Как найти катет через медиану

Что можно сказать о прямоугольном треугольнике, если известен его катет и медиана, проведенная к гипотенузе?

По катету и медиане, проведённой из вершины прямого угла, можно найти гипотенузу и второй катет. Зная все стороны прямоугольного треугольника, можно найти его периметр, площадь, радиусы вписанной и описанной окружностей.

katet-i-mediana-k-gipotenuzeДано: ∆ABC, ∠C=90º,

BC=a, CF — медиана,

CF=m.

Найти:

    [{P_{Delta ABC}},{S_{Delta ABC}},r,R.]

Решение:

1) Так как медиана, проведенная из вершины прямого угла, равна половине гипотенузы, то

    [AB = 2 cdot CF = 2m.]

В прямоугольном треугольнике ABC по теореме Пифагора

    [A{B^2} = B{C^2} + A{C^2},]

    [AC = sqrt {A{B^2} - B{C^2}} ,]

    [AC = sqrt {{{(2m)}^2} - {a^2}}  = sqrt {4{m^2} - {a^2}} .]

2) Периметр треугольника ABC равен

    [{P_{Delta ABC}} = AB + BC + AC,]

    [{P_{Delta ABC}} = 2m + a + sqrt {4{m^2} - {a^2}} .]

3) Площадь прямоугольного треугольника равна половине произведения его катетов, поэтому

    [{S_{Delta ABC}} = frac{1}{2} cdot BC cdot AC,]

    [{S_{Delta ABC}} = frac{{asqrt {4{m^2} - {a^2}} }}{2}.]

4) Радиус r вписанной в прямоугольный треугольник окружности и радиус R описанной окружностисоответственно равны

    [r = frac{{a + b - c}}{2},R = frac{c}{2},]

где a и b — катеты, c — гипотенуза.

Соответственно, если один из катетов равен a, а медиана, проведённая к гипотенузе — m, то радиусы вписанной и описанной окружности можно найти как

    [r = frac{{a + sqrt {4{m^2} - {a^2}}  - 2m}}{2},R = m.]

Через катет и медиану, проведенную к гипотенузе, могут быть также найдены синус, косинус, тангенс и котангенс острых углов и другие соотношения.

Как найти катет прямоугольного треугольника, если .. .. если известна длина гипотенузы и медианы, проведенной к катету?



Ученик

(140),
закрыт



1 год назад

Ирина Лебедева

Оракул

(83479)


9 лет назад

Треугольник АВС – прямоугольный (угол С – прямой) , СВ – катет, длину которого Х нужно найти. АМ – медиана. Пусть АВ = n, АМ = m, второй катет АС = h. Тогда по теореме Пифагора:
n^2 = h^2 +x^2
m^2 = h^2 +(0.5x)^2.
Вычитаем из первого уравнения второе: 0,75x^2 = n^2 – m^2,
x^2 = (n^2 – m^2)/0,75. Осталось извлечь корень

Медиана прямоугольного треугольника, делящая гипотенузу пополам, равна получившимся половинам гипотенузы. Таким образом, медиана делит прямоугольный треугольник на два равнобедренных треугольника с катетами в виде оснований. Для того чтобы вычислить медиану прямоугольного треугольника, достаточно знать гипотенузу, два катета, или один катет и угол в треугольнике.
Найти медиану через гипотенузу:
Найти медиану через катеты:
Найти медиану через катет и угол:

Все формулы медианы прямоугольного треугольника


Медиана, отрезок |CO|, исходящий из вершины прямого угла BCA и делящий гипотенузу c, пополам.

Медиана в прямоугольном треугольнике (M), равна, радиусу описанной окружности (R).

Длина медианы прямоугольного треугольника

M – медиана

R – радиус описанной окружности

O – центр описанной окружности

с – гипотенуза

a, b – катеты

α – острый угол CAB

Медиана равна радиусу и половине гипотенузы, (M):

Медиана равна радиусу и половине гипотенузы

Формула длины через катеты, (M):

Формула медианы через катеты

Формула длины через катет и острый угол, (M):

Формула медианы через катет и острый угол



Подробности

Автор: Administrator

Опубликовано: 08 октября 2011

Обновлено: 13 августа 2021

Please wait.

We are checking your browser. mathvox.ru

Why do I have to complete a CAPTCHA?

Completing the CAPTCHA proves you are a human and gives you temporary access to the web property.

What can I do to prevent this in the future?

If you are on a personal connection, like at home, you can run an anti-virus scan on your device to make sure it is not infected with malware.

If you are at an office or shared network, you can ask the network administrator to run a scan across the network looking for misconfigured or infected devices.

Another way to prevent getting this page in the future is to use Privacy Pass. You may need to download version 2.0 now from the Chrome Web Store.

Cloudflare Ray ID: 6dc6e3bc1b515ab2 • Your IP : 85.95.188.35 • Performance & security by Cloudflare

Найти сторону треугольника через медиану и стороны

Найти сторону треугольника через медиану и стороны — задача, обратная нахождению медианы через стороны.

Решается она аналогично, то есть с помощью дополнительного построения и применения свойства диагоналей параллелограмма.

Стороны треугольника равны 6 см и 8 см. Медиана, проведенная к его третьей стороне, равна √46 см. Найти неизвестную сторону треугольника.

BO — медиана, BO=√46 см.

1) На луче BO отложим отрезок OD,

2) Соединим точку D с точками A и C.

3) AO=CO (так как BO — медиана по условию), OD=BO (по построению).

Так как диагонали четырехугольника ABCD в точке пересечения делятся пополам, то ABCD — параллелограмм (по признаку).

Если ввести обозначения BC=a, AB=c, AC=b, BO=mb, то получим формулу для нахождения стороны треугольника через медиану и две другие стороны:

Все формулы для треугольника

1. Как найти неизвестную сторону треугольника

Вычислить длину стороны треугольника: по стороне и двум углам или по двум сторонам и углу.

a , b , c – стороны произвольного треугольника

α , β , γ – противоположные углы

Формула длины через две стороны и угол (по теореме косинусов), ( a ):

* Внимательно , при подстановке в формулу, для тупого угла ( α >90), cos α принимает отрицательное значение

Формула длины через сторону и два угла (по теореме синусов), ( a):

2. Как узнать сторону прямоугольного треугольника

Есть следующие формулы для определения катета или гипотенузы

a , b – катеты

c – гипотенуза

α , β – острые углы

Формулы для катета, ( a ):

Формулы для катета, ( b ):

Формулы для гипотенузы, ( c ):

Формулы сторон по теореме Пифагора, ( a , b ):

3. Формулы сторон равнобедренного треугольника

Вычислить длину неизвестной стороны через любые стороны и углы

b – сторона (основание)

a – равные стороны

α – углы при основании

β – угол образованный равными сторонами

Формулы длины стороны (основания), (b ):

Формулы длины равных сторон , (a):

4. Найти длину высоты треугольника

Высота– перпендикуляр выходящий из любой вершины треугольника, к противоположной стороне (или ее продолжению, для треугольника с тупым углом).

Высоты треугольника пересекаются в одной точке, которая называется – ортоцентр.

H – высота треугольника

a – сторона, основание

b, c – стороны

β , γ – углы при основании

p – полупериметр, p=(a+b+c)/2

R – радиус описанной окружности

S – площадь треугольника

Формула длины высоты через стороны, ( H ):

Формула длины высоты через сторону и угол, ( H ):

Формула длины высоты через сторону и площадь, ( H ):

Формула длины высоты через стороны и радиус, ( H ):

[spoiler title=”источники:”]

Найти сторону треугольника через медиану и стороны

http://www-formula.ru/2011-10-09-11-08-41

[/spoiler]

Добавить комментарий