры с решением заданий и выполнением задач ортогонален вектору Аналитическая геометрия - примеры с решением заданий и выполнением задачи, следовательно,

Аналитическая геометрия - примеры с решением заданий и выполнением задач

или, учитывая, что Аналитическая геометрия - примеры с решением заданий и выполнением задач запишем в координатах уравнение плоскости П :

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Преобразовав полученное уравнение к виду

Аналитическая геометрия - примеры с решением заданий и выполнением задач

мы получим тем самым общее уравнение плоскости.

Рассмотрим теперь некоторые частные случаи общего уравнения плоскости. Если в общем уравнении плоскости отсутствует, одна из координат, то нормальный вектор Аналитическая геометрия - примеры с решением заданий и выполнением задачэтой плоскости перпендикулярен соответствующей координатной оси и, следовательно, плоскость расположена параллельно этой координатной оси.

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Аналогично, если в общем уравнении плоскости отсутствуют две координаты, то нормальный вектор данной плоскости перпендикулярен соответствующей координатной плоскости и, значит, плоскость расположена параллельно этой координатной плоскости.

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Научимся теперь находить уравнение плоскости по трем элементам.

1) Плоскость, проходящая через точку, параллельно двум векторам.

Пусть плоскость Аналитическая геометрия - примеры с решением заданий и выполнением задач проходит через точку Аналитическая геометрия - примеры с решением заданий и выполнением задач параллельно неколлинеарным векторам Аналитическая геометрия - примеры с решением заданий и выполнением задач.

Аналитическая геометрия - примеры с решением заданий и выполнением задач
Обозначим через Аналитическая геометрия - примеры с решением заданий и выполнением задач произвольную точку плоскости Аналитическая геометрия - примеры с решением заданий и выполнением задач Для точек данной плоскости и только для них три вектора Аналитическая геометрия - примеры с решением заданий и выполнением задач компланарны и, следовательно (глава II, §5, теорема), их смешанное произведение равно нулю, т. е.

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Раскрыв определитель (проще всего, разлагая его по первой строке), получим общее уравнение плоскости Аналитическая геометрия - примеры с решением заданий и выполнением задач

2)Плоскость, проходящая через две точки, параллельно вектору.

Найдем уравнение плоскости Аналитическая геометрия - примеры с решением заданий и выполнением задач, проходящей через две точки Аналитическая геометрия - примеры с решением заданий и выполнением задач, параллельно ненулевому вектору Аналитическая геометрия - примеры с решением заданий и выполнением задач. Задача сводится к предыдущей, если положить, например, Аналитическая геометрия - примеры с решением заданий и выполнением задач Тогда

Аналитическая геометрия - примеры с решением заданий и выполнением задач

– искомое уравнение плоскости Аналитическая геометрия - примеры с решением заданий и выполнением задач

3)Плоскость, проходящая через три точки.

Если плоскость Аналитическая геометрия - примеры с решением заданий и выполнением задач проходит через три точки Аналитическая геометрия - примеры с решением заданий и выполнением задач, не лежащие на одной прямой, то ее уравнение можно найти, как и в случае 1). положив например, Аналитическая геометрия - примеры с решением заданий и выполнением задач Следовательно, уравнение плоскости Аналитическая геометрия - примеры с решением заданий и выполнением задач записать в виде:
Аналитическая геометрия - примеры с решением заданий и выполнением задач
Замечание. Во всех трех случаях уравнение плоскости можно найти, вычислив предварительно ее нормальный вектор. Например, в первом случае в качестве нормального вектора можно взять векторное произведение Аналитическая геометрия - примеры с решением заданий и выполнением задач Тогда Аналитическая геометрия - примеры с решением заданий и выполнением задач — уравнение плоскости.

Пример №1

Найти уравнение плоскости 11 ^ – перпендикулярной плоскости

Аналитическая геометрия - примеры с решением заданий и выполнением задач

параллельной вектору Аналитическая геометрия - примеры с решением заданий и выполнением задач и проходящей через точку пересечения плоскости Аналитическая геометрия - примеры с решением заданий и выполнением задач с координатного осью Аналитическая геометрия - примеры с решением заданий и выполнением задач

Решение. Из уравнения плоскости Аналитическая геометрия - примеры с решением заданий и выполнением задач находим у = — 2. Следовательно, плоскость Аналитическая геометрия - примеры с решением заданий и выполнением задач проходит через точку Аналитическая геометрия - примеры с решением заданий и выполнением задач Кроме того, Аналитическая геометрия - примеры с решением заданий и выполнением задач, поэтому нормальный вектор Аналитическая геометрия - примеры с решением заданий и выполнением задачплоскости Аналитическая геометрия - примеры с решением заданий и выполнением задачпараллелен плоскости Аналитическая геометрия - примеры с решением заданий и выполнением задач. Осталось записать искомое уравнение по трем элементам: точке Аналитическая геометрия - примеры с решением заданий и выполнением задачи векторам Аналитическая геометрия - примеры с решением заданий и выполнением задач. Имеем:

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Таким образом, общее уравнение плоскости Аналитическая геометрия - примеры с решением заданий и выполнением задач имеет вид:

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Пусть плоскость Аналитическая геометрия - примеры с решением заданий и выполнением задач не проходит через начало координат и не параллельна ни одной из координатных осей. Тогда, очевидно, все числа A, В, С, D отличны от нуля.

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Разделив обе части уравнения плоскости на число D. мы можем записать его в виде:

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Числа а, b, с представляют собой величины отрезков, которые плоскость П отсекает на координатных осях. Полученное уравнение называется уравнением плоскости в отрезках.

Найдем теперь формулу для вычисления расстояния от точки Аналитическая геометрия - примеры с решением заданий и выполнением задач до плоскости Аналитическая геометрия - примеры с решением заданий и выполнением задач

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Обозначим искомое расстояние черезАналитическая геометрия - примеры с решением заданий и выполнением задач. Очевидно.Аналитическая геометрия - примеры с решением заданий и выполнением задач, где точка Аналитическая геометрия - примеры с решением заданий и выполнением задач — основание перпендикуляра, опущенного из точки Аналитическая геометрия - примеры с решением заданий и выполнением задач на плоскость П. Вычислим скалярное произведение коллинеарных векторов Аналитическая геометрия - примеры с решением заданий и выполнением задач. С одной стороны,

Аналитическая геометрия - примеры с решением заданий и выполнением задач

С другой,

Аналитическая геометрия - примеры с решением заданий и выполнением задач

так как Аналитическая геометрия - примеры с решением заданий и выполнением задач и поэтому Аналитическая геометрия - примеры с решением заданий и выполнением задач Следовательно, расстояние от точки Аналитическая геометрия - примеры с решением заданий и выполнением задач до плоскости П вычисляется по формуле:

Аналитическая геометрия - примеры с решением заданий и выполнением задач

В заключение этого параграфа выясним характер взаимного расположения двух плоскостей. Пусть плоскости заданы своими общими уравнениями:

Аналитическая геометрия - примеры с решением заданий и выполнением задач
Очевидно, что угол Аналитическая геометрия - примеры с решением заданий и выполнением задачмежду этими плоскостями равен углу между их нормальными векторами Аналитическая геометрия - примеры с решением заданий и выполнением задач и, следовательно,

Аналитическая геометрия - примеры с решением заданий и выполнением задач

В частности,

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Пример №2

Убедиться в том, что плоскостьАналитическая геометрия - примеры с решением заданий и выполнением задач отсекающая на координатных осях Аналитическая геометрия - примеры с решением заданий и выполнением задачотрезки величиной 2, —1, 2 соответственно и плоскость

Аналитическая геометрия - примеры с решением заданий и выполнением задач

параллельны и найти расстояние между ними.

Решение. Запишем уравнение плоскости II| в отрезках:

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Преобразовав его к общему виду, получим:

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Так как нормальные векторы Аналитическая геометрия - примеры с решением заданий и выполнением задач плоскостей Аналитическая геометрия - примеры с решением заданий и выполнением задач коллинеарны. то эти плоскости параллельны. Возьмем какую-нибудь точку в плоскости Аналитическая геометрия - примеры с решением заданий и выполнением задач например, Аналитическая геометрия - примеры с решением заданий и выполнением задач. Тогда

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Уравнения прямой в пространстве

Пусть прямая L в пространстве с декартовой системой координат Аналитическая геометрия - примеры с решением заданий и выполнением задач проходит через точку Аналитическая геометрия - примеры с решением заданий и выполнением задач и параллельна ненулевому векторуАналитическая геометрия - примеры с решением заданий и выполнением задач, который называется направляющим вектором прямой.

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Обозначим через Аналитическая геометрия - примеры с решением заданий и выполнением задач произвольную точку прямой L. Вектор Аналитическая геометрия - примеры с решением заданий и выполнением задач коллинеарен вектору Аналитическая геометрия - примеры с решением заданий и выполнением задач и, следовательно, их координаты пропорциональны, т. е.

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Эта двойная пропорция представляет собой канонические уравнения прямой в пространстве.

Заметим, что в канонических уравнениях прямой формально допускается запись нулей в знаменателях, это означает лишь то, что прямая перпендикулярна соответствующей координатной оси или координатной плоскости.

Если прямая проходит через две точки Аналитическая геометрия - примеры с решением заданий и выполнением задач, то в качестве ее направляющего вектора можно взять вектор Аналитическая геометрия - примеры с решением заданий и выполнением задач и, следовательно, канонические уравнения этой прямой имеют вид:

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Коллинеарные векторы Аналитическая геометрия - примеры с решением заданий и выполнением задачлинейно связаны (глава II. §1), т.е. существует действительный параметр t такой, что

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Если точка М перемещается вдоль прямой, параметр t изменяется в пределах от Аналитическая геометрия - примеры с решением заданий и выполнением задач до Аналитическая геометрия - примеры с решением заданий и выполнением задач. Так как Аналитическая геометрия - примеры с решением заданий и выполнением задач – радиусы-векторы точек Аналитическая геометрия - примеры с решением заданий и выполнением задач и М соответственно, то последнее уравнение мы можем переписать в виде

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Это уравнение называется векторным уравнением прямой.

Переходя в полученном векторном уравнении к координатам, запишем параметрические уравнения прямой:

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Прямую в пространстве можно задать также как пересечение двух плоскостей.

Аналитическая геометрия - примеры с решением заданий и выполнением задач
Система

Аналитическая геометрия - примеры с решением заданий и выполнением задач

составленная из уравнений этих плоскостей, дает нам общие уравнения прямой в пространстве. Для перехода от общих к каноническим уравнениям прямой, достаточно найти какую-нибудь точку на ней, решив при фиксированном значении одной из координат систему уравнений плоскостей, а также определить направляющий вектор прямой, которым может служить векторное произведение нормальных векторов Аналитическая геометрия - примеры с решением заданий и выполнением задач плоскостей. т. е. вектор Аналитическая геометрия - примеры с решением заданий и выполнением задач

Пример №3

Найти канонические уравнения прямой

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Решение. Полагая в данной системе z = 0, получим

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Решив эту систему, найдем х = 1, у = —2. Таким образом, мы получили точку Аналитическая геометрия - примеры с решением заданий и выполнением задач на прямой. Найдем ее направляющий вектор:

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Осталось записать канонические уравнения данной прямой:

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Научимся теперь вычислять расстояние от точки до прямой в пространстве. Пусть задана точка Аналитическая геометрия - примеры с решением заданий и выполнением задач и прямая L своими каноническими уравнениями

Аналитическая геометрия - примеры с решением заданий и выполнением задач
Искомое расстояние Аналитическая геометрия - примеры с решением заданий и выполнением задач равно, очевидно, высоте треугольника, построенного, на векторах Аналитическая геометрия - примеры с решением заданий и выполнением задач Воспользовавшись геометрическим смыслом длины векторного произведения (глава II. §4), найдем:

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Пусть нам известны канонические уравнения двух прямых в пространстве:

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Очевидно, Аналитическая геометрия - примеры с решением заданий и выполнением задач

Один из углов между этими прямыми равен углу между их направляющими векторами Аналитическая геометрия - примеры с решением заданий и выполнением задач и Аналитическая геометрия - примеры с решением заданий и выполнением задач и, следовательно.

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Изучим взаимное расположение прямых Аналитическая геометрия - примеры с решением заданий и выполнением задач. Если направляющие векторы Аналитическая геометрия - примеры с решением заданий и выполнением задач коллинеарны, то данные прямые параллельны или совпадают. Совпадать они будут в том случае, когда Аналитическая геометрия - примеры с решением заданий и выполнением задач

В случае, когда Аналитическая геометрия - примеры с решением заданий и выполнением задач, прямые пересекаются или являются скрещивающимися.

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Прямые пересекаются, очевидно, тогда и только тогда, когда векторы Аналитическая геометрия - примеры с решением заданий и выполнением задач компланарны. В противном случае данные прямые являются скрещивающимися. Таким образом, для того, чтобы выяснить, являются ли две данные непараллельные прямые пересекающимися или скрещивающимися, достаточно вычислить смешанное произведение Аналитическая геометрия - примеры с решением заданий и выполнением задач и, если оно окажется равным нулю, то прямые пересекаются, иначе – скрещиваются.

Расстояние Аналитическая геометрия - примеры с решением заданий и выполнением задач между двумя скрещивающимися прямыми равно, очевидно, расстоянию между параллельными плоскостями, в которых расположены эти прямые и, следовательно, равно высоте параллелепипеда, построенного на векторах Аналитическая геометрия - примеры с решением заданий и выполнением задач Отсюда, использовав геометрический смысл смешанного произведения (глава II. §5), мы и найдем искомое расстояние:

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Пример №4

Убедиться в том, что прямые

Аналитическая геометрия - примеры с решением заданий и выполнением задач

являются скрещивающимися. Найти расстояние между ними и уравнение общего перпендикуляра к ним.

Решение. Первая прямая проходит через точку Аналитическая геометрия - примеры с решением заданий и выполнением задачпараллельно вектору Аналитическая геометрия - примеры с решением заданий и выполнением задач. а вторая – через точку Аналитическая геометрия - примеры с решением заданий и выполнением задач параллельно вектору Аналитическая геометрия - примеры с решением заданий и выполнением задач Вычислим смешанное произведение векторов Аналитическая геометрия - примеры с решением заданий и выполнением задач

Аналитическая геометрия - примеры с решением заданий и выполнением задач
следовательно, прямые Аналитическая геометрия - примеры с решением заданий и выполнением задач являются скрещивающимися. Для вычисления расстояния между ними иенолтьзуем приведенную выше формулу. Так как

Аналитическая геометрия - примеры с решением заданий и выполнением задач
Осталось найти уравнение общего перпендикуляра к данным прямым. Заметим, прежде всего, что его направляющим вектором является уже вычисленный нами вектор Аналитическая геометрия - примеры с решением заданий и выполнением задач. Очевидно, указанный перпендикуляр расположен в пересечении двух плоскостей Аналитическая геометрия - примеры с решением заданий и выполнением задач, проходящих через данные прямые параллельно вектору Аналитическая геометрия - примеры с решением заданий и выполнением задач Найдем уравнения этих плоскостей по трем элементам. Первая из них проходит через точку Аналитическая геометрия - примеры с решением заданий и выполнением задач параллельно векторам Аналитическая геометрия - примеры с решением заданий и выполнением задач следовательно (§1),

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Таким образом, плоскость Аналитическая геометрия - примеры с решением заданий и выполнением задач имеет уравнение Аналитическая геометрия - примеры с решением заданий и выполнением задач Аналогично, плоскость Аналитическая геометрия - примеры с решением заданий и выполнением задач содержит точку Аналитическая геометрия - примеры с решением заданий и выполнением задачи расположена параллельно векторам Аналитическая геометрия - примеры с решением заданий и выполнением задачпоэтому
Аналитическая геометрия - примеры с решением заданий и выполнением задач
и, стало быть, Аналитическая геометрия - примеры с решением заданий и выполнением задач – уравнение плоскости Аналитическая геометрия - примеры с решением заданий и выполнением задач. Система из уравнений плоскостей Аналитическая геометрия - примеры с решением заданий и выполнением задач и даст нам общие уравнения перпендикуляра к прямым Аналитическая геометрия - примеры с решением заданий и выполнением задач :

Аналитическая геометрия - примеры с решением заданий и выполнением задач

В заключение этого параграфа вычислим угол между прямой L, заданной каноническими уравнениями

Аналитическая геометрия - примеры с решением заданий и выполнением задач

и плоскостью П, для которой известно ее общее уравнение 

Аналитическая геометрия - примеры с решением заданий и выполнением задач
Очевидно, искомый угол Аналитическая геометрия - примеры с решением заданий и выполнением задач связан с углом Аналитическая геометрия - примеры с решением заданий и выполнением задач между направляющим вектором Аналитическая геометрия - примеры с решением заданий и выполнением задач прямой и нормальным вектором Аналитическая геометрия - примеры с решением заданий и выполнением задачплоскости соотношением Аналитическая геометрия - примеры с решением заданий и выполнением задач следовательно, Аналитическая геометрия - примеры с решением заданий и выполнением задач откуда,

Аналитическая геометрия - примеры с решением заданий и выполнением задач

В частности, если  Аналитическая геометрия - примеры с решением заданий и выполнением задач

Прямая на плоскости

Для прямой на плоскости наблюдается большее разнообразие ее уравнений, так как на плоскости прямая фиксируется точкой, через которую она проходит и, либо вектором ей перпендикулярным (нормальным вектором), либо вектором ей параллельным (направляющим вектором) и, следовательно, для прямой на плоскости можно записывать как уравнения, характерные для плоскости в пространстве (§1), так и аналоги уравнений прямой в пространстве (§2). Перечислим, не повторяя деталей, изложенных в предыдущих двух параграфах, основные уравнения прямой на плоскости и связанные с ними формулы.

Пусть прямая L на плоскости с выбранной в ней системой координат Аналитическая геометрия - примеры с решением заданий и выполнением задач проходит через точку Аналитическая геометрия - примеры с решением заданий и выполнением задачперпендикулярно ненулевому вектору Аналитическая геометрия - примеры с решением заданий и выполнением задач.

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Уравнение такой прямой имеет вид:

Аналитическая геометрия - примеры с решением заданий и выполнением задач

откуда после очевидных преобразований получим уравнение

Аналитическая геометрия - примеры с решением заданий и выполнением задач

которое представляет собой общее уравнение прямой на плоскости.

Пусть прямая L отсекает на координатных осях Аналитическая геометрия - примеры с решением заданий и выполнением задач отрезки величиной а и Ь соответственно.

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Тогда, как и для плоскости, мы можем записать уравнение прямой в отрезках:

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Если прямая L содержит точку Аналитическая геометрия - примеры с решением заданий и выполнением задач и расположена параллельно ненулевому векторуАналитическая геометрия - примеры с решением заданий и выполнением задач

Аналитическая геометрия - примеры с решением заданий и выполнением задач
то ее каноническое уравнение имеет вид:

Аналитическая геометрия - примеры с решением заданий и выполнением задач

По аналогии с прямой в пространстве, прямая на плоскости может быть задана также векторным уравнением

Аналитическая геометрия - примеры с решением заданий и выполнением задач

и параметрическими уравнениями

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Расстояние от точки Аналитическая геометрия - примеры с решением заданий и выполнением задач прямой L на плоскости, заданной общим уравнением Аналитическая геометрия - примеры с решением заданий и выполнением задач, может быть вычислено по формуле:

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Найдем еще одно уравнение прямой на плоскости, характерное для этого геометрического объекта. Пусть прямая L, заданная своим каноническим уравнением Аналитическая геометрия - примеры с решением заданий и выполнением задач , непараллельна оси Аналитическая геометрия - примеры с решением заданий и выполнением задач

Аналитическая геометрия - примеры с решением заданий и выполнением задач

ТогдаАналитическая геометрия - примеры с решением заданий и выполнением задачи мы можем записать уравнение прямой L с угловым коэффициентом:

Аналитическая геометрия - примеры с решением заданий и выполнением задач

где Аналитическая геометрия - примеры с решением заданий и выполнением задач – угловой коэффициент прямой, b – величина отрезка, который отсекает эта прямая на оси Аналитическая геометрия - примеры с решением заданий и выполнением задач. В частности,

Аналитическая геометрия - примеры с решением заданий и выполнением задач

представляет собой уравнение прямой с угловым коэффициентом, которая проходит через точку Аналитическая геометрия - примеры с решением заданий и выполнением задач

Если две прямые на плоскости заданы общими или каноническими уравнениями, то их взаимное расположение исследуется по аналогии с плоскостями или прямыми, заданными такими же уравнениями (§1 или §2). Изучим поэтому взаимное расположение двух прямых, которые заданы уравнениями с угловым коэффициентом. Итак, рассмотрим две прямые

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Предположим сначала, что прямые не являются перпендикулярными, обозначим черезАналитическая геометрия - примеры с решением заданий и выполнением задачострый угол между ними. Тогда, очевидно, Аналитическая геометрия - примеры с решением заданий и выполнением задач и, следовательно,

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Если жеАналитическая геометрия - примеры с решением заданий и выполнением задач, то нормальные векторы Аналитическая геометрия - примеры с решением заданий и выполнением задач этих прямых ортогональны, следовательно,

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Таким образом, для перпендикулярности прямых Аналитическая геометрия - примеры с решением заданий и выполнением задач необходимо и достаточно, чтобы Аналитическая геометрия - примеры с решением заданий и выполнением задач

Очевидно. прямые Аналитическая геометрия - примеры с решением заданий и выполнением задач параллельны в том и только в том случае, когда равны углы, которые они образуют с осью Ох. Следовательно, для параллельности прямых Аналитическая геометрия - примеры с решением заданий и выполнением задачнеобходимо и достаточно, чтобы совпадали их угловые коэффициенты, т. е. Аналитическая геометрия - примеры с решением заданий и выполнением задач

Пример №5

Даны прямая Аналитическая геометрия - примеры с решением заданий и выполнением задачи точка А(—2, 1). Найти уравнения прямыхАналитическая геометрия - примеры с решением заданий и выполнением задачпроходящих через точку А и таких, что Аналитическая геометрия - примеры с решением заданий и выполнением задачАналитическая геометрия - примеры с решением заданий и выполнением задачАналитическая геометрия - примеры с решением заданий и выполнением задач

Решение. ПрямыеАналитическая геометрия - примеры с решением заданий и выполнением задач имеют общий нормальный вектор Аналитическая геометрия - примеры с решением заданий и выполнением задач, поэтому,

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Аналитическая геометрия - примеры с решением заданий и выполнением задач – общее уравнение прямой Аналитическая геометрия - примеры с решением заданий и выполнением задач

Так как Аналитическая геометрия - примеры с решением заданий и выполнением задач то направляющим вектором прямой Аналитическая геометрия - примеры с решением заданий и выполнением задач является нормальный вектор прямой L, следовательно,

Аналитическая геометрия - примеры с решением заданий и выполнением задач каноническое уравнение прямой Аналитическая геометрия - примеры с решением заданий и выполнением задач

Из уравнения прямой L находим Аналитическая геометрия - примеры с решением заданий и выполнением задач следовательно, Аналитическая геометрия - примеры с решением заданий и выполнением задачТогда угловые коэффициенты прямых Аналитическая геометрия - примеры с решением заданий и выполнением задач удовлетворяют уравнению

Аналитическая геометрия - примеры с решением заданий и выполнением задач

откуда, Аналитическая геометрия - примеры с решением заданий и выполнением задач Осталось записать уравнения прямых Аналитическая геометрия - примеры с решением заданий и выполнением задач

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Кривые второго порядка на плоскости

В предыдущих трех параграфах нами были изучены линейные геометрические объекты -плоскость и прямая в пространстве и на плоскости. Мы показали, что в декартовой системе координат они определяются алгебраическими уравнениями первой степени, т. е. линейными уравнениями. Предметом нашего исследования в этом параграфе будут являться кривые второго порядка, т. е. линии на плоскости, уравнения которых в декартовой системе координат Оху имеют вид:

Аналитическая геометрия - примеры с решением заданий и выполнением задач

где А, В, С, D, Е, F – действительные числа. Мы убедимся в том, что, за исключением случаев вырождения данное уравнение определяет одну из трех замечательных линий — эллипс, гиперболу или параболу. Приведем сначала геометрическое определение каждой из этих линий и найдем их канонические уравнения.

Эллипс

Определение: Эллипсом называется множество точек на плоскости, для каждой из которых сумма расстояний до двух фиксированных точек (фокусов эллипса) есть величина постоянная.

Найдем каноническое уравнение эллипса. Обозначим через 2с фокусное расстояние, т. е. расстояние между фокусами, а через 2а — постоянную сумму расстояний от точек эллипса до фокусов. Из неравенства треугольника следует, что Аналитическая геометрия - примеры с решением заданий и выполнением задач. Выберем декартову систему координат на плоскости следующим образом: ось Ох направим через фокусы, а начало координат выберем посередине между ними.

Аналитическая геометрия - примеры с решением заданий и выполнением задач
Пусть М(х, у) — произвольная точка эллипса. По определению этой линии,

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Упростим последнее уравнение:

Аналитическая геометрия - примеры с решением заданий и выполнением задач

откуда, использовав обозначение Аналитическая геометрия - примеры с решением заданий и выполнением задач   , мы и получим каноническое уравнение эллипса :

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Построим эту линию. Для этого прежде всего заметим, что она симметрична относительно координатных осей и начала координат, так как переменные x и у входят в каноническое уравнение в квадратах. Отсюда следует, что эллипс достаточно построить в первой координатной четверти и затем отразить его относительно координатных осей. Из канонического уравнения эллипса находим:

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Очевидно, эта функция определена и убывает при Аналитическая геометрия - примеры с решением заданий и выполнением задач Кроме того, ее график располагается выше прямой Аналитическая геометрия - примеры с решением заданий и выполнением задач Из приведенных рассуждений следует, что эллипс представляет собой следующую замкнутую линию на плоскости:

Аналитическая геометрия - примеры с решением заданий и выполнением задач
Числа а и b называются соответственно большой и малой полуосями эллипса. Точка O(0,0) -центр эллипса, точки Аналитическая геометрия - примеры с решением заданий и выполнением задачвершины эллипса, отрезок Аналитическая геометрия - примеры с решением заданий и выполнением задач — большая, Аналитическая геометрия - примеры с решением заданий и выполнением задачмалая оси эллипса.

Форму эллипса характеризует величина Аналитическая геометрия - примеры с решением заданий и выполнением задач. равная отношению фокусного расстояния к длине большой оси. Это число называется эксцентриситетом эллипса. Очевидно, Аналитическая геометрия - примеры с решением заданий и выполнением задач Так как

Аналитическая геометрия - примеры с решением заданий и выполнением задач

то при Аналитическая геометрия - примеры с решением заданий и выполнением задач мы имеем Аналитическая геометрия - примеры с решением заданий и выполнением задач, и, следовательно, эллипс по форме мало отличается от окружности. В предельном случае, когда Аналитическая геометрия - примеры с решением заданий и выполнением задач. полуоси совпадают и эллипс превращается в окружность. Если же Аналитическая геометрия - примеры с решением заданий и выполнением задач и эллипс является вытянутым вдоль оси Ох.

Замечание. В уравнении эллипса может оказаться, что Аналитическая геометрия - примеры с решением заданий и выполнением задач Тогда фокусы эллипса находятся на оси Аналитическая геометрия - примеры с решением заданий и выполнением задач — большая, Аналитическая геометрия - примеры с решением заданий и выполнением задач — малая полуоси эллипса.
Аналитическая геометрия - примеры с решением заданий и выполнением задач 
 

Гипербола

Определение: Гипербола представляет собой линию на плоскости, для каждой точки которой абсолютная величина разности расстояний до двух фиксированных точек (фокусов гиперболы) есть величина постоянная.

Обозначим и здесь фокусное расстояние через 2с. а через 2а — постоянную абсолютную величину разности расстояний от точек гиперболы до фокусов. Для гиперболы а < с, что следует из неравенства треугольника. Выберем декартову систему координат на плоскости точно также, как и при выводе канонического уравнения эллипса.

Аналитическая геометрия - примеры с решением заданий и выполнением задач

По определению гиперболы для произвольной точки М(х, у) этой линии

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Избавляясь от корней в этом уравнении, получим:

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Обозначая здесь Аналитическая геометрия - примеры с решением заданий и выполнением задач, получим каноническое уравнение гиперболы:

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Как видно из ее уравнения, гипербола симметрична относительно координатных осей и начала координат. Из канонического уравнения гиперболы следует, что в первой четверти

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Эта функция возрастает, Аналитическая геометрия - примеры с решением заданий и выполнением задач при всех Аналитическая геометрия - примеры с решением заданий и выполнением задач при больших х.

а    а    а    а

Это означает, что в первой четверти гипербола, выходя из точки (а, 0) на оси Ох, приближается

затем при больших значениях х к прямой Аналитическая геометрия - примеры с решением заданий и выполнением задач Следовательно, гипербола выглядит следующим образом:

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Прямые Аналитическая геометрия - примеры с решением заданий и выполнением задач называются асимптотами гиперболы. Точка O(0,0) – центр гиперболы. Точки Аналитическая геометрия - примеры с решением заданий и выполнением задач называются вершинами гиперболы. Ось симметрии гиперболы, пересекающая ее в вершинах, называется действительной осью. Вторая ось симметрии, не имеющая с гиперболой общих точек, называется мнимой осью гиперболы. Числа а и Ь называются соответственно действительной и мнимой полуосями гиперболы. Если полуоси равны, то гипербола называется равносторонней (равнобочной).

Как и для эллипса, определим эксцентриситет гиперболы как отношение половины фокусного расстояния к действительной полуоси:

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Так как

Аналитическая геометрия - примеры с решением заданий и выполнением задач

то эксцентриситет гиперболы характеризует величину угла, в котором она располагается. ПриАналитическая геометрия - примеры с решением заданий и выполнением задач угол мал и, наоборот, если эксцентриситет велик, то и угол. в котором находится гипербола, близок к развернутому.

Замечание. В каноническом уравнении гиперболы знаки перед квадратами могут располагаться и в обратном порядке:

Аналитическая геометрия - примеры с решением заданий и выполнением задач

В этом случае фокусы и вершины находятся на осиАналитическая геометрия - примеры с решением заданий и выполнением задач

Аналитическая геометрия - примеры с решением заданий и выполнением задач
 

Парабола

Определение: Параболой называется множество точек плоскости, равноудаленных от. фиксированной точки (фокуса параболы) и фиксированной прямой (директрисы параболы).

Обозначим расстояние от фокуса до директрисы через р. Число р > 0 называется параметром параболы. Выберем удобную систему координат на плоскости: ось Ох направим через фокус F перпендикулярно директрисе D, а начало координат возьмем посередине между директрисой и фокусом.

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Если М(х,у) – произвольная точка параболы, то по определению этой кривой

Аналитическая геометрия - примеры с решением заданий и выполнением задач

После возведения в квадрат и очевидных преобразований, получим каноническое уравнение параболы:

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Очевидно, парабола проходит через начало координат и симметрична относительно оси Ох. Точка O(0,0) называется вершиной параболы, ось Ох – осью параболы.

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Замечание. Если бы при выборе системы координат мы направили ее оси в противоположные стороны, то каноническое уравнение параболы приняло бы вид:

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Аналогично, уравнения

Аналитическая геометрия - примеры с решением заданий и выполнением задач

также определяют параболы, фокусы которых расположены на оси Оу. а директрисы параллельны оси Ох.

Приведение уравнения кривой второго порядка к каноническому виду

Покажем, что общее уравнение кривой второго порядка на плоскости, кроме случаев вырождения, определяет одну из линий — эллипс, гиперболу или параболу.

Выясним сначала, как преобразуются координаты точки на плоскости при параллельном переносе системы координат. Предположим, что осуществлен параллельный перенос системы координат Оху в точку Аналитическая геометрия - примеры с решением заданий и выполнением задач. Пусть Аналитическая геометрия - примеры с решением заданий и выполнением задач — координаты точки М в старой Оху, а Аналитическая геометрия - примеры с решением заданий и выполнением задач — координаты той же точки в новой Аналитическая геометрия - примеры с решением заданий и выполнением задач системе координат.

Аналитическая геометрия - примеры с решением заданий и выполнением задач
Так как Аналитическая геометрия - примеры с решением заданий и выполнением задачто новые и старые точки координаты на плоскости связаны линейными соотношениями:

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Рассмотрим теперь уравнение второго порядка на плоскости в частном случае, когда оно не содержит произведения координат ху :

Аналитическая геометрия - примеры с решением заданий и выполнением задач

причем коэффициенты А и С не равны одновременно нулю. Здесь возможны три случая.

а) АС > 0. Очевидно, всегда можно считать, тгго А > 0, С > 0. Выделяя в уравнении второго порядка полные квадраты по переменным х и у, получим:

Аналитическая геометрия - примеры с решением заданий и выполнением задач

где Аналитическая геометрия - примеры с решением заданий и выполнением задач — некоторые действительные числа. Ясно, что при Аналитическая геометрия - примеры с решением заданий и выполнением задач > 0 ни одна из точек плоскости не удовлетворяет этому уравнению. Если Аналитическая геометрия - примеры с решением заданий и выполнением задач = 0, то единственным решением полученного уравнения является точка Аналитическая геометрия - примеры с решением заданий и выполнением задач. Наконец, при Аналитическая геометрия - примеры с решением заданий и выполнением задач < 0 уравнение приводится к виду

Аналитическая геометрия - примеры с решением заданий и выполнением задач

и, следовательно, в смещенной с помощью параллельного переноса в точку Аналитическая геометрия - примеры с решением заданий и выполнением задач системе координат оно является каноническим уравнением эллипса:

Аналитическая геометрия - примеры с решением заданий и выполнением задач

b)    АС < 0. Будем считать для определенности, что А > 0. С < 0.

В этом случае исходное уравнение второго порядка также приводится к виду (1). При F = 0 оно определяет пару прямых, проходящих, через точку Аналитическая геометрия - примеры с решением заданий и выполнением задач :

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Если же Аналитическая геометрия - примеры с решением заданий и выполнением задач, то полученное уравнение мы можем преобразовать к виду

Аналитическая геометрия - примеры с решением заданий и выполнением задач

и, стало быть, после параллельного переноса системы координат в точку Аналитическая геометрия - примеры с решением заданий и выполнением задач последнее уравнение является каноническим уравнением гиперболы:

Аналитическая геометрия - примеры с решением заданий и выполнением задач

c)    АС = 0. Предположим, например, что Аналитическая геометрия - примеры с решением заданий и выполнением задач

Выделяя в данном уравнении второго порядка полный квадрат по переменной у, получим:

С {у ~ Уо)2 + Dx + F1=0.

Если в этом уравнении D = 0, то при Аналитическая геометрия - примеры с решением заданий и выполнением задач > 0 множество решений этого уравнения пусто, а при Аналитическая геометрия - примеры с решением заданий и выполнением задач < 0 полученное уравнение определяет пару прямых, параллельных оси Ох :

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Если же Аналитическая геометрия - примеры с решением заданий и выполнением задач, то мы можем привести уравнение к виду:

Аналитическая геометрия - примеры с решением заданий и выполнением задач

т.е. после параллельного переноса системы координат в точку Аналитическая геометрия - примеры с решением заданий и выполнением задач, мы получим тем самым каноническое уравнение параболы:

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Аналогично. если в исходном уравнении второго порядка Аналитическая геометрия - примеры с решением заданий и выполнением задач то, не принимая во внимание вырожденные случаи, это уравнение мы также можем привести к каноническому уравнению параболы:

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Пример №6

Привести уравнение второго порядка к каноническому виду, назвать и построить кривую:

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Решение. Выделяя полные квадраты по обеим переменным, получим:

Аналитическая геометрия - примеры с решением заданий и выполнением задач

что представляет собой каноническое уравнение эллипса в смещенной в точку Аналитическая геометрия - примеры с решением заданий и выполнением задач системе координат. Для этого эллипса Аналитическая геометрия - примеры с решением заданий и выполнением задач и, следовательно, фокусы находятся в точках Аналитическая геометрия - примеры с решением заданий и выполнением задач. Эксцентриситет эллипса равен Аналитическая геометрия - примеры с решением заданий и выполнением задач

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Пример №7

Найти каноническое уравнение параболы с вершиной в точке Аналитическая геометрия - примеры с решением заданий и выполнением задач, осью симметрии, параллельной координатной оси Ох и фокусом на оси Оу. Построить параболу.

Решение. Фокус параболы находится в точке F(0 , 2), следовательно, уравнение параболы с учетом смещения имеет вид:
Аналитическая геометрия - примеры с решением заданий и выполнением задач
ЗдесьАналитическая геометрия - примеры с решением заданий и выполнением задач и, стало быть.
Аналитическая геометрия - примеры с решением заданий и выполнением задач
каноническое уравнение параболы.

Аналитическая геометрия - примеры с решением заданий и выполнением задач
 

Замечание. Для приведения к каноническому виду уравнения второго порядка, содержащего произведение координат ху, необходимо кроме параллельного переноса выполнить еще и поворот системы координат на определенный угол. Например, для равносторонней гиперболы ху = 1 следует повернуть систему координат Оху вокруг ее начала на угол 45° против часовой стрелки. Поскольку вершины гиперболы находятся на расстоянии Аналитическая геометрия - примеры с решением заданий и выполнением задач от начала координат. то в новой системе координат Аналитическая геометрия - примеры с решением заданий и выполнением задач каноническое уравнение гиперболы имеет вид:

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Поверхности второго порядка в пространстве

В заключение этой главы мы изучим поверхности в пространстве, которые в декартовой системе координат задаются алгебраическими уравнениями второй степени. Существуют пять видов таких поверхностей: эллипсоид, гиперболоиды, параболоиды, цилиндры второго порядка и конус второго порядка.

Поверхность вращения

Найдем уравнение поверхности, которая получается вращением некоторой линии вокруг одной из координатных осей. Пусть линия L, которая в координатной плоскости Oyz задается уравнением F(y, z) = 0. вращается вокруг оси Oz.

Аналитическая геометрия - примеры с решением заданий и выполнением задач
Пусть M(x,y,z) – произвольная точка на поверхности вращения. Перегоним ее по окружности, расположенной в сечении поверхности плоскостью, проходящей через данную точку перпендикулярно оси Oz, в точку N на линии L. Поскольку расстояние от точки М до оси Oz равно Аналитическая геометрия - примеры с решением заданий и выполнением задачто точка N имеет координаты Аналитическая геометрия - примеры с решением заданий и выполнением задач . Подставив координаты точки N в уравнение линии L. мы и получим тем самым уравнение поверхности вращения:

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Найдем теперь уравнения поверхностей, которые получаются вращением кривых второго порядка с последующей линейной деформацией этих поверхностей.

Эллипсоид

Возьмем в плоскости Oyz эллипс

Аналитическая геометрия - примеры с решением заданий и выполнением задач

и будем вращать его вокруг оси Oz. В результате, как следует из предыдущего пункта, мы получим поверхность с уравнением

Аналитическая геометрия - примеры с решением заданий и выполнением задач

которая называется эллипсоидом вращения. Заменив в найденном уравнении координату х на —Аналитическая геометрия - примеры с решением заданий и выполнением задач, т. е. линейно деформируя поверхность вдоль оси Ох с коэффициентомАналитическая геометрия - примеры с решением заданий и выполнением задач —, мы получим тем самым уравнение эллипсоида общего вида:

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Положительные числа а, b, с называются полуосями эллипсоида.

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Очевидно, сечениями эллипсоида плоскостями параллельными координатным, являются эллипсы.

Замечание. В частном случае, когда а = b = с = R эллипсоид превращается в сферу

Аналитическая геометрия - примеры с решением заданий и выполнением задач

радиуса R с центром в начале координат.

Гиперболоиды

а) Однополостный гиперболоид.

Вращая гиперболу

Аналитическая геометрия - примеры с решением заданий и выполнением задач

вокруг оси Oz, получим однополостный гиперболоид вращения с уравнением

Аналитическая геометрия - примеры с решением заданий и выполнением задач

После линейной деформации вдоль оси Ох эта поверхность превращается в однополостный гиперболоид общего вида с осью Oz :

Аналитическая геометрия - примеры с решением заданий и выполнением задач
Аналитическая геометрия - примеры с решением заданий и выполнением задач

Аналогично, уравнения однополостных гиперболоидов с осями Ох и Оу имеют, соответственно, вид:

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Сечениями однополостного гиперболоида плоскостями, перпендикулярными его оси, являются эллипсы, а в сечениях плоскостями, перпендикулярными другим координатным осям, располагаются гиперболы.

Двухполостный гиперболоид

Поверхность, полученная вращением вокруг оси Оz гиперболы

Аналитическая геометрия - примеры с решением заданий и выполнением задач

вершины которой расположены на оси вращения, называется двухполостным гиперболоидом вращения. Запишем уравнение двухполостного гиперболоида:

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Линейная деформация двухполостного гиперболоида вращения вдоль оси Ох прообразует его в двухполостный гиперболоид общего вида с осью Oz. Уравнение этой поверхности имеет вид:

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Двухполостные гиперболоиды с осями Ох и Оу имеют, соответственно, уравнения:

Аналитическая геометрия - примеры с решением заданий и выполнением задач
Как и в случае однополостного гиперболоида, сечениями двухполостного гиперболоида плоскостями, параллельными координатным, являются эллипсы и гиперболы.

Параболоиды

а) Эллиптический параболоид

Вращение параболы вокруг ее оси приводит к поверхности, которая называется параболоидом вращения. В частности, если параболу с каноническим уравнением Аналитическая геометрия - примеры с решением заданий и выполнением задач вращать вокруг оси Oz, то, как следует из пункта 0, уравнение полученного параболоида вращения имеет вид:

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Линейная деформация параболоида вращения вдоль оси Оу превращает его в эллиптический параболоид с уравнением:

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Положительные числа p, q называются параметрами параболоида, точка O(0,0) – вершина, ось Oz – ось эллиптического параболоида.

Уравнения эллиптических параболоидов с осями Ох и Оу имеют, соответственно, вид:
Аналитическая геометрия - примеры с решением заданий и выполнением задач
Как следует из уравнения эллиптического параболоида, плоскости, перпендикулярные его оси, пересекают эту поверхность по эллипсам, а в сечениях плоскостями, параллельными другим координатным, находятся параболы.

Замечание. Изменение знака в правой части уравнения эллиптического параболоида приводит к отражению этой поверхности относительно координатной плоскости, перпендикулярной оси параболоида.

b) Гиперболический параболоид.

Будем поступательно перемещать образующую параболу

Аналитическая геометрия - примеры с решением заданий и выполнением задач

расположенную в плоскости Oyz, параллельно самой себе вдоль направляющей параболы

Аналитическая геометрия - примеры с решением заданий и выполнением задач

находящейся в плоскости Oxz. Полученная таким образом поверхность называется гиперболическим параболоидом или седловидной поверхностью.

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Найдем уравнение этой поверхности. Пусть М(х. у, z) – произвольная точка гиперболического параболоида. По его построению точка М принадлежит параболе с вершиной в точке Аналитическая геометрия - примеры с решением заданий и выполнением задач, параллельной параболе Аналитическая геометрия - примеры с решением заданий и выполнением задач Так как координаты произвольной точки Аналитическая геометрия - примеры с решением заданий и выполнением задач этой параболы удовлетворяют уравнению

Аналитическая геометрия - примеры с решением заданий и выполнением задач

то, подставив в него координаты точки М, мы и получим после несложных преобразований уравнение гиперболического параболоида:

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Здесь, как и для эллиптического параболоида, числа р, q – параметры гиперболического параболоида, точка O(0,0) и ось Oz – соответственно вершина и ось гиперболического параболоида.

Замечание 1. Седловидная поверхность может быть также получена перемещением параболы Аналитическая геометрия - примеры с решением заданий и выполнением задач параллельно самой себе вдоль параболы Аналитическая геометрия - примеры с решением заданий и выполнением задач

Судя по уравнению гиперболического параболоида, в сечениях этой поверхности плоскостями z = h > 0 находятся гиперболы, действительные оси которых параллельны координатной оси Ох. Аналогично, плоскости z = h < 0 пересекают данную поверхность по гиперболам с действительными осями, параллельными оси Оу. Наконец, плоскость Оху пересекает гиперболический параболоид по двум прямым Аналитическая геометрия - примеры с решением заданий и выполнением задач

Гиперболические параболоиды, осями которых служат координатные оси Ох и Оу, имеют, соответственно, уравнения:

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Замечание 2. Отразив седловидную поверхность относительно координатной плоскости, перпендикулярной ее оси, получим гиперболический параболоид, уравнение которого отличается знаком правой части от уравнения исходной поверхности.

Цилиндры второго порядка

Цилиндром второго порядка называется поверхность, полученная перемещением некоторой прямой (образующей) вдоль кривой второго порядка (направляющей), расположенной в плоскости, не содержащей образующую, параллельно фиксированному ненулевому вектору в пространстве.

Ограничимся случаем, когда направляющая расположена в одной из координатных плоскостей, а образующая перпендикулярна этой плоскости. Возьмем для определенности в плоскости Оху кривую второго порядка и будем перемещать прямую, параллельную оси Oz, вдоль этой кривой. Так как проекцией любой точки M(x,y,z) полученного таким образом цилиндра на плоскость Оху является точка N(x,y), принадлежащая кривой второго порядка, то координаты точки М удовлетворяют уравнению этой кривой. Следовательно, уравнением построенного цилиндра является уравнение его направляющей.

Перечислим теперь цилиндры второго порядка.

1) Аналитическая геометрия - примеры с решением заданий и выполнением задачэллиптический цилиндр

Аналитическая геометрия - примеры с решением заданий и выполнением задач
В частности, при а = b мы получим круговой цилиндр.

2 2 X у

2) Аналитическая геометрия - примеры с решением заданий и выполнением задачгиперболический цилиндр.

Аналитическая геометрия - примеры с решением заданий и выполнением задач
3) Аналитическая геометрия - примеры с решением заданий и выполнением задач – параболический цилиндр.

Аналитическая геометрия - примеры с решением заданий и выполнением задач
Аналогичные уравнения имеют цилиндры второго порядка, образующие которых параллельны осям Ох и Оу, а направляющие расположены в координатных плоскостях Oyz и Oxz, соответственно.

Конус второго порядка

Конус второго порядка представляет собой поверхность, которая может быть получена перемещением прямой (образующей), имеющей неподвижную точку, которая называется вершиной конуса, вдоль кривой второго порядка (направляющей), расположенной в плоскости, не содержащей вершину.

Найдем уравнение конуса, вершина которого совпадает с началом координат, а направляющей служит эллипс с уравнением

Аналитическая геометрия - примеры с решением заданий и выполнением задач

расположенный в плоскости z = с, с > 0.

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Пусть M(x,y,z) – произвольная точка конуса. Обозначим через Аналитическая геометрия - примеры с решением заданий и выполнением задач точку перс-сечения образующей, проходящей через точку М, с направляющей. Координаты точки Аналитическая геометрия - примеры с решением заданий и выполнением задач удовлетворяют уравнениям

Аналитическая геометрия - примеры с решением заданий и выполнением задач

а точки M – уравнениям 

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Из последних уравнений мы находим:

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Подставив найденные выражения дляАналитическая геометрия - примеры с решением заданий и выполнением задач в уравнение эллипса, получим после несложных преобразований уравнение конуса второго порядка:

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Координатная ось Oz называется осью конуса. Если а = b, то конус является круговым.

Конусы второго порядка с осями Ох и Оу имеют, соответственно, уравнения:

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Покажем, что вид конуса второго порядка не зависит от выбора направляющей. Действительно, если в качестве направляющей взять гиперболу

Аналитическая геометрия - примеры с решением заданий и выполнением задач

находящегося в плоскости 2 = с, то после рассуждений, аналогичных предыдущим, получим поверхность с уравнением

Аналитическая геометрия - примеры с решением заданий и выполнением задач

т. е. конус с осью Ох. Если же за направляющую мы выберем в плоскости z = с параболу с уравнением

Аналитическая геометрия - примеры с решением заданий и выполнением задач

то построенный таким образом конус имеет уравнение

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Наблюдая со стороны положительной полуоси Оу, повернем систему координат Oxz вокруг оси Оу на угол 45° против часовой стрелки. Тогда произведение xz в системе координат Аналитическая геометрия - примеры с решением заданий и выполнением задач

запишется как Аналитическая геометрия - примеры с решением заданий и выполнением задач (§4, пункт 4, замечание). Следовательно, в новой системе координат Oxyz найденное уравнение поверхности приобретает вид

Аналитическая геометрия - примеры с решением заданий и выполнением задач

и, стало быть, эта поверхность является конусом с осью Аналитическая геометрия - примеры с решением заданий и выполнением задач

Как следует из уравнения конуса и его построения, плоскости, перпендикулярные его оси, пересекают эту поверхность по эллипсам, сечениями конуса плоскостями, параллельными его оси, являются гиперболы, и, наконец, в сечениях конуса плоскостями, параллельными образующей, располагаются параболы.

Приведение уравнения поверхности второго порядка к каноническому виду

По аналогии с уравнением кривой второго порядка (§4, пункт 4), уравнение поверхности второго порядка, не содержащее произведений координат, мы можем за счет выделения полных квадратов привести к уравнению одной из рассмотренных в пунктах 1—5 поверхностей. Следовательно, мы получим одну из поверхностей второго порядка в смещенной с помощью параллельного переноса системе координат. Исключение, правда, составляет случай, когда уравнение поверхности содержит полный квадрат и два линейных слагаемых относительно других координат. Такая поверхность представляет собой параболический цилиндр в смещенной с помощью параллельного переноса и повернутой затем вокруг одной из координатных осей системе координат.

Пример №8

Привести уравнение второго порядка

Аналитическая геометрия - примеры с решением заданий и выполнением задач

к каноническому виду, назвать и построить поверхность.

Решение. После выделения полных квадратов по переменным у, z получим:

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Переписав это уравнение в виде

Аналитическая геометрия - примеры с решением заданий и выполнением задач

мы замечаем, что в смещенной с помощью параллельного переноса в точку Аналитическая геометрия - примеры с решением заданий и выполнением задачсистеме координат, эта поверхность представляет собой гиперболический параболоид с параметрами р = 1, q = 4.

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Прямая на плоскости. Общее уравнение прямой на плоскости

Докажем, что всякая прямая на плоскости задается в любой пдск  уравнением первой степени относительно двух переменных. 
Если  A  – некоторая точка на прямой  Аналитическая геометрия - примеры с решением заданий и выполнением задач  – вектор, перпендикулярный ей, то, во-первых, через  A  перпендикулярно Аналитическая геометрия - примеры с решением заданий и выполнением задач проходит единственная прямая на  плоскости,  а,  во-вторых,    для любой  точки  Аналитическая геометрия - примеры с решением заданий и выполнением задач  вектор  Аналитическая геометрия - примеры с решением заданий и выполнением задач .  Таким свойством обладают только точки, лежащие наАналитическая геометрия - примеры с решением заданий и выполнением задач.  

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Чтобы вывести уравнение прямой, зададим на плоскости пдск  XOY .  
В этой системе координат  Аналитическая геометрия - примеры с решением заданий и выполнением задачАналитическая геометрия - примеры с решением заданий и выполнением задач

Пусть M (x, y)  – произвольная точка 
на Аналитическая геометрия - примеры с решением заданий и выполнением задач. Тогда (рис. 22 ) Аналитическая геометрия - примеры с решением заданий и выполнением задач. Так как  Аналитическая геометрия - примеры с решением заданий и выполнением задач , то по свойству 5 скалярного произведения Аналитическая геометрия - примеры с решением заданий и выполнением задач  – векторное уравнение прямой Аналитическая геометрия - примеры с решением заданий и выполнением задач.   
Аналитическая геометрия - примеры с решением заданий и выполнением задач поэтому по формуле (2.5) получим  
Аналитическая геометрия - примеры с решением заданий и выполнением задач

Координаты точек, лежащих на прямойАналитическая геометрия - примеры с решением заданий и выполнением задач, связаны соотношением (3.1). Если же  Аналитическая геометрия - примеры с решением заданий и выполнением задач  не перпендикулярен Аналитическая геометрия - примеры с решением заданий и выполнением задач значит, координаты  M  не  будут  удовлетворять полученному  уравнению.  Поэтому  (3.1)  –  уравнение прямой, проходящей через заданную точку, перпендикулярно заданному вектору. Заметим, что это уравнение линейно относительно переменных   x  и  y . 
 

Определение: Любой ненулевой вектор  Аналитическая геометрия - примеры с решением заданий и выполнением задач , перпендикулярный прямой Аналитическая геометрия - примеры с решением заданий и выполнением задач, называется ее нормальным вектором, или нормалью. 
Аналитическая геометрия - примеры с решением заданий и выполнением задач. Обозначая  Аналитическая геометрия - примеры с решением заданий и выполнением задач , получим 
Аналитическая геометрия - примеры с решением заданий и выполнением задач
(3.2) – общее уравнение прямой на плоскости, Аналитическая геометрия - примеры с решением заданий и выполнением задач

Уравнение прямой с направляющим вектором

Определение:  Любой  ненулевой  вектор  Аналитическая геометрия - примеры с решением заданий и выполнением задач ,  параллельный  прямой, называется ее направляющим вектором. 
Если  A  – некоторая точка на прямой Аналитическая геометрия - примеры с решением заданий и выполнением задач  – вектор, параллельный ей, то, во-первых, через  A  параллельно Аналитическая геометрия - примеры с решением заданий и выполнением задач проходит единственная прямая, а, во-вторых,  для любой точки Аналитическая геометрия - примеры с решением заданий и выполнением задач вектор Аналитическая геометрия - примеры с решением заданий и выполнением задач Таким свойством обладают только точки, лежащие на Аналитическая геометрия - примеры с решением заданий и выполнением задач.  

Чтобы  вывести  уравнение  прямой,  зададим  на  плоскости  пдск  XOY .  В этой системе координат  Аналитическая геометрия - примеры с решением заданий и выполнением задач

Пусть  M (x, y) – произвольная точка на  . Тогда  Аналитическая геометрия - примеры с решением заданий и выполнением задач и Аналитическая геометрия - примеры с решением заданий и выполнением задач. Запишем условие коллинеарности векторов: 
Аналитическая геометрия - примеры с решением заданий и выполнением задач
(3.3) – уравнение прямой на плоскости с направляющим вектором.                    
Если  Аналитическая геометрия - примеры с решением заданий и выполнением задач – направляющий вектор прямой   , поэтому уравнение прямой, проходящей через две точки имеет вид: 
Аналитическая геометрия - примеры с решением заданий и выполнением задач
 

Уравнение прямой с угловым коэффициентом

Пусть Аналитическая геометрия - примеры с решением заданий и выполнением задач – направляющий вектор прямойАналитическая геометрия - примеры с решением заданий и выполнением задач  не параллельна оси OY , тогда Аналитическая геометрия - примеры с решением заданий и выполнением задач
 

Определение: Угловым коэффициентом прямой Аналитическая геометрия - примеры с решением заданий и выполнением задач называется число 
Аналитическая геометрия - примеры с решением заданий и выполнением задач
Очевидно, что если Аналитическая геометрия - примеры с решением заданий и выполнением задач – угол между прямой Аналитическая геометрия - примеры с решением заданий и выполнением задач и положительным направлением оси ОХ, то  Аналитическая геометрия - примеры с решением заданий и выполнением задач
Рассмотрим уравнение (3.3)  прямой с направляющим вектором Аналитическая геометрия - примеры с решением заданий и выполнением задач
Аналитическая геометрия - примеры с решением заданий и выполнением задач 
Отсюда следует  (3.5) – уравнение прямой с заданным угловым коэффициентом, проходящей через заданную точку Аналитическая геометрия - примеры с решением заданий и выполнением задач
Аналитическая геометрия - примеры с решением заданий и выполнением задач
Из (3.5) получим Аналитическая геометрия - примеры с решением заданий и выполнением задач . Обозначим Аналитическая геометрия - примеры с решением заданий и выполнением задач , тогда  
Аналитическая геометрия - примеры с решением заданий и выполнением задач
(3.6) – уравнение прямой с угловым коэффициентом.

Угол между прямыми на плоскости

Определение: Углом между двумя прямыми на плоскости называется  любой  из  двух  смежных  углов,  образованных  ими  при  пересечении.  Если прямые параллельны, то угол между ними равен  0  илиАналитическая геометрия - примеры с решением заданий и выполнением задач  радиан. 
Пусть прямые заданы общими уравнениями. 
Аналитическая геометрия - примеры с решением заданий и выполнением задач
Аналитическая геометрия - примеры с решением заданий и выполнением задач
Условие параллельности прямых: 
Аналитическая геометрия - примеры с решением заданий и выполнением задач
Условие перпендикулярности прямых:   
Аналитическая геометрия - примеры с решением заданий и выполнением задач
Рассмотрим случай, когда прямые заданы уравнениями с угловым коэффициентом. 
Аналитическая геометрия - примеры с решением заданий и выполнением задач                                                                      
Аналитическая геометрия - примеры с решением заданий и выполнением задач
Так как  Аналитическая геометрия - примеры с решением заданий и выполнением задач  (рис. 24  ), то 
Аналитическая геометрия - примеры с решением заданий и выполнением задач
Условие параллельности прямых:    
Аналитическая геометрия - примеры с решением заданий и выполнением задач
Условие перпендикулярности:     
Аналитическая геометрия - примеры с решением заданий и выполнением задачТак как Аналитическая геометрия - примеры с решением заданий и выполнением задач
не существует, то Аналитическая геометрия - примеры с решением заданий и выполнением задач

Пример №9

Даны  вершины  треугольника: Аналитическая геометрия - примеры с решением заданий и выполнением задач
Написать: 
 а) уравнение медианы  AM , б) высоты  AH , в) найти угол между   AM  и  AH  
(рис. 25).      
Аналитическая геометрия - примеры с решением заданий и выполнением задач                      
Перепишем уравнение  медианы в общем виде:   
Аналитическая геометрия - примеры с решением заданий и выполнением задач  – нормаль АМ. 
б)Аналитическая геометрия - примеры с решением заданий и выполнением задач – нормаль  AH . Уравнение прямой (3.1), проходящей через точку  A  перпендикулярно вектору Аналитическая геометрия - примеры с решением заданий и выполнением задач :  
Аналитическая геометрия - примеры с решением заданий и выполнением задач
в)Аналитическая геометрия - примеры с решением заданий и выполнением задач. По формуле (3.7) Аналитическая геометрия - примеры с решением заданий и выполнением задач
 

Расстояние от точки до прямой на плоскости

Пусть  в некоторой пдск  XOY  задана прямая  Аналитическая геометрия - примеры с решением заданий и выполнением задач  и точка Аналитическая геометрия - примеры с решением заданий и выполнением задач  Найдем расстояние от точки M  до прямой  . 
Аналитическая геометрия - примеры с решением заданий и выполнением задач
Пусть  Аналитическая геометрия - примеры с решением заданий и выполнением задач – проекция точки  M  на Аналитическая геометрия - примеры с решением заданий и выполнением задач (рис.  26),  тогда  Аналитическая геометрия - примеры с решением заданий и выполнением задач

Нормаль 

Аналитическая геометрия - примеры с решением заданий и выполнением задач

где   d  – искомое расстояние, Аналитическая геометрия - примеры с решением заданий и выполнением задач – скалярное произведение.  
Следовательно,        
Аналитическая геометрия - примеры с решением заданий и выполнением задач

Так как Аналитическая геометрия - примеры с решением заданий и выполнением задач. Поэтому    
Аналитическая геометрия - примеры с решением заданий и выполнением задач
Отсюда    Аналитическая геометрия - примеры с решением заданий и выполнением задач
(3.8) – формула для вычисления расстояния от точки до прямой на плоскости. 
 

Пример №10

Найти длину высоты  Аналитическая геометрия - примеры с решением заданий и выполнением задач
Уравнение  Аналитическая геометрия - примеры с решением заданий и выполнением задач –
искомая длина высоты АН. 
 

Кривые второго порядка

Окружность

Определение: Кривые второго порядка – плоские линии, которые в пдск   XOY  задаются уравнениями второй степени относительно двух переменных x,y. 
 

Определение: Окружностью называется совокупность точек  плоскости, равноудаленных от фиксированной точки, называемой ее центром. 

Выведем уравнение окружности. Зададим пдск  XOY . Пусть Аналитическая геометрия - примеры с решением заданий и выполнением задач – фиксированная точка (центр окружности), а  R  – расстояние от точек окружности до ее центра (радиус окружности). Если  Аналитическая геометрия - примеры с решением заданий и выполнением задач  – произвольная точка окружности, то длина Аналитическая геометрия - примеры с решением заданий и выполнением задач равна R . Аналитическая геометрия - примеры с решением заданий и выполнением задач
Аналитическая геометрия - примеры с решением заданий и выполнением задач
Если точка  M (x, y)   не лежит на окружности, то  Аналитическая геометрия - примеры с решением заданий и выполнением задач  и ее координаты уравнению (3.9) не удовлетворяют, поэтому, (3.9) – уравнение окружности с центром  Аналитическая геометрия - примеры с решением заданий и выполнением задач радиуса  R . 
Если  Аналитическая геометрия - примеры с решением заданий и выполнением задач , то уравнение окружности примет вид: 
Аналитическая геометрия - примеры с решением заданий и выполнением задач
(3.10) – каноническое уравнение окружности.

Пример №11

Показать, что уравнение Аналитическая геометрия - примеры с решением заданий и выполнением задачзадает окружность (то есть найти  ее центр и радиус). 
Приведем  данное  уравнение  к  виду (3.9), выделив  полный квадрат по переменной   x : 
Аналитическая геометрия - примеры с решением заданий и выполнением задач
 

Пример №12

Написать уравнение линии центров окружностей  
Аналитическая геометрия - примеры с решением заданий и выполнением задач
Найдем центр второй окружности:         
Аналитическая геометрия - примеры с решением заданий и выполнением задач
Уравнение прямой (3.4), проходящей через две точки: 
Аналитическая геометрия - примеры с решением заданий и выполнением задач
 

Эллипс

Определение:  Эллипс  –  совокупность  точек  плоскости,  сумма  расстояний от которых до двух фиксированных точек этой плоскости, называемых фокусами, есть величина постоянная и большая, чем расстояние между фокусами. 

Чтобы вывести уравнение эллипса, выберем пдск следующим образом: ось абсцисс проведем через фокусы  Аналитическая геометрия - примеры с решением заданий и выполнением задач , а ось ординат – посередине отрезка Аналитическая геометрия - примеры с решением заданий и выполнением задач перпендикулярно  оси  абсцисс.    Обозначим  расстояние  между  фокусами Аналитическая геометрия - примеры с решением заданий и выполнением задач тогда Аналитическая геометрия - примеры с решением заданий и выполнением задач. Пусть  M(x, y)  – произвольная точка, лежащая на эллипсе, а  2a  – сумма расстояний от точек на эллипсе до Аналитическая геометрия - примеры с решением заданий и выполнением задач ,     
Аналитическая геометрия - примеры с решением заданий и выполнением задач                     
2a>2c определению эллипса. 
Аналитическая геометрия - примеры с решением заданий и выполнением задач(рис. 27). 
Запишем  в  виде  уравнения  свойство  точек, принадлежащих эллипсу, сформулированное в определении: 
Аналитическая геометрия - примеры с решением заданий и выполнением задач

(3.11) – уравнение эллипса в выбранной системе координат. Преобразуем его к 
более простому (каноническому) виду. Для этого умножим (3.11)  на сопряженное выражение: 
Аналитическая геометрия - примеры с решением заданий и выполнением задач
Сложим (3.11) и (3.12) и результат возведем в квадрат: 
Аналитическая геометрия - примеры с решением заданий и выполнением задач
Так как по определению  a>c, то есть  Аналитическая геометрия - примеры с решением заданий и выполнением задач, то обозначим Аналитическая геометрия - примеры с решением заданий и выполнением задач
Тогда из (3.13) получим:  
Аналитическая геометрия - примеры с решением заданий и выполнением задач
(3.14) – каноническое уравнение эллипса. 
 

Исследуем форму эллипса по его каноническому уравнению. Найдем точки пересечения с осями координат:
Аналитическая геометрия - примеры с решением заданий и выполнением задач  
Аналитическая геометрия - примеры с решением заданий и выполнением задач
Из (3.14) следует, что 
Аналитическая геометрия - примеры с решением заданий и выполнением задач

Значит, эллипс расположен в прямоугольнике со сторонами  Аналитическая геометрия - примеры с решением заданий и выполнением задач .  
Кроме того, из уравнения следует, что он симметричен относительно OX  и OY . O(0,0)  – точка пересечения осей симметрии – центр симметрии  эллипса. 
Ось, на которой лежат фокусы, называется фокальной осью эллипса. Точки  пересечения  эллипса  с  осями  симметрии  называются  его  вершинами.  

Аналитическая геометрия - примеры с решением заданий и выполнением задач – полуфокусное расстояние, Аналитическая геометрия - примеры с решением заданий и выполнением задач – малая полуось,  
Аналитическая геометрия - примеры с решением заданий и выполнением задач – большая полуось эллипса и Аналитическая геометрия - примеры с решением заданий и выполнением задач (рис. 28). 

Отношение полуфокусного расстояния к длине большой полуоси Аналитическая геометрия - примеры с решением заданий и выполнением задач называется эсцентриситетом  эллипса. Он характеризует форму эллипса.

Так как Аналитическая геометрия - примеры с решением заданий и выполнением задач, и чем меньше Аналитическая геометрия - примеры с решением заданий и выполнением задач, тем больше эллипс похож на окружность. Для окружности Аналитическая геометрия - примеры с решением заданий и выполнением задач
 

ЗАМЕЧАНИЕ  1.  Уравнение  эллипса,  центр  которого  Аналитическая геометрия - примеры с решением заданий и выполнением задач,  а  оси симметрии параллельны координатным осям, имеет вид:  
Аналитическая геометрия - примеры с решением заданий и выполнением задач
 

ЗАМЕЧАНИЕ 2. К кривым второго порядка эллиптического типа относятся также мнимый эллипс 
Аналитическая геометрия - примеры с решением заданий и выполнением задач  и точка Аналитическая геометрия - примеры с решением заданий и выполнением задач
Аналитическая геометрия - примеры с решением заданий и выполнением задач
 

Пример №13

Найти эксцентриситет эллипса   Аналитическая геометрия - примеры с решением заданий и выполнением задач(рис. 29).    
Так как Аналитическая геометрия - примеры с решением заданий и выполнением задач, то фокусы лежат на оси  OY  и поэтому  Аналитическая геометрия - примеры с решением заданий и выполнением задач
Аналитическая геометрия - примеры с решением заданий и выполнением задач
 

Гипербола

Определение:  Гипербола  –  совокупность  точек  плоскости,  модуль разности расстояний от которых до двух фиксированных точек этой плоскости, называемых фокусами,  есть величина постоянная, не равная  нулю и меньшая, чем расстояние между фокусами. 

Чтобы вывести уравнение гиперболы, выберем пдск следующим образом: 

ось абсцисс проведем через фокусы Аналитическая геометрия - примеры с решением заданий и выполнением задач, а ось ординат – посередине отрез-
ка Аналитическая геометрия - примеры с решением заданий и выполнением задач перпендикулярно оси абсцисс. Тогда Аналитическая геометрия - примеры с решением заданий и выполнением задач – фокусы гиперболы (рис. 30). Пусть  M(x, y)  – произвольная точка, лежащая на гиперболе.

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Аналитическая геометрия - примеры с решением заданий и выполнением задач – расстояние между фокусами, 2a  – модуль разности  расстояний от точек на гиперболе до Аналитическая геометрия - примеры с решением заданий и выполнением задачАналитическая геометрия - примеры с решением заданий и выполнением задач(рис. 30). 

Запишем свойство точек, принадлежащих гиперболе, сформулированное в определении: 
Аналитическая геометрия - примеры с решением заданий и выполнением задач
(3.16) – уравнение гиперболы в выбранной системе координат ( «+» – если разность расстояний  положительна, и «–»  – если отрицательна). Чтобы привести это уравнение к более простому виду, умножим (3.16) на сопряженное выражение и выполним такие  же действия, как при упрощении уравнения эллипса, после чего получим: 
Аналитическая геометрия - примеры с решением заданий и выполнением задач

По определению Аналитическая геометрия - примеры с решением заданий и выполнением задач. Обозначим  Аналитическая геометрия - примеры с решением заданий и выполнением задач, тогда (3.17) перепишется в виде:  
Аналитическая геометрия - примеры с решением заданий и выполнением задач
(3.18) – каноническое уравнение гиперболы. 

Исследуем форму гиперболы по ее каноническому уравнению.  
Из (3.18) следует, что гипербола симметрична относительно осей координат. Если x=0, Аналитическая геометрия - примеры с решением заданий и выполнением задач , значит, точек пересечения с  OY  нет; если  y = 0 , то Аналитическая геометрия - примеры с решением заданий и выполнением задач. Точки пересечения с осями симметрии называются вершинами гиперболы.  Кроме  того,  из  (3.18)  следует,  что Аналитическая геометрия - примеры с решением заданий и выполнением задач. Точка  пересечения осей  симметрии  называется  центром  гиперболы.  Ось  симметрии,  на  которой расположены  фокусы,  называется  фокальной  осью.  При  этом  фокальная  ось также называется действительной (с ней гипербола пересекается), а ось симметрии, с которой гипербола не пересекается, называется ее мнимой осью. 

c  – полуфокусное расстояние,   a  – действительная полуось, b  – мнимая полуось.  Отношение  полуфокусного  расстояния  к  длине  действительной  полуоси называется эксцентриситетом  гиперболы: Аналитическая геометрия - примеры с решением заданий и выполнением задач.  Так  как  по  определению Аналитическая геометрия - примеры с решением заданий и выполнением задач

Считая, что Аналитическая геометрия - примеры с решением заданий и выполнением задач из (3.18) получим, что Аналитическая геометрия - примеры с решением заданий и выполнением задач – уравнение части гиперболы, расположенной в первой четверти. Заметим, что при неограниченном  возрастании Аналитическая геометрия - примеры с решением заданий и выполнением задач  разность Аналитическая геометрия - примеры с решением заданий и выполнением задач, то есть при достаточно больших   x  гипербола приближается к прямой Аналитическая геометрия - примеры с решением заданий и выполнением задач
причем ординаты точек на ней меньше соответствующих ординат точек на этой 
прямой:Аналитическая геометрия - примеры с решением заданий и выполнением задач. Прямая Аналитическая геометрия - примеры с решением заданий и выполнением задачназывается асимптотой гиперболы.  
Аналитическая геометрия - примеры с решением заданий и выполнением задач

Из симметрии гиперболы следует, что то же самое происходит во второй, третьей и четвертой  четвертях. Поэтому Аналитическая геометрия - примеры с решением заданий и выполнением задач  – также асимптота. 
Итак, прямыеАналитическая геометрия - примеры с решением заданий и выполнением задач  – асимптоты гиперболы (3.18), а гипербола – кривая, состоящая из двух ветвей (рис. 31). 
Если фокусы гиперболы лежат на OY , то ее уравнение имеет вид: 
Аналитическая геометрия - примеры с решением заданий и выполнением задач
Гиперболы  (3.18)  и  (3.19)  называются  сопряженными  (рис.  31).  Уравнения асимптот  (3.19) такие же, как и для (3.18), но действительной является ось OY . 
Если  a = b, то гипербола называется равносторонней: Аналитическая геометрия - примеры с решением заданий и выполнением задач – уравнения ее асимптот (рис. 32 ).     
Аналитическая геометрия - примеры с решением заданий и выполнением задач

Очевидно, в этом случае асимптоты перпендикулярны. После поворота осей координат на Аналитическая геометрия - примеры с решением заданий и выполнением задач против часовой стрелки, получим  гиперболу, задаваемую уравнениемАналитическая геометрия - примеры с решением заданий и выполнением задач
 

ЗАМЕЧАНИЕ 1. Если центр гиперболы  в точке Аналитическая геометрия - примеры с решением заданий и выполнением задач, а оси симметрии параллельны координатным осям, то уравнение гиперболы имеет вид         
Аналитическая геометрия - примеры с решением заданий и выполнением задач

 ЗАМЕЧАНИЕ 2. К кривым второго порядка гиперболического типа относится также  пара пересекающихся прямых:  Аналитическая геометрия - примеры с решением заданий и выполнением задач
 

Пример №14

Найти координаты центра и написать уравнения асимптот гиперболы Аналитическая геометрия - примеры с решением заданий и выполнением задач
Приведем данное уравнение к виду (3.20): 
Аналитическая геометрия - примеры с решением заданий и выполнением задач
Таким образом, Аналитическая геометрия - примеры с решением заданий и выполнением задач – центр, Аналитическая геометрия - примеры с решением заданий и выполнением задач  – уравнения асимптот данной гиперболы. 
 

Парабола

Определение: Парабола – совокупность точек плоскости, равноудаленных от фиксированной точки этой плоскости, называемой фокусом, и фиксированной прямой, не проходящей через эту точку, называемой директрисой.   Чтобы вывести уравнение параболы, выберем пдск следующим образом: ось абсцисс проведем через фокус перпендикулярно директрисе, а ось ординат посередине между фокусом и директрисой (рис. 33). 

Пусть расстояние между фокусом  F  и директрисой  DK  равно  p . Тогда Аналитическая геометрия - примеры с решением заданий и выполнением задач.  Если  M(x, y)   –  произвольная  точка  на  параболе,  то  по определению 
Аналитическая геометрия - примеры с решением заданий и выполнением задач
(3.21) – уравнение параболы в выбранной системе координат. 

Упростим его:                                 
Аналитическая геометрия - примеры с решением заданий и выполнением задач
(3.22) – каноническое уравнение параболы;  p  называется ее параметром. 
Из уравнения следует, что парабола симметрична относительно   OX  и проходит через начало координат. Кроме того,  если Аналитическая геометрия - примеры с решением заданий и выполнением задач, поэтому кривая лежит в правой полуплоскости и с ростом величины Аналитическая геометрия - примеры с решением заданий и выполнением задач также растет. Точка пересечения параболы с осью симметрии называется ее вершиной (рис. 34). 
Аналитическая геометрия - примеры с решением заданий и выполнением задач
Если фокус параболы на оси ОУ (рис. 35), то ее каноническое уравнение имеет вид Аналитическая геометрия - примеры с решением заданий и выполнением задач
Аналитическая геометрия - примеры с решением заданий и выполнением задач
 

ЗАМЕЧАНИЕ 1. Если вершина параболы в точке Аналитическая геометрия - примеры с решением заданий и выполнением задач и ось симметрии параллельна OX , то ее уравнение имеет вид Аналитическая геометрия - примеры с решением заданий и выполнением задач

ЗАМЕЧАНИЕ 2.  К кривым второго порядка параболического типа относятся также Аналитическая геометрия - примеры с решением заданий и выполнением задач  – пара совпадающих прямых;  
Аналитическая геометрия - примеры с решением заданий и выполнением задач– пара параллельных прямых; Аналитическая геометрия - примеры с решением заданий и выполнением задач пара мнимых параллельных прямых.  
 

Пример №15

Написать уравнение геометрического места точек, равноудаленных от прямой  x + y – 1 = 0 и точки F(-3,2). 
По определению множество точек, равноудаленных от данных точки и прямой, является  параболой.  Пусть  M (x, y)   –  произвольная  точка  искомой  параболы, тогда Аналитическая геометрия - примеры с решением заданий и выполнением задач. Расстояние от точки M  до прямой x + y – 1 = 0 вычисляется по формуле (3.8): Аналитическая геометрия - примеры с решением заданий и выполнением задач . Из условия следует, что  
Аналитическая геометрия - примеры с решением заданий и выполнением задач  – уравнение искомого геометрического места точек. 
Аналитическая геометрия - примеры с решением заданий и выполнением задач

Если  оси  координат  системы XOY   повернуть на угол Аналитическая геометрия - примеры с решением заданий и выполнением задач так, чтобы  одна  из  них  стала  параллельна директрисе, а затем перенести  начало координат в точку Аналитическая геометрия - примеры с решением заданий и выполнением задач  – вершину параболы, то в новой  системе Аналитическая геометрия - примеры с решением заданий и выполнением задач  уравнение  параболы  будет  каноническим Аналитическая геометрия - примеры с решением заданий и выполнением задач (рис. 36).  
 

ЗАМЕЧАНИЕ. Можно показать, что, кроме окружности, эллипса, гиперболы, параболы и вырожденных случаев, указанных в замечаниях, других кривых второго порядка не существует.  
 

Преобразования координат на плоскости

Преобразование координат — замена системы координат на плоскости, в пространстве или, в самом общем случае, на заданном n-мерном многообразии.

Параллельный перенос координатных осей

Пусть на плоскости задана пдск ХОУ. Будем называть ее “старой”. “Новая” система координат Аналитическая геометрия - примеры с решением заданий и выполнением задач получена из “старой” параллельным переносом осей в точку Аналитическая геометрия - примеры с решением заданий и выполнением задач.  Выясним, как связаны координаты Аналитическая геометрия - примеры с решением заданий и выполнением задач одной и той же точки М  в этих системах координат.

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Пусть Аналитическая геометрия - примеры с решением заданий и выполнением задач – орты координатных осей системы ХОУ, а  Аналитическая геометрия - примеры с решением заданий и выполнением задач– системы Аналитическая геометрия - примеры с решением заданий и выполнением задач
Тогда Аналитическая геометрия - примеры с решением заданий и выполнением задач

Аналитическая геометрия - примеры с решением заданий и выполнением задач
так как Аналитическая геометрия - примеры с решением заданий и выполнением задач по определению  равенства  векторов (рис. 37). 
Так как Аналитическая геометрия - примеры с решением заданий и выполнением задач, то 
Аналитическая геометрия - примеры с решением заданий и выполнением задач
или                                                  
Аналитическая геометрия - примеры с решением заданий и выполнением задач
(3.23) – формулы параллельного переноса осей пдск. 
Аналитическая геометрия - примеры с решением заданий и выполнением задач
 

Поворот координатных осей на угол α

Поворот координатных осей на угол Аналитическая геометрия - примеры с решением заданий и выполнением задач

Пусть  “новая”  пдск   Аналитическая геометрия - примеры с решением заданий и выполнением задач получена из  “старой” системы координат XOY поворотом осей ОХ и ОУ на угол Аналитическая геометрия - примеры с решением заданий и выполнением задач(рис. 38) и М(х, у) – произвольная  точка  в  системе XOY . Выясним, какими станут ее координаты в “новой” пдск.  
Из рис. 38 очевидно, что 

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Так как Аналитическая геометрия - примеры с решением заданий и выполнением задач, то  
Аналитическая геометрия - примеры с решением заданий и выполнением задач
(3.24) – формулы поворота координатных осей на угол  , выражающие старые координаты точки через новые. 
Если обозначить  Аналитическая геометрия - примеры с решением заданий и выполнением задач, то (3.24) можно переписать:  Аналитическая геометрия - примеры с решением заданий и выполнением задач. Так как Аналитическая геометрия - примеры с решением заданий и выполнением задач, то существует  Аналитическая геометрия - примеры с решением заданий и выполнением задач и  
Аналитическая геометрия - примеры с решением заданий и выполнением задач
(3.25) – формулы поворота координатных осей на угол Аналитическая геометрия - примеры с решением заданий и выполнением задач, выражающие новые  координаты точки через старые. 
Аналитическая геометрия - примеры с решением заданий и выполнением задач
 

Пример №16

Каким  будет  уравнение  прямой  x + y – 1 = 0 после поворота координатных осей на угол Аналитическая геометрия - примеры с решением заданий и выполнением задач

Аналитическая геометрия - примеры с решением заданий и выполнением задач
 новое уравнение прямой (рис. 39). 
 

Линейные  преобразования на плоскости

Рассмотрим систему линейных уравнений: 
Аналитическая геометрия - примеры с решением заданий и выполнением задач
Каждой точке  плоскости  M(x, y)  по формулам (3.26) можно поставить в соответствие  единственную точку Аналитическая геометрия - примеры с решением заданий и выполнением задач той же плоскости. При этом точка  N  называется образом точки  M , а точка  M  – прообразом точки  N .  Кроме того,уравнения (3.26) линейны относительно  x  и  y , поэтому будем говорить, что (3.26) определяют линейное преобразование плоскости в себя. 
Преобразование (3.26) определяется матрицей Аналитическая геометрия - примеры с решением заданий и выполнением задач, которая называется  матрицей  линейного  преобразования.  Обозначая  ,Аналитическая геометрия - примеры с решением заданий и выполнением задач
(3.26)  можно  переписать  в  виде Аналитическая геометрия - примеры с решением заданий и выполнением задач.  Можно  показать,  что  определитель Аналитическая геометрия - примеры с решением заданий и выполнением задач равен  коэффициенту  изменения  площадей  при  линейном  преобразовании (3.26). При этом Аналитическая геометрия - примеры с решением заданий и выполнением задач, если в результате преобразования направление обхода некоторого  контура  не  меняется,  и Аналитическая геометрия - примеры с решением заданий и выполнением задач,  если  оно  меняется  на  противоположное. Поясним это на примерах. 
Аналитическая геометрия - примеры с решением заданий и выполнением задач
 

Пример №17

 Аналитическая геометрия - примеры с решением заданий и выполнением задач– растяжение вдоль 
оси OX  в 2 раза.  Аналитическая геометрия - примеры с решением заданий и выполнением задач
Аналитическая геометрия - примеры с решением заданий и выполнением задач(рис. 40). 
Аналитическая геометрия - примеры с решением заданий и выполнением задач
 

Пример №18

Аналитическая геометрия - примеры с решением заданий и выполнением задач
Аналитическая геометрия - примеры с решением заданий и выполнением задач
при этом направление обхода  Аналитическая геометрия - примеры с решением заданий и выполнением задач от O  к  A , затем к  B  – по часовой стрелке, а соответствующее направление обхода Аналитическая геометрия - примеры с решением заданий и выполнением задач – против часовой стрелки. Геометрически данное преобразование – растяжение вдоль  OX  и OY  в 2 раза и отражение симметрично относительно оси OY  (рис. 41). 
 

Определение:  Линейное  преобразование  (3.26)  называется  невырожденным, если Аналитическая геометрия - примеры с решением заданий и выполнением задач

В  этом  случае  существует  обратная  матрица Аналитическая геометрия - примеры с решением заданий и выполнением задач и  можно  найти Аналитическая геометрия - примеры с решением заданий и выполнением задач. То есть, если Аналитическая геометрия - примеры с решением заданий и выполнением задач, то не только у каждого прообраза существует единственный образ, но и наоборот: для каждого образа существует единственный прообраз. В этом случае говорят, что (3.26) устанавливает взаимно однозначное соответствие между точками плоскости, или линейное преобразование плоскости на себя. 
Можно  показать,  что  невырожденное  линейное  преобразование  переводит прямую в прямую, а кривую второго порядка – в кривую второго порядка. 
 

Пример №19

Пусть Аналитическая геометрия - примеры с решением заданий и выполнением задач преобразование вырожденное. 
Какими будут образы точек, лежащих, например, на прямой  x + y – 1 = 0 
(рис. 42)?
Аналитическая геометрия - примеры с решением заданий и выполнением задач
Очевидно, что если Аналитическая геометрия - примеры с решением заданий и выполнением задач, то есть у точки N(1,2) существует  бесконечное  множество  прообразов:  все  они  лежат  на  прямой x + y – 1 = 0.  Потому  данное  вырожденное  линейное  преобразование  не  устанавливает взаимно-однозначного соответствия между точками плоскости. 
 

Пример №20

Рассмотрим формулы (3.25):  
Аналитическая геометрия - примеры с решением заданий и выполнением задач
Очевидно, что поворот осей пдск на угол Аналитическая геометрия - примеры с решением заданий и выполнением задач– линейное преобразование. 
Так как это линейное преобразование невырожденное, то существует  
Аналитическая геометрия - примеры с решением заданий и выполнением задач
Заметим, что в этом случае Аналитическая геометрия - примеры с решением заданий и выполнением задач
 

Определение: Матрица  A называется ортогональной, если Аналитическая геометрия - примеры с решением заданий и выполнением задач
Линейное  преобразование,  матрица  которого  ортогональна,  называется  ортогональным. 

Таким образом, поворот координатных осей – ортогональное линейное преобразование. 

Можно показать, что если  A  – ортогональная матрица, то Аналитическая геометрия - примеры с решением заданий и выполнением задач(доказать самостоятельно). Таким образом, в результате ортогональных линейных преобразований на плоскости площади фигур остаются неизменными.  
 

Произведение линейных преобразований

Рассмотрим  матрицы Аналитическая геометрия - примеры с решением заданий и выполнением задачКаждая  из  них определяет  линейное  преобразование  плоскости.  Если  M(x, y) –  некоторая точка плоскости, то под действием линейного преобразования Аналитическая геометрия - примеры с решением заданий и выполнением задач с матрицей  B   она перейдет в точку Аналитическая геометрия - примеры с решением заданий и выполнением задач
Аналитическая геометрия - примеры с решением заданий и выполнением задач

В свою очередь точка  N  под действием линейного преобразования Аналитическая геометрия - примеры с решением заданий и выполнением задач с матрицей C   перейдет в точку Аналитическая геометрия - примеры с решением заданий и выполнением задач
Аналитическая геометрия - примеры с решением заданий и выполнением задач

Такое последовательное выполнение линейных преобразований называется их произведением: Аналитическая геометрия - примеры с решением заданий и выполнением задач

Покажем, что произведение линейных преобразований также линейное преобразование, и найдем его матрицу. Подставим (3.27) в (3.28): 
Аналитическая геометрия - примеры с решением заданий и выполнением задач 
То есть  
Аналитическая геометрия - примеры с решением заданий и выполнением задач
(3.29)  – система линейных уравнений, а потому произведение линейных преобразований линейно. Матрица (3.29)  имеет вид: 
Аналитическая геометрия - примеры с решением заданий и выполнением задач

Таким образом, матрица произведения линейных преобразований равна произведению их матриц. Само же правило умножения матриц, сформулированное в гл.1, находит объяснение в этом выводе.  
 

Приведение квадратичной формы к каноническому виду

Определение: Квадратичной формой относительно двух переменных  x  и  y  называется однородный многочлен второй степени:  
Аналитическая геометрия - примеры с решением заданий и выполнением задач
Уравнение Аналитическая геометрия - примеры с решением заданий и выполнением задач задает на плоскости кривую второго порядка, причем, так как вместе с точкой  M(x, y) , лежащей на этой кривой,  ей  принадлежит  и  точка Аналитическая геометрия - примеры с решением заданий и выполнением задач,  кривая  симметрична  относительно 
начала  координат,  то  есть  является  центральной  кривой  (эллиптического  или гиперболического типа).

Предположим, что уравнение Аналитическая геометрия - примеры с решением заданий и выполнением задач задает в пдск ХОУ эллипс. Если Аналитическая геометрия - примеры с решением заданий и выполнением задач, то это уравнение не является каноническим уравнением эллипса, а потому, хотя О(0, 0) – его центр, оси симметрии не совпадают с ОХ и ОУ (рис. 43). Тем не менее, заметим, что если оси системы  XOY  повернуть на 
Аналитическая геометрия - примеры с решением заданий и выполнением задач
угол Аналитическая геометрия - примеры с решением заданий и выполнением задач , то в системе Аналитическая геометрия - примеры с решением заданий и выполнением задач эллипс будет  задаваться  каноническим  уравнением:  кривая  симметрична  относительно Аналитическая геометрия - примеры с решением заданий и выполнением задач.  Найдем  линейное преобразование,  соответствующее этому повороту. 

Матрица Аналитическая геометрия - примеры с решением заданий и выполнением задач называется матрицей квадратичной формы (3.30).  
Пусть  Аналитическая геометрия - примеры с решением заданий и выполнением задач
Вычислим Аналитическая геометрия - примеры с решением заданий и выполнением задач
Таким образом, квадратичная форма может быть записана в матричном виде: 
Аналитическая геометрия - примеры с решением заданий и выполнением задач

Пусть  x, y – координаты точек плоскости в системе  XOY , а  Аналитическая геометрия - примеры с решением заданий и выполнением задач– координаты точек  плоскости  в новой системе Аналитическая геометрия - примеры с решением заданий и выполнением задач , где  кривая задается каноническим уравнением. Переход от “старых” координат к “новым” будем искать в виде  
Аналитическая геометрия - примеры с решением заданий и выполнением задач
(3.32) – ортогональное линейное преобразование с матрицей  
Аналитическая геометрия - примеры с решением заданий и выполнением задач
По определению ортогональной матрицы  
Аналитическая геометрия - примеры с решением заданий и выполнением задач
(В  результате  ортогонального  преобразования  не  происходит  изменение  площадей фигур, то есть фигуры не деформируются.) 
Чтобы узнать, как изменится матрица квадратичной формы в результате линейного  преобразования  (3.32),  подставим  (3.32)  в  (3.31): Аналитическая геометрия - примеры с решением заданий и выполнением задач (свойство 5 умножения матриц)Аналитическая геометрия - примеры с решением заданий и выполнением задач
(свойство 2 умножения матриц и равенство (3.33)) – матрица новой квадратичной формы.  

Так как в “новой” системе координат кривая должна задаваться каноническим уравнением, то есть в нем должно отсутствовать произведение координат  xy, то  Аналитическая геометрия - примеры с решением заданий и выполнением задач имеет вид: Аналитическая геометрия - примеры с решением заданий и выполнением задач
, где Аналитическая геометрия - примеры с решением заданий и выполнением задач – неизвестные числа. Умножим равенство Аналитическая геометрия - примеры с решением заданий и выполнением задач  на матрицу T  слева. Так как Аналитическая геометрия - примеры с решением заданий и выполнением задач, то получим: 
Аналитическая геометрия - примеры с решением заданий и выполнением задач
По определению равных матриц имеем: 
Аналитическая геометрия - примеры с решением заданий и выполнением задач
Системы уравнений (3.34), (3.35) – линейные и однородные. Они имеют нетривиальное решение, если их определители равны 0. 

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Это означает, что Аналитическая геометрия - примеры с решением заданий и выполнением задач являются решениями уравнения 
Аналитическая геометрия - примеры с решением заданий и выполнением задач
Уравнение (3.36) называется характеристическим уравнением матрицы  A  (характеристическим  уравнением  квадратичной  формы).  Его  решения Аналитическая геометрия - примеры с решением заданий и выполнением задач  называются собственными значениями матрицы  A (квадратичной формы).  

Покажем, что дискриминант квадратного уравнения (3.36) положителен, то есть любая квадратичная форма двух переменных имеет 2 различных собственных значения. 
Вычислим определитель (3.36):      
Аналитическая геометрия - примеры с решением заданий и выполнением задач

Дискриминант Аналитическая геометрия - примеры с решением заданий и выполнением задач
так как Аналитическая геометрия - примеры с решением заданий и выполнением задач  (иначе квадратичная форма будет канонической). 
 

Таким образом, коэффициентами при Аналитическая геометрия - примеры с решением заданий и выполнением задач в каноническом виде квадратичной формы являются ее собственные значения, то есть решения уравнения (3.36).  

Решим (3.36) и подставим Аналитическая геометрия - примеры с решением заданий и выполнением задач в (3.34). Система имеет бесконечное множество решений и пусть Аналитическая геометрия - примеры с решением заданий и выполнением задач – одно их них. Так как система (3.34) однородная, то Аналитическая геометрия - примеры с решением заданий и выполнением задач – тоже решение. Подберем  k  так, чтобы вектор  
Аналитическая геометрия - примеры с решением заданий и выполнением задач был единичным:Аналитическая геометрия - примеры с решением заданий и выполнением задач

Векторы  Аналитическая геометрия - примеры с решением заданий и выполнением задач называется  собственными  векторами  квадратичной формы, соответствующими собственному значению  Аналитическая геометрия - примеры с решением заданий и выполнением задач , или первыми собственными  векторами.  Их направление называется  первым  главным  направлением квадратичной формы. Таким образом, первым собственным вектором квадратичной формы называется любое ненулевое решение системы (3.34). 

Аналогично  подставим  Аналитическая геометрия - примеры с решением заданий и выполнением задач в  (3.35)  и  найдем Аналитическая геометрия - примеры с решением заданий и выполнением задач –  второй  собственный вектор, соответствующий собственному значению  r2 . Его направление  называется  вторым  главным  направлением  квадратичной  формы. Аналитическая геометрия - примеры с решением заданий и выполнением задач – второй единичный собственный вектор, то есть Аналитическая геометрия - примеры с решением заданий и выполнением задач

Можно показать, что Аналитическая геометрия - примеры с решением заданий и выполнением задач. Кроме того, Аналитическая геометрия - примеры с решением заданий и выполнением задач – первый собственный вектор, а Аналитическая геометрия - примеры с решением заданий и выполнением задач – второй собственный 
вектор, поэтому ортами “новой” системы координат  Аналитическая геометрия - примеры с решением заданий и выполнением задач, к которой мы перейдем в результате линейного преобразования с матрицей  T , являются единичные собственные векторы квадратичной формы, найденные как решения систем (3.34), (3.35). Направив оси “новой” системы координат вдоль собственных векторов  Аналитическая геометрия - примеры с решением заданий и выполнением задач, получим систему координат,  в которой квадратичная форма будет иметь канонический вид Аналитическая геометрия - примеры с решением заданий и выполнением задач
 

ВЫВОД.  

Чтобы привести квадратичную форму к каноническому виду, надо: 

  1. Составить и решить характеристическое уравнение (3.36); его решения – собственные значения – являются коэффициентами при Аналитическая геометрия - примеры с решением заданий и выполнением задач в каноническом виде квадратичной формы. 
  2. Найти единичные собственные векторы, решив (3.34) и (3.35); они будут ортами новой системы координат Аналитическая геометрия - примеры с решением заданий и выполнением задач.При этом если осьАналитическая геометрия - примеры с решением заданий и выполнением задач сонаправлена с  Аналитическая геометрия - примеры с решением заданий и выполнением задач – канонический вид, который квадратичная форма имеет в системе Аналитическая геометрия - примеры с решением заданий и выполнением задач.

Приведение общего уравнения кривой второго порядка к каноническому виду

Общее уравнение кривой второго порядка имеет вид:  
Аналитическая геометрия - примеры с решением заданий и выполнением задач

В результате невырожденного линейного преобразования с матрицей   T  квадратичная форма перейдет в квадратичную форму, линейная – в линейную, а свободный член  Аналитическая геометрия - примеры с решением заданий и выполнением задач не изменится. Каждую группу слагаемых будем преобразовывать отдельно, а именно: найдем ортогональное преобразование, приводящее  квадратичную  форму  к  каноническому  виду, затем  посмотрим, как  в результате этого преобразования изменится линейная форма (ортогональное преобразование в нашем случае – это поворот осей).

После поворота осей подберем параллельный перенос новой системы Аналитическая геометрия - примеры с решением заданий и выполнением задач так, чтобы после него уравнение кривой стало каноническим. 

Пример №21

Привести к каноническому виду ранее полученное уравнение параболы (стр. 58) и построить ее:  
Аналитическая геометрия - примеры с решением заданий и выполнением задач
1) Составим матрицу квадратичной формы: Аналитическая геометрия - примеры с решением заданий и выполнением задач
2) Составим и решим характеристическое уравнение (3.36):  
Аналитическая геометрия - примеры с решением заданий и выполнением задач – собственные значения. 
3) Найдем первый единичный собственный вектор, то есть решим систему (3.34): 
Аналитическая геометрия - примеры с решением заданий и выполнением задач – первый собственный вектор.  
Аналитическая геометрия - примеры с решением заданий и выполнением задач – первый единичный  собственный вектор (орт оси Аналитическая геометрия - примеры с решением заданий и выполнением задач). 
4) Найдем второй единичный собственный вектор, то есть решим (3.35): 
Аналитическая геометрия - примеры с решением заданий и выполнением задач –  второй    собственный вектор.  
Аналитическая геометрия - примеры с решением заданий и выполнением задач – второй  единичный  собственный вектор (орт оси Аналитическая геометрия - примеры с решением заданий и выполнением задач) . 
Заметим, что Аналитическая геометрия - примеры с решением заданий и выполнением задач,так как скалярное произведение Аналитическая геометрия - примеры с решением заданий и выполнением задач

В полученной таким образом системе координат Аналитическая геометрия - примеры с решением заданий и выполнением задач, взяв несколько контрольных точек, нарисуем параболу Аналитическая геометрия - примеры с решением заданий и выполнением задач(рxис. 44). 
Сравните  эскиз  (рис.  36)  и  данный  рисунок,  являющийся  результатом точных расчетов. 
Аналитическая геометрия - примеры с решением заданий и выполнением задач
 

Плоскость

Покажем, что плоскость в пространстве задается в любой пдск линейным уравнением относительно трех переменных  x, y, z. 
Если  A  – некоторая точка на плоскости Аналитическая геометрия - примеры с решением заданий и выполнением задач – вектор, перпендикулярный ей, то, во-первых, через  A  перпендикулярно Аналитическая геометрия - примеры с решением заданий и выполнением задач проходит единственная плоскость, а, во-вторых,  для любой точки Аналитическая геометрия - примеры с решением заданий и выполнением задач вектор Аналитическая геометрия - примеры с решением заданий и выполнением задач. Таким свойством обладают только точки, лежащие на Аналитическая геометрия - примеры с решением заданий и выполнением задач.  
Чтобы  вывести  уравнение  плоскости,  зададим  в  пространстве  пдск  OXYZ .  В этой системе координат Аналитическая геометрия - примеры с решением заданий и выполнением задач

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Пусть  M(x,y,z) – произвольная точка на  плоскости Аналитическая геометрия - примеры с решением заданий и выполнением задач
Тогда Аналитическая геометрия - примеры с решением заданий и выполнением задач и Аналитическая геометрия - примеры с решением заданий и выполнением задач(рис. 45). 

 
Вычислив скалярное произведение, получим: 
Аналитическая геометрия - примеры с решением заданий и выполнением задач
Координаты точек, лежащих в плоскости Аналитическая геометрия - примеры с решением заданий и выполнением задач, связаны соотношением (3.38). Если же Аналитическая геометрия - примеры с решением заданий и выполнением задач не перпендикулярен Аналитическая геометрия - примеры с решением заданий и выполнением задач,значит, координаты  такой  точки не удовлетворяют полученному  уравнению.  Поэтому  (3.38) – уравнение плоскости, проходящей через заданную точку перпендикулярно заданному  вектору.    Заметим,  что  это  уравнение линейно относительно  x, y, z. 

Раскрыв скобки в (3.38), получим Аналитическая геометрия - примеры с решением заданий и выполнением задач  
Обозначим Аналитическая геометрия - примеры с решением заданий и выполнением задач, тогда уравнение (3.38) примет вид: 
Аналитическая геометрия - примеры с решением заданий и выполнением задач
(3.39) – общее уравнение плоскости в пространстве,Аналитическая геометрия - примеры с решением заданий и выполнением задач – ее нормаль. 
 

Определение: Любой ненулевой вектор  Аналитическая геометрия - примеры с решением заданий и выполнением задач, перпендикулярный плоскости Аналитическая геометрия - примеры с решением заданий и выполнением задач, называется ее нормальным вектором, или нормалью.  

Особые случаи расположения плоскости

Выясним, какие особенности в расположении плоскости влечет за собой равенство нулю одного или нескольких коэффициентов в уравнении (3.39). 

  1. Аналитическая геометрия - примеры с решением заданий и выполнением задач координаты точки O(0,0,0) удовлетворяют уравнению, значит, плоскость проходит через начало  координат. 
  2. Аналитическая геометрия - примеры с решением заданий и выполнением задач, так как Аналитическая геометрия - примеры с решением заданий и выполнением задач , значит, плоскость Аналитическая геометрия - примеры с решением заданий и выполнением задач
  3. Аналитическая геометрия - примеры с решением заданий и выполнением задач,  так  как Аналитическая геометрия - примеры с решением заданий и выполнением задач.Значит, плоскость Аналитическая геометрия - примеры с решением заданий и выполнением задач.
  4. Аналитическая геометрия - примеры с решением заданий и выполнением задачтак как Аналитическая геометрия - примеры с решением заданий и выполнением задач. Значит, плоскость Аналитическая геометрия - примеры с решением заданий и выполнением задач
  5. Аналитическая геометрия - примеры с решением заданий и выполнением задач проходит через OX . 
  6. Аналитическая геометрия - примеры с решением заданий и выполнением задач проходит через OY . 
  7. Аналитическая геометрия - примеры с решением заданий и выполнением задач проходит через OZ . 
  8.  Аналитическая геометрия - примеры с решением заданий и выполнением задачили Аналитическая геометрия - примеры с решением заданий и выполнением задач
  9. Аналитическая геометрия - примеры с решением заданий и выполнением задач или Аналитическая геометрия - примеры с решением заданий и выполнением задач
  10.  Аналитическая геометрия - примеры с решением заданий и выполнением задачили Аналитическая геометрия - примеры с решением заданий и выполнением задач
  11. Аналитическая геометрия - примеры с решением заданий и выполнением задач – плоскость YOZ . 
  12. Аналитическая геометрия - примеры с решением заданий и выполнением задач – плоскость XOZ . 
  13. Аналитическая геометрия - примеры с решением заданий и выполнением задач – плоскость XOY . 
     

Уравнение плоскости в отрезках

Пусть плоскость Аналитическая геометрия - примеры с решением заданий и выполнением задач не параллельна ни одной из координатных осей и не проходит  через  начало  координат.  Тогда  она  отсекает  на  координатных  осях отрезки a,b,c (рис. 46). Выведем уравнение  такой плоскости.  
Аналитическая геометрия - примеры с решением заданий и выполнением задач   

Рассмотрим Аналитическая геометрия - примеры с решением заданий и выполнением задачобщее уравнение плоскости. Так как Аналитическая геометрия - примеры с решением заданий и выполнением задач, то  Аналитическая геометрия - примеры с решением заданий и выполнением задач .
Аналогично Аналитическая геометрия - примеры с решением заданий и выполнением задач 
Аналитическая геометрия - примеры с решением заданий и выполнением задач

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Подставив А, В, С в общее уравнение, получим  
Аналитическая геометрия - примеры с решением заданий и выполнением задач
(3.40) – уравнение плоскости в отрезках. 
 

Пример №22

Вычислить объем тетраэдра, образованного плоскостями   
Аналитическая геометрия - примеры с решением заданий и выполнением задач
Аналитическая геометрия - примеры с решением заданий и выполнением задач
Перепишем уравнение плоскости в виде (3.40):   
Аналитическая геометрия - примеры с решением заданий и выполнением задач
уравнение данной плоскости в отрезках. Поэтому (рис. 47) 
Аналитическая геометрия - примеры с решением заданий и выполнением задач
 

Уравнение плоскости, проходящей через три точки

Пусть в некоторой пдск заданы три точки, не лежащие на одной прямой: 
Аналитическая геометрия - примеры с решением заданий и выполнением задач.  Известно,  что  через  них  проходит  единственная плоскость  Аналитическая геометрия - примеры с решением заданий и выполнением задач

Чтобы вывести  ее уравнение, рассмотрим произвольную точку этой плоскости  M(x,y,z) . Тогда Аналитическая геометрия - примеры с решением заданий и выполнением задач – компланарные векторы, и их смешанное произведение равно нулю: Аналитическая геометрия - примеры с решением заданий и выполнением задач. Тогда по формуле (2.9) получим 
Аналитическая геометрия - примеры с решением заданий и выполнением задач
(3.41) – уравнение плоскости, проходящей через три точки.

ЗАМЕЧАНИЕ. Если точки лежат на одной прямой, то векторы  Аналитическая геометрия - примеры с решением заданий и выполнением задач  коллинеарны и   их соответствующие координаты пропорциональны. Поэтому в определителе (3.41) две строки пропорциональны и по свойству 6 определителей он тождественно равен нулю, что означает, что  координаты любой точки   M(x,y,z) удовлетворяют уравнению (3.41). Это иллюстрация того факта, что через прямую и любую точку можно провести плоскость.  
 

Пример №23

Написать уравнение плоскости, проходящей через точки  
Аналитическая геометрия - примеры с решением заданий и выполнением задач
Аналитическая геометрия - примеры с решением заданий и выполнением задач
 

Угол между плоскостями

Определение: Углом между плоскостями называется любой из двух смежных  двугранных  углов,  образованных  плоскостями  при  их  пересечении. 

Если плоскости параллельны, то угол между ними равен 0  или Аналитическая геометрия - примеры с решением заданий и выполнением задач  радиан. 

Рассмотрим плоскости Аналитическая геометрия - примеры с решением заданий и выполнением задач и 
Аналитическая геометрия - примеры с решением заданий и выполнением задач
Очевидно, Аналитическая геометрия - примеры с решением заданий и выполнением задач
или  Аналитическая геометрия - примеры с решением заданий и выполнением задач

Если  Аналитическая геометрия - примеры с решением заданий и выполнением задач  –0 условие перпендикулярности плоскостей.  

Если Аналитическая геометрия - примеры с решением заданий и выполнением задач – условие параллельности плоскостей.

Пример №24

Найти угол между плоскостями  
Аналитическая геометрия - примеры с решением заданий и выполнением задач
Аналитическая геометрия - примеры с решением заданий и выполнением задач плоскости перпендикулярны. 
 

Прямая линия в пространстве

Всякая линия в пространстве есть результат пересечения двух поверхностей. В частности прямую линию можно рассматривать  как результат пересечения  двух плоскостей  
Аналитическая геометрия - примеры с решением заданий и выполнением задач
и 
Аналитическая геометрия - примеры с решением заданий и выполнением задач
Если Аналитическая геометрия - примеры с решением заданий и выполнением задач не  параллельна Аналитическая геометрия - примеры с решением заданий и выполнением задач,  то естьАналитическая геометрия - примеры с решением заданий и выполнением задач не  коллинеарен Аналитическая геометрия - примеры с решением заданий и выполнением задач,  то  система уравнений  
Аналитическая геометрия - примеры с решением заданий и выполнением задач
определяет прямую линию в пространстве. 
Аналитическая геометрия - примеры с решением заданий и выполнением задач  

Уравнения (3.42) называются общими уравнениями прямой в пространстве. 
Очевидно,  одна  и  та  же  прямая  может  быть результатом пересечения разных  пар плоскостей  (рис.  48),  поэтому  прямую  в  пространстве  можно  задать    различными  способами. 

Уравнения (3.42) неудобны в использовании, так как не дают представления о расположении  прямой  относительно  выбранной  системы координат.  
Поэтому выведем более  удобные  уравнения,  эквивалентные  (3.42),  то  есть  из  бесконечного  множества плоскостей, проходящих через данную прямую, выберем в некотором смысле более заметную пару.

Канонические уравнения прямой в пространстве

Пусть  в  некоторой  пдск  задана  прямая Аналитическая геометрия - примеры с решением заданий и выполнением задач,  проходящая  через  точку Аналитическая геометрия - примеры с решением заданий и выполнением задач  параллельно  ненулевому  вектору Аналитическая геометрия - примеры с решением заданий и выполнением задач.  Такой  вектор называется направляющим вектором этой прямой.  
Аналитическая геометрия - примеры с решением заданий и выполнением задач                                                                      

Для произвольной точки  Аналитическая геометрия - примеры с решением заданий и выполнением задач вектор  Аналитическая геометрия - примеры с решением заданий и выполнением задач где  t  – не-который  числовой  множитель.  Кроме того,  Аналитическая геометрия - примеры с решением заданий и выполнением задач –  радиус-вектор точки  M , Аналитическая геометрия - примеры с решением заданий и выполнением задач – радиус вектор точки  A  
(рис. 49).  

Отсюда Аналитическая геометрия - примеры с решением заданий и выполнением задач                                            
(3.43) – векторное уравнение прямой в пространстве. Из (3.43) получаем: 
Аналитическая геометрия - примеры с решением заданий и выполнением задач
(3.44) – параметрические уравнения прямой в пространстве, Аналитическая геометрия - примеры с решением заданий и выполнением задач – параметр.  

Выразим из каждого уравнения (3.44) параметр:  
Аналитическая геометрия - примеры с решением заданий и выполнением задач
Тогда Аналитическая геометрия - примеры с решением заданий и выполнением задач
(3.45)  –  канонические  уравнения  прямой  в  пространстве,  то  есть  уравнения прямой, проходящей через точку Аналитическая геометрия - примеры с решением заданий и выполнением задач параллельно вектору Аналитическая геометрия - примеры с решением заданий и выполнением задач.  

Заметим, что уравнения (3.45) задают прямую  как результат пересечения плоскостей   
Аналитическая геометрия - примеры с решением заданий и выполнением задач
одна из которых параллельна OZ , а вторая – OY   или как

Аналитическая геометрия - примеры с решением заданий и выполнением задач

где первая плоскость параллельна OZ , а вторая – OX . 

Если прямая Аналитическая геометрия - примеры с решением заданий и выполнением задач проходит через две заданные точки Аналитическая геометрия - примеры с решением заданий и выполнением задач, то Аналитическая геометрия - примеры с решением заданий и выполнением задач направляющий вектор этой прямой, поэтому из (3.45) получим: 
Аналитическая геометрия - примеры с решением заданий и выполнением задач
(3.46) – уравнения пространственной прямой, проходящей через две заданные точки.  
 

Угол между прямыми в пространстве

Рассмотрим прямые, заданные в некоторой пдск каноническими уравнениями:  
Аналитическая геометрия - примеры с решением заданий и выполнением задач
и   
Аналитическая геометрия - примеры с решением заданий и выполнением задач
 

Определение:  Углом  между  прямыми  в  пространстве  называется угол между двумя пересекающимися прямыми, проходящими через произвольную точку пространства параллельно данным. 
Из определения следует, что Аналитическая геометрия - примеры с решением заданий и выполнением задач. Если Аналитическая геометрия - примеры с решением заданий и выполнением задач , то  
Аналитическая геометрия - примеры с решением заданий и выполнением задач 
1)Аналитическая геометрия - примеры с решением заданий и выполнением задач–  условие перпендикулярности прямых. 
2)Аналитическая геометрия - примеры с решением заданий и выполнением задач  –  условие  параллельности  прямых  в пространстве.

Пример №25

Найти угол между прямой Аналитическая геометрия - примеры с решением заданий и выполнением задач и прямой Аналитическая геометрия - примеры с решением заданий и выполнением задач, проходящей через точки  Аналитическая геометрия - примеры с решением заданий и выполнением задач
Аналитическая геометрия - примеры с решением заданий и выполнением задач
Заметим, что уравнение прямой Аналитическая геометрия - примеры с решением заданий и выполнением задач имеет вид: Аналитическая геометрия - примеры с решением заданий и выполнением задач. В данном случае  ноль  в  знаменателе    писать  принято:  он  означает,  что  направляющий вектор прямой (и сама прямая) параллелен плоскости  XOZ . Эта прямая является результатом пересечения плоскостей Аналитическая геометрия - примеры с решением заданий и выполнением задач
 

Приведение общих уравнений прямой в пространстве к каноническому виду

Рассмотрим  прямую Аналитическая геометрия - примеры с решением заданий и выполнением задач, заданную  общими  уравнениями (3.42) в пространстве:  
Аналитическая геометрия - примеры с решением заданий и выполнением задач

Привести эти уравнения к каноническому виду можно двумя способами: 

  1. найти  координаты  какой-либо  точки Аналитическая геометрия - примеры с решением заданий и выполнением задач,  лежащей  на Аналитическая геометрия - примеры с решением заданий и выполнением задач, ее направляющий вектор  s  и написать уравнения (3.45); 
  2. найти координаты двух точек, лежащих на Аналитическая геометрия - примеры с решением заданий и выполнением задач, и воспользоваться уравнениями (3.46). 

1 способ.

Координаты точки  A – любое частное решение системы линейных уравнений (3.42). Эта система имеет бесконечное множество решений, так как  ранги  основной  и  расширенной  матриц Аналитическая геометрия - примеры с решением заданий и выполнением задач,  а  число  неизвестных Аналитическая геометрия - примеры с решением заданий и выполнением задач
Аналитическая геометрия - примеры с решением заданий и выполнением задач – направляющий вектор прямой Аналитическая геометрия - примеры с решением заданий и выполнением задач, поэтому Аналитическая геометрия - примеры с решением заданий и выполнением задач– нормаль плоскости Аналитическая геометрия - примеры с решением заданий и выполнением задач – нормаль плоскости Аналитическая геометрия - примеры с решением заданий и выполнением задач. Из определения векторного произведения векторов следует, что тогда Аналитическая геометрия - примеры с решением заданий и выполнением задач. Так как Аналитическая геометрия - примеры с решением заданий и выполнением задач – произвольный вектор, параллельный Аналитическая геометрия - примеры с решением заданий и выполнением задач, то будем  считать, что Аналитическая геометрия - примеры с решением заданий и выполнением задач.

Пример №26

Привести уравнения прямой Аналитическая геометрия - примеры с решением заданий и выполнением задач к каноническому виду. 
Найдем  какое-нибудь  частное  решение  этой  системы:  пусть,  например, 
Аналитическая геометрия - примеры с решением заданий и выполнением задач,  то  есть  точка  A(1,2,0) лежит  на прямой. 
Аналитическая геометрия - примеры с решением заданий и выполнением задач
Таким образом, Аналитическая геометрия - примеры с решением заданий и выполнением задач – канонические уравнения данной прямой. 
 

2  способ.  

Найдем  два  произвольных  частных  решения  системы  уравнений, задающей прямую. 
В рассмотренном примере Аналитическая геометрия - примеры с решением заданий и выполнением задач . Пусть теперь 
Аналитическая геометрия - примеры с решением заданий и выполнением задач
тогда Аналитическая геометрия - примеры с решением заданий и выполнением задач – направляющий вектор  прямой, который  отличается  от  найденного  ранее  только  знаком.  Поэтому  уравнения Аналитическая геометрия - примеры с решением заданий и выполнением задач совпадают (с точностью до знака) с уже найденными. 
 

Угол между прямой и плоскостью

Определение: Углом между прямой и плоскостью называется угол между прямой и ее проекцией на эту плоскость. 
Пусть в некоторой пдск заданы плоскость  
Аналитическая геометрия - примеры с решением заданий и выполнением задач
и прямая

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Аналитическая геометрия - примеры с решением заданий и выполнением задачАналитическая геометрия - примеры с решением заданий и выполнением задач

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Определение общих точек прямой и плоскости

Чтобы найти общие точки прямой : Аналитическая геометрия - примеры с решением заданий и выполнением задач  и плоскостиАналитическая геометрия - примеры с решением заданий и выполнением задач, надо решить систему  линейных уравнений: 
Аналитическая геометрия - примеры с решением заданий и выполнением задач

Решение этой системы будет наименее трудоемким, если перейти  к параметрическим  уравнениям прямой (3.44): 
Аналитическая геометрия - примеры с решением заданий и выполнением задач

1) Пусть Аналитическая геометрия - примеры с решением заданий и выполнением задач. Это значит, что прямая не параллельна плоскости, а потому они имеют одну общую точку. Из (3.47) найдем   
Аналитическая геометрия - примеры с решением заданий и выполнением задач 
и по формулам (3.44) M(x,y,z) – их  точку пересечения. 

2) Пусть Аналитическая геометрия - примеры с решением заданий и выполнением задач. Это означает, что в (3.47) решений нет: выполнено  условие  параллельности  прямой  и  плоскости,  при  этом  точка Аналитическая геометрия - примеры с решением заданий и выполнением задач , но не лежит в плоскости Аналитическая геометрия - примеры с решением заданий и выполнением задач, значит, прямая и плоскость общих точек не имеют. 

3)  Пусть Аналитическая геометрия - примеры с решением заданий и выполнением задач. Тогда любое Аналитическая геометрия - примеры с решением заданий и выполнением задач – решение (3.47) и система имеет бесконечно много решений: выполнено условие параллельности прямой и плоскости и  точка   Аналитическая геометрия - примеры с решением заданий и выполнением задач, лежащая на прямой, лежит в плоскости. Это значит, что прямая лежит в плоскости, то есть имеет с ней бесконечное множество  общих точек. 
 

Пример №27

Найти    проекцию    точки Аналитическая геометрия - примеры с решением заданий и выполнением задач  на    плоскость Аналитическая геометрия - примеры с решением заданий и выполнением задач(рис. 53). 

Пусть прямая Аналитическая геометрия - примеры с решением заданий и выполнением задач проходит через точку  М  перпендикулярно плоскости  Аналитическая геометрия - примеры с решением заданий и выполнением задач. Точка ее пересечения с плоскостью и будет искомой проекцией. В качестве направляющего вектора Аналитическая геометрия - примеры с решением заданий и выполнением задач можно взять нормаль к плоскости Аналитическая геометрия - примеры с решением заданий и выполнением задач

Напишем канонические уравнения  прямой  (3.45):

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Аналитическая геометрия - примеры с решением заданий и выполнением задач  Подставим   x,y,z   в уравнение плоскости: 
Аналитическая геометрия - примеры с решением заданий и выполнением задач
Аналитическая геометрия - примеры с решением заданий и выполнением задач, то есть  P 1,2,0  – искомая проекция.                                                     
 

Цилиндрические поверхности

Уравнение  F(x, y, z)=0  задает в пространстве некоторую поверхность.  

Пусть  уравнение содержит только две переменные, например,  F(x,y)=0.Рассмотренное  в  плоскости  XOY ,  оно  задает  некоторую  кривую.  Но  ему  будут удовлетворять и все точки пространства, которые проецируются в точки  этой кривой, так как в уравнении отсутствует  z , то есть все точки  M(x,y,z)  у которых  х и у  связаны соотношением  Аналитическая геометрия - примеры с решением заданий и выполнением задач – произвольно. 
Аналитическая геометрия - примеры с решением заданий и выполнением задач
 

Пример №28

Построить  поверхность Аналитическая геометрия - примеры с решением заданий и выполнением задач 
На  плоскости  это  уравнение  задает окружность  с центром О(0, 0) и  R=1. 
В  пространстве  ему  удовлетворяют координаты  всех  точек,  проекция  которых  на  плоскость  ХОУ  лежит  на этой  окружности.  Очевидно,  что  эта поверхность  –  круговой    цилиндр 
(рис. 54).  
Цилиндрические поверхности бывают не только круговыми.

Определение: Цилиндрической называется поверхность, полученная движением  прямой,  параллельной  некоторому  вектору,  и  пересекающей  при движении некоторую кривую. При этом движущаяся прямая называется образующей,  а  кривая,  которую  она  пересекает,  называется  направляющей  цилиндрической поверхности. 
Для поверхности  Аналитическая геометрия - примеры с решением заданий и выполнением задач образующая параллельна оси OZ  (так как в уравнении  z  отсутствует), а направляющей является окружность в плоскости  XOY . 

ВЫВОД. Если уравнение поверхности содержит только две переменные, то оно задает цилиндрическую поверхность. У поверхности  F(y,z) ,образующая параллельна  OX , а направляющая лежит в плоскости  YOZ . Для поверхности  F(x,z) ,образующая параллельна OY , направляющая в плоскости  XOZ . 
 

Пример №29

Построить и назвать поверхности Аналитическая геометрия - примеры с решением заданий и выполнением задачЭти уравнения задают цилиндрические поверхности. В первом случае направляющей является парабола в плоскости  YOZ , а образующая параллельна  OX  (рис. 55). Во втором – образующая синусоида в плоскости  XOZ , образующая параллельна OY  (рис. 56).

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Поверхности вращения

Определение: Поверхностью вращения называется поверхность, полученная  в  результате  вращения  плоской  кривой  вокруг  оси,  лежащей  в  ее 
плоскости. 

Из определения следует, что сечением такой поверхности любой плоскостью, перпендикулярной оси вращения, является окружность.  

Пусть в плоскости  YOZ  задана кривая Аналитическая геометрия - примеры с решением заданий и выполнением задач – координаты точки  в  плоской  системе  координат  YOZ .  Эта  кривая  вращается  вокруг  оси OZ . Выведем уравнение поверхности вращения. 
Аналитическая геометрия - примеры с решением заданий и выполнением задач

Пусть  M(x,y,z)  –  произвольная  точка  на  поверхности, Аналитическая геометрия - примеры с решением заданий и выполнением задач,  z–  центр  окружности сечения,  проходящего  через точку  M ,  а  Аналитическая геометрия - примеры с решением заданий и выполнением задач –  точка, лежащая  на кривой и одновременно в рассматриваемом  сечении (рис. 57). 

Тогда Аналитическая геометрия - примеры с решением заданий и выполнением задач– радиусы сечения. 
Но Аналитическая геометрия - примеры с решением заданий и выполнением задач

Таким образом, уравнение поверхности вращения получим, если в уравнении  кривой Аналитическая геометрия - примеры с решением заданий и выполнением задач заменим  на Аналитическая геометрия - примеры с решением заданий и выполнением задач  –  на  z.  Тогда  получим: 
Аналитическая геометрия - примеры с решением заданий и выполнением задач – уравнение поверхности вращения (OZ  – ось вращения). 

Очевидно, что  если  кривая  F(y,z)=0 вращается    вокруг  OY ,  то  уравнение 
поверхности вращения имеет вид:  Аналитическая геометрия - примеры с решением заданий и выполнением задач

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Некоторые поверхности второго порядка

1. Пусть эллипс Аналитическая геометрия - примеры с решением заданий и выполнением задачвращается вокруг оси OY .  
Аналитическая геометрия - примеры с решением заданий и выполнением задач 

Полученная поверхность является поверхностью  второго  порядка, так ее уравнение Аналитическая геометрия - примеры с решением заданий и выполнением задач – второй  степени  относительно  переменных  x,y,z .  Она  называется эллипсоидом вращения (рис. 58). 
Поверхность, задаваемая уравнением  Аналитическая геометрия - примеры с решением заданий и выполнением задач , называется трехосным эллипсоидом. 

2. Если гипербола  Аналитическая геометрия - примеры с решением заданий и выполнением задачвращается вокруг оси OZ , то уравнение 
Аналитическая геометрия - примеры с решением заданий и выполнением задач
поверхности вращения имеет вид   
Аналитическая геометрия - примеры с решением заданий и выполнением задач
или  
Аналитическая геометрия - примеры с решением заданий и выполнением задач

Такая поверхность называется однополостным гиперболоидом вращения (рис. 59). 

3. Если гипербола Аналитическая геометрия - примеры с решением заданий и выполнением задач  вращается вокруг оси  OY , то уравнение поверхности имеет вид  Аналитическая геометрия - примеры с решением заданий и выполнением задач . Такая поверхность называется двуполостным гиперболоидом вращения (рис. 60). 
Аналитическая геометрия - примеры с решением заданий и выполнением задач
Аналитическая геометрия - примеры с решением заданий и выполнением задач

4. Если пара пересекающихся прямых Аналитическая геометрия - примеры с решением заданий и выполнением задач  вращается вокруг оси OY , то получается  конус вращения с уравнением Аналитическая геометрия - примеры с решением заданий и выполнением задач или  Аналитическая геометрия - примеры с решением заданий и выполнением задач (рис. 61). 
Аналитическая геометрия - примеры с решением заданий и выполнением задач

5. При вращении параболы Аналитическая геометрия - примеры с решением заданий и выполнением задач вокруг оси OZ  получается поверхность Аналитическая геометрия - примеры с решением заданий и выполнением задач, которая называется эллиптическим параболоидом вращения (рис. 62). 

Лекции по предметам:

  1. Математика
  2. Алгебра
  3. Линейная алгебра
  4. Векторная алгебра
  5. Геометрия
  6. Высшая математика
  7. Дискретная математика
  8. Математический анализ
  9. Теория вероятностей
  10. Математическая статистика
  11. Математическая логика

Добавить комментарий