Ученик
(216),
на голосовании
7 лет назад
Голосование за лучший ответ
Татьяна Шадрина
Гуру
(3292)
7 лет назад
В этой задаче нужно воспользоваться свойством прямоугольного треугольника: катет, лежащий против угла в 30 градусов, равен половине гипотенузы.
Обозначим катет, который нужно найти, через х, тогда гипотенуза будет 2х.
Второй катет по теореме Пифагора буде вычисляться по формуле квадратный корень из (2х) ^2-x^2=кв. корень из 3x^2=х корней из 3.
Из формулы площади прямоугольного треугольника (площадь равнв половине произведения катетов) составим уравнение
128√3=х2√32
х2=256
х=16
ответ: 16
Как найти стороны прямоугольного треугольника
- Главная
- /
- Математика
- /
- Геометрия
- /
- Как найти стороны прямоугольного треугольника
Чтобы посчитать стороны прямоугольного треугольника воспользуйтесь нашим очень удобным онлайн калькулятором:
Онлайн калькулятор
Чтобы вычислить длины сторон прямоугольного треугольника вам нужно знать следующие параметры (либо-либо):
- для гипотенузы (с):
- длины катетов a и b
- длину катета (a или b) и прилежащий к нему острый угол (β или α, соответственно)
- длину катета (a или b) и противолежащий к нему острый угол (α или β, соответственно)
- для катета:
- длину гипотенузы (с) и длину одного из катетов
- длину гипотенузы (с) и прилежащий к искомому катету (a или b) острый угол (β или α, соответственно)
- длину гипотенузы (с) и противолежащий к искомому катету (a или b) острый угол (α или β, соответственно)
- длину одного из катетов (a или b) и прилежащий к нему острый угол (β или α, соответственно)
- длину одного из катетов (a или b) и противолежащий к нему острый угол (α или β, соответственно)
Введите их в соответствующие поля и получите результат.
Найти гипотенузу (c)
Найти гипотенузу по двум катетам
Катет a =
Катет b =
Гипотенуза c =
0
Чему равна гипотенуза (сторона с) если известны оба катета (стороны a и b)?
Формула
Теорема Пифагора: квадрат гипотенузы равен сумме квадратов катетов:
c² = a² + b²
следовательно: c = √a² + b²
Пример
Для примера посчитаем чему равна гипотенуза прямоугольного треугольника если катет a = 3 см, а катет b = 4 см:
c = √3² + 4² = √9 + 16 = √25 = 5 см
Найти гипотенузу по катету и прилежащему к нему острому углу
Катет (a или b) =
Прилежащий угол (β или α) =
Гипотенуза c =
0
Чему равна гипотенуза (сторона с) если известны один из катетов (a или b) и прилежащий к нему угол?
Формула
c = a/cos(β) = b/cos(α)
Пример
Для примера посчитаем чему равна гипотенуза прямоугольного треугольника если катет a = 2 см, а прилежащий к нему ∠β = 60°:
c = 2 / cos(60) = 2 / 0.5 = 4 см
Найти гипотенузу по катету и противолежащему к нему острому углу
Катет (a или b) =
Противолежащий угол (α или β) =
Гипотенуза c =
0
Чему равна гипотенуза (сторона с) если известны один из катетов (a или b) и противолежащий к нему угол?
Формула
c = a/sin(α) = b/sin(β)
Пример
Для примера посчитаем чему равна гипотенуза прямоугольного треугольника если катет a = 2 см, а противолежащий к нему ∠α = 30°:
c = 2 / sin(30) = 2 / 0.5 = 4 см
Найти гипотенузу по двум углам
Найти гипотенузу прямоугольного треугольника только по двум острым углам невозможно.
Найти катет
Найти катет по гипотенузе и катету
Гипотенуза c =
Катет (известный) =
Катет (искомый) =
0
Чему равен один из катетов прямоугольного треугольника если известны гипотенуза и второй катет?
Формула
a = √c² – b²
b = √c² – a²
Пример
Для примера посчитаем чему равен катет a прямоугольного треугольника если гипотенуза c = 5 см, а катет b = 4 см:
a = √5² – 4² = √25 – 16 = √9 = 3 см
Найти катет по гипотенузе и прилежащему к нему острому углу
Гипотенуза c =
Угол (прилежащий катету) = °
Катет =
0
Чему равен один из катетов прямоугольного треугольника если известны гипотенуза и прилежащий к искомому катету острый угол?
Формула
a = c ⋅ cos(β)
b = c ⋅ cos(α)
Пример
Для примера посчитаем чему равен катет b прямоугольного треугольника если гипотенуза c = 5 см, а ∠α = 60°:
b = 5 ⋅ cos(60) = 5 ⋅ 0.5 = 2.5 см
Найти катет по гипотенузе и противолежащему к нему острому углу
Гипотенуза c =
Угол (противолежащий катету) = °
Катет =
0
Чему равен один из катетов прямоугольного треугольника если известны гипотенуза и противолежащий к искомому катету острый угол?
Формула
a = c ⋅ sin(α)
b = c ⋅ sin(β)
Пример
Для примера посчитаем чему равен катет a прямоугольного треугольника если гипотенуза c = 4 см, а ∠α = 30°:
a = 4 ⋅ sin(30) = 4 ⋅ 0.5 = 2 см
Найти катет по второму катету и прилежащему к нему острому углу
Катет (известный) =
Угол (прилежащий известному катету) = °
Катет (искомый) =
0
Чему равен один из катетов прямоугольного треугольника если известен другой катет и прилежащий к нему острый угол?
Формула
a = b ⋅ tg(α)
b = a ⋅ tg(β)
Пример
Для примера посчитаем чему равен катет b прямоугольного треугольника если катет a = 2 см, а ∠β = 45°:
b = 2 ⋅ tg(45) = 2 ⋅ 1 = 2 см
Найти катет по второму катету и противолежащему к нему острому углу
Катет (известный) =
Угол (противолежащий известному катету) = °
Катет (искомый) =
0
Чему равен один из катетов прямоугольного треугольника если известен другой катет и противолежащий к нему острый угол?
Формула
a = b / tg(β)
b = a / tg(α)
Пример
Для примера посчитаем чему равен катет a прямоугольного треугольника если катет b = 3 см, а ∠β = 35°:
a = 3 / tg(35) ≈ 3 / 0.7 ≈ 4.28 см
См. также
Дополненное свойство угла 30°
Это не секретные знания, это обобщение тем связанных с этим углом и свойством.
Всем (ну или почти всем) знакомо свойство угла в 30° в прямоугольном треугольнике. Одно из самых часто встречающихся свойств. Начальные знания дают в 7-ом классе курса геометрии. Вспомни это свойство и обратное утверждение.
Свойство угла 30°
Против угла в 30° лежит катет, равный половине гипотенузы
Обратное утверждение
Катет, равный половине гипотенузы, лежит против угла 30°
Этими свойствами большинство умеет пользоваться. Так, мы можем найти гипотенузу, если известен катет против угла 30° и наоборот, а можем определить угол треугольника.
Но в 7-ом классе #геометрия не заканчивается и в 8-м добавляется теорема Пифагора, тут и появляется хорошая возможность дополнить это свойство ещё одним отношением.
Против угла в 30° лежит катет, равный половине гипотенузы и в √3 раз меньший другого катета
«И в √3 раз меньший другого катета»
Докажем это простое утверждение на примере прямоугольного треугольника в котором нам известен только угол 30° (ну или 60° – для тех, кто любит посложнее)).
Задача №1
В прямоугольном треугольнике ABC, угол ∠C = 90°, а угол ∠A = 30°. Найдите отношение катетов BC : AC.
Решение:
Пусть катет BC = x, тогда гипотенуза (по сво-ву угла 30°) AB = 2x. По т. Пифагора найдём катет AC. AC = x√3, а отношение катетов BC : AC = x : x√3 = 1 : √3.
Вывод: катет AC больше катета BC в √3 раз, BC : AC : AB = 1 : √3 : 2.
Что нам даёт это знание?
Да практически всё. Теперь по одной стороне в прямоугольном треугольнике с углом 30° (или 60°) можно найти все остальные стороны в одно действие и устно. Пример?
Задача №2.1
Найдите гипотенузу треугольника ABC, ∠C = 90°, ∠B = 60°, BC = 2.
Решение:
∠A = 30° – по сумме углов. Гипотенуза в 2 раза больше ( по свойству угла 30°) и равна 4.
—————————————
Задача №2.2
Найдите гипотенузу треугольника ABC, ∠C = 90°, ∠B = 60°, AC = 5√3.
Решение:
∠A = 30° – по сумме углов. Катет BC в √3 раз меньше катета AC и равен 5. Гипотенуза в 2 раза больше катета BC и равна 10.
—————————————
Задача №2.3
Найдите меньший катет треугольника ABC, ∠C = 90°, ∠B = 60°, AB = 16.
Решение:
Меньший катет – лежит против меньшего угла – BC. BC = 8 – половина гипотенузы.
—————————————
Задача №2.4
Найдите больший катет треугольника ABC, ∠C = 90°, ∠B = 60°, AB = 2√3.
Решение:
Больший катет – лежит против угла 60° – AC. BC = √3 – половина гипотенузы. AC в √3 раз больше BC, а значит AC = 3.
Касается это не только прямоугольных треугольников, но и равнобедренных, равносторонних, параллелограммов, трапеций и всех фигур, где есть угол 30° (или 60°) — достаточно опустить высоту и всё становится известным.
Синус, косинус, тангенс, котангенс углов 30° или 60°
Да, и их мы тоже легко запоминаем (или вспоминаем) зная дополненное свойство угла в 30° и определение тригонометрических функций (sin, cos, tg, ctg) в прямоугольном треугольнике.
Катет -> гипотенуза -> другой катет:
x -> 2x -> x√3
Читайте также:
🐪 Четвёртый признак подобия треугольников
🐫 Четвёртый признак равенства треугольников
🐘 Свойство пересекающихся хорд. Короткое доказательство
Найди верный ответ на вопрос ✅ «Как найти катет лежащий напротив угла в 30 градусов если извесен другой катет …» по предмету 📙 Геометрия, а если ответа нет или никто не дал верного ответа, то воспользуйся поиском и попробуй найти ответ среди похожих вопросов.
Искать другие ответы
Главная » Геометрия » Как найти катет лежащий напротив угла в 30 градусов если извесен другой катет
Утверждение
Катет, лежащий против угла 30 градусов, равен половине гипотенузы.
Дано:
∆ ABC,
∠C=90º,
∠A=30º.
Доказать:
Доказательство:
I способ
Так как сумма острых углов прямоугольного треугольника равна 90º, то
∠B=90º-∠A=90º-30º=60º.
Проведем из вершины прямого угла медиану CF.
Так как медиана, проведенная к гипотенузе, равна половине гипотенузы, то
то есть, CF=AF=BF.
Так как BF=CF, то треугольник BFC — равнобедренный с основанием BC.
Следовательно, у него углы при основании равны:
∠B=∠BCF=60º.
Так как сумма углов треугольника равна 180º, то в треугольнике BFC
∠BFC =180º -(∠B+∠BCF)=60º.
Поскольку все углы треугольника BFC равны, то этот треугольник — равносторонний.
Значит, все его стороны равны и
Что и требовалось доказать.
II способ
Так как сумма острых углов прямоугольного треугольника равна 90º, то
∠B=90º-∠A=90º-30º=60º.
Построим треугольник ADC, равный треугольнику ABC.
В нем ∠D=∠B=60º и ∠CAD=∠CAB=30º ( по построению).
Отсюда, ∠BAD=∠CAD+∠CAB=60º.
Следовательно, в треугольнике ABD все углы равны:
∠BAD=∠D=∠B=60º.
Значит, треугольник ABC — равносторонний, и все его стороны равны: AB=AD=BD.
BC=DC (по построению), поэтому
Что и требовалось доказать.