В этой статье мы разберем все типы задач на нахождение уравнения касательной.
Вспомним геометрический смысл производной: если к графику функции в точке проведена касательная, то коэффициент наклона касательной (равный тангенсу угла между касательной и положительным направлением оси ) равен производной функции в точке .
Возьмем на касательной произвольную точку с координатами :
И рассмотрим прямоугольный треугольник :
В этом треугольнике
Отсюда
Или
Это и есть уравнение касательной, проведенной к графику функции в точке .
Чтобы написать уравнение касательной, нам достаточно знать уравнение функции и точку, в которой проведена касательная. Тогда мы сможем найти и .
Есть три основных типа задач на составление уравнения касательной.
1. Дана точка касания
2. Дан коэффициент наклона касательной, то есть значение производной функции в точке .
3. Даны координаты точки, через которую проведена касательная, но которая не является точкой касания.
Рассмотрим каждый тип задач.
1. Написать уравнение касательной к графику функции в точке .
а) Найдем значение функции в точке .
.
б) Найдем значение производной в точке . Сначала найдем производную функции
Подставим найденные значения в уравнение касательной:
Раскроем скобки в правой части уравнения. Получим:
Ответ: .
2. Найти абсциссы точек, в которых касательные к графику функции параллельны оси абсцисс.
Если касательная параллельна оси абсцисс, следовательно угол между касательной и положительным направлением оси равен нулю, следовательно тангенс угла наклона касательной равен нулю. Значит, значение производной функции в точках касания равно нулю.
а) Найдем производную функции .
б) Приравняем производную к нулю и найдем значения , в которых касательная параллельна оси :
Приравняем каждый множитель к нулю, получим:
Ответ: 0;3;5
3. Написать уравнения касательных к графику функции , параллельных прямой .
Касательная параллельна прямой . Коэффициент наклона этой прямой равен -1. Так как касательная параллельна этой прямой, следовательно, коэффициент наклона касательной тоже равен -1. То есть мы знаем коэффициент наклона касательной, а, тем самым, значение производной в точке касания.
Это второй тип задач на нахождение уравнения касательной.
Итак, у нас дана функция и значение производной в точке касания.
а) Найдем точки, в которых производная функции равна -1.
Сначала найдем уравнение производной.
Нам нужно найти производную дроби.
Приравняем производную к числу -1.
или
или
б) Найдем уравнение касательной к графику функции в точке .
Найдем значение функции в точке .
(по условию)
Подставим эти значения в уравнение касательной:
.
б) Найдем уравнение касательной к графику функции в точке .
Найдем значение функции в точке .
(по условию).
Подставим эти значения в уравнение касательной:
.
Ответ:
4. Написать уравнение касательной к кривой , проходящей через точку
Сначала проверим, не является ли точка точкой касания. Если точка является точкой касания, то она принадлежит графику функции, и её координаты должны удовлетворять уравнению функции. Подставим координаты точки в уравнение функции.
. Мы получили под корнем отрицательное число, равенство не верно, и точка не принадлежит графику функции и не является точкой касания.
Это последний тип задач на нахождение уравнения касательной. Первым делом нам нужно найти абсциссу точки касания.
Найдем значение .
Пусть – точка касания. Точка принадлежит касательной к графику функции . Если мы подставим координаты этой точки в уравнение касательной, то получим верное равенство:
.
Значение функции в точке равно .
Найдем значение производной функции в точке .
Сначала найдем производную функции . Это сложная функция.
Производная в точке равна .
Подставим выражения для и в уравнение касательной. Получим уравнение относительно :
Решим это уравнение.
Сократим числитель и знаменатель дроби на 2:
Приведем правую часть уравнения к общему знаменателю. Получим:
Упростим числитель дроби и умножим обе части на – это выражение строго больше нуля.
Получим уравнение
Это иррациональное уравнение.
Решим его. Для этого возведем обе части в квадрат и перейдем к системе.
Решим первое уравнение.
Решим квадратное уравнение, получим
или
Второй корень не удовлетворяет условию , следовательно, у нас только одна точка касания и её абсцисса равна .
Напишем уравнение касательной к кривой в точке . Для этого подставим значение в уравнение – мы его уже записывали.
Получим:
Ответ:
И.В. Фельдман, репетитор по математике.
Статья дает подробное разъяснение определений, геометрического смысла производной с графическими обозначениями. Будет рассмотрено уравнение касательной прямой с приведением примеров, найдено уравнения касательной к кривым 2 порядка.
Определения и понятия
Угол наклона прямой y=kx+b называется угол α, который отсчитывается от положительного направления оси ох к прямой y=kx+b в положительном направлении.
На рисунке направление ох обозначается при помощи зеленой стрелки и в виде зеленой дуги, а угол наклона при помощи красной дуги. Синяя линия относится к прямой.
Угловой коэффициент прямой y=kx+b называют числовым коэффициентом k.
Угловой коэффициент равняется тангенсу наклона прямой, иначе говоря k=tg α.
- Угол наклона прямой равняется 0 только при параллельности ох и угловом коэффициенте, равному нулю, потому как тангенс нуля равен 0. Значит, вид уравнения будет y=b.
- Если угол наклона прямой y=kx+b острый, тогда выполняются условия 0<α<π2 или 0°<α<90°. Отсюда имеем, что значение углового коэффициента k считается положительным числом, потому как значение тангенс удовлетворяет условию tg α>0, причем имеется возрастание графика.
- Если α=π2, тогда расположение прямой перпендикулярно ох. Равенство задается при помощи равенства x=c со значением с, являющимся действительным числом.
- Если угол наклона прямой y=kx+b тупой, то соответствует условиям π2<α<π или 90°<α<180°, значение углового коэффициента k принимает отрицательное значение, а график убывает.
Секущей называют прямую, которая проходит через 2 точки функции f(x). Иначе говоря, секущая – это прямая, которая проводится через любые две точки графика заданной функции.
По рисунку видно, что АВ является секущей, а f(x) – черная кривая, α – красная дуга, означающая угол наклона секущей.
Когда угловой коэффициент прямой равняется тангенсу угла наклона, то видно, что тангенс из прямоугольного треугольника АВС можно найти по отношению противолежащего катета к прилежащему.
Получаем формулу для нахождения секущей вида:
k=tg α=BCAC=f(xB)-fxAxB-xA, где абсциссами точек А и В являются значения xA, xB, а f(xA), f(xB) – это значения функции в этих точках.
Очевидно, что угловой коэффициент секущей определен при помощи равенства k=f(xB)-f(xA)xB-xA или k=f(xA)-f(xB)xA-xB, причем уравнение необходимо записать как y=f(xB)-f(xA)xB-xA·x-xA+f(xA) или
y=f(xA)-f(xB)xA-xB·x-xB+f(xB).
Секущая делит график визуально на 3 части: слева от точки А, от А до В, справа от В. На располагаемом ниже рисунке видно, что имеются три секущие, которые считаются совпадающими, то есть задаются при помощи аналогичного уравнения.
По определению видно, что прямая и ее секущая в данном случае совпадают.
Секущая может множественно раз пересекать график заданной функции. Если имеется уравнение вида у=0 для секущей, тогда количество точек пересечения с синусоидой бесконечно.
Касательная к графику функции f(x) в точке x0; f(x0) называется прямая, проходящая через заданную точку x0; f(x0), с наличием отрезка, который имеет множество значений х, близких к x0.
Рассмотрим подробно на ниже приведенном примере. Тогда видно, что прямая, заданная функцией y=x+1, считается касательной к y=2x в точке с координатами (1; 2). Для наглядности, необходимо рассмотреть графики с приближенными к (1; 2) значениями. Функция y=2x обозначена черным цветом, синяя линия – касательная, красная точка – точка пересечения.
Очевидно, что y=2x сливается с прямой у=х+1.
Для определения касательной следует рассмотреть поведение касательной АВ при бесконечном приближении точки В к точке А. Для наглядности приведем рисунок.
Секущая АВ, обозначенная при помощи синей линии, стремится к положению самой касательной, а угол наклона секущей α начнет стремиться к углу наклона самой касательной αx.
Касательной к графику функции y=f(x) в точке А считается предельное положение секущей АВ при В стремящейся к А, то есть B→A.
Теперь перейдем к рассмотрению геометрического смысла производной функции в точке.
Геометрический смысл производной функции в точке
Перейдем к рассмотрению секущей АВ для функции f(x), где А и В с координатами x0, f(x0) и x0+∆x, f(x0+∆x), а ∆x обозначаем как приращение аргумента. Теперь функция примет вид ∆y=∆f(x)=f(x0+∆x)-f(∆x). Для наглядности приведем в пример рисунок.
Рассмотрим полученный прямоугольный треугольник АВС. Используем определение тангенса для решения, то есть получим отношение ∆y∆x=tg α. Из определения касательной следует, что lim∆x→0∆y∆x=tg αx. По правилу производной в точке имеем, что производную f(x) в точке x0 называют пределом отношений приращения функции к приращению аргумента, где ∆x→0, тогда обозначим как f(x0)=lim∆x→0∆y∆x.
Отсюда следует, что f'(x0)=lim∆x→0∆y∆x=tg αx=kx, где kx обозначают в качестве углового коэффициента касательной.
То есть получаем, что f’(x) может существовать в точке x0 причем как и касательная к заданному графику функции в точке касания равной x0, f0(x0), где значение углового коэффициента касательной в точке равняется производной в точке x0. Тогда получаем, что kx=f'(x0).
Геометрический смысл производной функции в точке в том, что дается понятие существования касательной к графику в этой же точке.
Уравнение касательной прямой
Чтобы записать уравнение любой прямой на плоскости, необходимо иметь угловой коэффициент с точкой, через которую она проходит. Его обозначение принимается как x0 при пересечении.
Уравнение касательной к графику функции y=f(x) в точке x0, f0(x0) принимает вид y=f'(x0)·x-x0+f(x0).
Имеется в виду, что конечным значением производной f'(x0) можно определить положение касательной, то есть вертикально при условии limx→x0+0f'(x)=∞ и limx→x0-0f'(x)=∞ или отсутствие вовсе при условии limx→x0+0f'(x)≠limx→x0-0f'(x).
Расположение касательной зависит от значения ее углового коэффициента kx=f'(x0). При параллельности к оси ох получаем, что kk=0, при параллельности к оу – kx=∞, причем вид уравнения касательной x=x0 возрастает при kx>0, убывает при kx<0.
Произвести составление уравнения касательной к графику функции y=ex+1+x33-6-33x-17-33 в точке с координатами (1; 3) с определением угла наклона.
Решение
По условию имеем, что функция определяется для всех действительных чисел. Получаем, что точка с координатами, заданными по условию, (1; 3) является точкой касания, тогда x0=-1, f(x0)=-3.
Необходимо найти производную в точке со значением -1. Получаем, что
y’=ex+1+x33-6-33x-17-33’==ex+1’+x33′-6-33x’-17-33’=ex+1+x2-6-33y'(x0)=y'(-1)=e-1+1+-12-6-33=33
Значение f’(x) в точке касания является угловым коэффициентом касательной, который равняется тангенсу наклона.
Тогда kx=tg αx=y'(x0)=33
Отсюда следует, что αx=arctg33=π6
Ответ: уравнение касательной приобретает вид
y=f'(x0)·x-x0+f(x0)y=33(x+1)-3y=33x-9-33
Для наглядности приведем пример в графической иллюстрации.
Черный цвет используется для графика исходной функции, синий цвет – изображение касательной, красная точка – точка касания. Рисунок, располагаемый справа, показывает в увеличенном виде.
Выяснить наличие существования касательной к графику заданной функции
y=3·x-15+1 в точке с координатами (1;1). Составить уравнение и определить угол наклона.
Решение
По условию имеем, что областью определения заданной функции считается множество всех действительных чисел.
Перейдем к нахождению производной
y’=3·x-15+1’=3·15·(x-1)15-1=35·1(x-1)45
Если x0=1, тогда f’(x) не определена, но пределы записываются как limx→1+035·1(x-1)45=35·1(+0)45=35·1+0=+∞ и limx→1-035·1(x-1)45=35·1(-0)45=35·1+0=+∞, что означает существование вертикальной касательной в точке (1;1).
Ответ: уравнение примет вид х=1, где угол наклона будет равен π2.
Для наглядности изобразим графически.
Найти точки графика функции y=115x+23-45×2-165x-265+3x+2, где
- Касательная не существует;
- Касательная располагается параллельно ох;
- Касательная параллельна прямой y=85x+4.
Решение
Необходимо обратить внимание на область определения. По условию имеем, что функция определена на множестве всех действительных чисел. Раскрываем модуль и решаем систему с промежутками x∈-∞; 2 и [-2; +∞). Получаем, что
y=-115×3+18×2+105x+176, x∈-∞; -2115×3-6×2+9x+12, x∈[-2; +∞)
Необходимо продифференцировать функцию. Имеем, что
y’=-115×3+18×2+105x+176′, x∈-∞; -2115×3-6×2+9x+12′, x∈[-2; +∞)⇔y’=-15(x2+12x+35), x∈-∞; -215×2-4x+3, x∈[-2; +∞)
Когда х=-2, тогда производная не существует, потому что односторонние пределы не равны в этой точке:
limx→-2-0y'(x)=limx→-2-0-15(x2+12x+35=-15(-2)2+12(-2)+35=-3limx→-2+0y'(x)=limx→-2+015(x2-4x+3)=15-22-4-2+3=3
Вычисляем значение функции в точке х=-2, где получаем, что
- y(-2)=115-2+23-45(-2)2-165(-2)-265+3-2+2=-2, то есть касательная в точке (-2;-2) не будет существовать.
- Касательная параллельна ох, когда угловой коэффициент равняется нулю. Тогда kx=tg αx=f'(x0). То есть необходимо найти значения таких х, когда производная функции обращает ее в ноль. То есть значения f’(x) и будут являться точками касания, где касательная является параллельной ох.
Когда x∈-∞; -2, тогда -15(x2+12x+35)=0, а при x∈(-2; +∞) получаем 15(x2-4x+3)=0.
Решим:
-15(x2+12x+35)=0D=122-4·35=144-140=4×1=-12+42=-5∈-∞; -2×2=-12-42=-7∈-∞; -2 15(x2-4x+3)=0D=42-4·3=4×3=4-42=1∈-2; +∞x4=4+42=3∈-2; +∞
Вычисляем соответствующие значения функции
y1=y-5=115-5+23-45-52-165-5-265+3-5+2=85y2=y(-7)=115-7+23-45(-7)2-165-7-265+3-7+2=43y3=y(1)=1151+23-45·12-165·1-265+31+2=85y4=y(3)=1153+23-45·32-165·3-265+33+2=43
Отсюда -5; 85, -4; 43, 1; 85, 3; 43 считаются искомыми точками графика функции.
Рассмотрим графическое изображение решения.
Черная линия – график функции, красные точки – точки касания.
- Когда прямые располагаются параллельно, то угловые коэффициенты равны. Тогда необходимо заняться поиском точек графика функции, где угловой коэффициент будет равняться значению 85 . Для этого нужно решить уравнение вида y'(x)=85. Тогда, если x∈-∞; -2, получаем, что -15(x2+12x+35)=85, а если x∈(-2; +∞), тогда 15(x2-4x+3)=85.
Первое уравнение не имеет корней, так как дискриминант меньше нуля. Запишем, что
-15×2+12x+35=85×2+12x+43=0D=122-4·43=-28<0
Другое уравнение имеет два действительных корня, тогда
15(x2-4x+3)=85×2-4x-5=0D=42-4·(-5)=36×1=4-362=-1∈-2; +∞x2=4+362=5∈-2; +∞
Перейдем к нахождению значений функции. Получаем, что
y1=y(-1)=115-1+23-45(-1)2-165(-1)-265+3-1+2=415y2=y(5)=1155+23-45·52-165·5-265+35+2=83
Точки со значениями -1; 415, 5; 83 являются точками, в которых касательные параллельны прямой y=85x+4.
Ответ: черная линия – график функции, красная линия – график y=85x+4, синяя линия – касательные в точках -1; 415, 5; 83.
Возможно существование бесконечного количества касательных для заданных функций.
Написать уравнения всех имеющихся касательных функции y=3cos32x-π4-13, которые располагаются перпендикулярно прямой y=-2x+12.
Решение
Для составления уравнения касательной необходимо найти коэффициент и координаты точки касания, исходя из условия перпендикулярности прямых. Определение звучит так: произведение угловых коэффициентов, которые перпендикулярны прямым, равняется -1, то есть записывается как kx·k⊥=-1. Из условия имеем, что угловой коэффициент располагается перпендикулярно прямой и равняется k⊥=-2, тогда kx=-1k⊥=-1-2=12.
Теперь необходимо найти координаты точек касания. Нужно найти х, после чего его значение для заданной функции. Отметим, что из геометрического смысла производной в точке
x0 получаем, что kx=y'(x0). Из данного равенства найдем значения х для точек касания.
Получаем, что
y'(x0)=3cos32x0-π4-13’=3·-sin32x0-π4·32×0-π4’==-3·sin32x0-π4·32=-92·sin32x0-π4⇒kx=y'(x0)⇔-92·sin32x0-π4=12⇒sin32x0-π4=-19
Это тригонометрическое уравнение будет использовано для вычисления ординат точек касания.
32×0-π4=arcsin-19+2πk или 32×0-π4=π-arcsin-19+2πk
32×0-π4=-arcsin19+2πk или 32×0-π4=π+arcsin19+2πk
x0=23π4-arcsin19+2πk или x0=235π4+arcsin19+2πk, k∈Z
Z- множество целых чисел.
Найдены х точек касания. Теперь необходимо перейти к поиску значений у:
y0=3cos32x0-π4-13
y0=3·1-sin232x0-π4-13 или y0=3·-1-sin232x0-π4-13
y0=3·1–192-13 или y0=3·-1–192-13
y0=45-13 или y0=-45+13
Отсюда получаем, что 23π4-arcsin19+2πk; 45-13, 235π4+arcsin19+2πk; -45+13 являются точками касания.
Ответ: необходимы уравнения запишутся как
y=12x-23π4-arcsin19+2πk+45-13,y=12x-235π4+arcsin19+2πk-45+13, k∈Z
Для наглядного изображения рассмотрим функцию и касательную на координатной прямой.
Рисунок показывает, что расположение функции идет на промежутке [-10;10], где черная прямя – график функции, синие линии – касательные, которые располагаются перпендикулярно заданной прямой вида y=-2x+12. Красные точки – это точки касания.
Касательная к окружности, эллипсу, гиперболе, параболе
Канонические уравнения кривых 2 порядка не являются однозначными функциями. Уравнения касательных для них составляются по известным схемам.
Касательная к окружности
Для задания окружности с центром в точке xcenter; ycenter и радиусом R применяется формула x-xcenter2+y-ycenter2=R2.
Данное равенство может быть записано как объединение двух функций:
y=R2-x-xcenter2+ycentery=-R2-x-xcenter2+ycenter
Первая функция располагается вверху, а вторая внизу, как показано на рисунке.
Для составления уравнения окружности в точке x0; y0, которая располагается в верхней или нижней полуокружности, следует найти уравнение графика функции вида y=R2-x-xcenter2+ycenter или y=-R2-x-xcenter2+ycenter в указанной точке.
Когда в точках xcenter; ycenter+R и xcenter; ycenter-R касательные могут быть заданы уравнениями y=ycenter+R и y=ycenter-R, а в точках xcenter+R; ycenter и
xcenter-R; ycenter будут являться параллельными оу, тогда получим уравнения вида x=xcenter+R и x=xcenter-R.
Касательная к эллипсу
Когда эллипс имеет центр в точке xcenter; ycenter с полуосями a и b, тогда он может быть задан при помощи уравнения x-xcenter2a2+y-ycenter2b2=1.
Эллипс и окружность могут быть обозначаться при помощи объединения двух функций, а именно: верхнего и нижнего полуэллипса. Тогда получаем, что
y=ba·a2-(x-xcenter)2+ycentery=-ba·a2-(x-xcenter)2+ycenter
Если касательные располагаются на вершинах эллипса, тогда они параллельны ох или оу. Ниже для наглядности рассмотрим рисунок.
Написать уравнение касательной к эллипсу x-324+y-5225=1 в точках со значениями x равного х=2.
Решение
Необходимо найти точки касания, которые соответствуют значению х=2. Производим подстановку в имеющееся уравнение эллипса и получаем, что
x-324x=2+y-5225=114+y-5225=1⇒y-52=34·25⇒y=±532+5
Тогда 2; 532+5 и 2; -532+5 являются точками касания, которые принадлежат верхнему и нижнему полуэллипсу.
Перейдем к нахождению и разрешению уравнения эллипса относительно y. Получим, что
x-324+y-5225=1y-5225=1-x-324(y-5)2=25·1-x-324y-5=±5·1-x-324y=5±524-x-32
Очевидно, что верхний полуэллипс задается с помощью функции вида y=5+524-x-32, а нижний y=5-524-x-32.
Применим стандартный алгоритм для того, чтобы составить уравнение касательной к графику функции в точке. Запишем, что уравнение для первой касательной в точке 2; 532+5 будет иметь вид
y’=5+524-x-32’=52·124-(x-3)2·4-(x-3)2’==-52·x-34-(x-3)2⇒y'(x0)=y'(2)=-52·2-34-(2-3)2=523⇒y=y'(x0)·x-x0+y0⇔y=523(x-2)+532+5
Получаем, что уравнение второй касательной со значением в точке
2; -532+5 принимает вид
y’=5-524-(x-3)2’=-52·124-(x-3)2·4-(x-3)2’==52·x-34-(x-3)2⇒y'(x0)=y'(2)=52·2-34-(2-3)2=-523⇒y=y'(x0)·x-x0+y0⇔y=-523(x-2)-532+5
Графически касательные обозначаются так:
Касательная к гиперболе
Когда гипербола имеет центр в точке xcenter; ycenter и вершины xcenter+α; ycenter и xcenter-α; ycenter, имеет место задание неравенства x-xcenter2α2-y-ycenter2b2=1, если с вершинами xcenter; ycenter+b и xcenter; ycenter-b, тогда задается при помощи неравенства x-xcenter2α2-y-ycenter2b2=-1.
Гипербола может быть представлена в виде двух объединенных функций вида
y=ba·(x-xcenter)2-a2+ycentery=-ba·(x-xcenter)2-a2+ycenter или y=ba·(x-xcenter)2+a2+ycentery=-ba·(x-xcenter)2+a2+ycenter
В первом случае имеем, что касательные параллельны оу, а во втором параллельны ох.
Отсюда следует, что для того, чтобы найти уравнение касательной к гиперболе, необходимо выяснить, какой функции принадлежит точка касания. Чтобы определить это, необходимо произвести подстановку в уравнения и проверить их на тождественность.
Составить уравнение касательной к гиперболе x-324-y+329=1 в точке 7; -33-3.
Решение
Необходимо преобразовать запись решения нахождения гиперболы при помощи 2 функций. Получим, что
x-324-y+329=1⇒y+329=x-324-1⇒y+32=9·x-324-1⇒y+3=32·x-32-4 или y+3=-32·x-32-4⇒y=32·x-32-4-3y=-32·x-32-4-3
Необходимо выявить, к какой функции принадлежит заданная точка с координатами 7; -33-3.
Очевидно, что для проверки первой функции необходимо y(7)=32·(7-3)2-4-3=33-3≠-33-3, тогда точка графику не принадлежит, так как равенство не выполняется.
Для второй функции имеем, что y(7)=-32·(7-3)2-4-3=-33-3≠-33-3, значит, точка принадлежит заданному графику. Отсюда следует найти угловой коэффициент.
Получаем, что
y’=-32·(x-3)2-4-3’=-32·x-3(x-3)2-4⇒kx=y'(x0)=-32·x0-3×0-32-4×0=7=-32·7-37-32-4=-3
Ответ: уравнение касательной можно представить как
y=-3·x-7-33-3=-3·x+43-3
Наглядно изображается так:
Касательная к параболе
Чтобы составить уравнение касательной к параболе y=ax2+bx+c в точке x0, y(x0), необходимо использовать стандартный алгоритм, тогда уравнение примет вид y=y'(x0)·x-x0+y(x0). Такая касательная в вершине параллельна ох.
Следует задать параболу x=ay2+by+c как объединение двух функций. Поэтому нужно разрешить уравнение относительно у. Получаем, что
x=ay2+by+c⇔ay2+by+c-x=0D=b2-4a(c-x)y=-b+b2-4a(c-x)2ay=-b-b2-4a(c-x)2a
Графически изобразим как:
Для выяснения принадлежности точки x0, y(x0) функции, нежно действовать по стандартному алгоритму. Такая касательная будет параллельна оу относительно параболы.
Написать уравнение касательной к графику x-2y2-5y+3, когда имеем угол наклона касательной 150°.
Решение
Начинаем решение с представления параболы в качестве двух функций. Получим, что
-2y2-5y+3-x=0D=(-5)2-4·(-2)·(3-x)=49-8xy=5+49-8x-4y=5-49-8x-4
Значение углового коэффициента равняется значению производной в точке x0 этой функции и равняется тангенсу угла наклона.
Получаем:
kx=y'(x0)=tg αx=tg 150°=-13
Отсюда определим значение х для точек касания.
Первая функция запишется как
y’=5+49-8x-4’=149-8x⇒y'(x0)=149-8×0=-13⇔49-8×0=-3
Очевидно, что действительных корней нет, так как получили отрицательное значение. Делаем вывод, что касательной с углом 150° для такой функции не существует.
Вторая функция запишется как
y’=5-49-8x-4’=-149-8x⇒y'(x0)=-149-8×0=-13⇔49-8×0=-3×0=234⇒y(x0)=5-49-8·234-4=-5+34
Имеем, что точки касания – 234; -5+34.
Ответ: уравнение касательной принимает вид
y=-13·x-234+-5+34
Графически изобразим это таким образом:
Уравнение касательной к графику функции
П. Романов, Т. Романова,г. Магнитогорск,
Челябинская обл.
Уравнение
касательной к графику функции
Статья опубликована при поддержке Гостиничного комплекса «ИТАКА+». Останавливаясь в городе судостроителей Северодвинске, вы не столкнетесь с проблемой поиска временного жилья. Тут, на сайте гостиничного комплекса «ИТАКА+» http://itakaplus.ru, вы сможете легко и быстро снять квартиру в городе, на любой срок, с посуточной оплатой.
На современном этапе развития
образования в качестве одной из основных его
задач выступает формирование творчески мыслящей
личности. Способность же к творчеству у учащихся
может быть развита лишь при условии
систематического привлечения их к основам
исследовательской деятельности. Фундаментом для
применения учащимися своих творческих сил,
способностей и дарований являются
сформированные полноценные знания и умения. В
связи с этим проблема формирования системы
базовых знаний и умений по каждой теме школьного
курса математики имеет немаловажное значение.
При этом полноценные умения должны являться
дидактической целью не отдельных задач, а
тщательно продуманной их системы. В самом
широком смысле под системой понимается
совокупность взаимосвязанных взаимодействующих
элементов, обладающая целостностью и устойчивой
структурой.
Рассмотрим методику обучения
учащихся составлению уравнения касательной к
графику функции. По существу, все задачи на
отыскание уравнения касательной сводятся к
необходимости отбора из множества (пучка,
семейства) прямых тех из них, которые
удовлетворяют определенному требованию
– являются касательными к графику некоторой
функции. При этом множество прямых, из которого
осуществляется отбор, может быть задано двумя
способами:
а) точкой, лежащей на
плоскости xOy (центральный пучок прямых);
б) угловым коэффициентом (параллельный пучок
прямых).
В связи с этим при изучении
темы «Касательная к графику функции» с целью
вычленения элементов системы нами были выделены
два типа задач:
1) задачи на касательную,
заданную точкой, через которую она проходит;
2) задачи на касательную, заданную ее угловым
коэффициентом.
Обучение решению задач на
касательную осуществлялось при помощи
алгоритма, предложенного А.Г. Мордковичем [2].
Его принципиальное отличие от уже известных
заключается в том, что абсцисса точки касания
обозначается буквой a (вместо x0), в связи с чем
уравнение касательной приобретает вид
y = f(a) + f ‘(a)(x – a)
(сравните с y = f(x0) + f ‘(x0)(x
– x0)). Этот методический прием, на наш
взгляд, позволяет учащимся быстрее и легче
осознать, где в общем уравнении касательной
записаны координаты текущей точки, а где
– точки касания.
Алгоритм
составления уравнения касательной к графику
функции y = f(x)
1. Обозначить буквой a
абсциссу точки касания.
2. Найти f(a).
3. Найти f ‘(x) и f ‘(a).
4. Подставить найденные числа a, f(a), f ‘(a) в
общее уравнение касательной y = f(a) = f ‘(a)(x – a).
Этот алгоритм может быть
составлен на основе самостоятельного выделения
учащимися операций и последовательности их
выполнения.
Практика показала, что
последовательное решение каждой из ключевых
задач при помощи алгоритма позволяет
формировать умения написания уравнения
касательной к графику функции поэтапно, а шаги
алгоритма служат опорными пунктами действий.
Данный подход соответствует теории поэтапного
формирования умственных действий, разработанной
П.Я. Гальпериным и Н.Ф. Талызиной [3].
В первом типе задач были
выделены две ключевые задачи:
- касательная проходит через
точку, лежащую на кривой (задача 1); - касательная проходит через
точку, не лежащую на кривой (задача 2).
Задача 1. Составьте уравнение
касательной к графику функции в точке M(3; – 2).
Решение. Точка M(3; – 2)
является точкой касания, так как
1. a = 3 – абсцисса точки
касания.
2. f(3) = – 2.
3. f ‘(x) = x2 – 4, f ‘(3) = 5.
y = – 2 + 5(x – 3), y = 5x – 17 – уравнение
касательной.
Задача 2. Напишите уравнения
всех касательных к графику функции y = – x2
– 4x + 2, проходящих через точку M(– 3; 6).
Решение. Точка M(– 3; 6) не
является точкой касания, так как f(– 3) 6 (рис. 2).
1. a – абсцисса точки
касания.
2. f(a) = – a2 – 4a + 2.
3. f ‘(x) = – 2x – 4, f ‘(a) = – 2a – 4.
4. y = – a2 – 4a + 2 – 2(a + 2)(x – a)
– уравнение касательной.
Касательная проходит через
точку M(– 3; 6), следовательно, ее координаты
удовлетворяют уравнению касательной.
6 = – a2 – 4a + 2 – 2(a +
2)(– 3 – a),
a2 + 6a + 8 = 0 ^ a1 = – 4, a2 = – 2.
Если a = – 4, то уравнение
касательной имеет вид y = 4x + 18.
Если a = – 2, то уравнение
касательной имеет вид y = 6.
Во втором типе ключевыми
задачами будут следующие:
- касательная параллельна
некоторой прямой (задача 3); - касательная проходит под
некоторым углом к данной прямой (задача 4).
Задача 3. Напишите уравнения
всех касательных к графику функции y = x3 – 3x2
+ 3, параллельных прямой y = 9x + 1.
Решение.
1. a – абсцисса точки
касания.
2. f(a) = a3 – 3a2 + 3.
3. f ‘(x) = 3x2 – 6x, f ‘(a) = 3a2 – 6a.
Но, с другой стороны, f ‘(a) = 9
(условие параллельности). Значит, надо решить
уравнение 3a2 – 6a = 9. Его корни a = – 1, a = 3
(рис. 3).
4. 1) a = – 1;
2) f(– 1) = – 1;
3) f ‘(– 1) = 9;
4) y = – 1 + 9(x + 1);
y = 9x + 8 – уравнение
касательной;
1) a = 3;
2) f(3) = 3;
3) f ‘(3) = 9;
4) y = 3 + 9(x – 3);
y = 9x – 24 – уравнение
касательной.
Задача 4. Напишите уравнение
касательной к графику функции y = 0,5x2 – 3x + 1,
проходящей под углом 45° к прямой y = 0 (рис. 4).
Решение. Из условия f ‘(a) =
tg 45° найдем a: a – 3 = 1 ^ a = 4.
1. a = 4 – абсцисса точки
касания.
2. f(4) = 8 – 12 + 1 = – 3.
3. f ‘(4) = 4 – 3 = 1.
4. y = – 3 + 1(x – 4).
y = x – 7 – уравнение
касательной.
Несложно показать, что
решение любой другой задачи сводится к решению
одной или нескольких ключевых задач. Рассмотрим
в качестве примера следующие две задачи.
1. Напишите уравнения
касательных к параболе y = 2x2 – 5x – 2, если
касательные пересекаются под прямым углом и одна
из них касается параболы в точке с абсциссой 3
(рис. 5).
Решение. Поскольку дана
абсцисса точки касания, то первая часть решения
сводится к ключевой задаче 1.
1. a = 3 – абсцисса точки
касания одной из сторон прямого угла.
2. f(3) = 1.
3. f ‘(x) = 4x – 5, f ‘(3) = 7.
4. y = 1 + 7(x – 3), y = 7x – 20 – уравнение первой
касательной.
Пусть a – угол наклона первой
касательной. Так как касательные
перпендикулярны, то – угол наклона второй касательной. Из
уравнения y = 7x – 20 первой касательной имеем tg a = 7. Найдем
Это значит, что угловой
коэффициент второй касательной равен .
Дальнейшее решение сводится к
ключевой задаче 3.
Пусть B(c; f(c)) есть точка
касания второй прямой, тогда
1. – абсцисса второй точки касания.
2.
3.
4.
– уравнение
второй касательной.
Примечание. Угловой
коэффициент касательной может быть найден проще,
если учащимся известно соотношение
коэффициентов перпендикулярных прямых k1•k2
= – 1.
2. Напишите уравнения всех
общих касательных к графикам функций
Решение. Задача сводится к
отысканию абсцисс точек касания общих
касательных, то есть к решению ключевой задачи 1 в
общем виде, составлению системы уравнений и
последующему ее решению (рис. 6).
1. Пусть a – абсцисса
точки касания, лежащей на графике функции y = x2
+ x + 1.
2. f(a) = a2 + a + 1.
3. f ‘(a) = 2a + 1.
4. y = a2 + a + 1 + (2a + 1)(x – a) = (2a + 1)x + 1 – a2.
1. Пусть c – абсцисса
точки касания, лежащей на графике функции
2.
3. f ‘(c) = c.
4.
Так как касательные общие, то
Итак, y = x + 1 и y = – 3x – 3
– общие касательные.
Основная цель рассмотренных
задач – подготовить учащихся к
самостоятельному распознаванию типа ключевой
задачи при решении более сложных задач,
требующих определенных исследовательских
умений (умения анализировать, сравнивать,
обобщать, выдвигать гипотезу и т. д.). К числу
таких задач можно отнести любую задачу, в которую
ключевая задача входит как составляющая.
Рассмотрим в качестве примера задачу (обратную
задаче 1) на нахождение функции по семейству ее
касательных.
3. При каких b и c прямые y = x и
y = – 2x являются касательными к графику функции
y = x2 + bx + c?
Решение.
Пусть t – абсцисса точки
касания прямой y = x с параболой y = x2 + bx + c; p
– абсцисса точки касания прямой y = – 2x с
параболой y = x2 + bx + c. Тогда уравнение
касательной y = x примет вид y = (2t + b)x + c – t2, а
уравнение касательной y = – 2x примет вид y = (2p +
b)x + c – p2.
Составим и решим систему
уравнений
Ответ:
Задачи для
самостоятельного решения
1. Напишите уравнения
касательных, проведенных к графику функции y = 2x2
– 4x + 3 в точках пересечения графика с прямой y = x +
3.
Ответ: y = – 4x + 3, y = 6x – 9,5.
2. При каких значениях a
касательная, проведенная к графику функции y = x2
– ax в точке графика с абсциссой x0 = 1,
проходит через точку M(2; 3)?
Ответ: a = 0,5.
3. При каких значениях p
прямая y = px – 5 касается кривой y = 3x2 – 4x – 2?
Ответ: p1 = – 10, p2
= 2.
4. Найдите все общие точки
графика функции y = 3x – x3 и касательной,
проведенной к этому графику через точку P(0; 16).
Ответ: A(2; – 2), B(– 4; 52).
5. Найдите кратчайшее
расстояние между параболой y = x2 + 6x + 10 и
прямой
Ответ:
6. На кривой y = x2 – x + 1
найдите точку, в которой касательная к графику
параллельна прямой y – 3x + 1 = 0.
Ответ: M(2; 3).
7. Напишите уравнение
касательной к графику функции y = x2 + 2x –
| 4x |, которая касается его в двух точках.
Сделайте чертеж.
Ответ: y = 2x – 4.
8. Докажите, что прямая y = 2x
– 1 не пересекает кривую y = x4 + 3x2 + 2x.
Найдите расстояние между их ближайшими точками.
Ответ:
9. На параболе y = x2
взяты две точки с абсциссами x1 = 1, x2 = 3.
Через эти точки проведена секущая. В какой точке
параболы касательная к ней будет параллельна
проведенной секущей? Напишите уравнения секущей
и касательной.
Ответ: y = 4x – 3 – уравнение
секущей; y = 4x – 4 – уравнение касательной.
10. Найдите угол q между касательными
к графику функции y = x3 – 4x2 + 3x + 1,
проведенными в точках с абсциссами 0 и 1.
Ответ: q = 45°.
11. В каких точках
касательная к графику функции образует с осью Ox угол в 135°?
Ответ: A(0; – 1), B(4; 3).
12. В точке A(1; 8) к кривой проведена
касательная. Найдите длину отрезка касательной,
заключенного между осями координат.
Ответ:
13. Напишите уравнение всех
общих касательных к графикам функций y = x2 –
x + 1 и y = 2x2 – x + 0,5.
Ответ: y = – 3x и y = x.
14. Найдите расстояние между
касательными к графику функции параллельными оси абсцисс.
Ответ:
15. Определите, под какими
углами парабола y = x2 + 2x – 8 пересекает ось
абсцисс.
Ответ: q1 = arctg 6, q2 = arctg (– 6).
16. На графике функции найдите все
точки, касательная в каждой из которых к этому
графику пересекает положительные полуоси
координат, отсекая от них равные отрезки.
Ответ: A(– 3; 11).
17. Прямая y = 2x + 7 и парабола y
= x2 – 1 пересекаются в точках M и N. Найдите
точку K пересечения прямых, касающихся параболы в
точках M и N.
Ответ: K(1; – 9).
18. При каких значениях b
прямая y = 9x + b является касательной к графику
функции y = x3 – 3x + 15?
Ответ: – 1; 31.
19. При каких значениях k
прямая y = kx – 10 имеет только одну общую точку с
графиком функции y = 2x2 + 3x – 2? Для найденных
значений k определите координаты точки.
Ответ: k1 = – 5, A(– 2;
0); k2 = 11, B(2; 12).
20. При каких значениях b
касательная, проведенная к графику функции y = bx3
– 2x2 – 4 в точке с абсциссой x0 = 2,
проходит через точку M(1; 8)?
Ответ: b = – 3.
21. Парабола с вершиной на
оси Ox касается прямой, проходящей через точки A(1;
2) и B(2; 4), в точке B. Найдите уравнение параболы.
Ответ:
22. При каком значении
коэффициента k парабола y = x2 + kx + 1 касается
оси Ox?
Ответ: k = д 2.
23. Найдите углы между
прямой y = x + 2 и кривой y = 2x2 + 4x – 3.
Ответ:
24. Определите, под какими
углами пересекаются графики функций y = 2x2 +
3x – 3 и y = x2 + 2x + 3.
Ответ:
25. При каком значении k угол
между кривыми y = x2 + 2x + k и y = x2 + 4x + 4
будет равен 45°?
Ответ: k = – 3.
26. Найдите все значения x0,
при каждом из которых касательные к графикам
функции y = 5cos 3x + 2 и y = 3cos 5x в точках в
абсциссой x0 параллельны.
Ответ:
27. Под каким углом видна
окружность x2 + y2 = 16 из точки (8; 0)?
Ответ:
28. Найдите геометрическое
место точек, из которых парабола y = x2 видна
под прямым углом?
Ответ: прямая
29. Найдите расстояние между
касательными к графику функции образующими с
положительным направлением оси Ox угол 45°.
Ответ:
30. Найдите геометрическое
место вершин всех парабол вида y = x2 + ax + b,
касающихся прямой y = 4x – 1.
Ответ: прямая y = 4x + 3.
Литература
1. Звавич Л.И., Шляпочник Л.Я.,
Чинкина М.В. Алгебра и начала анализа: 3600 задач
для школьников и поступающих в вузы. – М., Дрофа,
1999.
2. Мордкович А. Семинар четвертый для молодых
учителей. Тема «Приложения производной». – М.,
«Математика», № 21/94.
3. Формирование знаний и умений на основе
теории поэтапного усвоения умственных действий.
/ Под ред. П.Я. Гальперина, Н.Ф. Талызиной.
– М., МГУ, 1968.
п.1. Уравнение касательной
Рассмотрим кривую (y=f(x)).
Выберем на ней точку A с координатами ((x_0,y_0)), проведем касательную AB в этой точке.
Как было показано в §42 данного справочника, угловой коэффициент касательной равен производной от функции f в точке (x_0): $$ k=f'(x_0) $$ Уравнение прямой AB, проведенной через две точки: ((y_B-y_A)=k(x_B-x_A)).
Для (A(x_0,y_0), B(x,y)) получаем: begin{gather*} (y-y_0)=k(x-x_0)\ y=k(x-x_0)+y_0\ y=f'(x_0)(x-x_0)+f(x_0) end{gather*}
Уравнение касательной к кривой (y=f(x)) в точке (x_0) имеет вид: $$ y=f'(x_0)(x-x_0)+f(x_0) $$ при условии, что производная (f'(x_0)=aneinfty) – существует и конечна.
Чтобы записать уравнение касательной с угловым коэффициентом в виде (y=kx+b), нужно раскрыть скобки и привести подобные: $$ y=f'(x_0)(x-x_0)+f(x_0)=underbrace{f'(x_0)}_{=k}x+underbrace{f(x_0)-f'(x_0)cdot x_0}_{=b} $$
Уравнение касательной с угловым коэффициентом: begin{gather*} y=kx+b\ k=f'(x_0), b=f(x_0)-f'(x_0)cdot x_0 end{gather*}
п.2. Алгоритм построения касательной
На входе: уравнение кривой (y=f(x)), абсцисса точки касания (x_0).
Шаг 1. Найти значение функции в точке касания (f(x_0))
Шаг 2. Найти общее уравнение производной (f’ (x))
Шаг 3. Найти значение производной в точке касания (f'(x_0 ))
Шаг 4. Записать уравнение касательной (y=f’ (x_0)(x-x_0)+f(x_0)), привести его к виду (y=kx+b)
На выходе: уравнение касательной в виде (y=kx+b)
Например:
Пусть (f(x)=x^2+3). Найдем касательную к этой параболе в точке (x_0=1). (f(x_0)=1^2+3=4 ) |
п.3. Вертикальная касательная
В случае, если производная (f'(x_0)=pminfty) – существует, но бесконечна, в точке (x_0) проходит вертикальная касательная (x=x_0).
Внимание!
Не путайте вертикальные касательные с вертикальными асимптотами.
Вертикальная асимптота проходит через точку разрыва 2-го рода (x_0notin D), в которой функция не определена и производная не существует. График функции приближается к асимптоте на бесконечности, но у них никогда не бывает общих точек.
А вертикальная касательная проходит через точку (x_0in D), входящую в область определения. График функции и касательная имеют одну общую точку ((x_0,y_0)).
Вертикальные касательные характерны для радикалов вида (y=sqrt[n]{x}).
Например:
Пусть (f(x)=sqrt[5]{x-1}+1). Найдем касательную к этой кривой в точке (x_0=1). (f(x_0)=sqrt[5]{1-1}+1=1) |
п.4. Примеры
Пример 1. Для функции (f(x)=2x^2+4x)
a) напишите уравнения касательных, проведенных к графику функции в точках его пересечения с осью OX.
Находим точки пересечения, решаем уравнение: $$ 2x^2+4x=0Rightarrow 2x(x+2)=0Rightarrow left[ begin{array}{l} x=0\ x=-2 end{array} right. $$ Две точки на оси: (0;0) и (-2;0). Касательная в точке (x_0=0): begin{gather*} f(x_0)=0, f'(x)=4x+4\ f'(x_0)=4cdot 0+4=4\ y=4(x-0)+0=4x end{gather*} Касательная в точке (x_0=-2): begin{gather*} f(x_0)=0, f'(x)=4x+4\ f'(x_0)=4cdot (-2)+4=-4\ y=-4(x+2)+0=-4x-8 end{gather*} |
б) Найдите, в какой точке касательная образует с положительным направлением оси OX угол 45°. Напишите уравнение этой касательной.
Общее уравнение касательной: (f'(x)=4x+4) По условию (f'(x_0)=tgalpha=tg45^circ=1) Решаем уравнение: $$ 4x_0+4=1Rightarrow 4x_0=-3Rightarrow x_0=-frac34 $$ Точка касания (x_0=-frac34) begin{gather*} f(x_0)=2cdotleft(-frac34right)^2+4cdotleft(-frac34right)=frac98-3=-frac{15}{8} end{gather*} Уравнение касательной: begin{gather*} y=1cdotleft(x+frac34right)-frac{15}{8}=x-frac98 end{gather*} |
в) найдите, в какой точке касательная будет параллельна прямой (2x+y-6=0). Напишите уравнение этой касательной.
Найдем угловой коэффициент заданной прямой: (y=-2x+6Rightarrow k=-2). Касательная должна быть параллельной, значит, её угловой коэффициент тоже (k=-2). Получаем уравнение: begin{gather*} f'(x_0)=-2\ 4x_0+4=-2Rightarrow 4x_0=-6Rightarrow x_0=-frac32 end{gather*} Точка касания (x_0=-frac32) begin{gather*} f(x_0)=2cdotleft(-frac32right)^2+4cdotleft(-frac32right)=\ =frac92-6=-frac32 end{gather*} Уравнение касательной: begin{gather*} y=-2cdotleft(x+frac32right)-frac32=-2x-frac92 end{gather*} Или, в каноническом виде: begin{gather*} 2x+y+frac92=0 end{gather*} |
г) в какой точке функции можно провести горизонтальную касательную? Напишите уравнение этой касательной.
У горизонтальной прямой (k=0). Получаем уравнение: (f'(x_0)=0). begin{gather*} 4x_0+4=0Rightarrow 4x_0=-4Rightarrow x_0=-1 end{gather*} Точка касания (x_0=-1) begin{gather*} f(x_0)=2cdot(-1)^2+4cdot(-1)=-2 end{gather*} Уравнение касательной: begin{gather*} y=0cdot(x+1)-2=-2 end{gather*} |
Ответ: а) (y=4x) и (y=-4x-8); б) (y=x-frac98); в) (2x+y+frac92=0); г) (y=-2)
Пример 2. Напишите уравнение касательной к графику функции в заданной точке:
a) ( f(x)=frac5x+frac x5, x_0=4 ) begin{gather*} f(x_0)=frac54+frac45=frac{25+16}{20}=frac{41}{20}\ f'(x)=left(frac5xright)’+left(frac x5right)’=-frac{5}{x^2}+frac15=frac{-25+x^2}{5x^2}=frac{x^2-25}{5x^2}\ f'(x_0)=frac{4^2-25}{5cdot 4^2}=-frac{9}{80} end{gather*} Уравнение касательной: $$ y=-frac{9}{80}(x-4)+frac{41}{20}=-frac{9}{80}x+frac{9}{20}+frac{41}{20}=-frac{9}{80}x+2,5 $$
б) ( f(x)=frac{x^2+5}{3-x}, x_0=2 ) begin{gather*} f(x_0)=frac{2^2+5}{3-2}=frac91=9\ f'(x)=frac{(x^2+5)'(3-x)-(x^2+5)(3-x)’}{(3-x)^2}=frac{2x(3-x)+(x^2+5)}{(3-x)^2}=\ =frac{6x-2x^2+x^2+5}{(3-x)^2}=frac{-x^2+6x+5}{(3-x)^2}\ f'(x_0)=frac{-2^2+6cdot 2+5}{(3-2)^2}=13 end{gather*} Уравнение касательной: $$ y=13(x-2)+9=13x-26+9=13x-17 $$
Пример 3*. Найдите точку, в которой касательная к графику функции (f(x)=frac{x^2+2}{x+3}-x) перпендикулярна прямой (y=11x+3). Напишите уравнение этой касательной.
Угловой коэффициент данной прямой (k_1=11).
Угловой коэффициент перпендикулярной прямой (k_2=-frac{1}{k_1}=-frac{1}{11}) begin{gather*} f'(x)=left(frac{x^2+2}{x+3}right)’-x’=frac{2x(x+3)-(x^2+2)cdot 1}{(x+3)^2}-1=frac{2x^2+6x-x^2-2-(x+3)^2}{(x+3)^2}=\ =frac{x^2+6x-2-x^2-6x-9}{(x+3)^2}=- frac{11}{(x+3)^2} end{gather*} В точке касания: begin{gather*} f'(x_0)=k_2Rightarrow=-frac{11}{(x+3)^2}=-frac{1}{11}Rightarrow (x+3)^2=121Rightarrow (x+3)^2-11^2=0Rightarrow\ Rightarrow (x+14)(x+8)=0Rightarrow left[ begin{array}{l} x=-14\ x=8 end{array} right. end{gather*}
Уравнение касательной при (x_0=-14) begin{gather*} f(x_0)=frac{(-14)^2+2}{-14+3}+14=frac{198}{-11}+14=-18+14=-4\ y=-frac{1}{11}(x+14)-4=-frac{x+58}{11} end{gather*} Уравнение касательной при (x_0=8) begin{gather*} f(x_0)=frac{8^2+2}{8+3}-8=frac{66}{11}-8=-2\ y=-frac{1}{11}(x-8)-2=-frac{x+14}{11} end{gather*}
Ответ: точка касания (-14;-4), уравнение (y=-frac{x+58}{11})
и точка касания (8;-2), уравнение (-frac{x+14}{11})
Пример 4*. Найдите уравнения общих касательных к параболам (y=x^2-5x+6) и (y=x^2+x+1). Укажите точки касания.
Найдем производные функций: begin{gather*} f_1′(x)=2x-5, f_2′(x)=2x+1 end{gather*} Пусть a – абсцисса точки касания для первой параболы, b – для второй.
Запишем уравнения касательных (g_1(x)) и (g_2(x)) через эти переменные. begin{gather*} g_1(x)=f_1′(a)(x-a)+f_1(a)=(2a-5)(x-a)+a^2-5a+6=\ =(2a-5)x-2a^2+5a+a^2-5a+6=(2a-5)x+(6-a^2)\ \ g_2(x)=f_2′(b)(x-b)+f_2(b)=(2b+1)(x-b)+b^2+b+1=\ =(2b+1)x-2b^2-b+b^2+b+1=(2b+1)x+(1-b^2) end{gather*} Для общей касательной должны быть равны угловые коэффициенты и свободные члены. Получаем систему уравнений: begin{gather*} begin{cases} 2a-5=2b+1\ 6-a^2=1-b^2 end{cases} Rightarrow begin{cases} 2(a-b)=6\ a^2-b^2=5 end{cases} Rightarrow begin{cases} a-b=3\ (a-b)(a+b)=5 end{cases} Rightarrow begin{cases} a-b=3\ a+b=frac53 end{cases} Rightarrow \ Rightarrow begin{cases} 2a=3+frac53\ 2b=frac53-3 end{cases} Rightarrow begin{cases} a=frac73\ b=-frac23 end{cases} end{gather*} Находим угловой коэффициент и свободный член из любого из двух уравнений касательных: $$ k=2a-5=2cdotfrac73-5=-frac13, b=6-a^2=6-frac{49}{9}=frac59 $$ Уравнение общей касательной: $$ y=-frac x3+frac59 $$
Точки касания: begin{gather*} a=frac73, f_1(a)=left(frac73right)^2-5cdotfrac73+6=frac{49}{9}-frac{35}{3}+6=frac{49-105+54}{9}=-frac29\ b=-frac23, f_2(b)=left(-frac23right)^2-frac23+1=frac49-frac23+1frac{4-6+9}{9}=frac79 end{gather*}
Ответ: касательная (y=-frac x3+frac59); точки касания (left(frac73;-frac29right)) и (left(-frac23;frac79right))
Пример 5*. Докажите, что кривая (y=x^4+3x^2+2x) не пересекается с прямой (y=2x-1), и найдите расстояние между их ближайшими точками.
Решим уравнение: (x^4+3x^2+2x=2x-1) begin{gather*} x^4+3x^2+1=0Rightarrow D=3^2-4=5Rightarrow x^2=frac{-3pmsqrt{5}}{2} end{gather*} Оба корня отрицательные, а квадрат не может быть отрицательным числом.
Значит, (xinvarnothing) – решений нет, кривая и прямая не пересекаются.
Что и требовалось доказать.
Чтобы найти расстояние, необходимо построить касательную к кривой с тем же угловым коэффициентом (k=2), то и y данной прямой. Тогда искомым расстоянием будет расстояние от точки касания до прямой (y=2x-1).
Строим уравнение касательной. По условию: (f'(x)=4x^3+6x+2=2) begin{gather*} 4x^3+6x=0Rightarrow 2x(2x^2+3)=0Rightarrow left[ begin{array}{l} x=0\ 2x^2+3=0 end{array} right. Rightarrow left[ begin{array}{l} x=0\ x^2=-frac32 end{array} right. Rightarrow left[ begin{array}{l} x=0\ xinvarnothing end{array} right. Rightarrow x=0 end{gather*} Точка касания (x_0=0, y_0=0^4+3cdot 0^2+2cdot 0=0).
Уравнение касательной: (y=2(x-0)+0=2x)
Ищем расстояние между двумя параллельными прямыми: (y=2x) и (y=2x-1). Перпендикуляр из точки (0;0) на прямую (y=2x-1) имеет угловой коэффициент (k=-frac12), его уравнение: (y=-frac12 x+b). Т.к. точка (0;0) принадлежит этому перпендикуляру, он проходит через начало координат и (b=0). |
Уравнение перпендикуляра: (y=-frac x2).
Находим точку пересечения прямой (y=2x-1) и перпендикуляра (y=-frac x2): begin{gather*} 2x-1=-frac x2Rightarrow 2,5x=1Rightarrow x=0,4; y=-frac{0,4}{2}=-0,2 end{gather*} Точка пересечения A(0,4;-0,2).
Находим расстояние (OA=sqrt{0,4^2+(-0,2)^2}=0,2sqrt{2^2+1^2}=frac{sqrt{5}}{5})
Ответ: (frac{sqrt{5}}{5})
Касательная к окружности
О чем эта статья:
Касательная к окружности, секущая и хорда — в чем разница
В самом названии касательной отражается суть понятия — это прямая, которая не пересекает окружность, а лишь касается ее в одной точке. Взглянув на рисунок окружности ниже, несложно догадаться, что точку касания от центра отделяет расстояние, в точности равное радиусу.
Касательная к окружности — это прямая, имеющая с ней всего одну общую точку.
Если мы проведем прямую поближе к центру окружности — так, чтобы расстояние до него было меньше радиуса — неизбежно получится две точки пересечения. Такая прямая называется секущей, а отрезок, расположенный между точками пересечения, будет хордой (на рисунке ниже это ВС ).
Секущая к окружности — это прямая, которая пересекает ее в двух местах, т. е. имеет с ней две общие точки. Часть секущей, расположенная внутри окружности, будет называться хордой.
Свойства касательной к окружности
Выделяют четыре свойства касательной, которые необходимо знать для решения задач. Два из них достаточно просты и легко доказуемы, а вот еще над двумя придется немного подумать. Рассмотрим все по порядку.
Касательная к окружности и радиус, проведенный в точку касания, взаимно перпендикулярны.
Не будем принимать это на веру, попробуем доказать. Итак, у нас даны:
- окружность с центральной точкой А;
- прямая а — касательная к ней;
- радиус АВ, проведенный к касательной.
Докажем, что касательная и радиус АВ взаимно перпендикулярны, т.е. а ⟂ АВ.
Пойдем от противного — предположим, что между прямой а и радиусом АВ нет прямого угла и проведем настоящий перпендикуляр к касательной, назвав его АС.
В таком случае наш радиус АВ будет считаться наклонной, а наклонная, как известно, всегда длиннее перпендикуляра. Получается, что АВ > АС. Но если бы это было на самом деле так, наша прямая а пересекалась бы с окружностью два раза, ведь расстояние от центра А до нее — меньше радиуса. Но по условию задачи а — это касательная, а значит, она может иметь лишь одну точку касания.
Итак, мы получили противоречие. Делаем вывод, что настоящим перпендикуляром к прямой а будет вовсе не АС, а АВ.
Курсы подготовки к ОГЭ по математике от Skysmart придадут уверенности в себе и помогут освежить знания перед экзаменом.
Задача
У нас есть окружность, центр которой обозначен О. Из точки С проведена прямая, и она касается этой окружности в точке А. Известно, что ∠АСО = 28°. Найдите величину дуги АВ.
Мы знаем, что касательная АС ⟂ АО, следовательно ∠САО = 90°.
Поскольку нам известны величины двух углов треугольника ОАС, не составит труда найти величину и третьего угла.
∠АОС = 180° – ∠САО – ∠АСО = 180° – 90° – 28° = 62°
Поскольку вершина угла АОС лежит в центре окружности, можно вспомнить свойство центрального угла — как известно, он равен дуге, на которую опирается. Следовательно, АВ = 62°.
Если провести две касательных к окружности из одной точки, лежащей вне этой окружности, то их отрезки от этой начальной точки до точки касания будут равны.
Докажем и это свойство на примере. Итак, у нас есть окружность с центром А, давайте проведем к ней две касательные из точки D. Обозначим эти прямые как ВD и CD . А теперь выясним, на самом ли деле BD = CD.
Для начала дополним наш рисунок, проведем еще одну прямую из точки D в центр окружности. Как видите, у нас получилось два треугольника: ABD и ACD . Поскольку мы уже знаем, что касательная и радиус к ней перпендикулярны, углы ABD и ACD должны быть равны 90°.
Итак, у нас есть два прямоугольных треугольника с общей гипотенузой AD. Учитывая, что радиусы окружности всегда равны, мы понимаем, что катеты AB и AC у этих треугольников тоже одинаковой длины. Следовательно, ΔABD = ΔACD (по катету и гипотенузе).. Значит, оставшиеся катеты, а это как раз наши BD и CD (отрезки касательных к окружности), аналогично равны.
Важно: прямая, проложенная из стартовой точки до центра окружности (в нашем примере это AD), делит угол между касательными пополам.
Задача 1
У нас есть окружность с радиусом 4,5 см. К ней из точки D, удаленной от центра на 9 см, провели две прямые, которые касаются окружности в точках B и C. Определите градусную меру угла, под которым пересекаются касательные.
Решение
Для этой задачи вполне подойдет уже рассмотренный выше рисунок окружности с радиусами АВ и АC. Поскольку касательная ВD перпендикулярна радиусу АВ , у нас есть прямоугольный треугольник АВD. Зная длину его катета и гипотенузы, определим величину ∠BDA.
∠BDA = 30° (по свойству прямоугольного треугольника: угол, лежащий напротив катета, равного половине гипотенузы, составляет 30°).
Мы знаем, что прямая, проведенная из точки до центра окружности, делит угол между касательными, проведенными из этой же точки, пополам. Другими словами:
∠BDC = ∠BDA × 2 = 30° × 2 = 60°
Итак, угол между касательными составляет 60°.
Задача 2
К окружности с центром О провели две касательные КМ и КN. Известно, что ∠МКN равен 50°. Требуется определить величину угла ∠NМК.
Решение
Согласно вышеуказанному свойству мы знаем, что КМ = КN. Следовательно, треугольник МNК является равнобедренным.
Углы при его основании будут равны, т.е. ∠МNК = ∠NМК.
∠МNК = (180° – ∠МКN) : 2 = (180° – 50°) : 2 = 65°
Соотношение между касательной и секущей: если они проведены к окружности из одной точки, лежащей вне окружности, то квадрат расстояния до точки касания равен произведению длины всей секущей на ее внешнюю часть.
Данное свойство намного сложнее предыдущих, и его лучше записать в виде уравнения.
Начертим окружность и проведем из точки А за ее пределами касательную и секущую. Точку касания обозначим В, а точки пересечения — С и D. Тогда CD будет хордой, а отрезок AC — внешней частью секущей.
Задача 1
Из точки М к окружности проведены две прямые, пусть одна из них будет касательной МA, а вторая — секущей МB. Известно, что хорда ВС = 12 см, а длина всей секущей МB составляет 16 см. Найдите длину касательной к окружности МA.
Решение
Исходя из соотношения касательной и секущей МА 2 = МВ × МС.
Найдем длину внешней части секущей:
МС = МВ – ВС = 16 – 12 = 4 (см)
МА 2 = МВ × МС = 16 х 4 = 64
Задача 2
Дана окружность с радиусом 6 см. Из некой точки М к ней проведены две прямые — касательная МA и секущая МB . Известно, что прямая МB пересекает центр окружности O. При этом МB в 2 раза длиннее касательной МA . Требуется определить длину отрезка МO.
Решение
Допустим, что МО = у, а радиус окружности обозначим как R.
В таком случае МВ = у + R, а МС = у – R.
Поскольку МВ = 2 МА, значит:
МА = МВ : 2 = (у + R) : 2
Согласно теореме о касательной и секущей, МА 2 = МВ × МС.
(у + R) 2 : 4 = (у + R) × (у – R)
Сократим уравнение на (у + R), так как эта величина не равна нулю, и получим:
Поскольку R = 6, у = 5R : 3 = 30 : 3 = 10 (см).
Ответ: MO = 10 см.
Угол между хордой и касательной, проходящей через конец хорды, равен половине дуги, расположенной между ними.
Это свойство тоже стоит проиллюстрировать на примере: допустим, у нас есть касательная к окружности, точка касания В и проведенная из нее хорда AВ. Отметим на касательной прямой точку C, чтобы получился угол AВC.
Задача 1
Угол АВС между хордой АВ и касательной ВС составляет 32°. Найдите градусную величину дуги между касательной и хордой.
Решение
Согласно свойствам угла между касательной и хордой, ∠АВС = ½ АВ.
АВ = ∠АВС × 2 = 32° × 2 = 64°
Задача 2
У нас есть окружность с центром О, к которой идет прямая, касаясь окружности в точке K. Из этой точки проводим хорду KM, и она образует с касательной угол MKB, равный 84°. Давайте найдем величину угла ОMK.
Решение
Поскольку ∠МКВ равен половине дуги между KM и КВ, следовательно:
КМ = 2 ∠МКВ = 2 х 84° = 168°
Обратите внимание, что ОМ и ОK по сути являются радиусами, а значит, ОМ = ОК. Из этого следует, что треугольник ОMK равнобедренный.
∠ОКМ = ∠ОМК = (180° – ∠КОМ) : 2
Так как центральный угол окружности равен угловой величине дуги, на которую он опирается, то:
∠ОМК = (180° – ∠КОМ) : 2 = (180° – 168°) : 2 = 6°
Определение формулы касательной к окружности
Коэффициенты окружности |
Точка на окружности, через которую надо провести касательную |
Общая формула окружности |
Уравнение касательной в указанной точке |
Касательная к окружности
Если не использовать понятие производной, и взять объяснение из учебников середины прошлого века, то “Касательная к окружности – это прямая пересекающая окружность в двух совпадающих точках”
Окружность на плоскости может быть представлена в виде нескольких исходных данных
1. В виде координат центра окружности (x0,y0) и её радиуса R.
2. В виде общего уравнения
В виде параметрического вида и в полярных координатах мы рассматривать не будем, так как там формулы тоже на базируются на координатах центра окружности и радиусе.
Наша задача, зная параметры окружности и точку принадлежащую этой окружности вычислить параметры касательной к этой окружности.
Эта задача, является частным решением более общего калькулятор касательная к кривой второго порядка
Итак, если окружность выражена формулой
Уравнение касательной к окружности если нам известны параметры общего уравнения таково:
Таким образом, зная все коэффициенты, мы очень легко найдем уравнение касательной в заданной точке.
ВАЖНО: При указании точки, она должна быть обязательно(!!) принадлежать окружности,
и не быть точкой в какой либо стороне. В противном случае, уравнение касательной будет неверным.
Примеры
Вычислить уравнение касательной в точке (13.8, 0) к окружности выраженной формулой
Восемь способов построения касательной к окружности
Государственное бюджетное образовательное учреждение
Проектная работа по геометрии.
Восемь способов построения касательной к окружности.
9 биолого-химический класс
заместитель директора по учебной работе,
Высшее проявление духа – это разум.
Высшее проявление разума – это геометрия.
Клетка геометрии – треугольник. Он так же
неисчерпаем, как и вселенная. Окружность – душа геометрии.
Познайте окружность, и вы не только познаете душу
геометрии, но и возвысите душу свою.
Построить касательную к окружности с центром О и радиусом R, проходящую через точку А, лежащую вне окружности
Построения касательной к окружности, не требующие обоснования, опирающегося на теорию параллельных прямых.
Построение №1.
1. Проведу отрезок ОА
2. Найду К – середину ОА
3. Построю окружность (К; КА).
4. Отмечу точки пересечения окружности (О; r) и окружности (К; КА) С и В.
5. Проведу АВ и ОВ.
Треугольник ОВА – прямоугольный, так как он вписан в окружность, и гипотенуза совпадает с диаметром окружности (К; КА). Следовательно, АВО =90°. Для окружности (О; r) ОВ – радиус. ОВ АВ, следовательно, АВ – касательная по признаку касательной.
Аналогично, АС – касательная к окружности.
Построение № 1 основывается на факте, который гласит, что касательная окружности перпендикулярна радиусу, проведенному в точку касания.
Для прямой имеется лишь одна точка касания с окружностью.
Через данную на прямой точку можно провести лишь одну перпендикулярную прямую.
1. Построю окружность (А; АО)
2. Построю окружность (О; 2R)
3. Построенные окружности пересекаются в точках М и N.
4. Отрезки ОМ и ОN пересекают данную окружность (О;R) в точках С и В.
5. АВ и АС – искомые касательные.
1. Проведу АО – радиус окружности (А;АО)
АМ и AN также радиусы окружности (А;АО), следовательно
2. ОВ = ВМ = ОС = CN = 0,5OM= 0,5ON, так как ОМ – радиус окружности (O;2R), а ОС – радиус окружности (О;R)
3. Рассмотрим треугольник ОАМ. В нем АМ=ОА, тогда Δ ОАМ равнобедренный по определению. ОВ= ВМ, следовательно, АВ – медиана и высота ΔОАМ, по свойству равнобедренного треугольника.
4. Так как в ΔОАМ АВ – высота, следовательно, АВО = 90°
5. ОВ – радиус, АВО = 90°, следовательно, АВ – касательная по признаку.
6. Аналогично в равнобедренном треугольнике AON АС – касательная (АСО = 90°, ОС – радиус)
7. Итак, АВ и АС – касательные
1. Построю концентрические окружности (О; r) и (O; OA)
2. Проведу ОА; ОА пересекает окружность (О; r) в точке Р.
3. Проведу перпендикуляр МN к радиусу ОА в точке Р.
4. MN пересекает окружность(О; ОА) в точках М и N.
5. Проведу ОМ и ОN. Эти отрезки пересекают окружность (О; r) в точках В и С соответственно.
6. АВ и АС– искомые касательные.
1. ОМ =ОА т. к. радиусы
2. В треугольниках ОМР и ОВА:
ОР = ОВ как радиусы, ОМ = ОА как радиусы, следовательно, ΔОМР = ΔОВА по двум сторонам и углу между ними.
3. Следовательно ОРМ =ОВА= 90° ( как соответствующие углы в равных треугольниках), следовательно, АВ – касательная по признаку касательной.
4. Аналогично, АС – касательная
1. Построю окружность (О, 2r).
2. Построю произвольную касательную к окружности (О; r), пересекающую окружность (О, 2r) в точках M и N.
3. Рассмотрим поворот относительно точки О на угол АОМ, равный α.
4. Точку М надо повернуть на угол α, следовательно она перейдет точку А
Точку М надо повернуть на (180 – α) следовательно, точка М перейдет в точку К.
Тогда, так как угол α остается тем же, AD и АК – касательные по признаку
Построения касательной к окружности одной линейкой, одним циркулем.
1. Прямая ОА пересекает окружность (О, r) в точках Р и Q.
2. Проведу через точку А произвольную прямую, пересекающую окружность(О, r) в точках М и N.
3. Прямая PN пересекает прямую QM в точке L.
4. Прямая PM пересекает прямую QN в точке K.
5. Прямая KL пересекает окружность в точках B и С.
6. АВ и ВС – искомые касательные.
1. Т. к. треугольники PQN и PQM вписаны в окружность и сторона PQ является диаметром окружности, то эти треугольники прямоугольные.
2. В треугольнике PQL отрезки PM и QN – высоты, пересекающиеся в точке К, поэтому KL – третья высота. Тогда KL PQ.
3. Пусть DPK=α, DQK=β. Тогда ctg α : ctg β= |PD|:|DQ| (1).
Построю перпендикуляр к прямой АР в точке А, пересекающий прямую РМ в точке S. Тогда |PA|=|AS|ctg α и |AQ|=|AS|ctg AQS.
4. Так как AQS =AMS = 180° – PMN = PQN = β, то |AQ| = |AS|ctg β. Поэтому |PA| : |AQ| = ctg α : ctg β (2).
5. Сопоставляя (1) и (2) получу |PD| : |PA| = |DQ| : |AQ|, или
После раскрытия скобок и упрощений нахожу, что |OD|·|OA|=R².
5. Из соотношения |OD|·|OA|=R² следует, что |OD|:R=R: |OA|, то есть треугольники ODB и OBA подобны. Поскольку ODB= 90°, то OBA=90°.Следовательно, прямая АВ – искомая касательная, что и требовалось доказать.
Построение № 6.
1. Прострою окружность (A; |OA|).
2. Найду раствор циркуля, равный 2R, для чего выберу на окружности (О; R) точку S и отложу три дуги, содержащие по 60º: SP=PQ=QT=60°. Точки S и T диаметрально противоположны.
3. Строю окружность (О; ST), пересекающую w1Что это за окружность? в точках М и N.
4. Теперь построю середину МО. Для этого строю окружности (O; OM) и (М; МО), а затем для точек М и О находим на них диаметрально противоположные точки U и V.
5. Далее строю окружность (U; UM), пересекающую (М; МО) в точках К и L.
6. Наконец, построю окружность (К; КМ) и (L; LM), пересекающиеся в искомой точке В – середине МО.
Треугольники КМВ и UMK равнобедренные и подобные. Поэтому из того, что КМ= 0,5МU, следует, что МВ=0,5МК=0,5R. Итак, точка В – искомая точка касания. Аналогично можно найти точку касания С.
Построения касательной к окружности, основанные на свойствах секущих, биссектрис.
1. Построю прямую ОА, она пересечен данную окружность в точках Р и Q.
2. Построю на отрезке АQ как на диаметре окружность.
3. Пересеку построенную окружность касательной l, проведенной через точку Р к окружности (О; r), и получу точки М и N.
4. Проведу МО и NО, они пересекут окружность (О; r) в точках В и С соответственно.
5. АВ и АС – искомые касательные.
По свойству секущей АМ²=АР·АQ. Поэтому окружность (А;АМ) пересечет окружность (О;R) в точках В и С касания искомых касательных АВ и АС.
Построение № 8
1. Построю окружность (А;АР), пресекающую прямую АР в точке D.
2. Построю окружность w на диаметре QD
3. Пересеку ее перпендикуляром к прямой АР в точке А и получу точки М и N.
Очевидно, что АМ²=АN²=АD·AQ=AP·AQ. Тогда окружность (А;АМ) пересекает (О;R) в точках касания В и С. АВ и АС – искомые касательные.
[spoiler title=”источники:”]
http://abakbot.ru/online-2/330-kasatelnaya-circle
http://pandia.ru/text/78/156/7629.php
[/spoiler]