Решение.
На протон действует сила Лоренца, и сила Лоренца является центростремительной силой, определим скорость с которой по окружности будет двигаться протон:
[ begin{align}
& {{F}_{L}}=qcdot Bcdot upsilon cdot sin alpha , alpha ={{90}^{^{{}^circ }}}, sinalpha =1,{{F}_{L}}=qcdot Bcdot upsilon (1), {{F}_{L}}=mcdot a (2), a=frac{upsilon _{{}}^{2}}{R} (3), \
& qcdot Bcdot upsilon =mcdot frac{upsilon _{{}}^{2}}{R}, upsilon =frac{qcdot Bcdot R}{m} (4). \
end{align}
]
Где: q – модуль заряда протона, q = 1,6∙10-19 Кл, m – масса протона, m = 1,67∙10-27 кг.
Кинетическая энергия протона определяется по формуле:
[ {{E}_{K}}=frac{mcdot {{upsilon }^{2}}}{2}, {{E}_{K}}=frac{mcdot {{q}^{2}}cdot {{B}^{2}}cdot {{R}^{2}}}{2cdot {{m}^{2}}}, {{E}_{K}}=frac{{{q}^{2}}cdot {{B}^{2}}cdot {{R}^{2}}}{2cdot m} (5). ]
ЕК = 0,28∙10-11 Дж
Задания
Версия для печати и копирования в MS Word
Тип 18 № 25684
i
Протон движется в вакууме со скоростью 0,65с. Чему равна кинетическая энергия протона? Ответ дайте в наноджоулях, округлив ответ до сотых.
Спрятать решение
Решение.
Полная энергия движущейся частицы может быть найдена по формуле
Кинетическая энергия протона может быть найдена как разница между полной энергией и энергией покоя
Ответ: 0,05.
Раздел кодификатора ФИПИ/Решу ЕГЭ: 4.3 Связь массы и энергии свободной частицы. Энергия покоя свободной частицы
Спрятать решение
·
Помощь
Example:
A proton (m = 1.67 x 10-27 kg) travels at a speed v = 0.9900c = 2.968 x 108m/s. What is its kinetic energy?
According to a classical calculation, which is not correct, we would obtain:
K = 1/2mv2 = ½ x (1.67 x 10-27 kg) x (2.968 x 108m/s)2 = 7.355 x 10-11 J
With relativistic correction the relativistic kinetic energy is equal to:
K = (ɣ – 1)mc2
where the Lorentz factor
ɣ = 7.089
therefore
K = 6.089 x (1.67 x 10-27 kg) x (2.9979 x 108m/s)2 = 9.139 x 10-10 J = 5.701 GeV
This is about 12 times higher energy as in the classical calculation. According to this relationship, an acceleration of a proton beam to 5.7 GeV requires energies that are in the order different.
References:
Reactor Physics and Thermal Hydraulics:
- J. R. Lamarsh, Introduction to Nuclear Reactor Theory, 2nd ed., Addison-Wesley, Reading, MA (1983).
- J. R. Lamarsh, A. J. Baratta, Introduction to Nuclear Engineering, 3d ed., Prentice-Hall, 2001, ISBN: 0-201-82498-1.
- W. M. Stacey, Nuclear Reactor Physics, John Wiley & Sons, 2001, ISBN: 0- 471-39127-1.
- Glasstone, Sesonske. Nuclear Reactor Engineering: Reactor Systems Engineering, Springer; 4th edition, 1994, ISBN: 978-0412985317
- Todreas Neil E., Kazimi Mujid S. Nuclear Systems Volume I: Thermal Hydraulic Fundamentals, Second Edition. CRC Press; 2 edition, 2012, ISBN: 978-0415802871
- Zohuri B., McDaniel P. Thermodynamics in Nuclear Power Plant Systems. Springer; 2015, ISBN: 978-3-319-13419-2
- Moran Michal J., Shapiro Howard N. Fundamentals of Engineering Thermodynamics, Fifth Edition, John Wiley & Sons, 2006, ISBN: 978-0-470-03037-0
- Kleinstreuer C. Modern Fluid Dynamics. Springer, 2010, ISBN 978-1-4020-8670-0.
- U.S. Department of Energy, THERMODYNAMICS, HEAT TRANSFER, AND FLUID FLOW. DOE Fundamentals Handbook, Volume 1, 2, and 3. June 1992.
Кинетическая энергия движения частицы по окружности
2017-05-20
Кинетическая энергия частицы, движущейся по окружности радиуса $R$, зависит от пройденного пути $s$ по закону $T = as^<2>$, где $a$ — постоянная. Найти силу, действующую на частицу, в зависимости от $s$.
Дифференцируя уравнение (1) по времени
Следовательно, искомое ускорение частицы
Следовательно, искомая сила $F = mw = 2as sqrt<1 + (s/R)^<2>>$
Кинетическая энергия движения частицы по окружности
Протоны в однородном магнитном поле между полюсами магнита движутся по окружностям радиусом R под действием силы Лоренца. После замены магнита по окружностям тем же радиусом между полюсами стали двигаться α-частицы, обладающие такой же кинетической энергией, как и протоны. Как изменились индукция магнитного поля и скорость движения α-частиц по сравнению со скоростью протонов?
Для каждой величины определите соответствующий характер изменения:
Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.
Индукция
магнитного поля |
Скорость α-частиц |
При движении заряженной частицы в однородном магнитном поле по окружности параметры системы связаны между собой соотношениями
Индукция магнитного поля равна
Кинетическая энергия частицы выражается как Масса альфа-частицы в четыре раза больше массы протона, следовательно, при сохранении кинетической энергии, скорость альфа-частиц меньше скорости протонов в два раза. Заряд альфа-частицы в два раза больше заряда протона, тогда из формулы для индукции магнитного поля получаем, что индукция магнитного поля не изменилась.
Движение заряженных частиц по окружности
5.3. Движение заряда в однородном магнитном поле
Если начальная скорость заряженной частицы v перпендикулярна магнитному полю В, то в этом случае частица под действием силы Лоренца будет двигаться по окружности постоянного радиуса R (рис. 5.13)
Рис. 5.13. Движение отрицательно заряженной частицы в однородном магнитном поле
Сила Лоренца FL, направленная по радиусу к центру окружности, вызывает радиальное ускорение. По второму закону Ньютона имеем
следовательно, можем записать уравнение
из которого легко получить выражение для угловой скорости частицы
Если q, m и B — постоянные величины, то угловая скорость, а следовательно, и период
тоже являются постоянными величинами, не зависящими от энергии частицы. От скорости движения частицы зависит только радиус орбиты
Сила Лоренца создает только нормальное ускорение и, соответственно, направлена к центру окружности. Следовательно, направление вращения положительно заряженной частицы таково, что вращающийся в том же направлении винт будет двигаться против направления поля. Отрицательно заряженная частица вращается в противоположном направлении (см. рис. 5.14, 5.15).
Рис. 5.14. Движение положительно и отрицательно заряженных частиц в однородном магнитном поле.
Направление магнитного поля указано точками
Если начальная скорость частицы параллельна вектору магнитной индукции, то сила Лоренца равна нулю. Частица будет продолжать двигаться в том же направлении прямолинейно и равномерно.
Наконец, в общем случае можно представить себе, что частица влетает в область однородного магнитного поля со скоростью v, составляющей угол q с направлением магнитного поля. Эту скорость можно разложить на компоненту две составляющих, одна из которых
направлена вдоль поля, а вторая
перпендикулярна полю. Соответственно, движение частицы является суммой двух движений: равномерного вдоль поля со скоростью и вращения по окружности с угловой скоростью . Траектория частицы, таким образом, является спиралью с радиусом R и шагом h (рис. 5.15):
Рис. 5.15. Движение заряженной частицы по спирали в однородном магнитном поле
Пример. В однородном магнитном поле с индукцией 2 Тл движется протон. Траектория его движения представляет собой винтовую линию с радиусом 10 см и шагом 60 см. Определить скорость и кинетическую энергию протона. Какую ускоряющую разность потенциалов U прошел протон перед тем, как влететь в магнитное поле?
Решение. Из уравнений (5.11) находим угол между скоростью протона и полем
Кинетическая энергия протона будет
Мы могли использовать нерелятивистскую формулу для энергии, так как скорость протона много меньше скорости света.
Если протон ускорялся электрическим полем, то при прохождении разности потенциалов U он приобрел энергию eU. Отсюда находим разность потенциалов
Джоуль — слишком большая энергия в мире элементарных частиц. Здесь используют внесистемную единицу — электронвольт (эВ).
Электрон-вольт (эВ) — это внесистемная единица энергии, численно равная энергии, которую приобретает электрон, пройдя ускоряющую разность потенциалов 1 В
Она удобна тем, что любая другая частица с зарядом по модулю равным заряду электрона, ускоренная разностью потенциалов в 3,66 МэВ, как в нашем примере, имеет кинетическую энергию 3,66 МэВ (мегаэлектронвольт).
Движение заряженной частицы в магнитном поле: формулы. Движение заряженных частиц в однородном магнитном поле
Как известно, электрическое поле принято характеризовать величиной силы, с которой оно действует на пробный единичный электрический заряд. Магнитное поле традиционно характеризуют силой, с которой оно действует на проводник с «единичным» током. Однако при его протекании происходит упорядоченное движение заряженных частиц в магнитном поле. Поэтому мы можем определить магнитное поле B в какой-то точке пространства с точки зрения магнитной силы FB, которую поле оказывает на частицу при ее движении в нем со скоростью v.
Общие свойства магнитной силы
Эксперименты, в которых наблюдалось движение заряженных частиц в магнитном поле, дают такие результаты:
- Величина FB магнитной силы, действующей на частицу пропорциональна заряду q и скорости v частицы.
- Если движение заряженной частицы в магнитном поле происходит параллельно вектору этого поля, то сила, действующая на нее, равна нулю.
- Когда вектор скорости частицы составляет любой Угол θ ≠ 0 с магнитным полем, то сила действует в направлении, перпендикулярном к v и B; то есть, FB перпендикулярна плоскости, образованной v и B (см.рис. ниже).
- Величина и направление FB зависит от скорости частицы и от величины и направления магнитного поля B.
- Направление силы, действующей на положительный заряд, противоположно направлению такой же силы, действующей на отрицательный заряд, движущийся в ту же сторону.
- Величина магнитной силы, действующей на движущуюся частицу, пропорциональна sinθ угла θ между векторами v и B.
Сила Лоренца
Мы можем суммировать вышеперечисленные наблюдения путем записи магнитной силы в виде FB = qv х B.
Когда происходит движение заряженной частицы в магнитном поле, сила Лоренца FB при положительном q направлена вдоль векторного произведения v x B. Оно по определению перпендикулярно как v, так и B. Считаем это уравнение рабочим определением магнитного поля в некоторой точке в пространстве. То есть оно определяется в терминах силы, действующей на частицу при ее движении. Таким образом, движение заряженной частицы в магнитном поле кратко можно определить как перемещение под действием этой силы.
Заряд, движущийся со скоростью v в присутствии как электрического поля E, так и магнитного B, испытывает действие как электрической силы qE, так и магнитной qv х В. Полное приложенное к нему воздействие равно FЛ = qE + qv х В. Его принято называть так: полная сила Лоренца.
Движение заряженных частиц в однородном магнитном поле
Рассмотрим теперь частный случай положительно заряженной частицы, движущейся в однородном поле, с начальным вектором скорости, перпендикулярным ему. Предположим, что вектор B поля направлен за страницу. Рисунок ниже показывает, что частица движется по кругу в плоскости, перпендикулярной к B.
Движение заряженной частицы в магнитном поле по окружности происходит потому, что магнитная сила FB направлена под прямым углом к v и B и имеет постоянную величину qvB. Поскольку сила отклоняет частицы, направления v и FB изменяются непрерывно, как показано на рисунке. Так как FB всегда направлена к центру окружности, она изменяет только направление v, а не ее величину. Как показано на рисунке, движение положительно заряженной частицы в магнитном поле происходит против часовой стрелки. Если q будет отрицательным, то вращение произойдет по часовой стрелке.
Динамика кругового движения частицы
Какие же параметры характеризуют вышеописанное движение заряженной частицы в магнитном поле? Формулы для их определения мы можем получить, если возьмем предыдущее уравнение и приравняем FB центробежной силе, требуемой для сохранения круговой траектории движения:
То есть радиус окружности пропорционален импульсу mv частицы и обратно пропорционален величине ее заряда и величине магнитного поля. Угловая скорость частицы
Период, с которым происходит движение заряженной частицы в магнитном поле по кругу, равен длине окружности, разделенной на ее линейную скорость:
Эти результаты показывают, что угловая скорость частицы и период кругового движения не зависит от линейной скорости или от радиуса орбиты. Угловую скорость ω часто называют циклотронной частотой (круговой), потому что заряженные частицы циркулируют с ней в типе ускорителя под названием циклотрон.
Движение частицы под углом к вектору магнитного поля
Если вектор v скорости частицы образует некоторый произвольный угол по отношению к вектору B, то ее траектория является винтовой линией. Например, если однородное поле будет направлено вдоль оси х, как показано на рисунке ниже, то не существует никакой компоненты магнитной силы FB в этом направлении. В результате составляющая ускорения ax= 0, и х-составляющая скорости движения частицы является постоянной. Однако магнитная сила FB = qv х В вызывает изменение во времени компонентов скорости vy и vz. В результате имеет место движение заряженной частицы в магнитном поле по винтовой линии, ось которой параллельна магнитному полю. Проекция траектории на плоскости yz (если смотреть вдоль оси х) представляет собой круг. Проекции ее на плоскости ху и xz являются синусоидами! Уравнения движения остаются такими же, как и при круговой траектории, при условии, что v заменяется на ν⊥ = √(νу 2 + νz 2 ).
Неоднородное магнитное поле: как в нем движутся частицы
Движение заряженной частицы в магнитном поле, являющемся неоднородным, происходит по сложным траекториям. Так, в поле, величина которого усиливается по краям области его существования и ослабляется в ее середине, как, например, показано на рисунке ниже, частица может колебаться вперед и назад между конечными точками.
Как Земля влияет на движение космических частиц
Околоземные пояса Ван Аллена состоят из заряженных частиц (в основном электронов и протонов), окружающих Землю в форме тороидальных областей (см. рис. ниже). Движение заряженной частицы в магнитном поле Земли происходит по по спирали вокруг силовых линий от полюса до полюса, покрывая это расстояние в несколько секунд. Эти частицы идут в основном от Солнца, но некоторые приходят от звезд и других небесных объектов. По этой причине они называются космическими лучами. Большинство их отклоняется магнитным полем Земли и никогда не достигает атмосферы. Тем не менее, некоторые из частиц попадают в ловушку, именно они составляют пояса Ван Аллена. Когда они находятся над полюсами, иногда происходят столкновения их с атомами в атмосфере, в результате чего последние излучают видимый свет. Так возникают красивые Полярные сияния в Северном и Южном полушариях. Они, как правило, происходят в полярных регионах, потому что именно здесь пояса Ван Аллена расположены ближе всего к поверхности Земли.
Иногда, однако, солнечная активность вызывает большее число заряженных частиц, входящих в эти пояса, и значительно искажает нормальные силовые линии магнитного поля, связанные с Землей. В этих ситуациях полярное сияние можно иногда увидеть в более низких широтах.
Селектор скоростей
Во многих экспериментах, в которых происходит движение заряженных частиц в однородном магнитном поле, важно, чтобы все частицы двигались с практически одинаковой скоростью. Это может быть достигнуто путем применения комбинации электрического поля и магнитного поля, ориентированного так, как показано на рисунке ниже. Однородное электрическое поле направлено вертикально вниз (в плоскости страницы), а такое же магнитное поле приложено в направлении, перпендикулярном к электрическому (за страницу).
Масс-спектрометр
Этот прибор разделяет ионы в соответствии с соотношением их массы к заряду. По одной из версий этого устройства, известного как масс-спектрометр Бэйнбриджа, пучок ионов проходит сначала через селектор скоростей и затем поступает во второе поле B0, также однородное и имеющее то же направление, что и поле в селекторе (см. рис. ниже). После входа в него движение заряженной частицы в магнитном поле происходит по полукругу радиуса r перед ударом в фотопластинку Р. Если ионы заряжены положительно, луч отклоняется вверх, как показано на рисунке. Если ионы заряжены отрицательно, луч будет отклоняться вниз. Из выражения для радиуса круговой траектории частицы, мы можем найти отношение m/q
и затем, используя уравнение v=E/B, мы находим, что
Таким образом, мы можем определить m/q путем измерения радиуса кривизны, зная поля величин B, B0, и E. На практике, так обычно измеряет массы различных изотопов данного иона, поскольку все они несут один заряд q. Таким образом, отношение масс может быть определено, даже если q неизвестно. Разновидность этого метода была использована Дж. Дж. Томсоном (1856-1940) в 1897 году для измерения отношение е/mе для электронов.
Циклотрон
Он может ускорить заряженные частицы до очень высоких скоростей. И электрические, и магнитные силы играют здесь ключевую роль. Полученные высокоэнергетические частицы используются для бомбардировки атомных ядер, и тем самым производят ядерные реакции, представляющие интерес для исследователей. Ряд больниц использует циклотронное оборудование для получения радиоактивных веществ для диагностики и лечения.
Схематическое изображение циклотрона показан на рис. ниже. Частицы движутся внутри двух полуцилиндрических контейнеров D 1 и D 2, называемых дуантами. Высокочастотная переменная разность потенциалов приложена к дуантам, разделенным зазором, а однородное магнитное поле направлено вдоль оси циклотрона (южный полюс его источника на рис. не показан).
Положительный ион, выпущенный из источника в точке Р вблизи центра устройства в первом дуанте, перемещается по полукруглой траектории (показана пунктирной красной линией на рисунке) и прибывает обратно в щель в момент времени Т / 2, где Т — время одного полного оборота внутри двух дуантов.
Частота приложенной разности потенциалов регулируется таким образом, что полярность дуантов меняется на обратную в тот момент времени, когда ион выходит из одного дуанта. Если приложенная разность потенциалов регулируется таким образом, что в этот момент D2 получает более низкий электрический потенциал, чем D1 на величину qΔV, то ион ускоряется в зазоре перед входом в D2, и его кинетической энергии увеличивается на величину qΔV. Затем он движется вокруг D2 по полукруглой траектории большего радиуса (потому что его скорость увеличилась).
Через некоторое время T / 2 он снова поступает в зазор между дуантами. К этому моменту полярность дуантов снова изменяется, и иону дается еще один «удар» через зазор. Движение заряженной частицы в магнитном поле по спирали продолжается, так что при каждом проходе одного дуанта ион получает дополнительную кинетическую энергию, равную qΔV. Когда радиус его траектории становится близким к радиусу дуантов, ион покидает систему через выходную щель. Важно отметить, что работа циклотрона основана на том, что Т не зависит от скорости иона и радиуса круговой траектории. Мы можем получить выражение для кинетической энергии иона, когда он выходит из циклотрона в зависимости от радиуса R дуантов. Мы знаем, что скорость кругового движения частицы — ν = qBR /m. Следовательно, ее кинетическая энергия
Когда энергии ионов в циклотрон превышает около 20 МэВ, в игру вступают релятивистские эффекты. Мы отмечаем, что T увеличивается, и что движущиеся ионы не остаются в фазе с приложенной разностью потенциалов. Некоторые ускорители решают эту проблему, изменяя период прикладываемой разности потенциалов, так что она остается в фазе с движущимися ионами.
Эффект Холла
Когда проводник с током помещается в магнитное поле, то дополнительная разность потенциалов создается в направлении, перпендикулярном к направлению тока и магнитного поля. Это явление, впервые наблюдаемое Эдвином Холлом (1855-1938) в 1879 году, известно как эффект Холла. Он всегда наблюдается, когда происходит движение заряженной частицы в магнитном поле. Это приводит к отклонению носителей заряда на одной стороне проводника в результате магнитной силы, которую они испытывают. Эффект Холла дает информацию о знаке носителей заряда и их плотности, он также может быть использован для измерения величины магнитных полей.
Устройство для наблюдения эффекта Холла состоит из плоского проводника с током I в направлении х, как показано на рисунке ниже.
Движение заряженной частицы в магнитном поле.
Для вывода общих закономерностей движения заряженной частицы в магнитном поле будем считать магнитное поле однородным, электрические поля на частицу не действуют. При этом учтем очевидное:
а) Если заряженная частица движется в магнитном поле вдоль силовой линии, сила Лоренца, действующая на неё, равна нулю
б) Если заряженная частица движется в магнитном поле со скоростью , перпендикулярно к вектору , то сила Лоренца, равная постоянна по модулю и перпендикулярна к траектории частицы.
Согласно второму закону Ньютона, эта сила создаёт центростремительное ускорение. Поэтому частица будет двигаться по окружности, радиус которой определяется из условия:
, , ,
период вращения частицы, т. е. время, затрачиваемое ею на один полный оборот,
в) Если скорость заряженной частицы направлена под углом к вектору то её движение можно представить в виде двух движений: 1) равномерного прямолинейного движения вдоль поля, 2) равномерного движения по окружности в плоскости перпендикулярной полю (Рис. 23).
В результате этих двух движений возникает движение по винтовой линии, ось которой параллельна вектору . Шаг винтовой линии:
Направление, в котором закручивается частица, зависит от знака её заряда.
Действие магнитного поля на движущиеся заряженные частицы. Действие магнитного поля на проводник с током означает, что магнитное поле действует на движущиеся электрические заряды. Найдем силу, действующую на электрический заряд q при его движении в однородном магнитном поле с индукцией .
Сила тока I в проводнике связана с концентрацией n свободных заряженных частиц, скоростью их упорядоченного движения и площадью S поперечного сечения проводника следующим выражением:
,(1)
где q — заряд отдельной частицы.
.
Так как произведение nSl равно числу свободных заряженных частиц в проводнике длиной l
то сила, действующая со стороны магнитного поля на одну заряженную частицу, движущуюся со скоростью под углом к вектору индукции, равна
.(2)
Эту силу называют силой Лоренца.
Направление вектора силы Лоренца определяется правилом левой руки, в нем за направление тока нужно брать направление вектора скорости положительного заряда (рис. 186). Для случая движения отрицательно заряженных частиц четыре пальца следует располагать противоположно направлению вектора скорости.
Движение заряженных частиц в магнитном поле. В однородном магнитном поле на заряженную частицу, движущуюся со скоростью перпендикулярно линиям индукции магнитного поля, действует сила , постоянная по модулю и направленная перпендикулярно вектору скорости (рис. 187).
В вакууме под действием силы Лоренца частица приобретает центростремительное ускорение
(3)
и движется по окружности. Радиус r окружности, по которой движется частица, определяется из условия
, .(4)
Период обращения частицы в однородном магнитном поле равен
.(5)
Последнее выражение показывает, что период обращения частицы в однородном магнитном поле при постоянной массе не зависит от скорости и радиуса r траектории ее движения. Этот факт используется, например, в ускорителе заряженных частиц — циклотроне.
Циклотрон. В этом ускорителе заряженные частицы — протоны, ядра атомов гелия — разгоняются переменным электрическим полем постоянной частоты в вакууме в зазоре между двумя металлическими электродами — дуантами. Дуанты находятся между полюсами постоянного электромагнита (рис. 188, а).
Под действием магнитного поля внутри дуантов заряженные частицы движутся по окружности. К моменту времени, когда они совершают половину оборота и подходят к зазору между дуантами, направление вектора напряженности электрического поля между дуантами изменяется на противоположное и частицы вновь испытывают ускорение. Каждую следующую половину оборота частицы пролетают по окружности все большего радиуса (рис. 188, б), но период их обращения остается неизменным. Поэтому для ускорения частиц на дуанты подается переменное напряжение с постоянным периодом.
Ускорение частиц в циклотроне с постоянным периодом возможно лишь до значений скоростей, значительно меньших скорости света. С приближением скорости частицы к скорости света в вакууме, равной c = 300000 км/с, масса частицы возрастает, вследствие чего увеличивается период ее обращения в магнитном поле. Равенство периода обращения частицы и периода изменения электрического поля нарушается, ускорение прекращается.
топлива по сравнению с обычной тепловой электростанцией.
В заключение, по традиции, предлагаем Вашему вниманию шпаргалку по этой теме:
[spoiler title=”источники:”]
http://phys-ege.sdamgia.ru/problem?id=17662
http://b4.cooksy.ru/articles/dvizhenie-zaryazhennyh-chastits-po-okruzhnosti
[/spoiler]
Рассмотрим
кинетическую энергию релятивистской
частицы. Определим эту величину таким
же путем, как в классической физике:
.
Согласно
основному уравнению релятивистской
динамики (16)
,
,
где
– релятивистская масса.
Поэтому
Упростим
это выражение, используя формулу для
релятивистской массы
.
Приведем ее к виду
,
гдеи.
Найдем
дифференциал этого выражения
.
Разделим
на
,
получим
.
Отсюда
следует
. (17)
Таким
образом, приращение кинетической энергии
частицы пропорционально приращению ее
релятивистской массы. Для покоящейся
частицы
,
а.
Поэтому, интегрируя (17), получим
, (18)
или
. (19)
Это
и есть выражение для релятивистской
кинетической энергии
частицы. Убедимся, что при малых скоростях
выражение (19) переходит в ньютоновское.
Для этого воспользуемся формулой бинома
Ньютона, согласно которой
Тогда
.
Перепишем
соотношение (18) в такой форме:
.
Здесь
–
(20)
–
энергия покоя частицы,
-полная
энергия частицы
Отсюда
(22)
–закон
взаимосвязи массы и энергии.
Видно,
что масса тела, которая в классической
физике выступала как мера инертности
(во втором законе Ньютона) или как мера
гравитационного взаимодействия (в
законе всемирного тяготения), теперь
выступает в новой функции – как мера
энергосодержания
тела.
Всякое
изменение энергии тела
сопровождается изменением релятивистской
массы,
и наоборот, всякое изменение массысопровождается изменением энергии тела.
В
ядерной физике впервые оказалось
возможным экспериментально проверить
и подтвердить закон взаимосвязи массы
и энергии.
Формулы
(20)-(22) – знаменитые формулы Эйнштейна,
устанавливающие эквивалентность массы
и энергии.
9. Связь между энергией и импульсом частицы
Ясно,
что полная энергия
и импульсчастицы имеют разные значения в разных
системах отсчета. Оказывается, однако,
что существует величина – некоторая
комбинацияи,
которая является инвариантной, то есть
имеет одно и то же значение в разных
системах отсчета. Эта величина есть.
Убедимся в этом.
Итак,
и,.
Запишем
,
или
после сокращения
(23)
Тот
факт, что скорость
в правой части сократилась, означает,
что величина (не зависит от скорости частицы, а
следовательно, и от системы отсчета.
Отсюда
. (24)
Приведем
еще два полезных соотношения, с которыми
приходится часто встречаться при решении
задач в ядерной физике.
Первое:
, (25)
второе
– связь между импульсом и кинетической
энергией частицы. Подставим в
формулу (23)
,
получим
(26)
Рассмотрим
вопрос о возможности существования
частиц с нулевой массой покоя
.
Из формул (24) и (25)
следует,
что эти два выражения совместны, если
.
Таким
образом, согласно теории относительности
существование частиц с нулевой массой
покоя возможно, причем эти частицы могут
двигаться только со скоростью света
.
Как сейчас известно, такими частицами
являются фотон и нейтрино.
СТО
находит подтверждение в экспериментах
с элементарными частицами.
Однако
СТО не дает возможности создать теорию
гравитационного взаимодействия, не
объясняет закон всемирного тяготения
Ньютона.
Задачи
Задача
1. Серпуховский ускоритель разгоняет
протоны до кинетической энергии
76
ГэВ. Найти массу и скорость ускоренных
протонов.
Решение
,
отсюда
эВ,
эВ, получим.
найдем
.
;
.
Задача
2. Частица массы
начинает двигаться под действием
постоянной силы.
Найти зависимость скорости частицы от
времени.
Решение
,
.
;
.
Отсюда
.
Согласно
второму закону Ньютона
,можно представить в виде:
Отсюда
видно, что
,
т.е. скоростьчастицы растет со временем медленнее,
чем,
причем при(рис. )
Рис.
Задача3.
Метод
встречных пучков
Два
протона движутся навстречу друг другу
с одинаковыми кинетическими энергиями
(в -системе отсчета). Найти кинетическую
энергиюодного протона в-системе
отсчета, где другой протон покоится.
Решение
Рис.1
Рис.2
Воспользуется
инвариантностью величины
,
где
–масса
покоя протона.
Запишем
выражение () в К -системе, а также в-системе.
В
-системе
(рис. 1) два протона движутся навстречу
друг другу, поэтому
, (1)
(2)
В
-системе
(рис. 2) один протон покоится, а второй
движется со скоростью,
поэтому
(3)
. (4)
Итак,
,
После
подстановки (1)-(4), получим
.
Отсюда
.
Для
протона
939
МэВ1ГэВ.
Например, при= 50 ГэВ величинаГэВ. Возможность получения такого
большого «выигрыша» в энергии лежит в
основе принципа действия ускорителей
на встречных пучках, которые называются
коллайдерами.
25
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #