Как найти кинетическую энергию формула с высотой

Как найти кинетическую энергию без скорости Кинетическую энергию можно найти, если у нас есть масса и высота, приравняв ее к потенциальной энергии. Сохранение механической энергии. Кинетическая энергия и потенциальная энергия. KE = PE = mgh.

Как найти кинетическую энергию, имея только массу и высоту

Содержание

  1. Как вычислить кинетическую энергию GCSE
  2. Как найти скорость по массе
  3. Нужна ли вам скорость, чтобы найти кинетическую энергию
  4. Как найти кинетическую энергию по высоте
  5. Как найти кинетическую энергию, если не известна скорость
  6. Как найти скорость, имея только массу и высоту
  7. Какова формула, если скорость неизвестна
  8. Как найти кинетическую энергию, имея только массу
  9. Какова кинетическая энергия, если скорость равна нулю
  10. Как найти V в кинетической энергии

Рекомендую! здесь: Что означает PL для клея в 2023?.

Как вычислить кинетическую энергию GCSE

Как найти кинетическую энергию, имея только массу и высоту Ek = ½ × m × v2 Ek = кинетическая энергия в джоулях (Дж) m = масса объекта в килограммах (кг) v = скорость объекта в метрах в секунду (м/с).

Рекомендую! Читайте здесь: Можете ли вы получить солнечное дыхание как гибрид в Demonfall в 2023.

Как найти скорость по массе

Нужна ли вам скорость для нахождения кинетической энергии “Чтобы вычислить скорость по массе, вы должны знать значение импульса, поскольку импульс – это то, что относится к скорости и массе вместе. Как только вы узнаете импульс, просто разделите его на массу, чтобы получить скорость.

Рекомендую! в материале: Как подключить Roborock e5 к приложению в 2023.

Нужна ли вам скорость, чтобы найти кинетическую энергию

Как найти кинетическую энергию без скорости Количество кинетической энергии в движущемся объекте напрямую зависит от его массы и скорости. Ее можно рассчитать с помощью уравнения: KE = 1 2 масса × скорость 2.

Рекомендую! Читайте тут: Как получить 100-процентную инвалидность по программе VA в 2023.

Как найти кинетическую энергию по высоте

Как найти кинетическую энергию, используя только массу и высоту.

Рекомендую! здесь: Что представляет собой новый тарифный план Magenta Max в 2023.

Как найти кинетическую энергию, если не известна скорость

Как найти кинетическую энергию без скорости.

Как найти скорость, имея только массу и высоту

Как найти кинетическую энергию, имея только массу и высоту “Здесь ускорение, вызванное силой тяжести, равно g. Из принципа преобразования потенциальная энергия становится равной кинетической энергии, когда объект достигает максимальной высоты. Таким образом, скорость объекта равна √2gh 2 g h, если масса и высота уже даны. “.

Какова формула, если скорость неизвестна

Как найти кинетическую энергию, если не известна скорость “Подставьте ускорение смещение и начальную скорость в это уравнение: (конечная скорость)^2 = (начальная скорость)^2 + 2_(ускорение)_(смещение).

Как найти кинетическую энергию, имея только массу

Как найти кинетическую энергию, если вы не знаете скорость “Кинетическая энергия прямо пропорциональна массе объекта и квадрату его скорости: K. E. = 1/2 m v2. Если масса имеет единицы килограмм, а скорость метр в секунду, то кинетическая энергия имеет единицы килограмм-метр в квадрате в секунду в квадрате. “.

Какова кинетическая энергия, если скорость равна нулю

Нужна ли вам скорость, чтобы найти кинетическую энергию “Поэтому, если скорость становится равной нулю, кинетическая энергия также уменьшается до нуля. “.

Как найти V в кинетической энергии

Нужна ли скорость для нахождения кинетической энергии Руководство пользователя Формула. Формула, используемая данным калькулятором для определения скорости движущегося объекта из кинетической энергии и скорости, следующая: v = (2 – KE / m)½ Символы. V = Скорость объекта. KE = Кинетическая энергия. M = масса объекта. Кинетическая энергия (KE) Масса (m) Скорость (v).

Все права защищены. Несанкционированное копирование, полностью или частично, строго запрещено.

Энергия – важнейшее понятие и термин в механике. Что такое энергия, и что она значит? Существует множество определений, и вот одно из них.

Что такое энергия?

Энергия в физике – это способность тела совершать работу. 

Кинетическая энергия

Что такое кинетическая энергия?

Рассмотрим тело, которое двигалось под действием каких-то сил, изменило свою скорость с v1→ до v2→. В этом случае силы, действующие на тело, совершили определенную работу A. 

Работа всех сил, действующих на тело, равна работе равнодействующей силы. 

Кинетическая энергия

Fр→=F1→+F2→

A=F1·s·cosα1+F2·s·cosα2=Fрcosα.

Как находить связь между изменением скорости тела и работой, совершенной действующими на тело силами. Для простоты будем считать, что на тело действует одна сила F→, направленная вдоль прямой линии. Под действием этой силы тело движется равноускоренно и прямолинейно. В этом случае векторы F→, v→, a→, s→ совпадают по направлению и их можно рассматривать как алгебраические величины. 

Работа силы F→ равна A=Fs. Перемещение тела выражается формулой s=v22-v122a. Отсюда:

A=Fs=F·v22-v122a=ma·v22-v122a

A=mv22-mv122=mv222-mv122.

Если вычислять, то работа, совершенная силой, пропорционально изменению квадрата скорости тела. 

Определение. Кинетическая энергия

Кинетическая энергия тела равна половине произведения массы тела на квадрат его скорости. Вот как выглядит формула кинетической энергии:

EK=mv22.

Кинетическая энергия – это энергия движения тела. При нулевой скорости она равна нулю.

Теорема о кинетической энергии

Вновь будем работать с рассмотренным примером и сформулируем теорему о кинетической энергии тела.

Теорема о кинетической энергии

Работа приложенной к телу силы равна изменению кинетической энергии тела. Данное утверждение справедливо и тогда, когда тело движется под действием изменяющейся по модулю и направлению силы. 

A=EK2-EK1.

Таким образом, кинетическая энергия тела массы m, движущегося со скоростью v→, будет измеряться (при измерении) и равна работе, которую сила должна совершить, чтобы разогнать тело до этой скорости.

A=mv22=EK.

Чтобы остановить тело, нужно совершить работу 

A=-mv22=-EK

Потенциальная энергия

Что будет означать или обозначать кинетическая энергия?

Кинетическая энергия – это энергия движения. Наряду с кинетической энергией есть еще такой вид энергии как потенциальная энергия, то есть энергия взаимодействия тел, которая будет вычисляться и зависеть от их положения. Кинетическая и потенциальная энергии рассматриваются параллельно.

Формула потенциальной энергии:

E пот = m * g * h

Например, тело поднято над поверхностью земли. Чем выше оно поднято, тем больше будет потенциал-я энергия. Когда тело движется и падает вниз под действием силы тяжести (притяжения), эта сила совершает работу. Причем работа силы тяжести определяется только вертикальным перемещением тела и не зависит от траектории.

Потенциальная энергия

Важно!

Вообще о потенциально энергии можно говорить только в контексте тех сил, работа которых не зависит от формы траектории тела. Такие силы называются консервативными.

Примеры консервативных сил: сила тяжести, сила упругости.

Когда тело движется вертикально вверх, сила тяжести совершает отрицательную работу. 

Рассмотрим вычисление на примере, когда шар переместился из точки с высотой h1 в точку с высотой h2. 

Потенциальная энергия

При этом сила тяжести совершила работу, равную 

A=-mg(h2-h1)=-(mgh2-mgh1).

Эта работа равна изменению величины mgh, взятому с противоположным знаком. 

Величина ЕП=mgh – потенциальна энергия в поле силы тяжести. На нулевом уровне (на земле) потенциальную энергию тела можно не рассчитывать: она равна нулю.

Определение. Потенциальная энергия

Потенциальная энергия – часть полной механической энергии системы, с нахождением в поле консервативных сил. Потенциальная энергия зависит от положения точек, составляющих систему. Механическая энергия – это сумма потенциальной и кинетической энергий, которые есть в компонентах механической системы.

Можно говорить о потенциальной энергии в поле силы тяжести, потенциальной энергии сжатой пружины (пружинной энергии) и т.д. 

Работа силы тяжести равна изменению потенциальной энергии, взятому с противоположным знаком.

A=-(EП2-EП1).

Ясно, что потенциальная энергия зависит от выбора нулевого уровня (начала координат оси OY). Подчеркнем, что физический смысл имеет изменение потенциальной энергии при перемещении тел друг относительно друга. При любом выборе нулевого уровня изменение потенциальной энергии будет одинаковым.

При расчете движения тел в поле гравитации Земли, но на значительных расстояниях от нее, во внимание нужно принимать закон всемирного тяготения (зависимость силы тяготения от расстояния до цента Земли). Приведем формулу, выражающую зависимость потенциальной энергии тела.

EП=-GmMr.

Здесь G – гравитационная постоянная, M – масса Земли.

Потенциальная энергия пружины

Представим, что в первом случае мы взяли пружину и удлинили ее на величину x. Во втором случае мы сначала удлинили пружину на 2x, а затем уменьшили на x. В обоих случаях пружина оказалась растянута на x, но это было сделано разными способами. 

При этом работа силы упругости при изменении длины пружины на x в обоих случаях была одинакова и равна

Aупр=-A=-kx22.

Величина Eупр=kx22 называется потенциальной энергией сжатой пружины. Она равна работе силы упругости при переходе из данного состояния тела в состояние с нулевой деформацией.

Если перед вами часто поднимается вопрос определения и характеристики энергии, как явления, вам стоит подумать о сохранении описанной выше информации.

Энергия является важнейшим понятием в механике. Данный термин определяет способность тела совершать работу. Универсальная количественная мера в физике характеризует движение и взаимодействие объектов. Она может быть двух типов: потенциальной и кинетической.

Потенциальная и кинетическая энергия

Потенциальной энергией называют энергию взаимодействия тел.

Определить потенциальную энергию тела можно, зная его массу, ускорение свободного падения и положение относительно земли. Формула для расчета имеет следующий вид:

E = m * g * h

В международной системе СИ потенциальная энергия обозначается буквой Е и измеряется в Дж (Джоуль).

В вышеуказанной формуле m является массой тела, h представляет собой высоту, а g – ускорением свободного падения, которое приблизительно равно 9,8 м/с2.

Величина потенциальной энергии определяется выбранной системой отсчета. Это связано с тем, что отсчет высоты можно выполнять не только относительно земной поверхности, но и от какой-то точки или определенного уровня.

Самолет

Источник: static-interneturok.cdnvideo.ru

Кинетической энергией называют энергию, которой обладает тело во время движения.

Кинетическая энергия служит для определения запаса энергии тела, обладающего определенной скоростью. Определить кинетическую энергию можно с помощью формулы:

(E=frac{mv^{2}}{2})

В международной системе СИ кинетическая энергия обозначается буквой Е и измеряется в Дж (Джоуль).

В уравнении m является массой тела, а v представляет собой его скорость.

Скорость тела определяется выбранной системой отсчета. Поэтому кинетическая энергия также зависит от того, каким образом рассчитывают характеристики системы, в которой движется тело.

Дельтаплан

Источник: spanishlove.ru

Представленное уравнение для расчета кинетической энергии справедливо в том случае, когда рассматривают скорости, намного меньшие, чем скорость света в вакуумной среде в 300 тысяч километров в секунду. Если скорость близка к световой, то расчеты необходимо производить с учетом теории относительности, созданной Эйнштейном.

Каким законам подчиняется, формулы

Потенциальная энергия характерна не только для тела, находящегося на определенной высоте. Несколько иначе выполняют расчет потенциальной энергии упруго деформированного тела. При деформации изменяется его форма и объем, при этом объекту передается определенный запас энергии. К примеру, если растянуть пружину или, напротив, сжать ее, то такие действия меняют расстояние, на которое удалены атомы и молекулы друг от друга. Таким образом, создается потенциальная энергия.

Схема1

Источник: static-interneturok.cdnvideo.ru

Расчет потенциальной энергии деформированного объекта выполняют с помощью уравнения:

(E=frac{k(Delta x)^{2}}{2})

k является жесткостью пружины, (Delta x) — это изменение длины пружины.

Схема 2

Источник: static-interneturok.cdnvideo.ru

Следует отметить, что значение потенциальной энергии пружины будет всегда положительным, так как формула содержит ее изменение в квадрате. Даже в случае, когда изменение будет иметь знак «-», потенциальная энергия в любом случае останется положительной.

Схема 3

Источник: static-interneturok.cdnvideo.ru

Говоря об энергии, следует учитывать, что объект обладает несколькими типами энергии одновременно. К примеру, летящий на большой высоте самолет имеет запас потенциальной энергии, так как удален от поверхности земли, и кинетической энергии из-за своей скорости движения.

Схема 4

Источник: static-interneturok.cdnvideo.ru

Ели принять земную поверхность за уровень нулевой энергии, то данное утверждение будет справедливо. В случае, когда рассматривают объект в других системах отсчета, его энергия будет отличаться.

Схема5

Источник: static-interneturok.cdnvideo.ru

Рассматривая качели, можно сказать, что они обладают запасом и кинетической, и потенциальной энергии. Когда конструкция максимально отклоняется от равновесного положения, энергия будет рассчитываться таким образом:

Еп = макс

Ек = 0, так как скорость имеет нулевое значение.

Схема 6

Источник: static-interneturok.cdnvideo.ru

В момент, когда качели пересекают точку равновесного положения, энергия будет распределена следующим образом:

Ек = макс

скорость качелей в этой точке будет максимальна;

Еп = мин

высота, на которой тело находится над землей, будет минимальной.

Схема 7

Источник: static-interneturok.cdnvideo.ru

При сложении двух видов энергии получают полную механическую энергию тела. Она включает потенциальную и кинетическую энергии.

Задачи по теме с подробными решениями

Задача 1

Самолет, масса которого составляет 50 тонн, пролетает на высоте 10 километров. Скорость транспортного средства равна 900 км/ч. Требуется рассчитать, какова полная механическая энергия самолета.

Задача 1

Источник: static-interneturok.cdnvideo.ru

Решение

Первым шагом является перевод искомых данных, согласно системе СИ. В таком случае масса самолета составит 50 000 кг, скорость – 250 м/с, а высота – 10 000 м.

Самолет обладает запасом полной энергии, которая включает и потенциальную, и кинетическую.

E = Eп + Ек

Eп = m * g * h

Ек = m * v2 / 2

Таким образом, полная энергия составит:

(E=mtimes gtimes htimes frac{mv^{2}}{2})

Если подставить в полученную формулу числовые значения величин из условия задачи, то получим полную энергию:

(E=6.5625times 10^{9}) Дж

Если записать ответ сокращенно, то он примет такой вид:

(Е = 6,5625) Гдж.

Ответ: в рассмотренной системе отсчета значение полной механической энергии самолета составит 6.5625 Гдж.

Однако, данную задачу можно решить, принимая за нулевой уровень отметку в 10 километров. Тогда транспортное средство будет характеризоваться лишь запасом кинетической энергии, а значение потенциальной энергии будет равно нулю.

Задача

Источник: static-interneturok.cdnvideo.ru

Задача 2

Пружину закрепили к стене и поместили на гладкую поверхность. На конце пружины зафиксировали тело. Растяжение пружины, которая обладает жесткостью в 400 Н/м, происходит при воздействии силы в 80 Н. Требуется рассчитать запас энергии в пружине.

Задача 2

Источник: static-interneturok.cdnvideo.ru

Решение

Согласно условию задачи, поверхность обладает гладкостью, что позволяет сделать вывод о нулевом значении силы трения. Таким образом, потери энергии исключены. Воздействуя на пружину, можно наблюдать ее деформацию. Весь запас энергии будет сосредоточен в ней. Найти данную величину можно по формуле:

(E=frac{k(Delta x)^{2}}{2})

Сила упругости равна произведению жесткости на изменение длины пружины:

(ktimes Delta x=F)

Деформацию пружины можно рассчитать таким образом:

(Delta x=frac{F}{k})

Используя последнее равенство, можно преобразовать формулу для расчета энергии:

(E=frac{k(frac{F}{k})^{2}}{2}=frac{kF^{2}}{2k^{2}}=frac{F^{2}}{2k})

Далее следует подставить числовые значения в полученное выражение:

(E=frac{80^{2}}{2times 400}=8) Дж

Ответ: запас энергии в пружине составляет 8 Дж.

Задача 3

Масса пули составляет 9 грамм. Ее выпустили из оружия вертикально в верхнем направлении. Скорость пули при этом составила 700 м/с. Требуется рассчитать ее кинетическую энергию.

Решение

Условия задачи удобно представить в виде рисунка.

Задача 3

Источник: izotovmi.chat.ru

Расчет нужно выполнить по формуле:

(E=frac{mv^{2}}{2})

Перед тем, как подставить в уравнение числовые значения, требуется перевести их в систему СИ. Тогда масса пули составит 0,009 кг. Выражение будет записано следующим образом:

(E=frac{0.009times 49times 10^{4}}{2}=2200) Дж

Ответ: запас кинетической энергии пули равен 2200 Дж.

Задача 4

Масса ракеты составляет 0,2 кг. Ее выпустили из орудия вертикально вверх. После этого ракета достигла высоты в 60 метров. Требуется рассчитать значение потенциальной энергии ракеты, характерной для этой отметки.

Задача 4

Источник: store.blender3d.com.ua

Решение

Условие задачи можно представить с помощью рисунка.

Решение задачи 4

Источник: izotovmi.chat.ru

Для того чтобы рассчитать потенциальную энергию, требуется воспользоваться формулой:

E = m * g * h

Далее необходимо подставить в выражение числовые значения:

Е = 0,2 * 9,8 * 60 = 118 Дж

Ответ: потенциальная энергия ракеты на заданной высоте составит 118 Дж.

Задача 5

Пружину растянули на 5 мм. Коэффициент ее жесткости составляет 10000 Н/м. Требуется вычислить, какова энергия пружины.

Решение

Следует представить условия задачи на рисунке.

Задача 5

Источник: izotovmi.chat.ru

Уравнение, с помощью которого можно рассчитать энергию пружины, имеет такой вид:

(E=frac{k(Delta x)^{2}}{2})

Далее необходимо привести к системе СИ расстояние, на которое растянули пружину. Оно составит 0,005 м.

После преобразований можно подставить числовые значения в искомую формулу:

(E=frac{10^{4}times 25times 10^{-6}}{2}=0.125) Дж

Ответ: энергия пружины составляет 0,125 Дж.

Пружина

Источник: ae01.alicdn.com

Знание основных формул для расчета кинетической, потенциальной и полной энергии тела позволит решить задачи любой сложности. Наиболее простым способом является выполнение последовательных действий, включая запись условий задачи, графическое изображение системы, представление формул для вычисления энергии, решение уравнения с помощью подстановки числовых значений. Важно отметить, что механическая энергия представляет собой сумму потенциальной и кинетической энергии.

Если в процессе поиска решений уравнений возникают трудности, всегда можно обратиться за помощью к сервису Феникс.Хелп.

Определение

Энергия – одна из ключевых категорий механики. В повседневной жизни мы чаще всего сталкиваемся с механической энергией.

Кинетическая и потенциальная энергия тела

Энергия представляет собой физическую величину, характеризующую способность тела к выполнению работы.

Механическая энергия может быть потенциальной и кинетической. В данной статье мы расскажем о каждом из этих видов, разберем примеры кинетической и потенциальной энергии.

Сумма этих двух видов энергий является постоянной величиной, известной как полная механическая энергия системы, находящаяся в поле сил консервативного типа:

[E_{К}+E_{П}=E_{M}]

При этом максимум:

[E_{м}=E_{k max }=E_{text {пmax }}=4 text { Дж }]

Кинетическая энергия

Каждое движущееся тело, наделено кинетической энергией. Когда объект пребывает в состоянии покоя этот показатель равен нулю. На него влияет масса тела (m) и скорость (v) перемещения.

Формула 1

Для вычисления кинетической энергии применяют формулу:

[E_{k}=A=frac{m v^{2}}{2}]

Кинетическая энергия (Ек) находится в прямой пропорциональной зависимости от массы и квадрата скорости тела.

Пример

Скорость тела, движущегося под воздействием определенных сил, изменилась с [vec{v}_{1}]  на [vec{v}_{2}]. Это говорит о том, что этими силами была совершена конкретная работа  A.

Работа комплекса сил, оказывающих воздействие на тело, равна по значению той работе, которую совершает равнодействующая сила.

Кинетическая энергия

[vec{F}_{p}=vec{F}_{1}+vec{F}_{2}]

[A=F_{1} cdot s cdot cos cos alpha_{1}+F_{2} cdot s cdot cos cos alpha_{2}]

Определим взаимозависимость увеличения или уменьшения скорости тела и работы, совершаемой силами, воздействующими на объект.

Представим, что тело движется под воздействием одной силы [vec{F}], направленной вдоль определенной прямой. Сила действует на тело таким образом, что его движение становится равноускоренным и прямолинейным.

Таким образом направление векторов [vec{F}, vec{v}, vec{a}, vec{s}] является одинаковым. Следовательно, эти значения можно представить в качестве алгебраических величин.

[A=F S]

Перемещение тела можно выразить формулой:

[S=frac{v_{2}^{2}-v_{1}^{2}}{2 a}]

Исходя из этого:

[begin{gathered}
A=F s cdot frac{v_{2}^{2}-v_{1}^{2}}{2 a}=m a cdot frac{v_{2}^{2}-v_{1}^{2}}{2 a} \
A=frac{m v_{2}^{2}-m v_{1}^{2}}{2}=frac{m v_{2}^{2}}{2}-frac{m v_{1}^{2}}{2}
end{gathered}]

Это подтверждает предположение, что работа, совершенная под воздействием силы, прямо пропорциональна изменения значения квадрата скорости движения тела.

Теорема об изменении кинетической энергии

Опираясь на ранее приведенный пример, сформулируем теорему об изменении кинетической энергии тела, совершающего движение.

Теорема

Работа, произведенная в результате воздействия силы на определенное тело, эквивалентна изменениям его кинетической энергии. Это утверждение абсолютно применимо и к ситуации, когда на движущееся тело оказывается действие силы, с изменяющимся направлением и модулем.

[A=E_{k 2}-E_{k 1}]

Исходя из этого можно резюмировать, что показатель кинетической энергии тела с определенной массой(m), совершающего движение со скоростью [vec{v}], соответствует значению работы, которую сила производит для разгона тела до данной скорости.

[A=frac{m v^{2}}{2}=E_{k}]

Остановка тела потребует совершения работы:

[A=frac{m v^{2}}{2}=-E_{k}]

Потенциальная энергия

Помимо кинетической энергии, которая представляет собой энергию движения существует потенциальная энергия. Она присуща телам, обладающим потенциалом к совершению работы, взаимодействию друг с другом. Поднятое над Землей тело обладает потенциалом к взаимодействию с гравитационными силами. Чем больше оно отдаляется от поверхности, тем сильнее возрастает потенциальная энергия. Если кинетическая энергия зависит от скорости и массы, потенциальная энергия обусловлена взаимным расположением объектов или их частей.

Во время падения тела, сила тяготения совершает работу, на которую влияет только начальное и конечное положение движущегося объекта. Форма траектории значения не имеет. Если она замкнутая, значение работы потенциальной силы будет равным нулю. Среди потенциальных сил можно выделить силу тяготения, упругости и др. Еще их называют консервативными. При упругой деформации тело наделяется энергией взаимодействия между его разными частями.

При перемещении тела вверх, работа силы тяжести будет иметь отрицательное значение.

Примеры

Подробно разберем пример с вертикальным перемещением шара из точки высота, которой обозначена [h_{1}] на отметку с высотой с [h_{2}].

Потенциальная энергия

Работа, совершенная силой тяжести равна отрицательному значению [m g h]:

[A=-m gleft(h_{2}-h_{1}right)=-left(m g h_{2}-m g h_{1}right)]

В следующем примере происходит перемещение тела по наклонной поверхности. Во время движения вниз, на него действует сила тяжести F равная mg. Работа, совершаемая этой силой равна:

[A=m g s cos cos alpha=m g h]

В данной формуле, h служит для обозначения высоты наклонной плоскости, S – модуля перемещения, равного длине этой плоскости.

Перемещение тела по наклонной поверхности

В следующем примере рассмотрим перемещение объекта из точки B в точку C по траектории любой формы. Тело движется по фрагментам наклонной плоскости, с разными высотами [h^{prime}, h^{prime prime}, h^{prime prime prime}] и т.д. Работа A представлена в виде суммы работ, совершаемой силой тяжести на каждом из участков пути.

[begin{aligned}
&A=m g h^{prime}+m g h^{prime prime} ldots+m g h^{n}=m gleft(h^{prime}+h^{prime} ldots+h^{n}right) = m gleft(h_{1}-h_{2}right)
end{aligned}]

[h_{1}] и [h_{2}] являются высотами относительно земной поверхности, на которых находятся точки B и C.

Перемещение объекта любой формы

Равенство демонстрирует нам отсутствие влияния траектории пути, по которому движется тело, на работу силы тяжести. Если объект перемещается вниз, значение работы, выполняемой силой тяжести будет положительным, в противном случае – отрицательным. Тогда равенство будет выглядеть следующим образом:

[A=-left(m g h_{2}-m g h_{1}right)]

На какой высоте кинетическая энергия равна потенциальной

Тело подброшено вверх со скоростью 10м/с. На какой высоте кинетическая энергия предмета будет равна потенциальной?

Определим показатель высоты исходя из того, что:

[frac{m v^{2}}{2}=m g h]

Это значит:

[h=frac{v^{2}}{4 g}=frac{(10 м / c)^{2}}{4 cdot 10 м / c^{2}}=2,5 м]

Как изменяются потенциальная и кинетическая энергия тела при падении груза на землю

Для того, чтобы узнать как изменяется кинетическая и потенциальная энергия при падении груза на земную поверхность, рассмотрим свободно падающий камень с высоты h. За счет падения груз набирает скорость v.

Соотношение этих величин при равноускоренном движении:

[frac{v^{2}}{2}=g h]

Каждую из сторон равенства нужно умножить на массу движущегося груза m:

[frac{m v^{2}}{2}=m g h]

Значения кинетической и потенциальной энергии падающего камня взаимозависимы. Последняя уменьшается пропорционально росту первой. Согласно закону о сохранении и превращении энергии, при отсутствии сил сопротивления, механическая энергия, которая является суммой потенциальной и кинетической, остается неизменной. При падении груза происходит переход потенциальной энергии в кинетическую, а после соприкосновения с землей во внутреннюю энергию тела. Температура тела при этом увеличивается.

Нет времени решать самому?

Наши эксперты помогут!

Как влияет скорость на кинетическую энергию и высота на потенциальную энергию

Если скорость движения вырастает вдвое, то кинетическая энергия увеличивается в 4 раза. График демонстрирует зависимость кинетической энергии от скорости. Потенциальная энергия увеличивается пропорционально росту высоты.

Потенциальная энергия пружины

Тело, деформированное в рамках упругой деформации, возвращается к исходному состоянию после удаления силы воздействия. В этот момент объект совершает работу. Упругим телом может служить пружина или резиновый жгут.

Упруго растянутая пружина обладает прямо пропорциональной энергией по отношению к коэффициенту ее жесткости (k) и квадрату значения ее абсолютной деформации [Delta chi].

Формула 2

Для определения потенциальной энергии пружины с упругим растяжением применяется формула:

[E_{п}=frac{k cdot Delta x^{2}}{2}]

От степени жесткости пружины зависит величина ее потенциальной энергии при равном растяжении. Значение [E_{text {п}}] возрастает в 2 раза, когда используется пружина или резинка с увеличенным вдвое коэффициентом жесткости. Сила растяжения влияет на рост потенциальной энергии вне зависимости от жесткости деформируемого объекта. При растяжении пружины в 2 раза энергия увеличивается в 4 раза.

Мысленно представим, две пружины. Одну удлинили на значение x. Вторую вначале растянули на [2 x], после чего сжали на x. И в первом и во втором случаях пружину удлинили на x, но к итоговому результату шли разными путями. Значение работы силы упругости при деформировании пружины 1 и 2 способом оказалось одинаковым:

[A_{упр}=-A=-frac{k x^{2}}{2}]

Потенциальная энергия сжатой пружины: [E_{y п p}=-frac{k x^{2}}{2}]

[E_{mathrm{ynp}}=-frac{k x^{2}}{2}] равна значению работы, совершаемой силой упругости во время перехода пружины из сжатого состояния к первоначальному виду.

Закон сохранения механической энергии


Закон сохранения механической энергии

4.2

Средняя оценка: 4.2

Всего получено оценок: 745.

4.2

Средняя оценка: 4.2

Всего получено оценок: 745.

Для всех известных на сегодня видов энергии (механическая, внутренняя, электромагнитная, ядерная и др.) выполняется фундаментальный закон сохранения и превращения энергии. Рассмотрим действие этого закона на примере механической энергии, в состав которой входят потенциальная и кинетическая энергии. Выясним, с помощью каких формул вычисляются разные виды механической энергии.

Как работа связана с энергией

Понятие энергии тесно связано с понятием работы. Механическая работа А — это физическая величина, равная произведению силы F, действующей на тело, на путь s, пройденный телом в направлении силы.

$ А = F * s $ (1)

Для совершения работы требуется нечто общее для всех случаев, что позволит оказать силовое воздействие на тело. Так было сформулировано понятие (определение) энергии: если тело или система тел, взаимодействующих между собой, способны совершить работу, то говорят, что они обладают энергией. Из этого определения также следует, что единица измерения энергии такая же, как у работы — джоуль.

Чем большей энергией обладает тело, тем большую работу оно способно совершить. То есть энергия это не что иное, как запас работы, которую может совершить тело, изменяя свое состояние.

Кинетическая энергия

Физическая величина, равная половине произведения массы тела m на квадрат его скорости v2, называется кинетической энергией тела Ek:

$ E_k = {m*v^2over 2} $ (2).

Тогда для работы A получим следующую формулу:

$ A = E_{k1} — E_{k0} $ (3),

где:

Eк0 — начальная кинетическая энергия тела;

Eк1 — конечная кинетическая энергия после действия силы, изменившей скорость тела.

Из формулы (3) следует, что работа силы, приложенной к телу, равна изменению кинетической энергии тела. Таким образом, любое движущееся тело обладает кинетической энергией.

Рис. 1. Примеры кинетической энергии

Потенциальная энергия

Потенциальная энергия — это энергия, которая зависит от взаимного расположения взаимодействующих тел (или частей одного тела). Одиночное тело, не взаимодействующее с другими телами, не может обладать потенциальной энергией. В состав механической энергии включают два вида потенциальной энергии: энергию тела, на которое воздействует сила земного притяжения и энергию упруго деформированного тела.

Сила тяжести и потенциальная энергия

По аналогии с кинетической энергией определим работу A, совершенную силой тяжести FТ по перемещению тела массой m с высоты h2 от поверхности Земли до высоты h1. При этом, если h2 > h1, то значит, тело переместилось сверху вниз. Считаем силу тяжести постоянной, независящей от высоты и равной m*g, где g = 9,8 м/с2 — ускорение свободного падения. Тогда, воспользовавшись формулой (1), получим:

$ A = m*g*(h_2 — h_1) $ (4)

Таким образом, работа силы тяжести по перемещению тела с высоты h2 на высоту h1 равна изменению величины m*g*h, которая называется потенциальной энергией тела Ep:

$ E_p = { m*g*h }$ (5).

Величина работы есть не что иное, как изменение потенциальной энергии тела, которую называют гравитационной, так как он обусловлена силой притяжения к Земле (от латинского gravitas — притяжение):

$ A = E_{p2} — E_{p1} $ (6).

где:

Ep1 — потенциальная энергия тела на высоте h1;

Ep2 — потенциальная энергия тела на высоте h2.

Рис. 2. Потенциальная энергия тела в поле силы тяжести.

В отличие от кинетической энергии, которая может быть только положительной, потенциальная энергия тела может быть как положительной, так и отрицательной. Тело массой m, находящееся на глубине h от поверхности земли, обладает отрицательной потенциальной энергией. :

$ E_p = − { m*g*h }$

Потенциальная энергия упруго деформированного тела

Примером этого вида потенциальной энергии может служить пружина, которая после деформации (сжатии или растяжения) приведет в движение прицепленный к ней груз, то есть совершит работу. Пользуясь формулой (1) и законом Гука для силы упругости, можно получить выражение для потенциальной энергии упруго деформированной пружины:

$ Ep = {k*x^2over 2} $ (7),

где: x величина деформации (сжатие или удлинение пружины), k — коэффициент жесткости пружины.

Закон сохранения механической энергии

Полная механическая энергия тела EM равна сумме потенциальной и кинетической энергий:

$ {E_м = E_p + Е_k} $ (8).

К середине XIX века физики разных стран на основании многочисленных исследований физических и химических процессов сформулировали закон сохранения и превращения энергии. В общем виде закон звучит так:

При любых физических взаимодействиях энергия не возникает и не исчезает, а только превращается из одной формы в другую.

Действие этого закона для механической энергии рассмотрим на классическом примере подброшенного вертикально вверх металлического шарика. При подъеме шарика его скорость убывает, так как на него действует сила земного тяготения. Согласно формулы (2) убывает и кинетическая энергия Ек. В то же время, с ростом высоты h растет потенциальная энергия Ep (см. формулу (5)). Воспользовавшись формулами (2), (4) и (5) можно получить, что в любой точке уменьшение величины Ек равно увеличению величины Ep. В момент прекращения движение вверх (в верхней точке подъема), вся кинетическая энергия полностью перейдет в потенциальную. При движении (падении) тела вниз происходит обратный процесс: потенциальная энергия тела Ep превращается в кинетическую Ек.

Приведенный пример иллюстрирует выполнение закона сохранения и превращения механической энергии, так как при подъеме уменьшение кинетической энергии полностью компенсируется ростом потенциальной (при падении — наоборот). Если потенциальная энергия у поверхности земли равна нулю, (т.к. h=0). то на любой высоте будет выполняться равенство:

$ {E_м = E_p + Е_k = {m*v_0^2over 2}} $ (9),

где: v0 — начальная скорость шарика.

Рис. 3. Сохранение механической энергии подброшенного шарика.

Для случая механической энергии закон сохранения можно сформулировать так: если между телами системы действуют исключительно силы упругости и силы тяготения, то сумма потенциальной и кинетической энергий остается постоянной, то есть механическая энергия сохраняется.

Если между телами кроме сил тяготения и упругости действуют силы трения, то механическая энергия не сохраняется. Часть механической энергии будет превращаться во внутреннею энергию тел, то есть перейдет в тепло. Общий закон сохранения энергии, конечно, остается в силе. Происходит только перераспределение части механической энергии в тепловую (внутреннею).

Заключение

Что мы узнали?

Итак, при изучении данной темы мы узнали что механическая энергия тела состоит из кинетической и потенциальной энергий. Энергия — это запас работы, которую может совершить тело, изменяя свое состояние. Закон сохранения энергии в механике утверждает, что энергия не возникает и не исчезает, а только превращается из одной формы (потенциальной энергии) в другую — кинетическую. Механическая энергия сохраняется в случае отсутствия силы трения.

Тест по теме

Доска почёта

Доска почёта

Чтобы попасть сюда – пройдите тест.

  • Эльмас Аметова

    10/10

  • Артур Ленинский

    9/10

  • Наталья Вобленко

    10/10

  • Алексей Беляев

    10/10

  • Антон Савочкин

    10/10

  • Элина Капуста

    9/10

  • Владислав Иващенко

    9/10

  • Марина Максимова

    7/10

  • Камиль Аблезов

    10/10

Оценка доклада

4.2

Средняя оценка: 4.2

Всего получено оценок: 745.


А какая ваша оценка?

Добавить комментарий