Как найти кинетический момент относительно оси

Содержание:

Кинетический момент точки и системы:

Теорема об изменении кинетического момента в теоретической механике

Рис. 47

Теорема об изменении кинетического момента в теоретической механике

Рис. 48

Наряду с количеством движения в качестве векторной меры движения можно использовать кинетический момент, или момент количества движения. Для материальной точки массой Теорема об изменении кинетического момента в теоретической механике, движущейся со скоростью Теорема об изменении кинетического момента в теоретической механике, кинетическим моментом Теорема об изменении кинетического момента в теоретической механике относительно какого-либо центра Теорема об изменении кинетического момента в теоретической механике (рис. 47), т. е.

Теорема об изменении кинетического момента в теоретической механике

Кинетический момент Теорема об изменении кинетического момента в теоретической механике приложен к точке Теорема об изменении кинетического момента в теоретической механике, относительно которой он вычисляется.

Проецируя обе части (19) на прямоугольные декартовы оси, получаем кинетические моменты точки относительно этих осей координат, если точка Теорема об изменении кинетического момента в теоретической механике является началом осей координат:

Теорема об изменении кинетического момента в теоретической механике

В физике кинетический момент точки иногда называют моментом импульса точки.

Единица кинетического момента в СИ — Теорема об изменении кинетического момента в теоретической механике, или Теорема об изменении кинетического момента в теоретической механике.

Для механической системы кинетическим моментом Теорема об изменении кинетического момента в теоретической механике (или главным моментом количества движения системы относительно какой-либо точки Теорема об изменении кинетического момента в теоретической механике) называют векторную сумму кинетических моментов точек этой системы, взятых относительно точки Теорема об изменении кинетического момента в теоретической механике (рис. 48), т. е.

Теорема об изменении кинетического момента в теоретической механике

Кинетический момент системы Теорема об изменении кинетического момента в теоретической механике приложен к точке Теорема об изменении кинетического момента в теоретической механике, относительно которой он вычисляется.

Если спроецировать (20) на прямоугольные декартовы оси координат, то получим проекции кинетического момента на эти оси, или кинетические моменты относительно осей координат:

Теорема об изменении кинетического момента в теоретической механике

Кинетический момент относительно оси вращения при вращательном движении твердого тела

Вычислим кинетический момент твердого тела относительно оси вращения, когда тело вращается вокруг этой неподвижной оси с угловой скоростью Теорема об изменении кинетического момента в теоретической механике (рис. 49). По определению кинетического момента относительно оси [(см. формулы (20′)] имеем

Теорема об изменении кинетического момента в теоретической механике

Но при вращении тела вокруг оси Теорема об изменении кинетического момента в теоретической механике, причем количество движения точки Теорема об изменении кинетического момента в теоретической механике перпендикулярно отрезку Теорема об изменении кинетического момента в теоретической механике и лежит в плоскости, перпендикулярной оси вращения Теорема об изменении кинетического момента в теоретической механике. Следовательно, момент количества движения относительно оси Теорема об изменении кинетического момента в теоретической механике для одной точки

Теорема об изменении кинетического момента в теоретической механике

Для всего тела

Теорема об изменении кинетического момента в теоретической механике

т. е.

Теорема об изменении кинетического момента в теоретической механике

Таким образом, кинетический момент тела относительно оси вращения при вращательном движении равен произведению угловой скорости тела на его момент инерции относительно оси вращения. Знак кинетического момента относительно оси совпадает со знаком угловой скорости вращения вокруг этой оси: при вращении против часовой стрелки кинетический момент положительный; при вращении по часовой стрелке — отрицательный.

Дополнительно без вывода приведем формулы для кинетических моментов относительно двух других осей координат Теорема об изменении кинетического момента в теоретической механике и Теорема об изменении кинетического момента в теоретической механике, перпендикулярных оси вращения Теорема об изменении кинетического момента в теоретической механике. Имеем

Теорема об изменении кинетического момента в теоретической механике

где Теорема об изменении кинетического момента в теоретической механике и Теорема об изменении кинетического момента в теоретической механике — центробежные моменты инерции.

Теорема об изменении кинетического момента в теоретической механике

Рис. 49

Эти формулы можно получить как частный случай более общих формул для случая вращения твердого тела вокруг неподвижной точки. Они могут быть получены и непосредственно.

Если ось вращения Теорема об изменении кинетического момента в теоретической механике является главной осью инерции для точки Теорема об изменении кинетического момента в теоретической механике, то Теорема об изменении кинетического момента в теоретической механике и, следовательно Теорема об изменении кинетического момента в теоретической механике для этой точки. В этом случае кинетический момент Теорема об изменении кинетического момента в теоретической механике относительно точки Теорема об изменении кинетического момента в теоретической механике направлен по оси вращения. В общем случае Теорема об изменении кинетического момента в теоретической механике не направлен по оси вращения, так как имеет не равные нулю проекции Теорема об изменении кинетического момента в теоретической механике и Теорема об изменении кинетического момента в теоретической механике на оси координат, перпендикулярные оси вращения Теорема об изменении кинетического момента в теоретической механике.

Теорема об изменении кинетического момента точки

Для материальной точки основной закон динамики можно представить в виде

Теорема об изменении кинетического момента в теоретической механике

Умножая обе части этого соотношения слева векторно на радиус-вектор Теорема об изменении кинетического момента в теоретической механике (см. рис. 48), получаем

Теорема об изменении кинетического момента в теоретической механике

В правой части этой формулы имеем момент силы относительно неподвижной точки Теорема об изменении кинетического момента в теоретической механике. Преобразуем левую часть, применив формулу производной от векторного произведения:

Теорема об изменении кинетического момента в теоретической механике

Но

Теорема об изменении кинетического момента в теоретической механике

как векторное произведение параллельных векторов.

После этого из (22) получаем

Теорема об изменении кинетического момента в теоретической механике

или

Теорема об изменении кинетического момента в теоретической механике

Таким образом, первая производная по времени от кинетического момента точки относительно какого-либо центра равна моменту силы относительно того же центра.

Это и есть теорема об изменении кинетического момента для точки.

Проецируя (23) на прямоугольные декартовы оси координат, получаем теоремы об изменении кинетического момента точки относительно этих осей координат:

Теорема об изменении кинетического момента в теоретической механике

Теорема об изменении кинетического момента системы

Если к точкам системы приложить все внешние и внутренние силы (рис. 48), то для каждой точки системы можно выразить теорему об изменении кинетического момента в форме (23), т. е.

Теорема об изменении кинетического момента в теоретической механике

Суммируя правые и левые части этих соотношений по всем точкам системы и заменяя суммы производных производной от суммы, получаем

Теорема об изменении кинетического момента в теоретической механике

Так как, по свойству внутренних сил,

Теорема об изменении кинетического момента в теоретической механике

а по определению кинетического момента системы,

Теорема об изменении кинетического момента в теоретической механике

то

Теорема об изменении кинетического момента в теоретической механике

Если обозначить главный момент всех внешних сил Теорема об изменении кинетического момента в теоретической механике,  т. е.

Теорема об изменении кинетического момента в теоретической механике

то теорему об изменении кинетического момента системы можно представить в виде

Теорема об изменении кинетического момента в теоретической механике

Следовательно, первая производная по времени от кинетического момента системы относительно какой-либо точки равна векторной сумме моментов внешних сил, действующих на систему, относительно той же точки.

В эту теорему входит кинетический момент системы Теорема об изменении кинетического момента в теоретической механике в ее движении относительно инерциальной системы отсчета, причем кинетический момент и моменты внешних сил вычисляются относительно неподвижной в этой системе отсчета точки Теорема об изменении кинетического момента в теоретической механике. Получим теорему об изменении кинетического момента системы такого же движения, но выберем в качестве точки при вычислении кинетического момента и моментов внешних сил точку Теорема об изменении кинетического момента в теоретической механике, движущуюся относительно инерциальной системы отсчета со скоростью Теорема об изменении кинетического момента в теоретической механике.

По определению кинетического момента системы относительно точки Теорема об изменении кинетического момента в теоретической механике имеем (рис. 50)

Теорема об изменении кинетического момента в теоретической механике

Теорема об изменении кинетического момента в теоретической механике

Рис. 50  

Вычислим производную по времени от кинетического момента Теорема об изменении кинетического момента в теоретической механике по правилу дифференцирования векторных произведений. Получим

Теорема об изменении кинетического момента в теоретической механике

так как Теорема об изменении кинетического момента в теоретической механике

Теорема об изменении кинетического момента в теоретической механике

Учитывая, что Теорема об изменении кинетического момента в теоретической механике, получим

Теорема об изменении кинетического момента в теоретической механике

или

Теорема об изменении кинетического момента в теоретической механике

Рассмотрим частные случаи этой теоремы.

1.    Если точка Теорема об изменении кинетического момента в теоретической механике совпадает с центром масс Теорема об изменении кинетического момента в теоретической механике, то Теорема об изменении кинетического момента в теоретической механике и теорема принимает форму

Теорема об изменении кинетического момента в теоретической механике

2.    Если в случае плоского движения твердого тела выбрать в качестве точки Теорема об изменении кинетического момента в теоретической механике мгновенный центр скоростей Теорема об изменении кинетического момента в теоретической механике, то Теорема об изменении кинетического момента в теоретической механике, так как в рассматриваемом случае Теорема об изменении кинетического момента в теоретической механике есть скорость движения мгновенного центра скоростей по неподвижной центроиде, а она не равна нулю в отличие от скорости точки тела, совпадающей с точкой Теорема об изменении кинетического момента в теоретической механике, которая равна нулю. Очевидно, Теорема об изменении кинетического момента в теоретической механике, если Теорема об изменении кинетического момента в теоретической механике параллельна Теорема об изменении кинетического момента в теоретической механике, т.е. если касательные к центроидам и траектории центра масс параллельны или, что то же самое, центр масс находится на нормали к центроидам в точке Теорема об изменении кинетического момента в теоретической механике. Тогда

Теорема об изменении кинетического момента в теоретической механике

Эти частные случаи показывают, что для подвижных точек центра масс для любой системы и мгновенного центра скоростей при плоском движении твердого тела в рассмотренном случае теорема об изменении кинетического момента для абсолютного движения имеет ту же форму, что и для неподвижной точки Теорема об изменении кинетического момента в теоретической механике.

Внутренние силы непосредственно не влияют на изменение кинетического момента системы. Они могут влиять на него только через внешние силы, т. е. неявно.

Проецируя (24) на прямоугольные декартовы оси координат, получаем теоремы об изменении кинетического момента системы относительно этих осей координат, т. е.

Теорема об изменении кинетического момента в теоретической механике

Теорема об изменении кинетического момента позволяет изучать вращательное движение твердого тела вокруг оси и точки или вращательную часть движения тела в общем случае движения свободного твердого тела.

Законы сохранения кинетических моментов

Выведем законы сохранения кинетических моментов для системы, рассматривая материальную точку как механическую систему, у которой число точек равно единице. Естественно, что для одной материальной точки все действующие на нее силы являются внешними. Возможны следующие частные случаи теоремы об изменении кинетического момента системы.

1.    Если главный момент внешних сил системы относительно точки Теорема об изменении кинетического момента в теоретической механике равен нулю, т. е. Теорема об изменении кинетического момента в теоретической механике, то, согласно (24), кинетический момент системы Теорема об изменении кинетического момента в теоретической механике относительно той же точки постоянен по модулю и направлению, т. е.

Теорема об изменении кинетического момента в теоретической механике

Этот частный случай теоремы об изменении кинетического момента системы называют законом сохранения кинетического момента. В проекциях на прямоугольные декартовы оси координат по этому закону

Теорема об изменении кинетического момента в теоретической механике

где Теорема об изменении кинетического момента в теоретической механике — постоянные величины.

Соотношения (25′) являются первыми интегралами дифференциальных уравнений движения системы (3). Закон сохранения кинетического момента системы показывает, что одни внутренние силы не могут изменить кинетический момент системы, так же как они не изменяют ее количество движения.

2.    Если сумма моментов всех внешних сил системы относительно оси Теорема об изменении кинетического момента в теоретической механике равна нулю, т. е. Теорема об изменении кинетического момента в теоретической механике, то из (24′) следует, что

Теорема об изменении кинетического момента в теоретической механике

Следовательно, кинетический момент системы относительно какой-либо координатной оси постоянен, если сумма моментов внешних сил относительно этой оси равна нулю, что, в частности, наблюдается, когда внешние силы параллельны оси или пересекают ее. В частном случае для тела или системы тел, которые все вместе могут вращаться вокруг неподвижной оси, и если при этом

Теорема об изменении кинетического момента в теоретической механике

то

Теорема об изменении кинетического момента в теоретической механике

или

Теорема об изменении кинетического момента в теоретической механике

где Теорема об изменении кинетического момента в теоретической механике и Теорема об изменении кинетического момента в теоретической механике — момент инерции системы тел и их угловая скорость относительно оси вращения в произвольный момент времени Теорема об изменении кинетического момента в теоретической механике; Теорема об изменении кинетического момента в теоретической механике и Теорема об изменении кинетического момента в теоретической механике — момент инерции тел и их угловая скорость в момент времени, выбранный за начальный, например при Теорема об изменении кинетического момента в теоретической механике.

Закон сохранения кинетического момента в форме (27) используют в своей деятельности акробаты, прыгуны, танцоры и т. д. Наглядно его можно продемонстрировать в опыте на скамье Жуковского (рис. 51). Если человек с гирями в руках встанет на горизонтальную платформу скамьи Жуковского, которая может вращаться вокруг вертикальной оси почти без трения, и затем ему сообщить угловую скорость вокруг этой оси, то

Теорема об изменении кинетического момента в теоретической механике

так как внешние силы или параллельны оси вращения (силы веса человека, гирь и платформы), или пересекают ось (реакции подшипника, если пренебречь силами трения).

Теорема об изменении кинетического момента в теоретической механике

Рис. 51

Следовательно, если человек увеличит момент инерции, например разведением рук с гирями в сторону, то угловая скорость вращения уменьшится, и наоборот. В действительности угловая скорость хотя и медленно, но все время уменьшается вследствие наличия сопротивления воздуха и трения в подшипнике скамьи.

Пример:

Однородный горизонтальный диск радиусом Теорема об изменении кинетического момента в теоретической механике и силой тяжести Теорема об изменении кинетического момента в теоретической механике может вращаться без трения вокруг вертикальной оси. Как изменится угловая скорость диска, если первоначально стоящий на диске на расстоянии Теорема об изменении кинетического момента в теоретической механике от его оси человек с силой тяжести Теорема об изменении кинетического момента в теоретической механике пойдет по окружности радиусом Теорема об изменении кинетического момента в теоретической механике по диску с относительной скоростью Теорема об изменении кинетического момента в теоретической механике (рис. 52)?

Теорема об изменении кинетического момента в теоретической механике

Рис. 52

Решение:

Пусть угловая скорость диска вначале была Теорема об изменении кинетического момента в теоретической механике, а потом вследствие движения человека по диску стала Теорема об изменении кинетического момента в теоретической механике. Так как внешние силы для системы, состоящей из человека и диска, параллельны оси Теорема об изменении кинетического момента в теоретической механике (силы тяжести Теорема об изменении кинетического момента в теоретической механике и Теорема об изменении кинетического момента в теоретической механике) или ее пересекают (реакции Теорема об изменении кинетического момента в теоретической механике  и Теорема об изменении кинетического момента в теоретической механике), то

Теорема об изменении кинетического момента в теоретической механике

и, следовательно,

Теорема об изменении кинетического момента в теоретической механике

Составим Теорема об изменении кинетического момента в теоретической механике для двух моментов времени и приравняем друг другу. В начальный момент, когда человек стоит, кинетический момент системы определяется как

Теорема об изменении кинетического момента в теоретической механике

После того как человек пойдет по диску, его кинетический момент станет равным кинетическому моменту от вращения вместе с диском плюс кинетический момент от относительного движения по диску, если человек идет в сторону вращения диска, т. е.

Теорема об изменении кинетического момента в теоретической механике

Приравнивая полученные выражения кинетических моментов, получаем

Теорема об изменении кинетического момента в теоретической механике

Отсюда

Теорема об изменении кинетического момента в теоретической механике

Для однородного диска

Теорема об изменении кинетического момента в теоретической механике

Поэтому угловая скорость

Теорема об изменении кинетического момента в теоретической механике

Угловая скорость диска от движения по нему человека уменьшилась на Теорема об изменении кинетического момента в теоретической механике. Если вместо диска рассматривать земной шар, то движение по нему материальных объектов (воздуха, течения воды и т. д.), которые имеют не равную нулю проекцию скорости на касательную к параллелям, вызовет изменение угловой скорости вращения Земли. Она уменьшится, если проекции скорости положительны для направления по вращению земного шара, и увеличится, если против вращения.

Дифференциальное уравнение вращения твердого тела вокруг неподвижной оси

Из теоремы об изменении кинетического момента (24′) получим дифференциальное уравнение вращения твердого тела вокруг неподвижной оси Теорема об изменении кинетического момента в теоретической механике (рис. 53). Имеем

Теорема об изменении кинетического момента в теоретической механике

Для случая вращения твердого тела вокруг неподвижной оси, согласно (21), имеем

Теорема об изменении кинетического момента в теоретической механике

где Теорема об изменении кинетического момента в теоретической механике — постоянный для твердого тела момент инерции относительно неподвижной оси вращения; Теорема об изменении кинетического момента в теоретической механике — угловая скорость. Учитывая это, получаем

Теорема об изменении кинетического момента в теоретической механике

Теорема об изменении кинетического момента в теоретической механике

Рис. 53

Если ввести угол поворота тела Теорема об изменении кинетического момента в теоретической механике, учитывая, что Теорема об изменении кинетического момента в теоретической механике, имеем

Теорема об изменении кинетического момента в теоретической механике

Это и есть дифференциальное уравнение вращения твердого тела вокруг неподвижной оси. Оно полностью аналогично дифференциальному уравнению поступательного движения твердого тела в проекции на какую-либо ось, например на ось Теорема об изменении кинетического момента в теоретической механике.

В дифференциальное уравнение вращения тела вокруг неподвижной оси вместо координаты Теорема об изменении кинетического момента в теоретической механике входит угол поворота Теорема об изменении кинетического момента в теоретической механике, вместо массы тела Теорема об изменении кинетического момента в теоретической механике—момент инерции относительно оси вращения Теорема об изменении кинетического момента в теоретической механике, вместо суммы проекций внешних сил на ось Теорема об изменении кинетического момента в теоретической механике — сумма моментов внешних сил относительно оси вращения Теорема об изменении кинетического момента в теоретической механике или так называемый вращательный момент внешних сил.

Реакции подшипников Теорема об изменении кинетического момента в теоретической механике и Теорема об изменении кинетического момента в теоретической механике оси вращения являются внешними силами, но их моменты относительно оси вращения равны нулю, так как они пересекают ось, если пренебречь силами трения.

В частном случае, когда

Теорема об изменении кинетического момента в теоретической механике

т. е. вращение тела происходит с постоянным угловым ускорением.

Если

Теорема об изменении кинетического момента в теоретической механике

то

Теорема об изменении кинетического момента в теоретической механике

Это случай равномерного вращения тела по инерции без действия вращательного момента внешних сил.

Дифференциальное уравнение вращательного движения твердого тела в общем случае позволяет решать две основные задачи: по заданному вращению тела определять вращающий момент внешних сил и по заданному вращательному моменту и начальным условиям находить вращение тела. При решении второй задачи для нахождения угла поворота как функции времени приходится интегрировать дифференциальное уравнение вращательного движения. Методы его интегрирования полностью аналогичны рассмотренным выше методам интегрирования дифференциального уравнения прямолинейного движения точки.

Движение точки под действием центральной силы

Теорема площадей:

Наряду с введенными в кинематике точки скоростью Теорема об изменении кинетического момента в теоретической механике и ускорением Теорема об изменении кинетического момента в теоретической механике можно ввести другие характеристики движения точки, например секторные скорость и ускорение. Секторной скоростью точки Теорема об изменении кинетического момента в теоретической механике или Теорема об изменении кинетического момента в теоретической механике относительно точки Теорема об изменении кинетического момента в теоретической механике (рис. 54) называют векторную величину, определяемую по формуле

Теорема об изменении кинетического момента в теоретической механике

где Теорема об изменении кинетического момента в теоретической механике — вектор, численно равный заштрихованной на рисунке площади, ометаемой радиусом-вектором Теорема об изменении кинетического момента в теоретической механике движущейся точки за время Теорема об изменении кинетического момента в теоретической механике; направление вектора Теорема об изменении кинетического момента в теоретической механике берется по перпендикуляру к заштрихованной площади так, чтобы с конца этого вектора при ометании заштрихованной площади видеть поворот радиуса-вектора Теорема об изменении кинетического момента в теоретической механике против часовой стрелки.

Для случая движения точки по плоскости секторная скорость перпендикулярна этой плоскости, если точка Теорема об изменении кинетического момента в теоретической механике выбрана в той же плоскости, в которой движется точка. Секторная скорость всегда приложена в той точке, относительно которой она вычисляется.

Секторное ускорение Теорема об изменении кинетического момента в теоретической механике можно ввести как производную по времени от вектора секторной скорости, т. е.

Теорема об изменении кинетического момента в теоретической механике

Секторную скорость можно выразить через момент линейной скорости Теорема об изменении кинетического момента в теоретической механике относительно точки Теорема об изменении кинетического момента в теоретической механике:

Теорема об изменении кинетического момента в теоретической механике

Теорема об изменении кинетического момента в теоретической механике

Рис. 54

Векторное произведение Теорема об изменении кинетического момента в теоретической механике, согласно определению, имеет такое же направление, как и Теорема об изменении кинетического момента в теоретической механике. Следовательно, для доказательства формулы (29) достаточно показать, что величины левой и правой частей одинаковы. Вычислим левую часть формулы (29):

Теорема об изменении кинетического момента в теоретической механике

но

Теорема об изменении кинетического момента в теоретической механике

Следовательно,

Теорема об изменении кинетического момента в теоретической механике

что совпадает с модулем векторного произведения, стоящим справа в формуле (29).

Если движение точки происходит в плоскости, то секторную скорость можно считать алгебраической величиной. В этом случае секторную скорость точки часто выражают в полярных координатах. Из формулы (29) секторная скорость

Теорема об изменении кинетического момента в теоретической механике

Но из кинематики точки в полярной системе координат на плоскости известно (рис. 55), что Теорема об изменении кинетического момента в теоретической механике.

Теорема об изменении кинетического момента в теоретической механике

Рис. 55

Следовательно,

Теорема об изменении кинетического момента в теоретической механике

Формула (30) выражает секторную скорость в полярных координатах в случае плоского движения точки.

Используя формулу (29), кинетический момент через секторную скорость можно выразить в виде

Теорема об изменении кинетического момента в теоретической механике

Соответственно теорему об изменении кинетического момента (23) для точки можно выразить через секторную скорость формулой

Теорема об изменении кинетического момента в теоретической механике

В форме (32) теорему об изменении кинетического момента для точки называют теоремой площадей.

Движение точки под действием центральной силы

Центральной силой Теорема об изменении кинетического момента в теоретической механике называют такую силу, линия действия которой при движении точки ее приложения проходит через одну и ту же точку Теорема об изменении кинетического момента в теоретической механике, называемую центром центральной силы.

Центральная сила может быть притягивающей (направленной к центру) и отталкивающей (направленной от центра). Так как для центральной силы _момент силы относительно своего центра равен нулю, т. е. Теорема об изменении кинетического момента в теоретической механике, то, следовательно, по теореме об изменении кинетического момента для точки (23),

Теорема об изменении кинетического момента в теоретической механике

В проекциях на прямоугольные оси декартовой системы с началом в точке Теорема об изменении кинетического момента в теоретической механике по (33) имеем:

Теорема об изменении кинетического момента в теоретической механике

где Теорема об изменении кинетического момента в теоретической механике — постоянные величины.

Умножая первое соотношение (33′) на Теорема об изменении кинетического момента в теоретической механике, второе — на Теорема об изменении кинетического момента в теоретической механике, третье — на Теорема об изменении кинетического момента в теоретической механике и складывая, получаем Теорема об изменении кинетического момента в теоретической механике, т.е. координаты движущейся точки Теорема об изменении кинетического момента в теоретической механике удовлетворяют уравнению плоскости, проходящей через начало координат.

Следовательно, траектория точки, движущейся под действием центральной силы, является плоской кривой, лежащей в плоскости, проходящей через центр силы.

Так как при движении точки под действием центральной силы

Теорема об изменении кинетического момента в теоретической механике

то, учитывая формулу (31), имеем

Теорема об изменении кинетического момента в теоретической механике

и, следовательно,

Теорема об изменении кинетического момента в теоретической механике

или

Теорема об изменении кинетического момента в теоретической механике

Формула (34) выражает так называемый интеграл площадей: при движении точки под действием центральной силы секторная скорость является постоянной величиной и, следовательно, ометаемая радиусом-вектором площадь пропорциональна времени.

Учитывая формулу (30), интеграл площадей (34) в полярных координатах можно представить в виде

Теорема об изменении кинетического момента в теоретической механике

В этой форме интеграл площадей широко используется при рассмотрении движения планет вокруг Солнца и вообще различных спутников, в частности искусственных спутников Земли.

Теорема об изменении кинетического момента системы в относительном движении по отношению к центру масс

Рассмотрим относительное движение системы только относительно системы координат, движущейся поступательно вместе с центром масс системы.

Прежде чем рассмотреть теорему, выведем формулу для вычисления кинетического момента системы.

Формула для кинетического момента системы

Пусть механическая система совершает движение относительно основной системы координат Теорема об изменении кинетического момента в теоретической механике. Возьмем подвижную систему координат Теорема об изменении кинетического момента в теоретической механике с началом в центре масс системы Теорема об изменении кинетического момента в теоретической механике, движущуюся поступательно относительно основной системы координат. Из рис. 56 следует, что для любого момента времени Теорема об изменении кинетического момента в теоретической механике.

Теорема об изменении кинетического момента в теоретической механике

Рис. 56

Дифференцируя это тождество по времени, получаем

Теорема об изменении кинетического момента в теоретической механике

или

Теорема об изменении кинетического момента в теоретической механике

где Теорема об изменении кинетического момента в теоретической механике — абсолютная скорость точки Теорема об изменении кинетического момента в теоретической механике, Теорема об изменении кинетического момента в теоретической механике — абсолютная скорость центра масс; Теорема об изменении кинетического момента в теоретической механике — относительная скорость точки Теорема об изменении кинетического момента в теоретической механике относительно подвижной системы координат Теорема об изменении кинетического момента в теоретической механике. При поступательном движении подвижной системы координат ее угловая скорость Теорема об изменении кинетического момента в теоретической механике равна нулю и по формуле Бура полная производная по времени от радиуса-вектора Теорема об изменении кинетического момента в теоретической механике совпадает с локальной производной, равной относительной скорости.

Согласно определению кинетического момента Теорема об изменении кинетического момента в теоретической механике относительно неподвижной точки Теорема об изменении кинетического момента в теоретической механике, для абсолютного движения системы относительно системы координат Теорема об изменении кинетического момента в теоретической механике по формуле (20) имеем

Теорема об изменении кинетического момента в теоретической механике

Подставляя в эту формулу значения Теорема об изменении кинетического момента в теоретической механике и Теорема об изменении кинетического момента в теоретической механике, после небольших преобразований получаем

Теорема об изменении кинетического момента в теоретической механике

В этой формуле Теорема об изменении кинетического момента в теоретической механике— масса системы. Кроме того, последние два слагаемых равны нулю. Действительно, по определению радиуса-вектора центра масс относительно этого центра масс имеем

Теорема об изменении кинетического момента в теоретической механике

Следовательно, Теорема об изменении кинетического момента в теоретической механике и последнее слагаемое в (36) тоже равно нулю.

Другое слагаемое можно предварительно преобразовать:

Теорема об изменении кинетического момента в теоретической механике

Это слагаемое также равно нулю, так как все время Теорема об изменении кинетического момента в теоретической механике. Формула (36) принимает следующий окончательный вид:

Теорема об изменении кинетического момента в теоретической механике

где Теорема об изменении кинетического момента в теоретической механике.

Величина Теорема об изменении кинетического момента в теоретической механике является кинетическим моментом системы относительно центра масс для относительного движения относительно системы координат, движущейся поступательно вместе с центром масс, т. е. системы координат Теорема об изменении кинетического момента в теоретической механике.

Формула (37) показывает, что кинетический момент абсолютного движения системы относительно неподвижной точки Теорема об изменении кинетического момента в теоретической механике равен векторной сумме кинетического момента центра масс относительно той же точки, если бы в центре масс была сосредоточена вся масса системы, и кинетического момента системы относительно центра масс для относительного движения системы по отношению к подвижной системе координат, движущейся поступательно вместе с центром масс.

Теорема об изменении кинетического момента системы в относительном движении по отношению к центру масс. Для абсолютного движения системы и неподвижной точки Теорема об изменении кинетического момента в теоретической механике теорема об изменении кинетического момента имеет вид

Теорема об изменении кинетического момента в теоретической механике

Подставляя сюда значения Теорема об изменении кинетического момента в теоретической механике и Теорема об изменении кинетического момента в теоретической механике по формуле (37) и производя дифференцирование и группировку членов, получаем

Теорема об изменении кинетического момента в теоретической механике

Перенося из правой части в левую первое слагаемое и учитывая, что

Теорема об изменении кинетического момента в теоретической механике

как векторное произведение параллельных векторов, после объединения слагаемых имеем

Теорема об изменении кинетического момента в теоретической механике

В этой формуле выражение в квадратных скобках равно нулю на основании теоремы о движении центра масс системы (18) и, следовательно, формула примет вид

Теорема об изменении кинетического момента в теоретической механике

или

Теорема об изменении кинетического момента в теоретической механике

где Теорема об изменении кинетического момента в теоретической механике является главным моментом всех внешних сил относительно центра масс.

Формула (38) и выражает рассматриваемую теорему об изменении кинетического момента системы относительно центра масс для относительного движения системы по отношению к системе координат, движущейся поступательно с центром масс; она формулируется так же, как если бы центр масс был неподвижной точкой.

Эту теорему применяют для изучения вращательной части плоского движения и движения свободного твердого тела вокруг центра масс.

Дифференциальные уравнения плоского движения твердого тела

Используя теоремы о движении центра масс и изменении кинетического момента системы относительно центра масс для относительного движения системы по отношению к системе координат, движущейся поступательно с центром масс, получим дифференциальные уравнения плоского движения твердого тела.

Теорема об изменении кинетического момента в теоретической механике

Рис. 57

В плоскости движения центра масс тела, совершающего плоское движение, выберем неподвижную систему координат Теорема об изменении кинетического момента в теоретической механике, относительно которой рассматривается движение, и движущуюся поступательно вместе с центром масс систему Теорема об изменении кинетического момента в теоретической механике (рис. 57).  Пусть Теорема об изменении кинетического момента в теоретической механике и Теорема об изменении кинетического момента в теоретической механике — координаты центра масс тела относительно неподвижной системы координат. Тогда по теореме о движении центра масс получим два следующих дифференциальных уравнения плоского движения твердого тела:

Теорема об изменении кинетического момента в теоретической механике

где Теорема об изменении кинетического момента в теоретической механике — масса тела.

Третье дифференциальное уравнение плоского движения твердого тела получим из теоремы об изменении кинетического момента в относительном движении по отношению к центру масс (38) в проекции на подвижную ось Теорема об изменении кинетического момента в теоретической механике:

Теорема об изменении кинетического момента в теоретической механике

Плоское движение твердого тела можно считать состоящим из поступательного движения вместе с центром масс Теорема об изменении кинетического момента в теоретической механике и вращения вокруг подвижной оси Теорема об изменении кинетического момента в теоретической механике. Для случая вращения вокруг оси кинетический момент относительно этой оси вычисляется по формуле

Теорема об изменении кинетического момента в теоретической механике

где Теорема об изменении кинетического момента в теоретической механике — угловая скорость; Теорема об изменении кинетического момента в теоретической механике — момент инерции тела относительно оси Теорема об изменении кинетического момента в теоретической механике.

Так как Теорема об изменении кинетического момента в теоретической механике является величиной постоянной, то после подстановки Теорема об изменении кинетического момента в теоретической механике в теорему об изменении’ кинетического момента в относительном движении получим

Теорема об изменении кинетического момента в теоретической механике

Если ввести угол поворота Теорема об изменении кинетического момента в теоретической механике вокруг подвижной оси Теорема об изменении кинетического момента в теоретической механике, то получим следующее дифференциальное уравнение:

Теорема об изменении кинетического момента в теоретической механике

Таким образом, для твердого тела, совершающего плоское движение и, следовательно, имеющего три степени свободы, соответственно получим следующие три дифференциальных уравнения:

Теорема об изменении кинетического момента в теоретической механике

С помощью этих уравнений можно решать две основные задачи: по заданному плоскому движению твердого тела находить действующие на тело внешние силы и по заданным внешним силам и начальным условиям определять его движение. При решении этих задач должны быть заданы масса тела Теорема об изменении кинетического момента в теоретической механике и его момент инерции.

  • Заказать решение задач по теоретической механике

Теорема Резаля

Теореме об изменении кинетического момента системы можно дать следующее кинематическое истолкование. Из кинематики точки известно, что скорость точки можно рассматривать как скорость конца радиуса-вектора, следящего за движущейся точкой, или как скорость изменения самого радиуса-вектора, если он проведен в движущуюся точку из какой-либо неподвижной точки (рис. 58). Траектория движущейся точки при этом является годографом радиуса-вектора г, а скорость точки направлена по касательной к этому годографу и равна первой производной по времени от радиуса-вектора. Аналогично этому, и производную по времени от кинетического момента можно рассматривать как своеобразную скорость конца этого вектора при движении по годографу кинетического момента (рис. 59). Эта скорость не является обычной скоростью точки, так как кинетический момент имеет иную размерность, чем радиус-вектор. Это есть скорость изменения вектора кинетического момента.

Таким образом, если обозначить через Теорема об изменении кинетического момента в теоретической механике скорость конца кинетического момента, т. е. Теорема об изменении кинетического момента в теоретической механике, то теорему об изменении кинетического момента системы (24) можно представить в новой форме — в виде так называемой теоремы Резаля:

Теорема об изменении кинетического момента в теоретической механике

Теорему Резаля можно сформулировать так: при движении механический системы скорость точки, совпадающей с концом вектора кинетического момента при движении по годографу этого вектора, равна по величине и параллельна по направлению главному моменту всех внешних сил системы. Точка, относительно которой вычисляются кинетический момент системы и главный момент внешних сил, одна и та же.

Теорема об изменении кинетического момента в теоретической механике

Рис. 58

Теорема об изменении кинетического момента в теоретической механике

Рис. 59

В форме теоремы Резаля может быть сформулирована и теорема об изменении кинетического момента в относительном движении по отношению к центру масс.

Теорема Резаля особенно удобна для приближенного исследования движения быстровращающихся гироскопов.

Аналогично и теорему об изменении количества движения для системы можно сформулировать в форме теоремы Резаля для количества движения: при движении механической системы скорость точки, совпадающей с концом вектора количества движения при движении по его годографу, равна по величине и параллельна по направлению главному вектору всех внешних сил, действующих на систему.

  • Теорема об изменении кинетической энергии
  • Потенциальное силовое поле
  • Закон сохранения механической энергии
  • Принцип Даламбера
  • Геометрия масс
  • Свойства внутренних сил системы 
  • Дифференциальное уравнение движения системы
  • Теоремы об изменении количества движения и о движении центра масс
  1. Кинетический момент твёрдого тела относительно оси вращения.

Главный момент
количеств движения вращающегося тела
относительно неподвижной оси вращения
равен произведению момента инерции
тела относительно оси вращения на
проекцию угловой скорости вращения
тела на ось вращения.

Пусть твёрдое тело
вращается вокруг неподвижной оси Oz
с угловой скоростью
.
Определи главный момент количеств
движения этого тела относительно оси
Oz.
Согласно определению

(10)

Проекция скорости
точки

тела на касательную к траектории её
движения

а момент количества
движения относительно оси Oz

где

.
Подставив

в (10), получим

Где

– момент инерции тела относительно оси
вращения
.
Окончательно имеем:

Знак

– главного момента количеств движения
твёрдого тела относительно оси вращения
– определяется знаком проекции угловой
скорости

  1. Дифференциальные уравнения вращения тела вокруг неподвижной оси.

В случае вращения
вокруг неподвижной оси тело имеет одну
степень свободы. По теореме об изменении
главного момента количеств движения
мех. системы относительно оси вращения
Oz

Где для твёрдого
тела

.
Тогда

Это выражение
называется дифференциальным уравнением
вращения твёрдого тела вокруг неподвижной
оси. Его можно записать в виде

или

Начальные условия
для случая вращения твёрдого тела вокруг
неподвижной оси следующие:

  1. Движение точки под действием центральной силы, теорема площадей.

Рассмотрим движение
точки М
массой m
под действием силы

,
линия действия которой проходит через
центр О во всё время движения точки М.
Такую силу называют центральной.

Траектория
материальной точки, движущейся под
действием центральной силы, является
плоской привой, лежащей в плоскости,
проходящей через центр силы.

Согласно определению
центральной силы, момент силы

относительно
точки О

и из

следует,
что

или

В проекциях:

Умножая первое на
x,
второе на у,
третье на z
и складывая полученные выражения,
получаем

Т.е. координаты
точки М(x,y,z)
удовлетворяют уравнению плоскости,
проходящей через начала координат.

Теорема площадей.

Запишем выражение
для момента количества движения
материальной точки

,
используя формулу

для
секторной скорости

Преобразуем

или

Записанную в таком
виде теорему об изменении момента
количества движения материальной точки
называют теоремой
площадей.

  1. Кинетический момент системы материальных точек при сложном движении.

Главный момент
количеств движения механической системы
относительно неподвижного центра О для
абсолютного движения системы равен
векторной сумме момента вектора
количество абсолютного движения системы
(приложенного в центре масс) относительно
того же центра, и главного момента
количеств движения системы относительно
центра масс для относительного движения
системы по отношению к центру масс

.

(11)

В проекции на
ось OZ:

Введем подвижную
систему координат CXYZ,
которая двигается поступательно по
отношению к инерциальной системе отсчета
Оxyz
и начало которой связано с центром масс
С системы. Подвижную СК CXYZ
называют кенинговой
системой координат.
продифференцируем
по времени выражение

Тогда

Согласно формуле
Бура

Но при поступательном
движении системы CXYZ

Главный момент
кол-ва движения мех. системы относительно
неподвижного центра О для абсолютного
движения системы относительно неподвижной
(инерциальной) системы координат Oxyz
равен

Подставляя сюда
выражения для

и

Здесь

так как радиус-вектор центра масс
относительно центра масс

,
а следовательно

Т.е. количество
движения системы в её движении относительно
центра масс равно нулю.

Таким образом:

(11)

Где

– главный момент количеств движения
мех. системы относительно центра масс
для относительного движения системы
по отношению к центру масс (по отношению
к СК CXYZ,
движущейся поступательно вместе с
центром масс)

В проекции на ось
Oz
(CZ)
формула (11) принимает вид

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Кинетический момент системы относительно центра и относительно оси. Кинетический момент вращающегося твердого тела относительно оси вращения

Кинетическим моментом системы относительно какого-либо центра Кинетический момент системы относительно центра и относительно оси называется главный момент количеств движения системы относительно этого центра, т. е. вектор Кинетический момент системы относительно центра и относительно оси, равный геометрической сумме векторов Кинетический момент системы относительно центра и относительно оси моментов количеств движения Кинетический момент системы относительно центра и относительно оси всех точек системы относительно этого центра:

Кинетический момент системы относительно центра и относительно оси

Кинетическим моментом системы относительно какой-либо оси называется главный момент Кинетический момент системы относительно центра и относительно оси количеств движения системы относительно этой оси, равный алгебраической сумме моментов Кинетический момент системы относительно центра и относительно оси количеств движения Кинетический момент системы относительно центра и относительно оси всех точек системы относительно этой оси:

Кинетический момент системы относительно центра и относительно оси

Так же как и главные моменты сил относительно центра и оси, проходящей через этот центр (стр. 115), кинетический момент Кинетический момент системы относительно центра и относительно оси системы относительно какого-либо центра Кинетический момент системы относительно центра и относительно оси и кинетический момент Кинетический момент системы относительно центра и относительно оси этой системы относительно оси Кинетический момент системы относительно центра и относительно оси, проходящей через этот центр, связаны между собой зависимостью:

Кинетический момент системы относительно центра и относительно оси
Кинетический момент системы относительно центра и относительно оси

Проекция кинетического момента системы относительно какого-либо центра на любую ось, проходящую через этот центр, равна кинетическому моменту данной системы относительно этой оси.

Установим теперь формулу для вычисления кинетического момента в особо важном для практики случае. Пусть какое-либо твердое тело (рис. 195) вращается вокруг неподвижной оси Кинетический момент системы относительно центра и относительно оси с угловой скоростью Кинетический момент системы относительно центра и относительно оси. Будем рассматривать это тело как неизменяемую систему, состоящую из множества материальных точек.

Найдем кинетический момент Кинетический момент системы относительно центра и относительно оси этой системы относительно оси вращения Кинетический момент системы относительно центра и относительно оси. По формуле (175)

Кинетический момент системы относительно центра и относительно оси

Отметим на рис. 195 вектор Кинетический момент системы относительно центра и относительно оси количества движения произвольной точки Кинетический момент системы относительно центра и относительно оси тела и найдем его момент Кинетический момент системы относительно центра и относительно оси относительно оси Кинетический момент системы относительно центра и относительно оси.

Так как все точки вращающегося тела движутся в плоскостях, перпендикулярных к оси вращения, и плечо вектора Кинетический момент системы относительно центра и относительно оси относительно этой оси равно расстоянию Кинетический момент системы относительно центра и относительно оси соответствующей точки до оси вращения, то

Кинетический момент системы относительно центра и относительно оси

Различные точки тела имеют разную массу Кинетический момент системы относительно центра и относительно оси и находятся на разном расстоянии Кинетический момент системы относительно центра и относительно оси от оси, но угловая скорость Кинетический момент системы относительно центра и относительно оси в каждый момент у них одинаковая.

Следовательно,

Кинетический момент системы относительно центра и относительно оси

где

Кинетический момент системы относительно центра и относительно оси

есть согласно формуле (139) момент инерции Кинетический момент системы относительно центра и относительно оси тела относительно оси вращения.

Таким образом, мы получаем:

Кинетический момент системы относительно центра и относительно оси

Кинетический момент вращающегося твердого тела относительно его оси вращения равен произведению момента инерции тела относительно той же оси на угловую скорость тела.

Эта теория взята с полного курса лекций на странице решения задач с подробными примерами по предмету теоретическая механика:

Теоретическая механика — задачи с решением и примерами

Возможно вам будут полезны эти дополнительные темы:

Макеты страниц

Кинетический момент твердого тела (общий случай)

Во многих случаях в качестве механической системы выступают твердое тело и система твердых тел.

В динамике твердого тела часто возникает необходимость во введении вспомогательной системы координатных осей, начало которой находится в центре масс тела и которые движутся, оставаясь все время параллельными самим себе (поступательно движутся вместе с центром масс). Такие оси называются осями Кёнига.

Рис. 32.

При вычислении кинетического момента твердое тело мысленно разбиваем на N малых частиц (материальных точек) и вводим две вспомогательные системы координат с началом в центре масс С — систему осей Кёнига и систему Cxyz, оси которой неизменно связаны с движущимся телом (как бы «вморожены» в тело) (рис. 32). Тогда Рис. 32 движение материальных точек тела относительно основной (неподвижной) системы координат Oxyz можем рассматривать как сложное движение, состоящее из переносного (движение осей Кёнига) и относительного (движение точек тела относительно осей Кёнига). Соответственно, скорости точек тела в выражении для кинетического момента будут являться абсолютными скоростями и вычисляться при помощи теоремы сложения скоростей по формулам

Здесь учтено, что переносное движение является поступательным, поэтому переносные скорости точек тела все одинаковы и равны скорости центра масс.

Подставим это выражение в формулу для определения кинетического момента системы (в данном случае — тела):

Первая сумма приводится к виду

и представляет собой момент относительно центра О количества движения тела , приложенного в центре масс тела. Вторая сумма определяет главный момент относительных количеств движения точек тела относительно того же центра О.

Введем в рассмотрение главный момент относительных количеств движения тела относительно центра масс

где — радиусы-векторы материальных точек тела, проведенные из центра масс, и покажем, что имеет место равенство . Для этого выразим абсолютные радиусы-векторы через радиус-вектор центра масс и относительные радиусы-векторы

и подставим в выражение для

Но первый член в полученной сумме равен нулю, так как равна нулю величина . Действительно, для этой величины последовательно можем написать:

так как сохраняет постоянное значение (равное нулю). Следовательно, имеет место равенство .

В результате для вычисления кинетического момента твердого тела относительно неподвижного центра О получаем следующую общую формулу:

Напомним, что в этой формуле М — масса тела, — радиус-вектор центра масс, проведенный из неподвижного центра О, — скорость центра масс, — кинетический момент тела в его относительном движении по отношению к осям Кёнига, вычисленный относительно центра масс.

Отметим частные случаи.

Тело движется поступательно. В этом случае относительное движение отсутствует — положение тела не изменяется относительно осей Кёнига. Относительные скорости частиц () равны нулю, вместе с ними равен нулю и относительный кинетический момент тела .

Следовательно, для определения кинетического момента остается только первый член в полученной общей формуле, т. е.

Так как формулу можно записать и в другом виде:

Из нее следует, что кинетический момент поступательно движущегося тела относительно некоторого неподвижного центра равен моменту относительно этого центра количества движения тела, приложенного в его центре масс. Правило сохраняется и при вычислении кинетических моментов тела относительно координатных осей .

Тело вращается вокруг неподвижной оси. В этом случае удобно действовать непосредственно, не прибегая к разложению движения на переносное и относительное.

Выберем моментный центр О на оси вращения тела, ось вращения совместим с осью неподвижной системы координат Oxyz (рис. 33). Выделим в теле частицу (материальную точку) с массой и радиусом-вектором . Тогда для скорости частицы можем записать

Рис. 33.

Здесь — орты осей Oxyz; — проекции вектора угловой скорости тела на эти оси; — координаты выделенной частицы.

В полученном выражении коэффициенты при ортах равны проекциям скорости частицы на соответствующие координатные оси. Следовательно, для проекций количества движения выделенной частицы будем иметь выражения

Для момента количества движения частицы относительно точки О с учетом полученных равенств получаем

Отсюда следуют формулы для моментов количества движения частицы относительно координатных осей

Суммируя соответствующие моменты для всех материальных точек тела, определяем проекции на оси Oxyz кинетического момента всего тела:

Из этих формул основное значение для дальнейшего имеет формула

определяющая проекцию кинетического момента вращающегося тела на направление оси вращения.

Сравнивая проекции кинетического момента тела с проекциями угловой скорости , видим, что векторы угловой скорости и кинетического момента вращающегося тела не направлены вдоль одной прямой (см. также рис. 33). Векторы и будут коллинеарными лишь в том случае, если выполняются равенства .

Вращающееся твердое тело (ротор), для которого выполняются условия (центр масс лежит на оси вращения) и (ось вращения является главной осью инерции), называется статически и динамически уравновешенным. Таковы, например, однородный круглый диск, однородный круглый цилиндр, однородный шар при их вращении вокруг одной из своих осей симметрии.

Иногда требуется знать проекции кинетического момента на оси , неизменно связанные с самим движущимся телом — . Вид формул для их вычисления сохраняется, только моменты инерции и угловую скорость следует задавать теперь в осях :

Пример. На круглой горизонтальной платформе массы и радиуса R стоит человек массы (рис. 34). Платформа и человек вначале неподвижны. Что будет происходить с платформой, если человек будет двигаться по ней с относительной скоростью по окружности радиуса . Трением в опорах пренебречь, платформу считать однородным круглым диском.

Рис. 34.

Решение. Выберем в качестве системы платформу вместе с находящимся на ней человеком, принимаемым за материальную точку М. Внешними силами будут вес платформы , вес человека , реакции подпятника А и подшипника В. Момент каждой из этих сил относительно оси вращения платформы (оси z) равен нулю, поэтому равен нулю и главный момент внешних сил относительно этой оси. Следовательно, кинетический момент системы относительно оси z остается при движении постоянным, равным своему начальному значению

В начале движения платформа и человек неподвижны, поэтому , и это равенство принимает вид

Если человек будет перемещаться по платформе с некоторой абсолютной скоростью v, то его количество движения имеет относительно оси момент

Но кинетический момент всей системы равен нулю, поэтому платформа начнет вращаться, а ее кинетический момент относительно оси вращения будет равным и противоположным по знаку моменту количества движения человека .

Для определения угловой скорости платформы составим выражение для кинетического момента системы относительно оси :

Так как платформа вращается, движение человека (точки М) будет сложным движением. По теореме сложения скоростей для абсолютной скорости v получаем:

Условие сохранения кинетического момента теперь запишется так:

Отсюда находим

В заключение заметим, что теорема об изменении кинетического момента выполняется только по отношению к неподвижному центру и неподвижным координатным осям. Однако существует единственная подвижная точка, относительно которой теорема продолжает оставаться справедливой. Такой точкой является центр масс (системы или тела). Теорема сохраняется и по отношению к осям Кенига. Доказательство этих положений мы опускаем.

1

Оглавление

  • Предисловие
  • Введение в динамику
  • Динамика точки
  • Две основные задачи динамики точки
  • Дифференциальные уравнения движения материальной точки
  • Способы решения основных задач динамики точки
  • Лекция 12. Способы интегрирования дифференциального уравнения прямолинейного движения материальной точки
  • Дифференциальное уравнение и начальные условия прямолинейного движения
  • Определение закона движения точки под действием силы, зависящей только от времени
  • Определение закона движения точки под действием силы, зависящей только от положения
  • О нахождении закона движения при постоянной силе и силе, зависящей только от скорости
  • Лекция 13. Колебательные движения материальной точки
  • Свободные колебания
  • Вынужденные колебания
  • Явление резонанса
  • Влияние сопротивления на свободные и вынужденные колебания
  • Динамика системы
  • Механическая система
  • Масса и центр масс системы
  • Момент инерции относительно оси
  • Моменты инерции относительно координатных осей
  • Моменты инерции твердого тела
  • Осевые моменты инердии некоторых твердых тел
  • Радиус инерции
  • Главные оси инерции
  • Классификация сил, действующих на точки системы
  • Свойства внутренних сил
  • Дифференциальные уравнения движения механической системы
  • Теорема о движении центра масс
  • Законы сохранения движения дентра масс
  • Общие теоремы динамики
  • Основные динамические величины механической системы
  • Теорема об изменении количества движения
  • Законы сохранения количества движения
  • О вычислении количества движения
  • Интегральная форма теоремы об изменении количества движения
  • Лекция 16. Теорема об изменении кинетического момента
  • Кинетический момент
  • Теорема об изменении кинетического момента
  • Законы сохранения кинетического момента
  • Кинетический момент твердого тела (общий случай)
  • Дифференциальные уравнения движения твердого тела
  • Физический маятник и его малые колебания
  • Лекция 17. Теорема об изменении кинетической энергии
  • Работа силы
  • Работа силы тяжести
  • Работа упругой силы пружины
  • Работа силы трения скольжения
  • Работа пары сил трения качения
  • Потенциальные силы
  • Вычисление потенциальной энергии
  • Теорема об изменении кинетической энергии
  • Вычисление кинетической энергии твердого тела
  • О решении задач при помощи теоремы об изменении кинетической энергии
  • Общие принципы механики
  • Принцип Даламбера для материальной точки
  • Принцип Даламбера для механической системы
  • Определение главного вектора и главного момента сил инерции твердого тела
  • Тело движется поступательно с ускорением
  • Тело совершает вращательное движение
  • Тело совершает плоскопараллельное движение
  • Лекция 19. Принцип возможных перемещений
  • Возможные перемещения
  • Уравнения связей. Классификация связей по виду их уравнений
  • Связи идеальные и неидеальные
  • Принцип возможных перемещений
  • Применение принципа возможных перемещений
  • Лекция 20. Принцип Даламбера-Лагранжа и общее уравнение динамики. Уравнения движения механической системы в обобщенных координатах
  • Принцип Даламбера-Лагранжа
  • Общее уравнение динамики
  • Обобщенные координаты и обобщенные силы
  • Уравнения движения механической системы в обобщенных координатах
  • Рекомендуемая литература

Для кинематического описания процесса вращения твердого тела нужно ввести такие понятия как угловое перемещение Δφ, угловое ускорение ε и угловая скорость ω:

ω=∆φ∆t, (∆t→0),ε=∆φ∆t, (∆t→0).

Углы выражаются в радианах. За положительное направление вращения принимается направление против часовой стрелки.

Когда твердое тело вращается относительно неподвижной оси, все точки этого тела перемещаются с одинаковыми угловыми скоростями и ускорениями.

Вращение твердого тела

Рисунок 1. Вращение диска относительно оси, проходящей через его центр O.

Если угловое перемещение Δφ мало, то модуль вектора линейного перемещения ∆s→ некоторого элемента массы Δm вращающегося твердого тела можно выразить соотношением:

∆s=r∆ϕ,

в котором r – модуль радиус-вектора r→.

Между модулями угловой и линейной скоростей можно установить связь посредством равенства

v=rω.

Модули линейного и углового ускорения также взаимосвязаны:

a=aτ=rε.

Векторы v→ и a→=aτ→ направлены по касательной к окружности радиуса r.

Также нам необходимо учесть возникновение нормального или центростремительного ускорения, которое всегда возникает при движении тел по окружности.

Определение 1

Модуль ускорения выражается формулой:

an=v2r=ω2r.

Если разделить вращающееся тело на небольшие фрагменты Δmi, обозначить расстояние до оси вращения через ri, а модули линейных скоростей через vi, то запись формулы кинестетической энергии вращающегося тела будет иметь вид:

Ek=∑iνmvi22=∑i∆m(riω)22=ω22∑i∆miri2.

Определение 2

Физическая величина ∑i∆miri2 носит название момента инерции I тела относительно оси вращения. Она зависит от распределения масс вращающегося тела относительно оси вращения:

I=∑i∆miri2.

В пределе при Δm→0 эта сумма переходит в интеграл. Единица измерения момента инерции в СИ – килограммметр в квадрате (кг·м2). Таким образом, кинетическую энергию твердого тела, вращающегося относительно неподвижной оси, можно представить в виде:

Ek=Iω22.

В отличие от выражения, которое мы использовали для описания кинестетической энергии поступательно движущегося тела mv22, вместо массы m в формулу входит момент инерции I. Также мы принимаем во внимание вместо линейной скорости v угловую скорость ω.

Если для динамики поступательного движения основную роль играет масса тела, то в динамике вращательного движения имеет значение момент инерции. Но если масса – это свойство рассматриваемого твердого тела, которое не зависит от скорости движения и других факторов, то момент инерции зависит от того, вокруг какой оси вращается тело. Для одного и того же тела момент инерции будет определяться различными осями вращения.

В большинстве задач считается, что ось вращения твердого тела проходит через центр его массы.

Положение xC, yC центра масс для простого случая системы из двух частиц с массами m1 и m2, расположенными в плоскости XY в точках с координатами x1, y1 и x2, y2 определяется выражениями:

xC=m1x1+m2x2m1+m2, yC=m1y1+m2y2m1+m2.

Вращение твердого тела

Рисунок 2. Центр масс C системы из двух частиц.

В векторной форме это соотношение принимает вид:

rC→=m1r1→+m2r2→m1+m2.

Аналогично, для системы из многих частиц радиус-вектор rC→ центра масс определяется выражением

rC→=∑miri→∑mi.

Если мы имеем дело с твердым телом, состоящим из одной части, то в приведенном выражении суммы для rC→ необходимо заменить интегралами.

Центр масс в однородном поле тяготения совпадает с центром тяжести. Это значит, что если мы возьмем тело сложной формы и подвесим его за центр масс, то в однородном поле тяготения это тело будет находиться в равновесии. Отсюда следует способ определения центра масс сложного тела на практике: его необходимо последовательно подвесить за несколько точек, одновременно отмечая по отвесу вертикальные линии.

Вращение твердого тела

Рисунок 3. Определение положения центра масс C тела сложной формы. A1, A2, A3 точки подвеса.

На рисунке мы видим тело, которое подвешено за центр масс. Оно находится в состоянии безразличного равновесия. В однородном поле тяготения равнодействующая сил тяжести приложена к центру масс.

Мы можем представить любое движение твердого тела как сумму двух движений. Первое поступательное, которое производится со скоростью центра масс тела. Второе – это вращение относительно оси, которая проходит через центр масс.

Пример 1

Предположим. Что у нас есть колесо, которое катится по горизонтальной поверхности без проскальзывания. Все точки колеса во время движения перемещаются параллельно одной плоскости. Такое движение мы можем обозначить как плоское.

Теорема о движении центра масс

Определение 3

Кинестетическая энергия вращающегося твердого тела при плоском движении будет равна сумме кинетической энергии поступательного движения и кинетической энергии вращения относительно оси, которая проведена через центр масс и располагается перпендикулярно плоскостям, в которых движутся все точки тела:

Ek=mvC22+ICω22,

где m – полная масса тела, IC – момент инерции тела относительно оси, проходящей через центр масс.

Теорема о движении центра масс

Рисунок 4. Качение колеса как сумма поступательного движения со скоростью vC→ и вращения с угловой скоростью ω=vCR относительно оси O, проходящей через центр масс.

В механике используется теорема о движении центра масс.

Теорема 1

Любое тело или несколько взаимодействующих тел, которые представляют собой единую систему, обладают центром масс. Этот центр масс под воздействием внешних сил перемещается в пространстве как материальная точка, в которой сосредоточена вся масса системы.

На рисунке мы изобразили движение твердого тела, на которое действуют силы тяжести. Центр масс тела движется по траектории, которая близка к параболе, тогда как траектория остальных точек тела является более сложной.

Теорема о движении центра масс

Рисунок 5. Движение твердого тела под действием силы тяжести.

Теорема Штейнера о параллельном переносе оси вращения

Рассмотрим случай, когда твердое тело движется вокруг некоторой неподвижной оси. Момент инерции этого тела инерции I можно выразить через момент инерции IC этого тела относительно оси, проходящей через центр масс тела и параллельной первой.

Теорема Штейнера о параллельном переносе оси вращения

Рисунок 6. К доказательству теоремы о параллельном переносе оси вращения.

Пример 2

Для примера возьмем твердое тело, форма которого произвольна. Обозначим центр масс С. Выберем систему координат ХУ с началом координат 0. Совместим центр масс и начало координат.

Одна из осей проходит через центр масс С. Вторая ось пересекает произвольно выбранную точку Р, которая расположена на расстоянии d от начала координат. Выделим некоторый малый элемент массы данного твердого тела Δmi.

По определению момента инерции:

IC=∑∆mi(xi2+yi2),IP=∑mi(xi-a)2+yi-b2

Выражение для IP можно переписать в виде:

IP=∑∆mi(xi2+yi2)+∑∆mi(a2+b2)-2a∑∆mixi-2b∑∆miyi.

Два последних члена уравнения обращаются в нуль, так как начало координат в нашем случае совпадает с центром масс тела.

Так мы пришли к формуле теоремы Штейнера о параллельном переносе оси вращения.

Теорема 2

Для тела, которое вращается относительно произвольной неподвижной оси, момент инерции, согласно теореме Штейнера, равен сумме момента инерции этого тела относительно параллельной ей оси, проходящей через центр масс тела, и произведения массы тела на квадрат расстояния между осями.

IP=IC+md2,

где m – полная масса тела.

Теорема Штейнера о параллельном переносе оси вращения

Рисунок 7. Модель момента инерции.

На рисунке ниже изображены однородные твердые тела различной формы и указаны моменты инерции этих тел относительно оси, проходящей через центр масс.

Теорема Штейнера о параллельном переносе оси вращения

Рисунок 8. Моменты инерции IC некоторых однородных твердых тел.

Основное уравнение динамики вращательного движения твердого тела

В тех случаях, когда мы имеем дело с твердым телом, которое вращается относительно неподвижной оси, мы можем обобщить второй закон Ньютона. На рисунке ниже мы изобразили твердое тело произвольной формы, вращающееся относительно некоторой оси, проходящей через точку О. Ось вращения расположена перпендикулярно плоскости рисунка.

Δmi – это произвольный малый элемент массы, на который оказывают воздействие внешние и внутренние силы. Равнодействующая всех сил есть Fi→. Ее можно разложить на две составляющие: касательную составляющую Fiτ→ и радиальную Fir→. Радиальная составляющая Fir→ создает центростремительное ускорение an.

Основное уравнение динамики вращательного движения твердого тела

Рисунок 9. Касательная Fiτ→ и радиальная Fir→ составляющие силы Fi→ действующей на элемент Δmi твердого тела.

Касательная составляющая Fiτ→ вызывает тангенциальное ускорение aiτ→ массы Δmi. Второй закон Ньютона, записанный в скалярной форме, дает

∆miaiτ=Fiτsin θ или ∆miriε=Fisin θ,

где ε=aiτri – угловое ускорение всех точек твердого тела.

Если обе части написанного выше уравнения умножить на ri, то мы получим:

∆miri2ε=Firisin θ=Fili=Mi.

Здесь li – плечо силы, Fi,→Mi – момент силы.

Теперь нужно аналогичные соотношения записать для всех элементов массы Δmi вращающегося твердого тела, а затем просуммировать левые и правые части. Это дает:

∑∆miri2ε=∑Mi.

Стоящая в правой части сумма моментов сил, действующих на различные точки твердого тела, состоит из суммы моментов всех внешних сил и суммы моментов всех внутренних сил.

∑M=∑Miвнешн+∑Miвнутр.

Но сумма моментов всех внутренних сил согласно третьему закону Ньютона равна нулю, поэтому в правой части остается только сумма моментов всех внешних сил, которые мы будем обозначать через M. Так мы получили основное уравнение динамики вращательного движения твердого тела.

Определение 4

Угловое ускорение ε и момент сил M в этом уравнении являются величинами алгебраическими.

Iε=M

Обычно за положительное направление вращения принимают направление против часовой стрелки.

Возможна и векторная форма записи основного уравнения динамики вращательного движения, при которой величины ω→, ε→, M→ определяются как векторы, направленные по оси вращения.

Закон сохранения момента импульса

В разделе, посвященном поступательному движению тела, мы ввели понятие импульса тела p→. По аналогии с поступательным движением для вращательного движения мы вводим понятие момента импульса.

Определение 5

Момент импульса вращающегося тела – это физическая величина, которая равняется произведению момента инерции тела I на угловую скорость ω его вращения.

Для обозначения момента импульса используется латинская буква L. 

L=lω

Поскольку ε=∆ω∆t; ∆t→0, уравнение вращательного движения можно представить в виде:

M=Iε=I∆ω∆t или M∆t=I∆ω=∆L.

Получаем:

M=∆L∆t; (∆t→0).

Мы получили это уравнение для случая, когда I = const. Но оно будет справедливо и тогда, когда момент инерции тела будет изменяться в процессе движения.

Если суммарный момент M внешних сил, действующих на тело, равен нулю, то момент импульса L=Iω относительно данной оси сохраняется: ∆L=0, если M=0.

Определение 6

Следовательно,

L=lω=const.

Так мы пришли к закону сохранения момента импульса.

Пример 3

В качестве примера приведем рисунок, на котором изображено неупругое вращательное столкновение дисков, которые насажены на общую для них ось.

Закон сохранения момента импульса

Рисунок 10. Неупругое вращательное столкновение двух дисков. Закон сохранения момента импульса: I1ω1=(I1+I2)ω.

Мы имеем дело с замкнутой системой. Для любой замкнутой системы закон сохранения момента импульса будет справедливым. Он выполняется и в условиях экспериментов по механике, и в условиях космоса, когда планеты движутся по своим орбитам вокруг звезды.

Мы можем записать уравнение динамики вращательного движения как для неподвижной оси, так и для оси, которая перемещается равномерно или с ускорением. Вид уравнения не изменится и в том случае, если ось движется ускоренно. Для этого должно выполняться два условия: ось должна проходить через центр массы тела, а ее направление в пространстве остается неизменным.

Пример 4

Предположим, что у нас есть тело (шар или цилиндр), которое катится по наклонной плоскости с некоторым трением.

Закон сохранения момента импульса

Рисунок 11. Качение симметричного тела по наклонной плоскости.

Ось вращения O проходит через центр масс тела. Моменты силы тяжести mg→ и силы реакции N→ относительно оси O равны нулю. Момент M создает только сила трения: M = FтрR.

Уравнение вращательного движения:

ICε=ICaR=M=FтрR,

где ε – угловое ускорение катящегося тела, a – линейное ускорение его центра масс, IC – момент инерции относительно оси O, проходящей через центр масс.

Второй закон Ньютона для поступательного движения центра масс записывается в виде:

ma=mg sin α-Fтр.

Исключая из этих уравнений Fтр, получим окончательно:

α=mg sin θICR2+m.

Из этого выражения видно, что быстрее будет скатываться с наклонной плоскости тело, обладающее меньшим моментом инерции. Например, у шара IC=25mR2, а у сплошного однородного цилиндра IC=12mR2. Следовательно, шар будет скатываться быстрее цилиндра.

Добавить комментарий