Как найти кинематическую вязкость воздуха

Свойства воздуха: плотность воздуха, вязкость, энтропия, удельная теплоемкость воздухаРассмотрены основные физические свойства воздуха: плотность воздуха, его динамическая и кинематическая вязкость, удельная теплоемкость, теплопроводность, температуропроводность, число Прандтля и энтропия. Свойства воздуха даны в таблицах в зависимости от температуры при нормальном атмосферном давлении.

Плотность воздуха в зависимости от температуры

Представлена подробная таблица значений плотности воздуха в сухом состоянии при различных температурах и нормальном атмосферном давлении. Чему равна плотность воздуха? Аналитически определить плотность воздуха можно, если разделить его массу на объем, который он занимает при заданных условиях (давление, температура и влажность). Также можно вычислить его плотность по формуле уравнения состояния идеального газа. Для этого необходимо знать абсолютное давление и температуру воздуха, а также его газовую постоянную и молярный объем. Это уравнение позволяет вычислить плотность воздуха в сухом состоянии.

На практике, чтобы узнать какова плотность воздуха при различных температурах, удобно воспользоваться готовыми таблицами. Например, приведенной таблицей значений плотности атмосферного воздуха в зависимости от его температуры. Плотность воздуха в таблице выражена в килограммах на кубический метр и дана в интервале температуры от минус 50 до 1200 градусов Цельсия при нормальном атмосферном давлении (101325 Па).

Плотность воздуха в зависимости от температуры — таблица

t, °С ρ, кг/м3 t, °С ρ, кг/м3 t, °С ρ, кг/м3 t, °С ρ, кг/м3
-50 1,584 20 1,205 150 0,835 600 0,404
-45 1,549 30 1,165 160 0,815 650 0,383
-40 1,515 40 1,128 170 0,797 700 0,362
-35 1,484 50 1,093 180 0,779 750 0,346
-30 1,453 60 1,06 190 0,763 800 0,329
-25 1,424 70 1,029 200 0,746 850 0,315
-20 1,395 80 1 250 0,674 900 0,301
-15 1,369 90 0,972 300 0,615 950 0,289
-10 1,342 100 0,946 350 0,566 1000 0,277
-5 1,318 110 0,922 400 0,524 1050 0,267
0 1,293 120 0,898 450 0,49 1100 0,257
10 1,247 130 0,876 500 0,456 1150 0,248
15 1,226 140 0,854 550 0,43 1200 0,239

При 25°С воздух имеет плотность 1,185 кг/м3. При нагревании плотность воздуха снижается — воздух расширяется (его удельный объем увеличивается). С ростом температуры, например до 1200°С, достигается очень низкая плотность воздуха, равная 0,239 кг/м3, что в 5 раз меньше ее значения при комнатной температуре. В общем случае, снижение плотности газов при нагреве позволяет проходить такому процессу, как естественная конвекция и применяется, например, в воздухоплавании.

Если сравнить плотность воздуха относительно плотности воды, то воздух легче на три порядка — при температуре 4°С плотность воды равна 1000 кг/м3, а плотность воздуха составляет 1,27 кг/м3. Необходимо также отметить значение плотности воздуха при нормальных условиях. Нормальными условиями для газов являются такие, при которых их температура равна 0°С, а давление равно нормальному атмосферному. Таким образом, согласно таблице, плотность воздуха при нормальных условиях (при НУ) равна 1,293 кг/м3.

Динамическая и кинематическая вязкость воздуха при различных температурах

При выполнении тепловых расчетов необходимо знать значение вязкости воздуха (коэффициента вязкости) при различной температуре. Эта величина требуется для вычисления числа Рейнольдса, Грасгофа, Релея, значения которых определяют режим течения этого газа. В таблице даны значения коэффициентов динамической μ и кинематической ν вязкости воздуха в диапазоне температуры от -50 до 1200°С при атмосферном давлении.

Коэффициент вязкости воздуха с ростом его температуры значительно увеличивается. Например, кинематическая вязкость воздуха равна 15,06·10-6 м2/с при температуре 20°С, а с ростом температуры до 1200°С вязкость воздуха становиться равной 233,7·10-6 м2/с, то есть увеличивается в 15,5 раз! Динамическая вязкость воздуха при температуре 20°С равна 18,1·10-6 Па·с.

При нагревании воздуха увеличиваются значения как кинематической, так и динамической вязкости. Эти две величины связаны между собой через величину плотности воздуха, значение которой уменьшается при нагревании этого газа. Увеличение кинематической и динамической вязкости воздуха (как и других газов) при нагреве связано с более интенсивным колебанием молекул воздуха вокруг их равновесного состояния (согласно МКТ).

Динамическая и кинематическая вязкость воздуха (в таблице даны значения вязкости, увеличенные в 106 раз)

t, °С μ·106, Па·с ν·106, м2 t, °С μ·106, Па·с ν·106, м2 t, °С μ·106, Па·с ν·106, м2
-50 14,6 9,23 70 20,6 20,02 350 31,4 55,46
-45 14,9 9,64 80 21,1 21,09 400 33 63,09
-40 15,2 10,04 90 21,5 22,1 450 34,6 69,28
-35 15,5 10,42 100 21,9 23,13 500 36,2 79,38
-30 15,7 10,8 110 22,4 24,3 550 37,7 88,14
-25 16 11,21 120 22,8 25,45 600 39,1 96,89
-20 16,2 11,61 130 23,3 26,63 650 40,5 106,15
-15 16,5 12,02 140 23,7 27,8 700 41,8 115,4
-10 16,7 12,43 150 24,1 28,95 750 43,1 125,1
-5 17 12,86 160 24,5 30,09 800 44,3 134,8
0 17,2 13,28 170 24,9 31,29 850 45,5 145
10 17,6 14,16 180 25,3 32,49 900 46,7 155,1
15 17,9 14,61 190 25,7 33,67 950 47,9 166,1
20 18,1 15,06 200 26 34,85 1000 49 177,1
30 18,6 16 225 26,7 37,73 1050 50,1 188,2
40 19,1 16,96 250 27,4 40,61 1100 51,2 199,3
50 19,6 17,95 300 29,7 48,33 1150 52,4 216,5
60 20,1 18,97 325 30,6 51,9 1200 53,5 233,7

Удельная теплоемкость воздуха при температуре от -50 до 1200°С

Представлена таблица удельной теплоемкости воздуха при различных температурах. Теплоемкость в таблице дана при постоянном давлении (изобарная теплоемкость воздуха) в интервале температуры от минус 50 до 1200°С для воздуха в сухом состоянии. Чему равна удельная теплоемкость воздуха? Величина удельной теплоемкости определяет количество тепла, которое необходимо подвести к одному килограмму воздуха при постоянном давлении для увеличения его температуры на 1 градус. Например, при 20°С для нагревания 1 кг этого газа на 1°С в изобарном процессе, требуется подвести 1005 Дж тепла.

Удельная теплоемкость воздуха увеличивается с ростом его температуры. Однако, зависимость массовой теплоемкости воздуха от температуры не линейная. В интервале от -50 до 120°С ее величина практически не меняется — в этих условиях средняя теплоемкость воздуха равна 1010 Дж/(кг·град). По данным таблицы видно, что значительное влияние температура начинает оказывать со значения 130°С. Однако, температура воздуха влияет на его удельную теплоемкость намного слабее, чем на вязкость. Так, при нагреве с 0 до 1200°С теплоемкость воздуха увеличивается лишь в 1,2 раза – с 1005 до 1210 Дж/(кг·град).

Следует отметить, что теплоемкость влажного воздуха выше, чем сухого. Если сравнить теплоемкость воды и воздуха, то очевидно, что вода обладает более высоким ее значением и содержание воды в воздухе приводит к увеличению удельной теплоемкости.

Удельная теплоемкость воздуха при различных температурах — таблица

t, °С Cp, Дж/(кг·град) t, °С Cp, Дж/(кг·град) t, °С Cp, Дж/(кг·град) t, °С Cp, Дж/(кг·град)
-50 1013 20 1005 150 1015 600 1114
-45 1013 30 1005 160 1017 650 1125
-40 1013 40 1005 170 1020 700 1135
-35 1013 50 1005 180 1022 750 1146
-30 1013 60 1005 190 1024 800 1156
-25 1011 70 1009 200 1026 850 1164
-20 1009 80 1009 250 1037 900 1172
-15 1009 90 1009 300 1047 950 1179
-10 1009 100 1009 350 1058 1000 1185
-5 1007 110 1009 400 1068 1050 1191
0 1005 120 1009 450 1081 1100 1197
10 1005 130 1011 500 1093 1150 1204
15 1005 140 1013 550 1104 1200 1210

Теплопроводность, температуропроводность, число Прандтля воздуха

В таблице представлены такие физические свойства атмосферного воздуха, как теплопроводность, температуропроводность и его число Прандтля в зависимости от температуры. Теплофизические свойства воздуха даны в интервале от -50 до 1200°С для сухого воздуха. По данным таблицы видно, что указанные свойства воздуха существенно зависят от температуры и температурная зависимость рассмотренных свойств этого газа различна.

Теплопроводность воздуха λ при повышении температуры увеличивается во всем диапазоне, достигая при 1200°С величины 0,0915 Вт/(м·град). Другие теплофизические свойства воздуха такие, как его температуропроводность a и число Прандтля Pr, по-разному реагируют на изменение температуры. Температуропроводность, как и вязкость воздуха сильно зависит от температуры и при нагревании, например с 0 до 1200°С, ее значение увеличивается почти в 17 раз.

Число Прандтля воздуха слабо зависит от температуры и при нагревании этого газа его величина сначала снижается до величины 0,674, а затем начинает расти, и при температуре 1200°С достигает значения 0,724.

Физические свойства атмосферного воздуха — таблица

t, °С λ·102, Вт/(м·град) а·106, м2 Pr t, °С λ·102, Вт/(м·град) а·106, м2 Pr
-50 2,04 12,7 0,728 170 3,71 45,7 0,682
-40 2,12 13,8 0,728 180 3,78 47,5 0,681
-30 2,2 14,9 0,723 190 3,86 49,5 0,681
-20 2,28 16,2 0,716 200 3,93 51,4 0,68
-10 2,36 17,4 0,712 250 4,27 61 0,677
0 2,44 18,8 0,707 300 4,6 71,6 0,674
10 2,51 20 0,705 350 4,91 81,9 0,676
20 2,59 21,4 0,703 400 5,21 93,1 0,678
30 2,67 22,9 0,701 450 5,48 104,2 0,683
40 2,76 24,3 0,699 500 5,74 115,3 0,687
50 2,83 25,7 0,698 550 5,98 126,8 0,693
60 2,9 27,2 0,696 600 6,22 138,3 0,699
70 2,96 28,6 0,694 650 6,47 150,9 0,703
80 3,05 30,2 0,692 700 6,71 163,4 0,706
90 3,13 31,9 0,69 750 6,95 176,1 0,71
100 3,21 33,6 0,688 800 7,18 188,8 0,713
110 3,28 35,2 0,687 850 7,41 202,5 0,715
120 3,34 36,8 0,686 900 7,63 216,2 0,717
130 3,42 38,6 0,685 950 7,85 231,1 0,718
140 3,49 40,3 0,684 1000 8,07 245,9 0,719
150 3,57 42,1 0,683 1100 8,5 276,2 0,722
160 3,64 43,9 0,682 1200 9,15 316,5 0,724

Будьте внимательны! Теплопроводность воздуха в таблице указана в степени 102. Не забудьте разделить на 100! Температуропроводность воздуха указана в степени 106. Допускается интерполяция значений физических свойств воздуха в приведенных таблицах.

Энтропия сухого воздуха

В таблице представлены значения такого теплофизического свойства воздуха, как удельная энтропия. Значения энтропии даны для сухого воздуха в  размерности кДж/(кг·град) в зависимости от температуры и давления. Удельная энтропия указана в таблице в интервале температуры от -50 до 50°С при давлении воздуха от 90 до 110 кПа. Следует отметить, что при нормальном атмосферном давлении (101,325 кПа) и температуре, например 30°С, удельная энтропия воздуха равна 0,1044 кДж/(кг·град).

Энтропия воздуха - таблицаИсточники:

  1. Михеев М.А., Михеева И.М. Основы теплопередачи.
  2. Богданов С.Н., Бурцев С.И., Иванов О.П., Куприянова А.В. Холодильная теника. Кондиционирование воздуха. Свойства веществ: Справ./ Под ред. С.Н. Богданова. 4-е изд., перераб. и доп. — СПб.: СПбГАХПТ, 1999.- 320 с.

Физические свойства воздуха

Воздух – это смесь различных газов (% по объему): азот — 78,03; кислород — 20,95; озон и другие инертные газы: аргон, гелий, неон, криптон, ксенон, радон — 0,94; углекислый газ — 0,03; водяной пар — 0,05. Содержание углекислого газа в атмосферном воздухе принимается равным (% по объему): в сельской местности — 0,03, в городах — 0,04—0,07. Содержание водяных паров в воздухе зависит от его температуры. Озон присутствует в лесном, горном и морском воздухе. Наружный воздух загрязняется отходящими от промышленных предприятий вредными для здоровья человека газами и пылью.

воздух у озера

Плотность воздуха при нормальном атмосферном давлении 101,325 кПа (1 атм) и различной температуре

Температура воздуха Плотность воздуха, ρ
оС кг/м3
-20 1,395
0 1,293
5 1,269
10 1,247
15 1,225
20 1,204
25 1,184
30 1,165
40 1,127
50 1,109
60 1,060
70 1,029
80 0,9996
90 0,9721
100 0,9461


Динамическая и кинематическая вязкость воздуха при нормальном атмосферном давлении и различной температуре

Температура воздуха Динамическая вязкость воздуха, μ Кинематическая вязкость воздуха, ν
оС (Н • c / м2) x 10-5 2 / с) x 10-5
-20 1,63 1,17
0 1,71 1,32
5 1,73 1,36
10 1,76 1,41
15 1,80 1,47
20 1,82 1,51
25 1,85 1,56
30 1,86 1,60
40 1,87 1,66
50 1,95 1,76
60 1,97 1,86
70 2,03 1,97
80 2,07 2,07
90 2,14 2,20
100 2,17 2,29

Основные физические свойства воздуха при различной температуре

Температура Плотность, ρ Удельная теплоёмкость, Cp Теплопроводность, λ Кинематическая вязкость, ν Коэффициент температурного линейного расширения, α Число Прандтля, Pr
оС кг/м3 кДж / (кг • К) Вт / (м • К) 2 / с) x 10-6 (1 / K) x 10-3
0 1,293 1,005 0,0243 13,30 3,67 0,715
20 1,205 1,005 0,0257 15,11 3,43 0,713
40 1,127 1,005 0,0271 16,97 3,20 0,711
60 1,067 1,009 0,0285 18,90 3,00 0,709
80 1,000 1,009 0,0299 20,94 2,83 0,708
100 0,946 1,009 0,0314 23,06 2,68 0,703



Формулы физических свойств воздуха

При проведении инженерных расчетов удобнее использовать приближённые формулы для определения физических свойств воздуха⋆:

Плотность воздуха

[ кг/м3 ]

формула плотности воздуха

Теплоёмкость воздуха

⋆ [ Дж/(кг • К) ]

формула теплоемкости воздуха

Теплопроводность воздуха

⋆ [ Вт/(м • K) ]

формула теплопроводности воздуха

Динамическая вязкость воздуха

⋆ [ Па • c ]

формула динамической вязкости воздуха

Кинематическая вязкость воздуха

[ м2/с ]

формула кинематической вязкости воздуха

Температуропроводность воздуха

⋆ [ м2/с ]

формула температуропроводности

Число Прандтля воздуха

[ – ]

формула числа Прандтля воздуха

⋆ Приближённые формулы физических свойств воздуха получены авторами настоящего сайта.

Размерность величин: температура – К (Кельвин).

Приближённые формулы действительны в диапазоне температур воздуха от 273 К до 473 К.

Механика сплошных сред
BernoullisLawDerivationDiagram.svg
Сплошная среда

Классическая механика

Закон сохранения массы · Закон сохранения импульса

Теория упругости

Напряжение · Тензор · Твёрдые тела · Упругость · Пластичность · Закон Гука · Реология · Вязкоупругость

Гидродинамика

Жидкость · Гидростатика · Гидродинамика · Вязкость · Ньютоновская жидкость · Неньютоновская жидкость · Поверхностное натяжение

Основные уравнения

Уравнение непрерывности · Уравнение Эйлера · Уравнение Громеки — Лэмба · Уравнение Бернулли · Уравнения Навье — Стокса · Уравнение вихря · Уравнение диффузии · Закон Гука

См. также: Портал:Физика

Поведение жидкости с малой (сверху) и с большой (снизу) вязкостью

Вя́зкость (вну́треннее тре́ние) — одно из явлений переноса, свойство текучих тел (жидкостей и газов) оказывать сопротивление перемещению одной их части относительно другой. В результате макроскопическая работа, затрачиваемая на это перемещение, рассеивается в виде тепла. Твёрдые тела (стекло, металлы, полупроводники, диэлектрики, ферромагнетики)[1] также могут обладать вязкостью, но внутреннее трение в твёрдых телах в силу специфики явления обычно рассматривается отдельно в теории упругости и пластичности.

Механизм внутреннего трения в жидкостях и газах заключается в том, что движущиеся молекулы переносят импульс из одного слоя в другой, что приводит к выравниванию скоростей — это описывается введением силы трения. Вязкость твёрдых тел обладает рядом специфических особенностей и рассматривается обычно отдельно.

Вязкость газов и жидкостей характеризуют динамическим коэффициентом вязкости (единица измерения в Международной системе единиц (СИ) — паскаль-секунда, Па·с, в системе СГС — пуаз, П; 1 Па·с = 10 П, 1 сП = 10−3 Па·с = 1 мПа·с) или кинематическим коэффициентом вязкости (единица измерения в СИ — м2/c, в СГС — стокс, Ст; 1 Ст = см2/с = 10−4 м2/с, 1 сСт = 1 мм2/с = 10−6 м2/с; внесистемная единица — градус Энглера). Кинематический коэффициент вязкости — отношение динамического коэффициента к плотности вещества. Классические методы измерения вязкости включают, например, измерение времени вытекания заданного объёма через калиброванное отверстие под действием силы тяжести. Прибор для измерения вязкости называется вискозиметром.

Переход вещества из жидкого состояния в стеклообразное обычно связывают с достижением вязкости порядка 1011—1012 Па·с.

Сила вязкого трения[править | править код]

Если параллельные плоские тела площадью S каждое, находящиеся на малом расстоянии h, движутся в той же плоскости со скоростью vec{v} друг относительно друга, а пространство между телами заполнено жидкостью или газом, то на каждое из них действует сила, в простейшем случае пропорциональная относительной скорости vec{v} и площади S и обратно пропорциональная расстоянию между телами h:

{displaystyle {vec {F}}sim -{frac {{vec {v}}cdot S}{h}}.}

Коэффициент пропорциональности, зависящий от природы жидкости или газа, называют коэффициентом динамической вязкости. Этот закон был предложен Исааком Ньютоном в 1687 году и носит его имя (закон вязкости Ньютона). Экспериментальное подтверждение закона было получено в начале XIX века в опытах Кулона с крутильными весами и в экспериментах Хагена и Пуазёйля с течением воды в капиллярах[2].

Эта сила называется силой вязкого трения. Её качественное отличие от сухого трения, кроме прочего, в том, что она пропорциональна скорости. Следовательно, при наличии только вязкого трения и сколь угодно малой внешней силы тело обязательно придёт в движение, то есть для вязкого трения не существует трения покоя.

Вторая вязкость[править | править код]

Вторая вязкость, или объёмная вязкость, — внутреннее трение при переносе импульса в направлении движения. Влияет только при учёте сжимаемости и (или) при учёте неоднородности коэффициента второй вязкости по пространству.

Если динамическая (и кинематическая) вязкость характеризует деформацию чистого сдвига, то вторая вязкость характеризует деформацию объёмного сжатия.

Объёмная вязкость играет большую роль в затухании звука и ударных волн и экспериментально определяется путём измерения этого затухания.

Вязкость газов[править | править код]

В кинетической теории газов коэффициент внутреннего трения вычисляется по формуле

{displaystyle eta ={frac {1}{3}}langle urangle langle lambda rangle rho ,}

где {displaystyle langle urangle } — средняя скорость теплового движения молекул, {displaystyle langle lambda rangle } − средняя длина свободного пробега. Из этого выражения в частности следует, что вязкость не очень разреженных газов практически не зависит от давления, поскольку плотность rho прямо пропорциональна давлению, а длина пробега {displaystyle langle lambda rangle } — обратно пропорциональна. Такой же вывод следует и для других кинетических коэффициентов для газов, например, для коэффициента теплопроводности. Однако этот вывод справедлив только до тех пор, пока разрежение газа не становится столь малым, что отношение длины свободного пробега к линейным размерам сосуда (число Кнудсена) не становится по порядку величины равным единице; в частности, это имеет место в сосудах Дьюара (термосах).

С повышением температуры вязкость большинства газов увеличивается, это объясняется увеличением средней скорости молекул газа u, растущей с температурой как {sqrt {T}}.

Влияние температуры на вязкость газов[править | править код]

В отличие от жидкостей, вязкость газов увеличивается с увеличением температуры (у жидкостей она уменьшается при увеличении температуры).

Формула Сазерленда может быть использована для определения вязкости идеального газа в зависимости от температуры:[3]

{displaystyle mu =mu _{0}{frac {T_{0}+C}{T+C}}left({frac {T}{T_{0}}}right)^{3/2},}

где

mu  — динамическая вязкость (в Па·с) при заданной температуре T;
mu _{0} — контрольная вязкость (в Па·с) при некоторой контрольной температуре T_{0};
T — заданная температура в кельвинах;
T_{0} — контрольная температура в кельвинах;
C — постоянная Сазерленда для того газа, вязкость которого требуется определить.

Эту формулу можно применять для температур в диапазоне 0 < T < 555 K и при давлениях менее 3,45 МПа с ошибкой менее 10 %, обусловленной зависимостью вязкости от давления.

Постоянная Сазерленда и контрольные вязкости газов при различных температурах приведены в таблице ниже:

Газ C, K T_{0}, K mu _{0}, мкПа·с
Воздух 120 291,15 18,27
Азот 111 300,55 17,81
Кислород 127 292,25 20,18
Углекислый газ 240 293,15 14,8
Угарный газ 118 288,15 17,2
Водород 72 293,85 8,76
Аммиак 370 293,15 9,82
Оксид серы(IV) 416 293,65 12,54
Гелий 79,4[4] 273 19[5]

Вязкость жидкостей[править | править код]

Динамическая вязкость[править | править код]

Внутреннее трение жидкостей, как и газов, возникает при движении жидкости вследствие переноса импульса в направлении, перпендикулярном к направлению движения. Для так называемых ньютоновских жидкостей (которых вокруг нас большинство) справедлив общий закон внутреннего трения — закон Ньютона:

{displaystyle tau =-eta {frac {partial v}{partial n}}.}

Коэффициент вязкости eta (коэффициент динамической вязкости, динамическая вязкость) может быть получен на основе соображений о движениях молекул. Очевидно, что eta будет тем меньше, чем меньше время t «оседлости» молекул. Эти соображения приводят к выражению для коэффициента вязкости, называемому уравнением Френкеля — Андраде:

{displaystyle eta =Ce^{w/kT}.}

Иная формула, представляющая коэффициент вязкости, была предложена Бачинским[6]. Как показано, коэффициент вязкости определяется межмолекулярными силами, зависящими от среднего расстояния между молекулами; последнее определяется молярным объёмом вещества {displaystyle V_{M}}. Многочисленные эксперименты показали, что между молярным объёмом и коэффициентом вязкости существует соотношение

{displaystyle eta ={frac {c}{V_{M}-V_{C}}},}

где:

c — константа, характерная для определённой жидкости;
{displaystyle V_{C}} — собственный объём, занимаемый частицами жидкости.

Динамическая вязкость жидкостей уменьшается с увеличением температуры и растёт с увеличением давления.

Кинематическая вязкость[править | править код]

В технике, в частности, при расчёте гидроприводов и в триботехнике, часто приходится иметь дело с величиной

nu ={frac {eta }{rho }},

и эта величина получила название кинематической вязкости[7].

Здесь rho  — плотность жидкости; eta  — коэффициент динамической вязкости.

Кинематическая вязкость в старых источниках часто указана в сантистоксах (сСт). В СИ эта величина переводится следующим образом: 1 сСт = 1 мм2/c = 10−6 м2/c.

Условная вязкость[править | править код]

Условная вязкость — величина, косвенно характеризующая гидравлическое сопротивление течению, измеряемая временем истечения заданного объёма раствора через вертикальную трубку (определённого диаметра). Измеряют в градусах Энглера (по имени немецкого химика К. О. Энглера), обозначают — °ВУ. Определяется отношением времени истечения 200 мл испытываемой жидкости при данной температуре из специального вискозиметра ко времени истечения 200 мл дистиллированной воды из того же прибора при 20 °С. Условную вязкость до 16 °ВУ переводят в кинематическую по таблице ГОСТ, а условную вязкость, превышающую 16 °ВУ, по формуле

{displaystyle nu =7,4cdot 10^{-6}E_{t},}

где nu  — кинематическая вязкость (в м2/с), а {displaystyle E_{t}} — условная вязкость (в °ВУ) при температуре t.

Ньютоновские и неньютоновские жидкости[править | править код]

Ньютоновскими называют жидкости, для которых вязкость не зависит от скорости деформации. В уравнении Навье — Стокса для ньютоновской жидкости имеет место аналогичный вышеприведённому закон вязкости (по сути, обобщение закона Ньютона, или закон Навье — Стокса[8]):

{displaystyle sigma _{ij}=eta left({frac {partial v_{i}}{partial x_{j}}}+{frac {partial v_{j}}{partial x_{i}}}right),}

где sigma_{ij} — тензор вязких напряжений.

Среди неньютоновских жидкостей по зависимости вязкости от скорости деформации различают псевдопластики и дилатантные жидкости. Моделью с ненулевым напряжением сдвига (действие вязкости подобно сухому трению) является модель Бингама. Если вязкость меняется с течением времени, жидкость называется тиксотропной. Для неньютоновских жидкостей методика измерения вязкости получает первостепенное значение.

С повышением температуры вязкость многих жидкостей падает. Это объясняется тем, что кинетическая энергия каждой молекулы возрастает быстрее, чем потенциальная энергия взаимодействия между ними. Поэтому все смазки всегда стараются охладить, иначе это грозит простой утечкой через узлы.[источник не указан 1007 дней]

Вязкость аморфных материалов[править | править код]

Вязкость аморфных материалов (например, стекла или расплавов) — это термически активизируемый процесс[9]:

{displaystyle eta (T)=Aexp left({frac {Q}{RT}}right),}

где

Q — энергия активации вязкости (Дж/моль);
T — температура (К);
R — универсальная газовая постоянная (8,31 Дж/моль·К);
A — некоторая постоянная.

Вязкое течение в аморфных материалах характеризуется отклонением от закона Аррениуса: энергия активации вязкости Q изменяется от большой величины Q_{H} при низких температурах (в стеклообразном состоянии) на малую величину Q_{L} при высоких температурах (в жидкообразном состоянии). В зависимости от этого изменения аморфные материалы классифицируются либо как сильные, когда {displaystyle (Q_{H}-Q_{L})<Q_{L}}, или ломкие, когда {displaystyle (Q_{H}-Q_{L})geqslant Q_{L}}. Ломкость аморфных материалов численно характеризуется параметром ломкости Доримуса {displaystyle R_{D}={frac {Q_{H}}{Q_{L}}}}: сильные материалы имеют {displaystyle R_{D}<2}, в то время как ломкие материалы имеют {displaystyle R_{D}geqslant 2}.

Вязкость аморфных материалов весьма точно аппроксимируется двуэкспоненциальным уравнением[10]

{displaystyle eta (T)=A_{1}Tleft(1+A_{2}exp {frac {B}{RT}}right)left(1+Cexp {frac {D}{RT}}right)}

с постоянными A_{1}, A_{2}, B, C и D, связанными с термодинамическими параметрами соединительных связей аморфных материалов.

В узких температурных интервалах недалеко от температуры стеклования T_{g} это уравнение аппроксимируется формулами типа VTF или сжатыми экспонентами Кольрауша.

Если температура существенно ниже температуры стеклования, {displaystyle T<T_{g}}, двуэкспоненциальное уравнение вязкости сводится к уравнению типа Аррениуса

{displaystyle eta (T)=A_{L}Texp left({frac {Q_{H}}{RT}}right)}

с высокой энергией активации Q_{H}=H_{d}+H_{m}, где H_{d} — энтальпия разрыва соединительных связей, то есть создания конфигуронов, а H_{m} — энтальпия их движения. Это связано с тем, что при {displaystyle T<T_{g}} аморфные материалы находятся в стеклообразном состоянии и имеют подавляющее большинство соединительных связей неразрушенными.

При {displaystyle Tgg T_{g}} двуэкспоненциальное уравнение вязкости также сводится к уравнению типа Аррениуса

{displaystyle eta (T)=A_{H}Texp left({frac {Q_{L}}{RT}}right),}

но с низкой энергией активации Q_{L}=H_{m}. Это связано с тем, что при {displaystyle Tgg T_{g}} аморфные материалы находятся в расправленном состоянии и имеют подавляющее большинство соединительных связей разрушенными, что облегчает текучесть материала.

Относительная вязкость[править | править код]

В технических науках часто пользуются понятием относительной вязкости, под которой понимают отношение коэффициента динамической вязкости (см. выше) раствора к коэффициенту динамической вязкости чистого растворителя:

{displaystyle mu _{r}={frac {mu }{mu _{0}}},}

где

μ — динамическая вязкость раствора;
μ0 — динамическая вязкость растворителя.

Вязкость некоторых веществ[править | править код]

Для авиастроения и судостроения наиболее важно знать вязкости воздуха и воды.

Вязкость воздуха[править | править код]

Зависимость вязкости сухого воздуха от давления при температурах 300, 400 и 500 K

Вязкость воздуха зависит в основном от температуры.
При 15,0 °C вязкость воздуха составляет 1,78⋅10−5 кг/(м·с) = 17,8 мкПа·с = 1,78⋅10−5 Па·с. Можно найти вязкость воздуха как функцию температуры с помощью программ расчёта вязкостей газов[11].

Вязкость воды[править | править код]

Зависимость динамической вязкости воды от температуры в жидком состоянии (Liquid Water) и в виде пара (Vapor)

Динамическая вязкость воды составляет 8,90·10−4 Па·с при температуре около 25 °C. Как функция температуры: T = A × 10B/(TC), где A = 2,414·10−5 Па·с, B = 247,8 K, C = 140 K.

Значения динамической вязкости жидкой воды при разных температурах вплоть до точки кипения приведены в таблице:

Температура, °C Вязкость, мПа·с
10 1,308
20 1,002
30 0,7978
40 0,6531
50 0,5471
60 0,4668
70 0,4044
80 0,3550
90 0,3150
100 0,2822

Динамическая вязкость разных веществ[править | править код]

Ниже приведены значения коэффициента динамической вязкости некоторых ньютоновских жидкостей:

Вязкость отдельных видов газов

Газ при 0 °C (273 K), мкПа·с при 27 °C (300 K), мкПа·с
воздух 17,4 18,6
водород 8,4 9,0
гелий 20,0
аргон 22,9
ксенон 21,2 23,2
углекислый газ 15,0
метан 11,2
этан 9,5
Вязкость жидкостей при 25 °C

Жидкость Вязкость, Па·с Вязкость, мПа·с
ацетон 3,06·10−4 0,306
бензол 6,04·10−4 0,604
кровь (при 37 °C) (3—4)·10−3 3—4
касторовое масло 0,985 985
кукурузный сироп 1,3806 1380,6
этиловый спирт 1.074·10−3 1.074
этиленгликоль 1,61·10−2 16,1
глицерин (при 20 °C) 1,49 1490
мазут 2,022 2022
ртуть 1,526·10−3 1,526
метиловый спирт 5,44·10−4 0,544
моторное масло SAE 10 (при 20 °C) 0,065 65
моторное масло SAE 40 (при 20 °C) 0,319 319
нитробензол 1,863·10−3 1,863
жидкий азот (при 77K) 1,58·10−4 0,158
пропанол 1,945·10−3 1,945
оливковое масло 0,081 81
пек 2,3·108 2,3·1011
серная кислота 2,42·10−2 24,2
вода 8,94·10−4 0,894

Примечания[править | править код]

  1. Внутреннее трение в металлах, полупроводниках, диэлектриках и ферромагнетиках: Сб. статей / Под ред. Ф. Н. Тавадзе. — М.: Наука, 1978. — 235 с.
  2. О некоторых ошибках в курсах гидродинамики Архивная копия от 22 декабря 2015 на Wayback Machine, с. 3—4.
  3. Alexander J. Smits, Jean-Paul Dussauge Turbulent shear layers in supersonic flow Архивная копия от 17 июля 2017 на Wayback Machine. — Birkhäuser, 2006. — P. 46. — ISBN 0-387-26140-0.
  4. Data constants for Sutherland’s formula Архивная копия от 6 марта 2018 на Wayback Machine.
  5. Viscosity of liquids and gases Архивная копия от 3 октября 2017 на Wayback Machine.
  6. Хмельницкий Р. А. Физическая и коллоидная химия: Учебних для сельскохозяйственных спец. вузов. — М.: Высшая школа, 1988. — С. 40. — 400 с. — ISBN 5-06-001257-3.
  7. Попов Д. Н. Динамика и регулирование гидро- и превмосистем : Учеб. для машиностроительных вузов. — М. : Машиностроение, 176. — С. 175. — 424 с.
  8. Седов Л. И. Механика сплошной среды Архивная копия от 28 ноября 2014 на Wayback Machine. Т. 1. — М.: Наука, 1970. — С. 166.
  9. Френкель Я. И. Кинетическая теория жидкостей. — Ленинград, Наука, 1975. — с. 226.
  10. Ojovan M. Viscous flow and the viscosity of melts and glasses. Physics and Chemistry of Glasses, 53 (4) 143—150 (2012).
  11. Gas Viscosity Calculator Архивная копия от 21 июля 2011 на Wayback Machine.

Литература[править | править код]

  • R. H. Doremus. J. Appl. Phys., 92, 7619—7629 (2002).
  • M. I. Ojovan, W. E. Lee. J. Appl. Phys., 95, 3803—3810 (2004).
  • M. I. Ojovan, K. P. Travis, R. J. Hand. J. Phys.: Condensed Matter, 19, 415107 (2007).
  • Л. И. Седов. Механика сплошной среды. Т. 1. — М.: Наука, 1970. — 492 с.
  • П. Н. Гедык, М. И. Калашникова. Смазка металлургического оборудования. — М.: Металлургия, 1976. — 380 с.
  • И. Ф. Голубев. Вязкость газов и газовых смесей. — М.: Физматлит, 1959.
  • Ред. Ф. Н. Тавадзе Внутреннее трение в металлах, полупроводниках, диэлектриках и ферромагнетиках. — М., Наука, 1978. — 235 c.

Ссылки[править | править код]

  • Аринштейн А. Сравнительный вискозиметр Жуковского // Квант, № 9, 1983.
  • Измерение вязкости нефтепродуктов
  • Булкин П. С. Попова И. И., Общий физический практикум. Молекулярная физика
  • Градус условной вязкости // Большой энциклопедический политехнический словарь. — 2004.
  • Вязкость воды

Вязкость воздуха

Коэффициент динамической вязкости воздуха можно определить по формуле Милликена:

$$mu=9.80665cdot(1.745cdot10^{-6}+5.03cdot10^{-9}cdot t)$$

Перевод динамической вязкости $mu$ в кинематическую $nu$ при помощи плотности $rho$:

$$nu=frac{mu}{rho}$$

$mu$ коэффициент динамической вязкости (Па/с)
$nu$ коэффициент кинематической вязкости (м²/с)
$t$ температура воздуха (°C)
$rho$ плотность воздуха, (кг/м³)

как найти кинематическую вязкость воздуха или газа?
при определённой температуре

Лёленька



Профи

(617),
на голосовании



14 лет назад

Голосование за лучший ответ

Мурчик

Профи

(872)


14 лет назад

по книге “Свойства веществ! “

Lord Saddler

Мыслитель

(8028)


14 лет назад

v=n/р
Динамическая вязкость / плотность
Плотность зависит от температуры и давления

Похожие вопросы

Добавить комментарий