Как найти кинетическую энергию зная потенциальную энергию

Энергия является важнейшим понятием в механике. Данный термин определяет способность тела совершать работу. Универсальная количественная мера в физике характеризует движение и взаимодействие объектов. Она может быть двух типов: потенциальной и кинетической.

Потенциальная и кинетическая энергия

Потенциальной энергией называют энергию взаимодействия тел.

Определить потенциальную энергию тела можно, зная его массу, ускорение свободного падения и положение относительно земли. Формула для расчета имеет следующий вид:

E = m * g * h

В международной системе СИ потенциальная энергия обозначается буквой Е и измеряется в Дж (Джоуль).

В вышеуказанной формуле m является массой тела, h представляет собой высоту, а g – ускорением свободного падения, которое приблизительно равно 9,8 м/с2.

Величина потенциальной энергии определяется выбранной системой отсчета. Это связано с тем, что отсчет высоты можно выполнять не только относительно земной поверхности, но и от какой-то точки или определенного уровня.

Самолет

Источник: static-interneturok.cdnvideo.ru

Кинетической энергией называют энергию, которой обладает тело во время движения.

Кинетическая энергия служит для определения запаса энергии тела, обладающего определенной скоростью. Определить кинетическую энергию можно с помощью формулы:

(E=frac{mv^{2}}{2})

В международной системе СИ кинетическая энергия обозначается буквой Е и измеряется в Дж (Джоуль).

В уравнении m является массой тела, а v представляет собой его скорость.

Скорость тела определяется выбранной системой отсчета. Поэтому кинетическая энергия также зависит от того, каким образом рассчитывают характеристики системы, в которой движется тело.

Дельтаплан

Источник: spanishlove.ru

Представленное уравнение для расчета кинетической энергии справедливо в том случае, когда рассматривают скорости, намного меньшие, чем скорость света в вакуумной среде в 300 тысяч километров в секунду. Если скорость близка к световой, то расчеты необходимо производить с учетом теории относительности, созданной Эйнштейном.

Каким законам подчиняется, формулы

Потенциальная энергия характерна не только для тела, находящегося на определенной высоте. Несколько иначе выполняют расчет потенциальной энергии упруго деформированного тела. При деформации изменяется его форма и объем, при этом объекту передается определенный запас энергии. К примеру, если растянуть пружину или, напротив, сжать ее, то такие действия меняют расстояние, на которое удалены атомы и молекулы друг от друга. Таким образом, создается потенциальная энергия.

Схема1

Источник: static-interneturok.cdnvideo.ru

Расчет потенциальной энергии деформированного объекта выполняют с помощью уравнения:

(E=frac{k(Delta x)^{2}}{2})

k является жесткостью пружины, (Delta x) — это изменение длины пружины.

Схема 2

Источник: static-interneturok.cdnvideo.ru

Следует отметить, что значение потенциальной энергии пружины будет всегда положительным, так как формула содержит ее изменение в квадрате. Даже в случае, когда изменение будет иметь знак «-», потенциальная энергия в любом случае останется положительной.

Схема 3

Источник: static-interneturok.cdnvideo.ru

Говоря об энергии, следует учитывать, что объект обладает несколькими типами энергии одновременно. К примеру, летящий на большой высоте самолет имеет запас потенциальной энергии, так как удален от поверхности земли, и кинетической энергии из-за своей скорости движения.

Схема 4

Источник: static-interneturok.cdnvideo.ru

Ели принять земную поверхность за уровень нулевой энергии, то данное утверждение будет справедливо. В случае, когда рассматривают объект в других системах отсчета, его энергия будет отличаться.

Схема5

Источник: static-interneturok.cdnvideo.ru

Рассматривая качели, можно сказать, что они обладают запасом и кинетической, и потенциальной энергии. Когда конструкция максимально отклоняется от равновесного положения, энергия будет рассчитываться таким образом:

Еп = макс

Ек = 0, так как скорость имеет нулевое значение.

Схема 6

Источник: static-interneturok.cdnvideo.ru

В момент, когда качели пересекают точку равновесного положения, энергия будет распределена следующим образом:

Ек = макс

скорость качелей в этой точке будет максимальна;

Еп = мин

высота, на которой тело находится над землей, будет минимальной.

Схема 7

Источник: static-interneturok.cdnvideo.ru

При сложении двух видов энергии получают полную механическую энергию тела. Она включает потенциальную и кинетическую энергии.

Задачи по теме с подробными решениями

Задача 1

Самолет, масса которого составляет 50 тонн, пролетает на высоте 10 километров. Скорость транспортного средства равна 900 км/ч. Требуется рассчитать, какова полная механическая энергия самолета.

Задача 1

Источник: static-interneturok.cdnvideo.ru

Решение

Первым шагом является перевод искомых данных, согласно системе СИ. В таком случае масса самолета составит 50 000 кг, скорость – 250 м/с, а высота – 10 000 м.

Самолет обладает запасом полной энергии, которая включает и потенциальную, и кинетическую.

E = Eп + Ек

Eп = m * g * h

Ек = m * v2 / 2

Таким образом, полная энергия составит:

(E=mtimes gtimes htimes frac{mv^{2}}{2})

Если подставить в полученную формулу числовые значения величин из условия задачи, то получим полную энергию:

(E=6.5625times 10^{9}) Дж

Если записать ответ сокращенно, то он примет такой вид:

(Е = 6,5625) Гдж.

Ответ: в рассмотренной системе отсчета значение полной механической энергии самолета составит 6.5625 Гдж.

Однако, данную задачу можно решить, принимая за нулевой уровень отметку в 10 километров. Тогда транспортное средство будет характеризоваться лишь запасом кинетической энергии, а значение потенциальной энергии будет равно нулю.

Задача

Источник: static-interneturok.cdnvideo.ru

Задача 2

Пружину закрепили к стене и поместили на гладкую поверхность. На конце пружины зафиксировали тело. Растяжение пружины, которая обладает жесткостью в 400 Н/м, происходит при воздействии силы в 80 Н. Требуется рассчитать запас энергии в пружине.

Задача 2

Источник: static-interneturok.cdnvideo.ru

Решение

Согласно условию задачи, поверхность обладает гладкостью, что позволяет сделать вывод о нулевом значении силы трения. Таким образом, потери энергии исключены. Воздействуя на пружину, можно наблюдать ее деформацию. Весь запас энергии будет сосредоточен в ней. Найти данную величину можно по формуле:

(E=frac{k(Delta x)^{2}}{2})

Сила упругости равна произведению жесткости на изменение длины пружины:

(ktimes Delta x=F)

Деформацию пружины можно рассчитать таким образом:

(Delta x=frac{F}{k})

Используя последнее равенство, можно преобразовать формулу для расчета энергии:

(E=frac{k(frac{F}{k})^{2}}{2}=frac{kF^{2}}{2k^{2}}=frac{F^{2}}{2k})

Далее следует подставить числовые значения в полученное выражение:

(E=frac{80^{2}}{2times 400}=8) Дж

Ответ: запас энергии в пружине составляет 8 Дж.

Задача 3

Масса пули составляет 9 грамм. Ее выпустили из оружия вертикально в верхнем направлении. Скорость пули при этом составила 700 м/с. Требуется рассчитать ее кинетическую энергию.

Решение

Условия задачи удобно представить в виде рисунка.

Задача 3

Источник: izotovmi.chat.ru

Расчет нужно выполнить по формуле:

(E=frac{mv^{2}}{2})

Перед тем, как подставить в уравнение числовые значения, требуется перевести их в систему СИ. Тогда масса пули составит 0,009 кг. Выражение будет записано следующим образом:

(E=frac{0.009times 49times 10^{4}}{2}=2200) Дж

Ответ: запас кинетической энергии пули равен 2200 Дж.

Задача 4

Масса ракеты составляет 0,2 кг. Ее выпустили из орудия вертикально вверх. После этого ракета достигла высоты в 60 метров. Требуется рассчитать значение потенциальной энергии ракеты, характерной для этой отметки.

Задача 4

Источник: store.blender3d.com.ua

Решение

Условие задачи можно представить с помощью рисунка.

Решение задачи 4

Источник: izotovmi.chat.ru

Для того чтобы рассчитать потенциальную энергию, требуется воспользоваться формулой:

E = m * g * h

Далее необходимо подставить в выражение числовые значения:

Е = 0,2 * 9,8 * 60 = 118 Дж

Ответ: потенциальная энергия ракеты на заданной высоте составит 118 Дж.

Задача 5

Пружину растянули на 5 мм. Коэффициент ее жесткости составляет 10000 Н/м. Требуется вычислить, какова энергия пружины.

Решение

Следует представить условия задачи на рисунке.

Задача 5

Источник: izotovmi.chat.ru

Уравнение, с помощью которого можно рассчитать энергию пружины, имеет такой вид:

(E=frac{k(Delta x)^{2}}{2})

Далее необходимо привести к системе СИ расстояние, на которое растянули пружину. Оно составит 0,005 м.

После преобразований можно подставить числовые значения в искомую формулу:

(E=frac{10^{4}times 25times 10^{-6}}{2}=0.125) Дж

Ответ: энергия пружины составляет 0,125 Дж.

Пружина

Источник: ae01.alicdn.com

Знание основных формул для расчета кинетической, потенциальной и полной энергии тела позволит решить задачи любой сложности. Наиболее простым способом является выполнение последовательных действий, включая запись условий задачи, графическое изображение системы, представление формул для вычисления энергии, решение уравнения с помощью подстановки числовых значений. Важно отметить, что механическая энергия представляет собой сумму потенциальной и кинетической энергии.

Если в процессе поиска решений уравнений возникают трудности, всегда можно обратиться за помощью к сервису Феникс.Хелп.

Как вычисляется механическая энергия?

Анонимный вопрос

21 декабря 2018  · 6,5 K

Мои интересы: разнообразны, но можно выделить следующие: литература, история…  · 4 февр 2019

Для того, чтобы найти механическую энергию, нужно сначала определить кинетическую и потенциальную энергии, а затем сложить их, получим механическую энергию. Чтобы найти кинетическую энергию, нужно воспользоваться формулой: Ex= mv²/2, где: Ek  – кинетическая энергия, (дж); m – масса тела (кГ); v – скорость (м/с). Чтобы определить потенциальную энергию, воспользуйтесь формулой: Ep = mgh, где: Ep – потенциальная энергия, (дж); g ускорение свободного падения (м2); m – масса тела (кГ); h высота центра масс тела над выбранным произвольно уровнем (м).

4,5 K

Комментировать ответ…Комментировать…

Содержание:

Механическая энергия и работа:

Если на тело действует сила F и тело под действием этой силы осуществляет перемещение s в направлении действия силы, то при этом выполняется работа A, которую вычисляют по формуле:

Механическая энергия и работа в физике - виды, формулы и определения с примерами

где A – работа, а F – сила, направленная параллельно вектору перемещения   (рис. 30.1). Формула дает правильный результат лишь при условии, что сила остается постоянной в течение всего процесса перемещения. 

Таким образом, работа равняется произведению силы на величину перемещения.

Механическая энергия и работа в физике - виды, формулы и определения с примерами

В СИ работа измеряется в джоулях (Дж). Единица названа в честь английского физика Джеймса Джоуля, который впервые доказал, что теплота – это разновидность энергии. Согласно формуле (30.1) Дж = Н · м: работа величиной в один джоуль (Дж) выполняется силой один ньютон (Н), которая перемещает тело в направлении действия силы на один метр (м).

Если на тело действует несколько сил, то работа каждой силы вычисляется отдельно. Когда сила действует в противоположном перемещению направлении, то ее работа считается отрицательной. Такой может быть, например, работа силы трения: Aтр = –Fтр · s.

Если сила направлена перпендикулярно перемещению, то ее работа равна нулю. Мы, например, не указали на рис. 30.1 силу реакции опоры N и силу тя-жести mg, поскольку работу эти силы не выполняют.

Пример:

Тело переместили на расстояние s = 2 м, двигая его равномерно в горизонтальном направлении под действием силы F = 3Н. Вычислите работу силы F и силы трения Fтр.

Дано:
m = 10 кг
s = 2 м
F = 3 H
Решение.
Работу силы F вычислим по формуле
AF = F · s = 3H · 2м = 6 Дж.
Поскольку тело движется равномерно, то сила F
компенсирует действие силы Fтр, то есть равна
ей по величине (и противоположна по направлению): 
Fтр = F = 3H
Работа силы трения равна:
Атр = –Fтр · s = –3H · 2м = –6 Дж.
AF – ?
Aтр – ?

Ответ: Работа силы F равна 6 Дж, работа силы трения равна  – 6 Дж.

Работа в поле тяжести:

Если тело равномерно поднимают вверх, преодолевая силу тяжести «mg», или опускают вниз под действием силы тяжести (рис. 30.2), то работа вычисляется по той же формуле (31.1), но перемещение обозначают буквой h:

A = mg · h. (30.1)

При подъеме работа силы тяжести отрицательна, а работа поднимающей силы – положительна. 

Механическая энергия и работа в физике - виды, формулы и определения с примерами
Рис. 30.2. К формуле 30.1

Пример:

Какая работа была выполнена краном, поднявшим бетонную плиту массой 400 кг на высоту 5 м? Механическая энергия и работа в физике - виды, формулы и определения с примерами 

Дано:
m = 400 кг
h = 2 м  
g = 10 H/кг
Решение.
Очевидно, что кран должен действовать на плиту вверх  с силой F, не меньшей, чем mg.
Работу силы F, которая приложена к плите со стороны крана, вычислим по формуле: 
AF = F · h = mg · h = 20 000 Дж.
Aтяж – ?

Ответ: Кран выполнил работу 20 000 Дж (20 кДж).

График силы:

Начертим график зависимости величины силы «F» от перемещения «s» для случая, когда величина силы не изменяется, а направление силы совпадает с направлением перемещения (рис. 30.3). Легко заметить, что произведение F · s совпадает по численному значению с площадью прямоугольника abcd, то есть работа может быть вычислена как площадь фигуры на графике зависимости силы от перемещения F (s).

Этот новый способ вычисления работы может пригодиться в случае, когда сила изменяется в процессе перемещения. Если мы растягиваем пружину с некоторой силой F, то величина этой силы увеличивается по мере увеличения удлинения пружины согласно закону Гука. Следовательно, вычислять работу по формуле (30.1) уже нельзя.

Начертим график силы для случая удлинения пружины (рис. 30.4). Работа численно равняется площади треугольника abc, где ab = x – удлинение, а отрезок bc = F – максимальная сила, которая удерживает пружину в удлиненном состоянии.

Таким образом, работа по удлинению пружины равняется: 

Механическая энергия и работа в физике - виды, формулы и определения с примерами   (30.2)

Учитывая, что F = k · x, формулу (31.2) можно записать и так:

Механическая энергия и работа в физике - виды, формулы и определения с примерами   (30.3)

Мощность:

Скорость выполнения работы называют мощностью и обозначают буквой P. Мощность равняется отношению работы ко времени, в течение которого эта работа была выполнена:

  Механическая энергия и работа в физике - виды, формулы и определения с примерами   (30.4)

где A – работа, выполненная за время t. 

В СИ мощность измеряется в ваттах (Вт) в честь английского ученого и инженера Джеймса Ватта, который построил первую паровую машину. Согласно (30.4) Вт = Дж/с: при мощности один ватт за одну секунду выполняется работа один джоуль.

На практике часто используются большие единицы мощности – киловатт (кВт) и мегаватт (МВт): 1кВт = 1 000 Вт, 1 МВт = 1 000 000 Вт.

Если в формуле (31.4) «A» заменить на F · s и учесть, что Механическая энергия и работа в физике - виды, формулы и определения с примерами = s / t, то получим новую полезную формулу, которая позволяет найти мощность, зная силу и скорость:

Механическая энергия и работа в физике - виды, формулы и определения с примерами     (30.5)

По формуле (30.5) можно вычислить мощность машины в данный момент времени. Более мощные машины выполняют работу быстрее. Например, мощный двигатель дает возможность автомобилю двигаться с большим ускорением, что улучшает возможности маневрирования.

По формуле (30.4) можно получить новое выражение для вычисления работы: 
A = P · t,  (30.6)
которое справедливо, если мощность машины постоянна на протяжении времени t.

Если построить график зависимости мощности от времени (при постоянной мощности), то станет очевидно, что на графике зависимости мощности от времени площадь фигуры, ограниченной графиком и осью абсцисс, равняется работе (рис. 30.5).

Механическая энергия и работа в физике - виды, формулы и определения с примерами
Рис. 30.5. Площадь под графиком P (t) численно равняется работе

Пример:

Электросчетчик (рис. 30.6) определяет потребленную энергию в кВт·ч. Что это за физическая величина? 

Решение: Согласно формуле (30.6), это – работа. Виразим кВт-ч в Дж:
1 кВт-ч = 1000 Вт · 3600 с = 3 600 000 Дж.

Ответ: 1 кВт-ч. равен работе 3 600 000 Дж, або 3,6 МДж.

Механическая энергия и работа в физике - виды, формулы и определения с примерами
Рис. 30.6. Электросчетчик

Итоги:

  • Механическая работа равняется произведению силы на величину перемещения: A = F · s.
  • Когда сила действует в противоположном перемещению направлении, то ее работа считается отрицательной.
  • Если сила направлена перпендикулярно к перемещению, то ее работа равняется нулю.
  • Мощность равняется отношению работы ко времени, в течении которого эта работа была выполнена: P = A / t.
  • Работа переменной силы может быть вычислена по площади под графиком F(s).

Механическая энергия и ее виды

Понятие энергии – одно из важнейших не только в физике. От количества выработанной энергии и способа ее получения зависит качество нашей жизни. Вспомним такие выражения, как тепловая энергия, энергетический кризис, оплата электроэнергии, энергичный человек, объединенные энергетические системы.

Мы привыкли, что энергия – это определенный ресурс, позволяющий улучшить быт. Производство и распределение энергии всесторонне касается жизни человека. Поэтому надо знать, как она производится, передается и хранится. Вот некоторые свойства энергии:

  1. Тело может иметь, получать и отдавать энергию.
  2. Существует множество видов энергии (механическая, тепловая, электрическая…), и она может переходить из одного вида в другой.
  3. При определенных условиях энергия может сохранятся.
     

Механическая энергия

Если тело может выполнить работу, то оно имеет энергию. Чтобы иметь энергию, нет необходимости выполнять работу, достаточно иметь такую возможность.

Величина энергии равняется максимальной работе, которую тело при определенных обстоятельствах может выполнить. Как и работа, энергия из-меряется в Дж.

Есть два вида механической энергии: потенциальная и кинетическая. Обозначим энергию буквой E. Нижний индекс (значок) в выражениях для энергии около буквы E будет означать: «K» – кинетическая, «P» – потенциальная.

Кинетическая энергия

Кинетическая энергия (EK) – это энергия движущихся тел («кинема» по-гречески означает «движение»). Это может быть энергия ветра, потока воды, вращательная энергия массивного маховика. Вы-числить кинетическую энергию можно по формуле:

Механическая энергия и работа в физике - виды, формулы и определения с примерами(31.1)

где «m» – масса тела, а «Механическая энергия и работа в физике - виды, формулы и определения с примерами» – его скорость.

Тело, которое участвует одновременно в двух движениях – поступательном и вращательном – имеет две кинетических энергии, как, например, колесо автомобиля (рис. 31.2). Поступательное движение центра колеса происходит со скоростью автомобиля, а вращательная скорость увеличивается от нуля (центр) до скорости автомобиля (на уровне протектора шин). Возможно, вы видели в фильмах, как продолжают вертеться колеса у перевернувшегося автомобиля – поступательной энергии уже нет, а вращательная еще есть.

Пример №1

Сравните кинетические энергии: а) легкового автомобиля массой 1 500 кг,  который движется со скоростью 72 км/ч; б) снаряда массой 3 кг, летящего со скоростью 500 м/с. 

Решение:
а) Скорость автомобиля 72 км/год = 20 м/с. Кинетическая энергия автомобиля: Механическая энергия и работа в физике - виды, формулы и определения с примерами  или 300 кДж.                

Объясним, как получили Дж: кг · м22 = (кг · м/с2)м = Н·м = Дж.
б) Кинетическая энергия снаряда:

Механическая энергия и работа в физике - виды, формулы и определения с примерами

Замечание. Обратите внимание, что масса снаряда в 500 раз меньше массы автомобиля, в то время как его скорость больше лишь в 25 раз. Одна-ко кинетическая энергия снаряда оказалась больше, поскольку выражение  зависит Механическая энергия и работа в физике - виды, формулы и определения с примерами от скорости в квадрате, в то время как масса входит в формулу в первой степени. 

Кинетическую энергию ветра используют очень давно. В наше время модернизированные ветряные мельницы вырабатывают значительное количество электричества (рис. 31.3). Электротранспорт преобразует часть своей энергии движения в электрическую энергию, когда уменьшает скорость перед остановкой.

Потенциальная энергия

Потенциальная энергия тела (EP) – это энергия возможности (от  англ. potential – потенциал, возможность). Такую энергию имеют неподвижные тела вследствие взаимодействия и взаимного расположения. 

Механическая энергия и работа в физике - виды, формулы и определения с примерами
Рис. 31.3. Кинетическую энергию ветра ветросиловые установки преобразуют в электрическую энергию

Потенциальная энергия тяжести. Рассмотрим неподвижное тело массой m, которое находится на высоте h (рис. 31.4). На это тело действует сила тяжести mg, и если дать телу возможность упасть, то эта сила выполнит роботу A = mgh. Поскольку запас энергии равняется наибольшей работе, которую тело может выполнить при дан-ных условиях, то энергия тела, находящегося на некоторой высоте над землей, составляет:

Механическая энергия и работа в физике - виды, формулы и определения с примерами   (31.2)

Тело, находясь на некоторой высоте «h», имеет энергию уже только потому, что оно притягивается Землей и может упасть. Тело, лежащее на полу, не имеет потенциальной энергии относительно пола, хотя на него действует сила тяжести. Заметим, что начало отсчета высоты «h» может быть разным, поэтому о потенциальной энергии тяжести можно говорить лишь по от-ношению к выбранному начальному (нулевому) уровню.

Если тело находится ниже нулевого уровня, например, в яме, то его потенциальная энергия отрицательна. Это значит, что за счет этой энергии тело не может выполнить работу при перемещении на нулевой уровень. Более того, чтобы поднять тело на этот уровень, придется кому-то выполнять положительную работу, которая по величине равняется потенциальной энергии тела.

Потенциальную энергию люди также используют издавна. Вспомните водяные мельницы или  старинные часы с гирями. Когда строят гидроэлектростанцию (ГЭС), то реку перекрывают плотиной, чтобы поднять уровень воды (рис. 31.5). Падая вниз, вода вращает турбины генераторов и выполняет работу. Чем выше плотина и чем больше воды несет река, тем больше электроэнергии производит ГЭС.

Пример №2

Какова масса тела, поднятого на высоту 20 м, если его потенциальная энергия составляет 300 кДж?
 

Решение. Очевидно, что речь идет о потенциальной энергии тяжести, поэтому EP = mgh.

Отсюда m = EP/(gh) = 300 000 Дж/(10Н/кг · 20м) = 1500 кг.
Ответ: масса тела равна 1 500 кг или 1,5 т.

Замечание. 300 кДж – это кинетическая энергия автомобиля из примера 30.1. Интересно, что если бы автомобиль на каком-либо трамплине подпрыгнул вертикально вверх, а его кинетическая энергия полностью пере-шла в потенциальную, то он смог бы подняться на высоту 20 м.

Потенциальная энергия упруго деформированного тела

Если удлинение пружины жесткости «k» составляет «x», то она может выполнить работу Механическая энергия и работа в физике - виды, формулы и определения с примерами при условии, что пружине будет дана возможность вернуться в недеформированное состояние. Следователь-но, потенциальная энергия деформированной пружины составляет:

Механическая энергия и работа в физике - виды, формулы и определения с примерами или Механическая энергия и работа в физике - виды, формулы и определения с примерами (31.3)

где «F» – сила, которая удерживает пружину в удлиненном на «x» состоянии.
Накручивая пружину механических часов, мы сообщаем ей запас потенциальной энергии, которая затем будет затрачена на приведение в движение механизма и стрелок. Часы остановятся после того, как пружина опять распрямится и истратит свою энергию. 

Полная механическая энергия

Тело может одновременно иметь несколько видов механической энергии: как потенциальной, так и кинетической. Полная механическая энергия «Е» тела равняется сумме поступательной и вращательной кинетических энергий, а также потенциальных энергий упругой деформации и тяжести:

E = EКпост. + EКвращ. + EРтяж. + EРупруг.        (31.4)

Пример №3

Самолет массой 30 т летит на высоте 10 000 м со скоростью 720 км/ч. Вы-числите его полную механическую энергию (g=10H/кг).

Дано:
h = 10 000 м
Механическая энергия и работа в физике - виды, формулы и определения с примерами = 720 км/ч
g = 10 H/кг 

Решение.
Самолет имеет поступательную кинетическую энергию и потенциальную энергию тяготения. Следовательно, полная механическая энергия составляет:
Механическая энергия и работа в физике - виды, формулы и определения с примерами
Преобразуем скорость самолета в единицы СИ: 
720 км/ч = 200 м/с.

Е – ?

Механическая энергия и работа в физике - виды, формулы и определения с примерами

= 600 000 000 Дж + 3 000 000 000 Дж = 3 600 МДж

Ответ: полная механическая энергия самолета равна 3600 МДж.

Итоги:

Закон сохранения механической энергии

Преобразование энергии:

В природе и технике постоянно происходят преобразования энергии из одного вида в другой. Перекрывая реку плотиной гидроэлектростанции, добиваются того, что вода поднимается на значительную высоту и приобретает огромную потенциальную энергию. Падая вниз, вода увеличивает свою кинетическую энергию, за счет которой она вращает лопасти гидротурбин. Те, в свою очередь, вращают электрогенераторы, которые производят электрическую энергию.

Рассмотрим для примера падение мячика с определенной высоты (рис. 32.1). Когда мячик опускается, его потенциальная энергия уменьшается, скорость растет, а с ней растет и кинетическая энергия. Около самой земли потенциальная энергия уменьшится до нуля и полностью перейдет в кинетическую энергию, которая достигнет своего наибольшего значения. Далее кинетическая энергия начнет переходить в энергию упругой деформации мячика, который сжимается.

Механическая энергия и работа в физике - виды, формулы и определения с примерами
Рис. 32.1. Переход потенциальной энергии мяча  в кинетическую энергию

Закон сохранения энергии

Многочисленные и достаточно точные опыты показали, что кинетическая энергия увеличивается ровно настолько, насколько уменьшается потенциальная, если только можно пренебречь работой силы трения, то есть сумма потенциальной и кинетической энергии остается постоянной (сохраняется) при отсутствии силы трения. Другими словами, полная механическая энергия тела сохраняется, если на тело не действуют силы трения, или если они малы и ими можно пренебречь. 

Механическая энергия и работа в физике - виды, формулы и определения с примерами
Рис. 32.2. Потенциальная энергия деформированного лука перешла в кинетическую энергию стрелы, которая в свою очередь перешла в потенциальную энергию тяжести

Если E1 = EK1 + EP1 – полная механическая энергия тела в одном состоянии, а E2 = EK2 + EP2 – в другом состоянии, то E1 = E2, то есть энергия сохраняется при условии отсутствия действия сил трения.

Примеры решения задач на применение закона сохранения энергии

Пример:

Скорость стрелы во время выстрела из лука (рис. 32.2) составляет 20 м/с. На какую наибольшую высоту она может подняться? Механическая энергия и работа в физике - виды, формулы и определения с примерами.

Ответ: При условии отсутствия трения стрела может подняться на высоту 20 м.

Обсуждение результатов:

  • а) Высота 20 м была достигнута при  условии отсутствия трения (то есть потерь энергии). Реальная высота подъема будет несколько меньшей. 
  • б) Масса тела в процессе расчета сократилась. Это значит, что тело произвольной массы, которому придали скорость 20 м/с, достигнет высоты  20 м. Если этот факт вас удивляет, то попробуйте решить этот парадокс.

Пример:

Тело массой 3 кг падает с высоты 8 м. Какова будет его скорость в момент 
касания поверхности? g = 10 м/с2.
Решение. Подобно предыдущей задаче,Механическая энергия и работа в физике - виды, формулы и определения с примерами, отсюда: 

Механическая энергия и работа в физике - виды, формулы и определения с примерами2 = 2gh, Механическая энергия и работа в физике - виды, формулы и определения с примерами2 = 2 · 10м/с2 · 8 м = 160 м22, Механическая энергия и работа в физике - виды, формулы и определения с примерами = 16м/с.
Ответ: тело достигнет скорости 16 м/с.

Пример:

Игрушечный пружинный пистолет, жесткость пружины которого 1 Н/см, зарядили шариком массой 20 г и сжали пружину на 10 см. С какой скоростью вылетит шарик при выстреле?

Решение. Прежде чем решать задачу, надо перевести единицы измерения в систему СИ: 

1 Н/см = 100 Н/м, 20 г = 0,02 кг, 10 см = 0,1 м.

Энергия сжатой пружины составляет Механическая энергия и работа в физике - виды, формулы и определения с примерами. Когда пружина выровнялась, то потенциальная энергия деформации пружины перешла в кинетическую энергию шарика, которая равна Механическая энергия и работа в физике - виды, формулы и определения с примерами. Согласно закону сохранения энергии, должно выполняться равенство E1 = E2, то есть

Механическая энергия и работа в физике - виды, формулы и определения с примерами. Отсюда Механическая энергия и работа в физике - виды, формулы и определения с примерами
Механическая энергия и работа в физике - виды, формулы и определения с примерами≈ 7 м/с.

Ответ: шарик будет иметь скорость приблизительно 7 м/с.

Энергия и работа

Напомним, что работу можно вычислить:

  1. По формуле A = F · s, если сила постоянна.
  2. По графику силы – как площадь под графиком.
  3. Через мощность, как A = P · t. Исходя из определения энергии, можно еще одним способом вычислять работу:
  4. Работа силы равняется изменению энергии тела в результате действия этой силы.

Если полная энергия тела увеличивается, то это значит, что какая-то сила выполняет положительную работу. Тогда увеличение полной энергии тела равняется работе этой силы: A = E2 – E1. Если полная энергия тела уменьшается, то это значит, что некая сила выполняет отрицательную работу. Сила трения скольжения, например, выполняет отрицательную работу, и потому в равенстве Aтр = E2 – E1, Aтр < 0, поскольку E2 < E1.
Таким образом, изменение механической энергии является следствием выполнения работы, а выполнение работы приводит к изменению энергии.

Итоги:

  • Энергия не возникает из ничего и не исчезает бесследно. Она лишь переходит из одного вида в другой.
  • Закон сохранения механической энергии: полная механическая энергия тела не изменяется, если нет потерь на трение.
  • Механическая работа может быть вычислена как изменение полной механической энергии.

Момент силы

Рычаг – простейший и едва ли не самый древний механизм,  используемый человеком. Ножницы, кусачки, лопата, двери, весло, руль и рычаг переключения передач в автомобиле – все они действуют по принципу рычага. Уже при строительстве египетских пирамид рычагами поднимали камни массой свыше 10 тонн.

Правило рычага

Рычагом называют стержень, который может вращаться вокруг некоторой неподвижной оси. Ось О перпендикулярна к плоскости рисунка 33.1. На правое плечо рычага длиной l2 действует сила F2, а на левое плечо рычага длиной l1 действует сила F1. Длину плеч рычага l1 и l2 измеряют от оси вращения О до соответствующих линий действия сил F1 і F2.

Пусть силы F1 и F2 таковы, что рычаг не вращается. Опыты показывают, что в этом случае выполняется условие 

Механическая энергия и работа в физике - виды, формулы и определения с примерами    (33.1)

Перепишем это равенство по-другому:

Механическая энергия и работа в физике - виды, формулы и определения с примерами    (33.2)

Смысл выражения (33.2) таков: во сколько раз плечо l2 длиннее плеча l1, во столько же раз величина силы F1 больше величины силы F2. Это утверждение называют правилом рычага, а соотношение F1 / F2 – выигрышем в силе.

Получая выигрыш в силе, мы проигрываем в расстоянии, поскольку нужно сильно опустить правое плечо, чтобы немного поднять левый конец плеча рычага.

Зато весла лодки закреплены в уключинах так, что мы тянем за короткое плечо рычага, прикладывая значительную силу, но зато получаем выигрыш в скорости на конце длинного плеча (рис. 33.2).

Если силы F1 и F2 равны по величине и направлению, то рычаг будет пребывать в равновесии при условии, что l1 = l2, то есть ось вращения, находится посредине. Конечно, никакого выигрыша в силе в этом случае мы не получим. Руль автомобиля устроен еще интереснее (рис. 33. 3).

Условие равновесия рычага

Плечом силы l называют кратчайшее расстояние от оси вращения до линии действия силы. В случае на рис. 33.4, когда линия действия силы F образует острый угол с гаечным ключом, плечо силы l1 меньше плеча l2 в случае на рис. 33.5, где сила действует перпендикулярно ключу.
Произведение силы F на длину плеча l называют моментом силы и обозначают буквой M: 

Механическая энергия и работа в физике - виды, формулы и определения с примерами    (33.3)

Момент силы измеряется в Н·м. В случае на рис. 33.5 гайку повернуть легче, потому что момент силы, с которой мы действуем на ключ, больше. 
Из соотношения (33.1) следует, что в случае, когда на рычаг действуют две силы (рис. 33.1), условие отсутствия вращения рычага заключается в том, что момент силы, которая пытается его вращать по часовой стрелке (F2 · l2), должен равняться моменту силы, которая пытается вращать рычаг против часовой стрелки (F1 · l1).

Если на рычаг действует более двух сил, правило равновесия рычага зву-чит так: рычаг не вращается вокруг неподвижной оси, если сумма моментов всех сил, которые вращают тело по часовой стрелке, равняется сумме моментов всех сил, которые вращают его против часовой стрелки.
Если моменты сил не уравновешены, рычаг вращается в ту сторону, куда его вращает больший по сумме момент. 

Пример №4

К левому плечу рычага длиной 15 см под-весили груз массой 200 г. На каком расстоянии от оси вращения нужно подвесить груз массой 150 г, чтобы рычаг находился в равновесии?

Дано:
m1 = 200 г
m2 = 150 г
11 =  15 см

Решение.
Момент первого груза (рис. 33.6) равен:
M1 = m1g · l1.
Момент второго груза: M2 = m2g · l2.
Согласно правилу равновесия рычага,
M1 = M2 или m1g · l1 = m2g · l2. Отсюда Механическая энергия и работа в физике - виды, формулы и определения с примерами

l– ?

Вычисление:   Механическая энергия и работа в физике - виды, формулы и определения с примерами       

Ответ: длина правого плеча рычага в положении равновесия составляет 20 см.

Механическая энергия и работа в физике - виды, формулы и определения с примерами
Рис. 33.6

Опыт:

Оборудование: легкий и достаточно крепкий провод длиной приблизительно  15 см, скрепки, линейка, нить.
 

Ход работы. Наденьте на провод нитяную петлю. Примерно посредине провода туго ее затяните. Затем подвесьте провод на нити (прикрепив нить, скажем, к настольной лампе). Установите провод в равновесии, передвигая петлю. Нагрузите рычаг с двух сторон от центра цепочками из разного количества скрепок и добейтесь равновесия (рис. 33.7).

Механическая энергия и работа в физике - виды, формулы и определения с примерами
Рис. 33.7. Исследования равновесия рычага

Измерьте длины плеч l1 и l2 с точностью до 0,1 см. Силу будем измерять в «скрепках». Запишите результаты в таблицу.

N1 –скрепок слева l1,см N2–скрепок слева l2,см A = N1 · l1, скр. · см A = N2 · l2, скр. · см

Сравните величины А и В. Сделайте выводы.

Проблемы точного взвешивания

Рычаг используют в весах, и от того, насколько точно совпадает длина плеч, зависит точность взвешивания.

Современные аналитические весы могут взвешивать с точностью до одной десятимиллионной части грамма, то есть до 0,1 мкг (рис. 33.8). Причем есть две разновидности таких весов: одни для взвешивания легких грузов, другие – тяжелых. Первую разновидность вы можете увидеть в аптеке, ювелирной мастерской или химической лаборатории.

На весах для взвешивания больших грузов можно взвешивать грузы весом до тонны, но при этом они остаются очень чувствительными. Если ступить на такие весы, после чего выдохнуть воздух из легких, то весы среагируют.

Механическая энергия и работа в физике - виды, формулы и определения с примерами
Рис. 33.8. Современные аналитические весы

Ультрамикровесы измеряют массу с точностью до 5·10–11 г (пять стомиллиардных долей грамма!).

При взвешивании на очень точных весах возникает много проблем:

  • а) как ни старайся, плечи коромысла все равно не одинаковы.
  • б) чаши весов хотя и мало, но отличаются по массе.
  • в) начиная с определенного порога точности, весы начинают реагировать навыталкивающую силу воздуха, которая для тел обычных размеров очень мала.
  • г) при размещении весов в вакууме от этого недостатка можно избавиться, но при взвешивании очень маленьких масс начинают чувствоваться удары молекул воздуха, откачать который полностью невозможно никаким насосом.

Два способа повысить точность неравноплечных весов

  1. Метод тарирования. Уравновесим груз с помощью сыпучего вещества, например, песка. Потом снимем груз и разновесами уравновесим песок. Очевидно, что масса разновесов равняется истинной массе груза. 
  2. Метод поочередного взвешивания. Взвешиваем груз на чаше весов, которая находится, например, на плече длиной l1. Пусть масса разновесов, которая приводит к уравновешиванию весов, равняется m2. Потом взвесим этот же груз в другой чаше, которая находится на плече длиной l2. Получим не-сколько иную массу разновесов m1. Но в обоих случаях настоящая масса груза равняется m. При обоих взвешиваниях выполнялись условия: m·l1 = m2·l2  и m·l2 = m1·l1. Решая систему этих уравнений, получим: Механическая энергия и работа в физике - виды, формулы и определения с примерами

Итоги:

  • Плечом силы l называют кратчайшее расстояние от оси вращения до линии действия силы.
  • Моментом силы называют произведение силы на плечо: M = F · l.
  • Рычаг не вращается, если сумма моментов всех сил, которые вращают тело по часовой стрелке, равняется сумме моментов всех сил, которые вращают его против часовой стрелки.

Простые механизмы

Машина – это устройство, которое осуществляет механическое движение для преобразования энергии. Термин «машина» (лат. machina) означает механизм, устройство, конструкция. Термин «механизм», в свою очередь, про-исходит от греческого «механе»  – двигать.
Простая машина – это механизм, который изменяет направление или величину силы без потребления энергии. 

Сложные машины, которыми сейчас пользуются, содержат так называемые простые механизмы. Простые механизмы можно разделить на две группы:

  1. Рычаг, блок, ворот, лебедкa, кабестан, полиспаст: их работа сводится к принципу действия рычага.
  2. Наклонная плоскость, винт и клин, работу которых можно свести к принципу наклонной плоскости. 

Блок как рычаг

Блок – колесо с желобом и осью вращения – используется в кранах (рис. 34.1), экскаваторах, подвесных дорогах и т. п. По желобу двигается трос, который тянет или поддерживает грузы. Если ось блока закреплена, то он называется неподвижным (рис. 34.2) и используется для изменения направления действия силы.

У рычага есть недостаток – он имеет ограниченное пространство действия. Повернув плечо рычага на некоторый небольшой угол, нужно вернуть его в предыдущее положение и начинать все сначала. Блок позволяет сделать процесс выполнения роботы непрерывным. Рассмотрим принцип действия неподвижного блока с помощью рис. 34.3. Сила F, с которой мы действуем на правый конец троса вниз, позволяет поднимать груз вверх, и это удобнее, чем непосредственно поднимать груз.

Сила тяжести mg уравновешена направленной вверх силой натяжения левого конца троса T. Такие же по величине силы натяжения T действуют со стороны троса вниз на блок. Плечи этих сил (они указаны оранжевыми стрелками) одинаковы – следовательно, выигрыша в силе мы не получили. Правый конец троса можно тянуть также в сторону или горизонтально, в таком случае блок называют направляющим.

Подвижный блок

Рассмотрим рис. 34.4. Направленная вверх сила F, которая действует на правый конец троса, уравновешена силой натяжения троса T, направленной вниз. Величина сил натяжения в любой точке троса одинакова. Две направленные вверх силы натяжения T, действующие на блок, уравновешивают силу тяжести mg, которая действует на груз вниз. Следовательно, величина силы натяжения в тросе вдвое меньше веса груза. Прикладывая силу F, мы получаем выигрыш в силе в два раза.

Если тянуть за ось блока вниз с некоторой скоростью, то правый конец троса будет двигаться со вдвое большей скоростью, то есть подвижный блок можно использовать и для выигрыша в скорости.
Можно объяснить выигрыш в силе, который дает подвижный блок и по-другому: плечо силы F относительно точки О вдвое больше плеча силы mg.

Если применить много подвижных блоков, соединив их в две группы, то получим полиспаст (рис. 34.5). Полиспаст дает многократный выигрыш в силе.  

Наклонная плоскость

Вы, наверное, видели, как массивный предмет, который тяжело поднять (например, шкаф) грузят в машину. Груз поднимают по крепкой доске, один конец которой находится на земле, а другой – опирается на край кузова. Ленточные транспортеры, эскалаторы – примеры наклон-ной плоскости.
Сила, которую нужно приложить к телу, чтобы двигать его вверх по наклонной плоскости (рис. 34.6), тем меньше, чем меньший угол наклона плоскости к горизонту, и она всег-да меньше силы тяжести Fтяж = mg, которая действует на тело. Тяжелые каменные блоки, из которых строили египетские пирамиды, тянули вверх по наклонной насыпи. Чем выше становилась пирамида, тем более длинной приходилось делать насыпь.

Разновидностями наклонной плоскости являются клин, винт, лемех плуга, шнек мясорубки (дальний потомок винта Архимеда).  

Механическая энергия и работа в физике - виды, формулы и определения с примерами
Рис. 34.6. Перемещать тело по наклонной плоскости легче, чем поднять вертикально вверх

Клин

Вместо того, чтобы тянуть тело по наклонной плоскости, можно наклонную плоскость двигать под телом. Так делают, когда нужно приподнять очень тяжелый предмет (рис. 34.7). Чем более острый клин, тем с меньшей силой его надо под-бивать (но и тем меньший эффект подъема).

Клин под действием не слишком большой силы удара молотка распирает половинки колоды, действуя на них со значительно большей силой. Подобным образом топор или колун расщепляют полено. Нож также является разновидностью клина, и чем острее он будет, тем легче им резать.

Механическая энергия и работа в физике - виды, формулы и определения с примерами
Рис. 34.7. Сила N, которая поднимает ящик, больше силы F, с которой мы подбиваем клин

Винт

Следующей модификацией наклонной плоскости является винт. Резьба винта является наклонной плоскостью, обвивающей цилиндр. Наклон такой плоскости можно сделать очень маленьким (за счет малого шага винта), а саму плоскость – очень длинной.  

Опыт:

Начертите на листе бумаги для чертежей наклоненную прямую АВ, оставив полосу для склеивания шириной 0,5 см, как указано на рис. 34.8. Сверните лист в цилиндр и склейте его так, чтобы точка В оказалась в точности над точкой А. Вы убедитесь, что прямая АВ превратилась в спираль.

Шаг спирали (расстояние АВ на поверхности цилиндра) будет тем меньшим, чем меньше угол, под которым вы провели линию АВ на листе.

Гайка, двигаясь по винту болта, может поднимать груз, вес которого значительно больше усилия, которое прикладывают, чтобы поворачивать винт или гайку.

Винтовые подъемники вы можете увидеть в автомастерских, небольшие винтовые домкраты есть в каждом автомобиле. С помощью винтовых устройств зажимают детали в тисках и двигают суппорты токарных и фрезерных станков. На рис. 34.9 приведены фотографии шнека домашней ручной мясорубки и струбцины (разновидность тисков).

Итоги:

  • Неподвижный блок позволяет изменить направление действия силы.
  • Подвижный блок дает выигрыш в силе.
  • Чем меньше угол наклона наклонной плоскости – тем больше выигрыш в силе.

Коэффициент полезного действия механизмов (КПД)

В большинстве устройств, машин и механизмов происходит передача и преобразование энергии. Для характеристики этих машин с точки зрения их полезности вводится коэффициент полезного действия.

Коэффициентом полезного действия машины или механизма (сокращенно – КПД) называют умноженное на 100% отношение полезной работы Aпол., которую выполняет машина, ко всей энергии, затраченной на выполнение этой работы Aзатр:

Механическая энергия и работа в физике - виды, формулы и определения с примерами     (35.1)

Пример №5

Максимальный коэффициент полезного действия лампы накаливания составляет 5%. Это значит, что из 100% потребляемой электроэнергии в свет преобразуется 5%, а остальные преобразуются в тепло.

Пусть с помощью наклонной плоскости мы подняли определенный груз массы «m» на высоту «h». Полезная работа заключается в поднятии груза на определенную высоту h и составляет: Aпол. = mgh. Но была выполнена работа не только по поднятию груза, но и по преодолению силы трения скольжения при движении по плоскости. Следовательно, затраченная работа равняется: Aзатр. = Aпол. + |Aтр.|. Работа силы трения взята по модулю, поскольку она отрицательна. 

Затраченная работа всегда больше полезной, поэтому КПД реальной машины не может достичь 100%, а тем более превысить его. Желательно, и это задача огромной экономической важности, добиться того, чтобы затраты на выполненную работу ненамного превышали полезную работу, то есть что-бы КПД машин был как можно более высоким. В таблице 35.1 приведены данные о КПД некоторых машин и устройств.

Таблица 35.1 Коэффициент полезного действия некоторых машин и механизмов, %

Солнечная батарея до 6 – 40 Топливный элемент до 85
Мускулы 14 – 27 Гидротурбина до 90
Холодильник 40 – 50 Электродвигатель до 99
Газовая турбина до 40
Дизельный двигатель до 50 Лампа накаливания 0,7 – 5
Паровая турбина до 60 Лампа дневного света до 15
Ветрогенератор до 60 Светодиоды до 35

Пример №6

Используя рис. 34.6, получите формулу для расчета КПД наклонной плоскости.

Решение. Полезная работа при применении наклонной плоскости заключается в том, чтобы поднять тело на высоту h. Следовательно,  Aпол. = mgh. Затраченная работа равна: Азатр. = F · L. Таким образом, Механическая энергия и работа в физике - виды, формулы и определения с примерами.

Золотое правило механики

Пусть рычаг под действием сил F1 и F2 находится в равновесии. Это значит, что:

F1 · l1 = F2 · l2    (35.2)

Медленно повернем рычаг в направлении действия силы F2 на некоторый небольшой угол. Конец рычага при этом опишет дугу длиной s2. Другой конец рычага при этом опишет дугу длиной s1 (рис. 34.3). При этом силы F1 и F2 должны постоянно действовать перпендикулярно рычагу. 

Механическая энергия и работа в физике - виды, формулы и определения с примерами
Рис. 35.3. Плечо, на которое действует большая сила, описывает при вращении рычага более короткую дугу, поэтому выполняется равенство F1 · s1 = F2 · s2

Поскольку обе части рычага повернулись на один и тот же угол, а концы описали дуги радиусами l1 и l2, то выполняется равенство:

l1/l2 = s1/s   (35.3)

Это значит, что более длинное плечо описывает и более длинную дугу. Из равенств (35.2) и (35.3) следует, что: 

F1 ∙ s1 = F2 ∙ s2   (35.4)

Равенство (35.4) значит, что работа силы F1 равняется работе силы F2. Следовательно, рычаг дает выигрыш в силе, но не дает выигрыша в работе. 

«Золотое правило» механики: выигрывая с помощью некоторого механизма в силе, мы обязательно проигрываем в расстоянии (и наоборот).

Вечный двигатель –  «PERPETUUM MOBILE»

Perpetuum mobile (лат.) – вечное движение. Столетиями изобретатели пытались придумать конструкцию машины, которая бы работала вечно (рис. 35.4), но ни одна из них не функционировала.

Иногда даже довольно сложно разобраться, в чем же ошибался творец того или иного проекта вечного двигателя. Как только стало понятно, что закон сохранения энергии является универсальным законом природы, научные учреждения перестали принимать к рассмотрению проекты таких машин. Впервые так поступила французская Академия наук в 1848 году.

Вечный двигатель первого рода – это машина, выполняющая работу, большую затраченной на выполнение этой работы энергии.

Но ни один из известных на сегодняшний день механизм или машина не дают выигрыша в работе.

Итоги:

  • Коэффициентом полезного действия машины или механизма называют отношение полезной работы, которую выполняет машина, ко всей энергии, затраченной на выполнение этой работы.
  • «Золотое правило» механики: выигрывая с помощью некоторого механизма в силе, мы обязательно проигрываем в расстоянии (и наоборот).
  • По закону сохранения энергии невозможно создать вечный двигатель первого рода.

Развитие физической картины мира

Несколько лет тому назад австрийский парашютист совершил затяжной прыжок из стратосферы с высоты 39 км (рис. 36.1). Поскольку воздух на такой высоте сильно разрежен, то падение довольно долго было почти свободным.

Свободное падение – удивительное и не до конца изученное явление. Во-первых, свободно падающее тело ничего не весит – оно находится в состоянии невесомости. Во-вторых, и это самое удивительное, – все свободно падающие тела, независимо от массы, падают одинаково, то есть с одинаковым ускорением. Возможно, все эти мысли промелькнули в голове смельчака, который не побоялся прыгнуть вниз почти из космоса, чтобы почувствовать радость свободного полета.

Механическая энергия и работа в физике - виды, формулы и определения с примерами
Рис. 36.1. Затяжной прыжок

Гипотезы нужно проверять

В воздухе более тяжелые тела опережают легкие, и об этом свидетельствует наш повседневный опыт. Выдающийся ученый древнего мира Аристотель в свое время изложил гипотезу о том, что более тяжелые тела и в вакууме будут падать быстрее. Лишь через 2000 лет итальянский физик Галилео Галилей осмелился проверить гипотезу Аристотеля. Он стал первым в истории ученым, который попробовал подтвердить свое предположение о независимости ускорения свободного падения от массы тела при помощи опыта. Бросая тела различной массы с наклонной Пизанской башни (рис. 36.2), Галилей заметил, что при условии малого сопротивления воздуха тела разной массы па-дают практически с одинаковым ускорением.

Механическая энергия и работа в физике - виды, формулы и определения с примерами
Рис. 36.2. Пизанскую башню Галилей использовал для проверки гипотезы Аристотеля

Отличие античного мышления от современного

Оказывается, люди не всегда исследовали физические явления одинаково. В античном мире не было принято проверять гипотезы опытным путем, а толь-ко теоретическими рассуждениями.

Еще одно отличие – во времена Древней Греции не было места для вакуума. Ум тогдашних ученых не принимал пустого пространства. Аристотель считал, что вода следует за поршнем насоса потому, что природа «боится» пустоты.

Такая теория не давала возможности строить систему водопровода в сегодняшнем понимании этого слова. В знаменитых римских акведуках (рис. 36.3) вода текла ручейком по наклонному желобу. То, что вода может опускаться в трубе, а потом опять подниматься – не приходило людям в голову.
Только опыты Торричелли (рис. 36.4) показа-ли, что существует атмосферное давление, и что оно очень большое. На каждый квадратный метр поверхности действует сила, которую создавал бы груз весом в 10 тонн. Обратите внимание, что мир меняют не только новые знания и факты, но и новый способ мышления.

Исследование свободного падения с помощью вакуумного насоса

То, что нам сегодня кажется привычным, когда-то было удивительным. Мы уже говорили о том, какие интересные опыты показывал своим соотечественникам бургомистр города Магдебурга Отто фон Герике. Он смог это сделать, пользуясь изобретенным им вакуумным насосом.

Около поверхности земли наблюдать свободное падение сложно – мешает воздух. Но выдающийся английский физик Исаак Ньютон использовал вакуумный насос, чтобы выкачать воздух из стеклянной трубы, и наблюдал, как свинцовая дробинка и перышко падали вместе. Таким образом Ньютон подтвердил наблюдения Галилея: тела разной массы в состоянии свободного падения падают одинаково.

Казалось бы, что со свободным падением уже все ясно, но еще Ньютона, а впоследствии и Эйнштейна беспокоила загадка массы.   

Загадка двух масс

Если мы не можем мгновенно ускорить или остановить тело, то это потому, что при изменении скорости начинает проявлять себя инертная масса. Когда тяжелый чемодан оттягивает нам руку вниз, сигнализирует о себе гравитационная, то есть «тяжелая» масса. Причем обе массы у каждого тела одинаковы.  А вот этот факт как раз и не очевиден!

В городе Бремене есть лаборатория, в которой исследуют свободное падение в вакуумной трубе высотой 140 м (рис. 36.5). Это гигантский вариант трубки Ньютона. Ее еще называют пятисекундной тру-бой, потому что время падения в этой трубе длится приблизительно 5 с.

На что надеются исследователи? Они надеются, что, увеличив точность измерения, удастся заметить хоть и малое, но различие между инертной и гравитационной массами тела. Пока что их усилия безуспешны.  

Тёмная масса

Ученые еще не успели до конца разобраться со свободным падением, а от астрофизиков и исследователей в области ядерной физики одновременно пришли данные о возможности существования третьей разновидности массы, которую пока что называют темной, и которую имеющиеся приборы неспособны воспринимать.

Каждый шаг вперед в науке дает новые факты и загадки, которые начинают изучать уже другие поколения исследователей. Два нанограмма протонов в такой супермашине как коллайдер удалось за десять часов разогнать почти до скорости света. Но, если подумать, то один грамм протонов нужно будет разгонять в течение миллионов лет – таково нынешнее состояние нашей науки с точки зрения будущего!

Происхождение вселенной

Астрофизики установили, что Вселенная расширяется, большинство галактик отдаляются от нас и друг от друга, а скорость самых отдаленных объектов достигает 240 000 км/с. Это при-вело ученых к мысли о том, что наша Вселенная появилась около 15 млрд. лет назад в результате гигантского взрыва. Отголосок этого взрыва «звучит» до сих пор, а «услышать» его можно с помощью очень чувствительных антенн радио-телескопов (рис. 36.6), которые постоянно прослушивают космическое пространство.

В разных отдаленных уголках Вселенной можно наблюдать рождение и гибель звезд, а также катастрофы чрезвычайного масштаба – взрывы сверхновых звезд и столкновения целых галактик (рис. 36.7). 

Последние достижения астрофизики

Сила тяжести действует на расстоянии, но как она передается от тела к телу – не совсем понят-но. Гравитационная сила вызывает только притяжение, и еще никогда не наблюдалось отталкивания. Сейчас, благодаря эффекту гравитационного линзирования (рис. 36.8), появились данные, свидетельствующие об ускоренном расширении Вселенной, а это можно объяснить разве что наличием антигравитации и «темной энергии».

Механическая энергия и работа в физике - виды, формулы и определения с примерами
Рис. 36.8. Гравитационные линзы, образованные притяжением отдаленных галактик, свидетельствуют о новом виде энергии

Вращение края нашей Галактики происходит значительно быстрее, чем это рассчитано по имеющимся в настоящее время формулам, что свидетельствует о существовании скрытой («темной») 
массы, которую современные приборы даже не способны воспринять.

Звезды бывают намного больше и горячее Солнца, а бывают и совсем маленькими и сравнительно холодными. Некоторые из них сжимаются силами притяжения до такой степени, что один кубический сантиметр вещества так называемой нейтронной звезды весит сто миллионов тонн. Другие сжимаются еще больше и исчезают из поля зрения, превращаясь в «черную дыру», которая не выпускает из своей сферы действия даже свет. Все эти чрезвычайно интересные данные получены с помощью спектрометров и цифровых фото-камер. Приборы эти работают круглосуточно – как на Земле, так и в космосе.

Космические телескопы

Современные системы связи дают возможность получать информацию от разнообразных устройств, даже не выходя из дома – через систему Интернет. Именно так с американского космического телескопа «Хаббл» (рис. 36.9) получена фотография галактики М 30.

На орбите находится и украинский теле-скоп «Астрон-1», а космический аппарат «СИЧ-1М» (рис. 36.10) исследует Мировой океан. Эти сложные приборы и аппараты спроектировали украинские физики. Полученная информация обрабатывается и анализируется. Вот так и появляются малые и большие открытия.

Что движет исследователями

В наш век воздушных лайнеров и космических ракет людей трудно чем-либо удивить. Но всегда достойна удивления человеческая любознательность. Вспомним еще раз о том, что первыми оторвались от земли воздушные шары, которые построили братья Монгольфье, потому что очень хотели летать.

Внизу, около открытого отверстия шара, они разожгли огонь из соломы и шерсти. Когда воздух внутри разогрелся, шар взлетел и поднялся на высоту  1 000 м, пробыв в воздухе 10 минут. Он приземлился за полторы мили (2,4 км) от места старта.

В сентябре 1782 года в Версале состоялся полет подобного шара в присутствии короля и королевы Франции, придворных и послов разных стран. Первыми пассажирами были овца, петух и утка. Полет длился 23 минуты, а шар пролетел 9 км. Посол России во Франции Барятинский писал «о поднятии на воздух великой тягости посредством дыма»: «Величие сего зрелища и чувствование, какое происходило в нескольких ста тысячах народа, описать никак не-возможно, ибо радость, страх, ужас и восторг видимы были на всех лицах».

Исаак Ньютон  (Isaac Newton, 1643–1727) – английский физик и математик. Открыл закон всемирного тяготения, разложил белый свет на цвета и сформулировал три основных закона механики. Его научный труд «Основы натуральной философии» – один из наиболее выдающихся в истории науки.

Механическая энергия и работа в физике - виды, формулы и определения с примерами

Ньютон родился в 1643 г. в небольшой английской деревне Вулсторп. В детстве любил мастерить различные механические устройства, самостоятельно построил маленькую мельницу. В 12 лет его отдали на обучение в городскую школу близлежащего городка Грэнтем. Сначала он учился посредственно, но в старших классах начал упорно работать и стал лучшим учеником.

Затем Ньютон учился в Тринити-колледже. И по сегодняшний день у входа в ворота колледжа растет яблоня в память о яблоке, которое «повлекло» открытие закона тяготения. В возрасте 27 лет Ньютон стал профессором Кембриджского университета. Этот университет славится физической и математической школой и поныне. В 1668 г. Ньютон сконструировал первый зеркальный телескоп (рис. 37.10), который затем усовершенствовал. За это изобретение его избрали членом Лондонского королевского общества (Английская академия наук). На основании убедительных экспериментов по разложению белого света на семь составных цветов он разработал теорию света.

В 1688 г. Ньютона избрали членом английского парламента, и он два года провел в Лондоне. Позже Ньютона назначили директором Монетного двора Англии (в наше время это должность министра финансов). Он провел очень важную для страны денежную реформу и довольно жестко боролся с казнокрадами.

В 1703 г. его избрали президентом Лондонского королевского общества, а в 1705 г. королева Анна впервые в истории Англии присвоила ему титул дворянина и подарила имение.

Ньютон был оригинальным человеком, и о нем рассказывают много интересных историй. Друзья, которые посещали Ньютона, заметили, что калитка около его дома довольно трудно открывается. Оказалось, что Ньютон присоединил к ней водяную помпу, и каждый посетитель накачивал немного воды в резервуар на чердаке.

Ньютон не любил отвлекаться от работы, и, чтобы кошка ему не докучала, просясь в дом, сделал в дверях небольшое отверстие. Когда появились котята, он сделал еще семь меньших отверстий, потому что котята поднимали страшный шум, когда кошка пролезала в свое отверстие без них.

Карта механической работы и энергии

Механическая энергия и работа в физике - виды, формулы и определения с примерами

ЗАКОН СОХРАНЕНИЯ ЭНЕРГИИ
Энергия не возникает из ничего и не исчезает бесследно.
Количество ее остается постоянным. Она только
переходит из одного вида в другой, или от
одного тела к другому
Полная механическая энергия тела 
(системы) не изменяется, если нет потерь  на трение
ПРОСТЫЕ МЕХАНИЗМЫ
РЫЧАГ
Механическая энергия и работа в физике - виды, формулы и определения с примерами
Механическая энергия и работа в физике - виды, формулы и определения с примерамиБЛОК НАКЛОННАЯ ПЛОСКОСТЬ
Механическая энергия и работа в физике - виды, формулы и определения с примерами
 
Выигрыш в силе  зависит от соотношения
Механическая энергия и работа в физике - виды, формулы и определения с примерами

НЕПОДВИЖНЫЙ

Выигрыша в силе  не дает

ПОДВИЖНЫЙ

Выигрыш в силе
в два раза

Выигрыш в силе определяется высотой h и длиной l наклонной плоскости
Механическая энергия и работа в физике - виды, формулы и определения с примерами
 

ЗОЛОТОЕ ПРАВИЛО МЕХАНИКИ: Выигрывая с помощью некоторого механизма в силе, мы обязательно проигрываем в расстоянии (и наоборот)

Коэффициент полезного действия механизмов (КПД)
Механическая энергия и работа в физике - виды, формулы и определения с примерами

Механическая работа и единицы работы

В повседневной жизни слово «работа» употребляется очень часто. Работой называют любую полезную работу рабочего, учёного, ученика.

В физике понятия работы значительно уже. Прежде всего рассматривают механическую работу.

Механическая работа выполняется при перемещении тела под действием приложенной к нему силы.

Рассмотрим примеры механической работы. Автомобиль тянет с определённой силой прицеп и перемещает его на некоторое расстояние, при этом выполняется механическая работа. Рабочий поднимает пакеты (рис. 168) и складывает их. Он выполняет механическую работу.

Механическая энергия и работа в физике - виды, формулы и определения с примерами

Шайба движется по льду, под действием силы трения она через некоторое время останавливается. В этом случае также выполняется механическая работа.

Рассмотрим, отчего зависит значение механической работы.

Для того чтобы поднять груз массой 1 кг на высоту 1 м, нужно приложить силу 9,8 Н. При этом выполняется механическая работа. А для того чтобы поднять тело массой 10 кг на такую же высоту, нужно приложить силу, в 10 раз большую. Выполненная работа в этом случае будет в 10 раз больше. Если поднимать тело массой 1 кг не на 1 м, а, например, на 10 м, то работа, выполненная при подъёме груза на 10 м, будет в 10 раз больше работы, выполненной при подъёме тела на 1 м.

Следовательно, механическая работа прямо пропорциональна приложенной к телу силе и расстоянию, на которое это тело перемещается.

Чтобы определить выполненную механическую работу, нужно значение силы умножить на путь, пройденный телом в направлении действия силы, т. е.
Механическая энергия и работа в физике - виды, формулы и определения с примерами или Механическая энергия и работа в физике - виды, формулы и определения с примерами,

где А — механическая работа; Механическая энергия и работа в физике - виды, формулы и определения с примерами — сила; Механическая энергия и работа в физике - виды, формулы и определения с примерами — путь, пройденный телом в направлении действия силы.

Единицей работы в СИ является один джоуль (1Дж).

1 джоуль – это работа, которую выполняет сила 1 Н, перемещая тело на 1 м в направлении действия силы: 1 Дж =1 Н х 1 м = 1 Нм.

Эта единица названа в честь английского физика Джеймса Джоуля. Единицами механической работы являются также килоджоуль и мегаджоуль:
Механическая энергия и работа в физике - виды, формулы и определения с примерами ; Механическая энергия и работа в физике - виды, формулы и определения с примерами.

Рассмотрим случаи, когда механическая работа не выполняется. Мы хотим передвинуть тяжёлый шкаф, действуем на него с силой, но не можем сдвинуть его с места (т. е. Механическая энергия и работа в физике - виды, формулы и определения с примерами= 0) — работа не выполняется.

Если тело движется по инерции (т. е. Механическая энергия и работа в физике - виды, формулы и определения с примерами = 0), то работа также не выполняется.

Мощность. единицы мощности

Рассмотрим следующие примеры выполнения механической работы.

Двум ученикам одинаковой массы нужно подняться по канату вверх на одну и ту же высоту (рис. 169), т. е. выполнить одинаковую механическую работу. Один из них может выполнить это быстрее.

Механическая энергия и работа в физике - виды, формулы и определения с примерами

Подъёмный кран на строительстве за несколько минут поднимает на заданную высоту, например, 400 кирпичей. Если бы эту работу выполнял рабочий, перенося кирпич вручную, то он затратил бы на это весь рабочий день.

Гектар земли сильная лошадь может вспахать за 10—12 ч, а трактор с многолемеховым плугом эту работу выполняет за 40—50 мин.

В этих примерах один из учеников выполняет одну и ту же работу быстрее, чем другой, подъёмный кран — быстрее, чем рабочий, а трактор – быстрее, чем лошадь. Скорость выполнения работы характеризуют физической величиной, которую называют мощностью.

Мощность – это физическая величина, которая определяется Г отношением выполненной работы к затраченному времени.

Чтобы определить мощность, нужно работу разделить на время её выполнения:
Механическая энергия и работа в физике - виды, формулы и определения с примерами или Механическая энергия и работа в физике - виды, формулы и определения с примерами,

где N — мощность; А — механическая работа; — время.

Единицей мощности в СИ является один ватт (1 Вт). Она названа в честь английского изобретателя паровой машины Джеймса Уатта.

1 ватт – это мощность, при которой за 1 с выполняется работа 1 Дж:

Механическая энергия и работа в физике - виды, формулы и определения с примерами или Механическая энергия и работа в физике - виды, формулы и определения с примерами

Используют также другие единицы мощности: киловатт и мегаватт:

Механическая энергия и работа в физике - виды, формулы и определения с примерами

Зная мощность двигателя N, можно определить работу А, которую выполняет этот двигатель на протяжении определённого интервала времени t, по формуле:Механическая энергия и работа в физике - виды, формулы и определения с примерами.

Кстати:

Мощность сердца в покое у разных людей лежит в пределах 0, 7-1,8 Вт, т. е. она соизмерима с мощностью электрического звонка. При нагрузке она может возрастать в 2-6 раз, у тренированных людей – даже в 10 раз. Длительное время человек способен работать со средней мощностью 75 Вт, а кратковременно, например во время бега, – до 600 Вт.

Хвост голубого кита имеет горизонтальные лопасти. Он развивает мощность 368 кВт. Эта мощность только в 2 раза меньше мощности двигателя самолёта Ан-2 и в 7 раз больше мощности двигателя трактора ДТ-75.

Тепловоз имеет мощность 4400 кВт, а ракета-носитель «Протон» – свыше 44 000 Мвт.

Пример №7

Какую работу выполняет трактор, тянущий прицеп с силой 15 000 Н на расстояние 300 м?

Дано:

Механическая энергия и работа в физике - виды, формулы и определения с примерами= 300 м

Механическая энергия и работа в физике - виды, формулы и определения с примерами = 15 000 Н

А = ?
Решение:

По формуле Механическая энергия и работа в физике - виды, формулы и определения с примерами определяем работу, выполненную трактором: Механическая энергия и работа в физике - виды, формулы и определения с примерами

Ответ: трактор выполняет работу, равную 4500 кДж или 4,5 МДж.

Пример №8

Какую работу нужно выполнить, чтобы поднять мешок сахара массой 50 кг на второй этаж высотой 3 м?

Дано:  

Механическая энергия и работа в физике - виды, формулы и определения с примерами = 50 кг

Н = 3 м

Механическая энергия и работа в физике - виды, формулы и определения с примерами = 10 Механическая энергия и работа в физике - виды, формулы и определения с примерами

А = ?

Решение:

Работу для подъёма тела на некоторую высоту определяем по формуле:

Механическая энергия и работа в физике - виды, формулы и определения с примерами. Если сила тяжести Механическая энергия и работа в физике - виды, формулы и определения с примерами, тогда Механическая энергия и работа в физике - виды, формулы и определения с примерами.

А = 50кг • 10 Механическая энергия и работа в физике - виды, формулы и определения с примерами • 3 м = 1500 Дж. = 1500Дж.

А = 1500Дж

Ответ: чтобы поднять мешок сахара на второй этаж, нужно выполнить работу, равную 1500Дж.

Пример №9

Определить мощность двигателя, если он за 10 мин выполнил работу 7200 кДж.

Дано:

А = 7200 кДж = 7200 000Дж

Механическая энергия и работа в физике - виды, формулы и определения с примерами = 10 мин = 600 с

Механическая энергия и работа в физике - виды, формулы и определения с примерами = ? 

Решение:

По формуле Механическая энергия и работа в физике - виды, формулы и определения с примерами определяем мощность двигателя: Механическая энергия и работа в физике - виды, формулы и определения с примерами

Ответ: мощность двигателя равна 12 кВт.

Работа и энергия

Усвоив материал этого раздела, вы будете знать:

  • какие существуют виды механической энергии, единицы измерения работы, мощности;
  • что такое простые механизмы, использование машин и простых механизмов.

Вы сможете объяснить:

  • закон сохранения и превращения энергии, «золотое правило» механики;
  • превращение энергии в механических процессах.

Вы будете уметь:

  • измерять мощность и КПД механизмов;
  • пользоваться простыми механизмами.

Механическая работа

Слово работа мы слышим очень часто: и когда говорим о действии каких-либо машин или механизмов, и когда описываем какие-либо события будничной жизни. Так, характеризуя деятельность грузчика, который переносит мешки с мукой, мы говорим, что он выполняет работу. Слово работа мы употребляем и тогда, когда объясняем принцип действия двигателя внутреннего сгорания, в котором горячий газ, образовавшийся при сгорании топливно-воздушной смеси, передвигает поршни в цилиндрах. Во всех упомянутых случаях слово работа используют тогда, когда тела изменяют свое состояние.

Что такое механическая работа

В физике используют понятие — механическая работа. Она выполняется всегда, когда тело перемещается под действием определенной силы. Так, под действием силы тяжести шарик падает на поверхность Земли. Говорят, что сила тяжести выполняет работу по перемещению шарика.

Пуля в стволе ружья перемещается в результате действия пороховых газов, вследствие чего летит на значительное расстояние.

Под действием силы упругости, которая возникает при растяжении тетивы лука, стрела приобретает значительную скорость и отлетает от лука. Но никто не скажет, что сила притяжения, которая действует на неподвижный камень, выполняет работу. Так как камень не изменяет своего состояния.

Поэтому считают, что работа выполняется только тогда, когда на тело действует сила и оно при этом осуществляет перемещение.

Механическая работа является физической величиной и ее можно рассчитать.

Как рассчитывают механическую работу

Представим, что на высоту 2 м нужно поднять сначала груз массой 5 кг, а затем – массой 10 кг. Очевидно, что во втором случае должна быть выполнена большая работа, чем в первом, поскольку к телу нужно приложить большую силу.

Большая работа будет выполнена и тогда, когда один и тот же груз нужно поднять на большую высоту, например, не на 2 м, а на 4 м.

Значение работы зависит от значения силы и пути, на кото-]28 Р°м действует эта сила. Это простая зависимость, и ее можно записать в виде формулы.

Если работу обозначить буквой Механическая энергия и работа в физике - виды, формулы и определения с примерами, силу – Механическая энергия и работа в физике - виды, формулы и определения с примерами, а путь – Механическая энергия и работа в физике - виды, формулы и определения с примерами, то

Механическая энергия и работа в физике - виды, формулы и определения с примерами

Единицы работы

Соответственно определению установлена единица работы. Если действующая сила равна 1 Н и тело перемещается на 1 м, то при этом выполняется работа 1 Дж (джоуль).

1 джоуль = 1 ньютон • 1 метр,

или

Механическая энергия и работа в физике - виды, формулы и определения с примерами

Единица работы так названа в честь выдающегося физика, исследователя в области механики и теплоты Дж. Джоуля.

Механическая энергия и работа в физике - виды, формулы и определения с примерамиДжеймс Прескотт Джоуль (1818-1889) – английский физик, один из ученых, открывших закон сохранения энергии. Научные труды выполнены в области электромагнетизма и теплоты.

Для удобства записей и расчетов используют такие кратные единицы работы, как килоджоуль (кДж) и мегаджоуль (МДж):

Механическая энергия и работа в физике - виды, формулы и определения с примерами

Рассмотрим пример расчета выполненной работы как физическую задачу.

Пример №10

Рабочий перевез тележку на расстояние 25 м. Прикрепленный к ручке тележки динамометр показал, что рабочий прикладывал к тележке силу 200 Н. Какая работа выполнена?

Дано:

Механическая энергия и работа в физике - виды, формулы и определения с примерами

Решение

Механическая энергия и работа в физике - виды, формулы и определения с примерами

Ответ. Выполненная работа равна 5 кДж.

Используя определение работы и соответствующую формулу, можно рассчитывать величины, от которых зависит работа.

Так, если известны работа и путь, на котором эта работа выполнена, можно определить силу:

Механическая энергия и работа в физике - виды, формулы и определения с примерами

Аналогично можно определить путь, на котором выполнена работа:Механическая энергия и работа в физике - виды, формулы и определения с примерами

Вычисление механической работы

C понятием «механическая работа» или просто «работа» мы уже встречались в курсе физики. Механическая работа — это процесс передачи движения от одного тела (системы тел) к другому телу (или системе тел); физическая скалярная величина, являющаяся количественной мерой этого процесса, называется работой. Она определяется следующим образом. Когда на тело действует постоянная сила и тело, двигаясь прямолинейно в направлении действия силы, совершает перемещение Механическая энергия и работа в физике - виды, формулы и определения с примерами, то говорят, что силаМеханическая энергия и работа в физике - виды, формулы и определения с примерами совершает работу А, равную произведению модуля силы и модуля перемещения:
Механическая энергия и работа в физике - виды, формулы и определения с примерами   (1)

Из определения следует, что работа — скалярная величина, а также то, что в метрической системе единиц (СИ) единица измерения работы 1H-1 м=1 Дж (джоуль). Эта единица названа в честь английского ученого Д. Джоуля, впервые экспериментально обосновавшего эквивалентность работы и теплоты.

Мы рассмотрели самый простой случай, когда перемещение тела и сила, действующая на него, совпадают по направлению. А как нужно вычислять работу силы, если ее направление не совпадает с перемещением?

Для выяснения этого вопроса рассмотрим следующий опыт (рис. 123). Через блок перекинута нить, на которой висит брусок некоторой массы. На брусок действуют две силы — сила натяжения нити Механическая энергия и работа в физике - виды, формулы и определения с примерами и сила тяжести Механическая энергия и работа в физике - виды, формулы и определения с примерами. Если равномерно тянуть за нить, то тело будет равномерно двигаться, и, следовательно, по второму закону Ньютона результирующая сила, действующая на тело, будет равна нулю. Значит, при перемещении ∣Механическая энергия и работа в физике - виды, формулы и определения с примерами∣ тела работа результирующей силы будет тоже равна нулю. Однако сила натяжения совершает работу Механическая энергия и работа в физике - виды, формулы и определения с примерами. Поскольку Механическая энергия и работа в физике - виды, формулы и определения с примерами, то мы должны предположить, что сила тяжести тоже совершает такую же работу Amg по величине, но отрицательную. т. е. Ан =-Amg. Следовательно, работа сил может быть положительной, отрицательной и равной нулю. Заметим, что сила тяжести по направлению противоположна перемещению тела. Это обстоятельство и другие соображения позволяют предложить общую формулу для работы постоянной силы при прямолинейном движении.

Механическая энергия и работа в физике - виды, формулы и определения с примерами
Рис. 123

Если вектор силы и перемещения составляют между собой угол а, то работа этой силы определяется по формуле

Механическая энергия и работа в физике - виды, формулы и определения с примерами      (2)

Это и есть общее выражение для работы постоянной силы. Действительно, если векторы Механическая энергия и работа в физике - виды, формулы и определения с примерами и Механическая энергия и работа в физике - виды, формулы и определения с примерами совпадают по направлению, то α = 0 и cosa=l. Поэтому Механическая энергия и работа в физике - виды, формулы и определения с примерами. Если Механическая энергия и работа в физике - виды, формулы и определения с примерами = 180o (cos 180o = -1), то А = –Механическая энергия и работа в физике - виды, формулы и определения с примерами. Если Механическая энергия и работа в физике - виды, формулы и определения с примерами = 90° (cos90° = 0), то А = 0; т. е. сила, направление которой перпендикулярно движению, не совершает работы (вернее, ее работа равна нулю). Очевидно, что если 0≤a<90o, то работа положительная, если 90o < a ≤ 180°, то работа отрицательная.

Для примера найдем работу каждой из всех сил, действующих на движущиеся санки.

Па рисунке 124 показаны все силы, действующие на тело. Это сила натяжения веревки Механическая энергия и работа в физике - виды, формулы и определения с примерами, составляющая угол Механическая энергия и работа в физике - виды, формулы и определения с примерами с горизонтом, сила тяжести Механическая энергия и работа в физике - виды, формулы и определения с примерами, нормальная сила реакции Механическая энергия и работа в физике - виды, формулы и определения с примерами и сила трения Механическая энергия и работа в физике - виды, формулы и определения с примерами. Если перемещение санок равно Механическая энергия и работа в физике - виды, формулы и определения с примерами, то работа силы натяжения Механическая энергия и работа в физике - виды, формулы и определения с примерами. Работа силы тяжести по формуле (2) Аmg= 0, так как Механическая энергия и работа в физике - виды, формулы и определения с примерами = 90°. По той же причине АN = 0 и, наконец, Атp= Механическая энергия и работа в физике - виды, формулы и определения с примерами . Поскольку результирующая сила:
Механическая энергия и работа в физике - виды, формулы и определения с примерами,
то работу результирующей силы можно найти как сумму работ всех действующих на санки сил:
Механическая энергия и работа в физике - виды, формулы и определения с примерами

Очевидно, что значение работы результирующей силы может быть положительным, отрицательным или равным нулю.

Механическая энергия и работа в физике - виды, формулы и определения с примерами
Рис. 124

При прямолинейном движении тела в одну сторону модуль перемещения Механическая энергия и работа в физике - виды, формулы и определения с примерами и путь s совпадают. Поэтому формулу (2) часто записывают в виде:
Механическая энергия и работа в физике - виды, формулы и определения с примерами    (3)

На рисунке 125 представлен график зависимости силы, приложенной к телу, совпадающей по направлению с перемещением, от пройденного пути s. В соответствии с формулой (1) работа этой силы численно равна площади прямоугольника (заштриховано).

Механическая энергия и работа в физике - виды, формулы и определения с примерами
Рис. 125

Если же сила изменяется в процессе движения, то работа этой силы тоже будет численно равна площади под кривой. В частности, на рисунке 126 представлен график силы, которая линейно уменьшается с пройденным расстоянием до нуля. Очевидно, что работа этой силы на пути s∣ численно равна площади треугольника, т. е.:
Механическая энергия и работа в физике - виды, формулы и определения с примерами

Механическая энергия и работа в физике - виды, формулы и определения с примерами
Рис. 126

Главные выводы:

  1. Механическая работа характеризует процесс передачи движения от одного тела (системы тел) к другому телу (или системе тел).
  2. Работа силы — это физическая скалярная величина, равная произведению модулей силы, перемещения и косинуса угла между направлениями силы и перемещения, если сила не изменяется в процессе движения.
  3. При движении тела все действующие на него силы совершают работу.
  4. Работа результирующей силы равна алгебраической сумме работ всех сил, действующих на тело.

Механическая работа и мощность

Механическая работа – физическая величина, характеризующая изменение состояния тела и зависящая от числового значения и направления равнодействующей силы и перемещения точки приложения этой силы.

Механическая работа равна произведению модуля силы, действующей на тело, модуля его перемещения и косинуса угла между векторами силы и перемещения:

Механическая энергия и работа в физике - виды, формулы и определения с примерами

Работа – скалярная физическая величина, которая, в отличие от других скалярных величин (например, путь, масса, площадь и другие), может быть равна нулю, принимать положительные или отрицательные числовые значение. Знак работы зависит от направления приложенной к телу силы и направления перемещения тела (а):

Механическая энергия и работа в физике - виды, формулы и определения с примерами

a) если угол между векторами силы, действующей на тело, и его перемещением равен нулю или острый Механическая энергия и работа в физике - виды, формулы и определения с примерами то Механическая энергия и работа в физике - виды, формулы и определения с примерами и работа, совершенная силой, положительна: Механическая энергия и работа в физике - виды, формулы и определения с примерами

b) если угол между векторами силы, действующей на тело и его перемещением равен нулю или тупой Механическая энергия и работа в физике - виды, формулы и определения с примерами то Механическая энергия и работа в физике - виды, формулы и определения с примерами и работа, совершенная силой, отрицательна:

Механическая энергия и работа в физике - виды, формулы и определения с примерами

c) если сила, действующая на тело, перпендикулярна перемещению Механическая энергия и работа в физике - виды, формулы и определения с примерами то Механическая энергия и работа в физике - виды, формулы и определения с примерами и данная сила работу не совершает: Механическая энергия и работа в физике - виды, формулы и определения с примерами

Единица измерения работы в СИ – джоуль (Дж):

  • 1 джоуль (1 Дж) — это работа, которую совершает сила 1Н, перемещая тело на 1 м в направлении действия силы:

Механическая энергия и работа в физике - виды, формулы и определения с примерами

Частный случай:

Если тело движется вдоль оси Механическая энергия и работа в физике - виды, формулы и определения с примерами то совершенная силой Механическая энергия и работа в физике - виды, формулы и определения с примерами работа численно равна площади фигуры, находящейся между графиком зависимости проекции этой силы на ось Механическая энергия и работа в физике - виды, формулы и определения с примерами и осью абсцисс: (b)Механическая энергия и работа в физике - виды, формулы и определения с примерами

Механическая энергия и работа в физике - виды, формулы и определения с примерами

Работа постоянной по значению и направлению равнодействующей силы обладает двумя важными свойствами:    (с)

1. Работа, постоянной равнодействующей силы по произвольной замкнутой траектории равна нулю. Потому, что модуль перемещения тела по замкнутой траектории равен нулю:

Механическая энергия и работа в физике - виды, формулы и определения с примерами

2. Работа, совершаемая постоянной равнодействующей силой во время движения тела между двумя данными точками, не зависит от формы траектории, соединяющей эти точки.

Например, так как перемещения тела, движущегося по траекториям OLM и ONM, соединяющим точки О и М, одинаковы, то и работы постоянной равнодействующей силы по этим траекториям одинакова (с):

Механическая энергия и работа в физике - виды, формулы и определения с примерами

Механическая энергия и работа в физике - виды, формулы и определения с примерами

Мощность:

Быстрота совершаемой работы характеризируется физической величиной, называемой мощностью.

  • Мощностью называется отношение совершенной работы ко времени, затраченному на выполнение этой работы.

Механическая энергия и работа в физике - виды, формулы и определения с примерами

Единица измерения мощности в СИ — ватт (Вт):

Механическая энергия и работа в физике - виды, формулы и определения с примерами

  • 1 Ватт определяется как мощность, при которой за 1с совершается работа в 1 Дж. Первую единицу измерения мощности предложил в 1789 году английский физик и изобретатель Джеймс Уатт – она называлась лошадиной силой (л.с.). Иногда и сегодня пользуются этой единицей:

Механическая энергия и работа в физике - виды, формулы и определения с примерами

Работа, совершаемая постоянной силой за промежуток времени Механическая энергия и работа в физике - виды, формулы и определения с примерами 

На основании этой формулы получена другая единица работы – киловатт-час:

Механическая энергия и работа в физике - виды, формулы и определения с примерами

Если мощность с течением времени меняется, то числовое значения работы можно определить как площадь фигуры, лежащей под графиком мощность -время (d): Механическая энергия и работа в физике - виды, формулы и определения с примерами

Механическая энергия и работа в физике - виды, формулы и определения с примерами

При прямолинейном равномерном движении тела его мощность можно выразить через скорость движения тела. Например, мощность двигателя автомобиля, движущегося прямолинейно равномерно (при постоянном значении силы трения), равна:

Механическая энергия и работа в физике - виды, формулы и определения с примерами

Из этого выражения получается, что при постоянной мощности двигателя автомобиля при малых значениях скорости имеем выигрыш в силе тяги (в случае I передачи скорости), а при малых значениях силы тяги имеем выигрыш в скорости (в случае IV и V передач скорости автомобиля):

Механическая энергия и работа в физике - виды, формулы и определения с примерами

Физический смысл механической работы и энергия

На первый взгляд, привести примеры ситуаций, когда выполняется работа, очень легко. Работу выполняют вода и воздух, машины и механизмы, строители и грузчики. А выполняет ли работу учащийся, который неподвижно держит в руках тяжелый портфель? программист, который выполняет задание сидя за компьютером? И вообще, что имеют в виду физики, когда говорят о механической работе?

О механической работе говорят тогда, когда тело изменяет свое положение в пространстве в результате действия силы. Рассмотрим движение баржи, которую тянет буксир (рис.30.1). Буксир действует на баржу с некоторой силой — силой тяги Механическая энергия и работа в физике - виды, формулы и определения с примерами. Груз на барже тоже действует на нее — давит своим весом Механическая энергия и работа в физике - виды, формулы и определения с примерами. Физики говорят: сила тяги выполняет механическую работу, поскольку баржа движется в направлении силы тяги, а вот вес груза механическую работу не выполняет, поскольку в направлении веса (то есть вниз) баржа не движется.

Механическая энергия и работа в физике - виды, формулы и определения с примерами

Чем больший путь пройдет баржа под действием силы тяги, тем большую механическую работу выполнит эта сила. Механическая работа увеличится и при возрастании силы тяги — если, например, заставить буксир с баржей двигаться с большей скоростью. В общем случае механическая работа, выполняемая некоторой силой, зависит от значения силы и пути, пройденного телом в результате действия этой силы.

Механическая работа — это физическая величина, которая характеризует изменение положения тела под действием силы и равна произведению силы на путь, пройденный телом в направлении этой силы: Механическая энергия и работа в физике - виды, формулы и определения с примерами где A — механическая работа; F — значение силы, действующей на тело; l — путь, пройденный телом в направлении данной силы.

Единица работы в СИ — джоуль (Дж); названа так в честь английского ученого Джеймса Джоуля (рис. 30.2): Механическая энергия и работа в физике - виды, формулы и определения с примерами 1 Дж равен механической работе, которую выполняет сила 1 Н при перемещении тела на 1 м в направлении действия этой силы: Механическая энергия и работа в физике - виды, формулы и определения с примерами

Механическая энергия и работа в физике - виды, формулы и определения с примерами

Обратите внимание! Поскольку сила действует на тело со стороны другого тела (буксир тянет баржу), не будет ошибкой говорить не о работе силы (работе силы натяжения троса), а о работе тела (работе буксира).

Какие значения может иметь механическая работа

Вы уже знаете, что сила имеет направление, то есть сила — это векторная величина. А вот работа силы не имеет направления, то есть работа — скалярная величина. При этом работа может быть положительной, отрицательной или равной нулю — в зависимости от того, куда направлена сила относительно направления движения тела:

Механическая энергия и работа в физике - виды, формулы и определения с примерами

На рис. 30.3 показаны силы, которые действуют на автомобиль, движущийся по горизонтальному участку дороги: сила тяги, сила сопротивления движению, силы нормальной реакции опоры, сила тяжести. Какая сила, по вашему мнению, выполняет положительную работу? отрицательную работу? Работа каких сил равна нулю?

Механическая энергия и работа в физике - виды, формулы и определения с примерами

  • Заказать решение задач по физике

Геометрический смысл механической работы

Пусть тело движется под действием постоянной силы Механическая энергия и работа в физике - виды, формулы и определения с примерами направление которой все время совпадает с направлением движения тела. Работа такой силы равна произведению силы на путь: Механическая энергия и работа в физике - виды, формулы и определения с примерами Построим график зависимости значения силы F от пути l, пройденного телом (рис. 30.4). Этот график представляет собой отрезок прямой, параллельной оси абсцисс (оси пути).

Механическая энергия и работа в физике - виды, формулы и определения с примерами

Из рисунка видим, что произведение Механическая энергия и работа в физике - виды, формулы и определения с примерами — это произведение длины и ширины прямоугольника, что соответствует площади S данного прямоугольника. В этом состоит геометрический смысл механической работы: Если направление действующей на тело силы совпадает с направлением движения тела, то работа этой силы численно равна площади фигуры под графиком зависимости силы от пути, пройденного телом. Это утверждение распространяется и на случаи, когда значение силы изменяется со временем.

Пример №11

С помощью пружины жесткостью 25 Н/м брусок передвигают по столу с постоянной скоростью 5 см/с. Какую работу выполнит сила упругости за 20 с, если удлинение пружины равно 4 см? Анализ физической проблемы. Работа силы упругости положительна, поскольку брусок движется в направлении действия силы. Для определения работы нужно найти значение силы упругости Механическая энергия и работа в физике - виды, формулы и определения с примерами и путь l, пройденный бруском. Жесткость пружины и ее удлинение известны, поэтому, чтобы найти значение силы упругости, воспользуемся законом Гука. Брусок движется равномерно, значит, его путь равен произведению скорости на время движения. Задачу будем решать в единицах СИ.

Дано:

Механическая энергия и работа в физике - виды, формулы и определения с примерами,Механическая энергия и работа в физике - виды, формулы и определения с примерами,Механическая энергия и работа в физике - виды, формулы и определения с примерами,Механическая энергия и работа в физике - виды, формулы и определения с примерами

Найти:

Механическая энергия и работа в физике - виды, формулы и определения с примерами

Решение:

По определению работы:Механическая энергия и работа в физике - виды, формулы и определения с примерами

По закону Гука:Механическая энергия и работа в физике - виды, формулы и определения с примерами

Путь, пройденный бруском, равен: Механическая энергия и работа в физике - виды, формулы и определения с примерами

Подставив выражения для Механическая энергия и работа в физике - виды, формулы и определения с примерами в формулу работы, окончательно получим: Механическая энергия и работа в физике - виды, формулы и определения с примерами

Проверим единицу, найдем значение искомой величины:

Механическая энергия и работа в физике - виды, формулы и определения с примерами

Механическая энергия и работа в физике - виды, формулы и определения с примерами

Ответ:Механическая энергия и работа в физике - виды, формулы и определения с примерами

Итоги:

Механическая работа — это физическая величина, которая характеризует изменение положения тела под действием силы. Если сила постоянна и действует в направлении движения тела, механическую работу находят по формуле: Механическая энергия и работа в физике - виды, формулы и определения с примерами Единица механической работы в СИ — джоуль (Дж); Механическая энергия и работа в физике - виды, формулы и определения с примерами

В зависимости от направления силы и направления движения тела механическая работа может быть положительной, отрицательной или равной нулю.

Мощность и энергия

Возможно, важнейшим в развитии человеческой цивилизации стало время, когда человек начал изготовлять простые орудия труда, строить примитивное жилье, пахать землю. сначала люди использовали для выполнения работы только мышечную силу своих рук, затем — силу домашних животных: лошадей, быков, ослов, верблюдов. это позволило за меньшее время выполнять ту же работу. однако настоящий прорыв произошел благодаря использованию машин и механизмов — автомобилей, судов, поездов, кранов, экскаваторов и т. п. современные машины могут выполнять работу в тысячи раз быстрее человека. Какая же характеристика машин является показателем их эффективности?

Разным исполнителям для выполнения одной и той же работы требуется разное время. Так, если экскаватор и землекоп одновременно начнут копать траншеи (рис. 31.1), то понятно, что экскаватор выполнит работу значительно быстрее, чем землекоп. Кран быстрее, чем грузчик, перенесет нужное количество кирпичей; трактор быстрее лошади вспашет поле.

Механическая энергия и работа в физике - виды, формулы и определения с примерами

Приведите еще несколько подобных примеров. Для характеристики скорости выполнения работы используют физическую величину мощность.

Мощность — это физическая величина, характеризующая скорость выполнения работы и равная отношению выполненной работы ко времени, за которое эта работа была выполнена: Механическая энергия и работа в физике - виды, формулы и определения с примерами где N — мощность; A — работа; t — время выполнения работы. Единица мощности в СИ — ватт: Механическая энергия и работа в физике - виды, формулы и определения с примерами Эта единица получила свое название в честь британского инженера и изобретателя механика Дж. Ватта* (рис. 31.2).

Механическая энергия и работа в физике - виды, формулы и определения с примерами

1 Вт равен мощности, при которой в течение 1 с выполняется работа 1 Дж: Механическая энергия и работа в физике - виды, формулы и определения с примерами Из определения мощности следует, что мощность численно равна работе, выполненной за одну секунду. При выполнении механической работы большую мощность развивает тело, которое за то же время выполняет большую работу. Например, один двигатель самолета АН-­225 почти в 5 раз мощнее, чем один двигатель самолета АН-­140 (см. таблицу)**, поскольку за 1 с он выполняет работу 9190 кДж, а двигатель самолета АН­-140 — только 1840 кДж.

Как мощность зависит от силы тяги и скорости движения

Предположим, необходимо вычислить мощность движущегося с постоянной скоростью v транспортного средства, двигатель которого создает силу тяги F. Для определения мощности воспользуемся формулой: Механическая энергия и работа в физике - виды, формулы и определения с примерами

В качестве единицы мощности Джеймс Ватт ввел лошадиную силу. Эту единицу и сейчас используют в технике: 1 л. с. ~ 735,5 Вт. Общая мощность двигателей самолета АН-225 (имеющего 6 двигателей) превышает общую мощность двигателей самолета АН-140 (имеющего 2 двигателя) в 15 раз.

Механическая энергия и работа в физике - виды, формулы и определения с примерами

Вспомним формулу для расчета работы: Механическая энергия и работа в физике - виды, формулы и определения с примерами, а также то, что при равномерном движении путь l, пройденный телом, равен произведению скорости движения тела на время его движения: Механическая энергия и работа в физике - виды, формулы и определения с примерами После преобразований имеем: Механическая энергия и работа в физике - виды, формулы и определения с примерами Итак, формула для вычисления мощности: Механическая энергия и работа в физике - виды, формулы и определения с примерами Обратите внимание! Данная формула позволяет рассчитать также мгновенную мощность (то есть мощность в определенный момент времени) любого транспортного средства, даже если скорость его движения и сила тяги постоянно изменяются.

Пример №12

Человек равномерно поднимает ведро с водой на высоту 20 м за 20 с. Какую мощность развивает человек, если масса ведра с водой равна 10 кг?

Механическая энергия и работа в физике - виды, формулы и определения с примерами

Анализ физической проблемы. Чтобы определить мощность, нужно рассчитать работу, которую выполнил человек, поднимая ведро на определенную высоту. Для этого нужно найти значение силы Механическая энергия и работа в физике - виды, формулы и определения с примерами с которой человек действует на ведро. На ведро действуют две силы: сила тяжести Механическая энергия и работа в физике - виды, формулы и определения с примерами(см. рисунок). Ведро движется равномерно, поэтому эти силы скомпенсированы: Механическая энергия и работа в физике - виды, формулы и определения с примерами Учитывая эти условия, найдем искомое значение силы. Задачу будем решать в единицах СИ.

Дано:

Механическая энергия и работа в физике - виды, формулы и определения с примерами,Механическая энергия и работа в физике - виды, формулы и определения с примерами,Механическая энергия и работа в физике - виды, формулы и определения с примерами,Механическая энергия и работа в физике - виды, формулы и определения с примерами

Найти:

Механическая энергия и работа в физике - виды, формулы и определения с примерами

Решение:

По определению мощности:Механическая энергия и работа в физике - виды, формулы и определения с примерами

Работа, выполненная человеком:Механическая энергия и работа в физике - виды, формулы и определения с примерами

Поскольку Механическая энергия и работа в физике - виды, формулы и определения с примерами

Подставим выражение для работы в формулу мощности:

Механическая энергия и работа в физике - виды, формулы и определения с примерами

Проверим единицу, найдем значение искомой величины:

Механическая энергия и работа в физике - виды, формулы и определения с примерами

Ответ:Механическая энергия и работа в физике - виды, формулы и определения с примерами

Итоги:

Мощность — это физическая величина, характеризующая скорость выполнения работы и равная отношению выполненной работы ко времени, за которое данная работа была выполнена: Механическая энергия и работа в физике - виды, формулы и определения с примерами Единица мощности в СИ — ватт (Вт); Механическая энергия и работа в физике - виды, формулы и определения с примерами Мощность также можно вычислить по формуле: Механическая энергия и работа в физике - виды, формулы и определения с примерами

Потенциальная и кинетическая энергии тела

Слово «энергия» мы слышим в телевизионных репортажах, видим на страницах газет, книг и т. д. Им пользуются для характеристики людей (энергичный человек), природных явлений (энергия землетрясения или урагана), машин и механизмов (потребляемая ими электроэнергия). А что такое энергия с точки зрения физики?

Что такое энергия и как она связана с механической работой

Энергия (в переводе с греческого это слово означает «деятельность») — одна из важнейших физических величин. Из курса природоведения вам известны такие понятия, как «электрическая энергия», «атомная энергия», «механическая энергия», — все это разные виды энергии. В механике мы имеем дело с механической энергией и будем пользоваться таким определением:

Энергия — это физическая величина, которая характеризует способность тела (системы тел) выполнять работу. Энергию обозначают символом E (или W). Единица энергии в СИ, как и работы, — джоуль: [E]=Дж. Продемонстрируем способность тела выполнять механическую работу. Расположим маленький шарик на краю стола, а на полу поставим сосуд с водой. Если столкнуть шарик, он полетит вниз, упадет в воду и расплещет жидкость (рис. 32.1). Появление брызг означает, что шарик выполнил некоторую работу. Если же к шарику не прикасаться, он останется лежать на столе. Таким образом, энергия шарика может быть реализована выполнением работы во время падения или сохранится «до лучших времен». На рис. 32.2 крепкая веревка удерживает деформированную балку катапульты. Балка работу не выполняет, но может выполнить, если веревку отпустить: распрямляясь, балка придаст скорость метательному снаряду. При этом деформация балки уменьшится. Многим из вас, наверное, приходилось видеть, как играют в боулинг. Шар запускают по горизонтальной гладкой дорожке. От момента броска до попадания в кегли шар движется практически по инерции и работу не выполняет. Но затем, когда шар разбрасывает кегли, он выполняет работу (рис. 32.3) и уменьшает скорость своего движения.

Механическая энергия и работа в физике - виды, формулы и определения с примерами

Механическая энергия и работа в физике - виды, формулы и определения с примерами

Механическая энергия и работа в физике - виды, формулы и определения с примерами

Приведите еще несколько примеров тел, способных выполнить работу, то есть обладающих определенной механической энергией. Чем большую работу может выполнить тело, тем большей энергией это тело обладает. При выполнении механической работы энергия тела изменяется. Следовательно, механическая работа является мерой изменения энергии тела. Так, когда грузчик поднимает кирпичи, энергия кирпичей увеличивается на значение выполненной грузчиком работы (рис. 32.4). Энергия шарика, падающего со стола, уменьшается на значение выполненной этим шариком работы. То же можно сказать о работе, которую выполнила балка катапульты, о работе шара для боулинга и т. д.

Расчёт и вычисление потенциальной энергии, которую «запасает» поднятое тело

Тело, поднятое над поверхностью Земли, обладает энергией, что обусловлено притяжением тела к Земле. Такую энергию называют потенциальной.

Потенциальная энергия Механическая энергия и работа в физике - виды, формулы и определения с примерами — это энергия, обусловленная взаимодействием тел или частей тела. Потенциальная энергия поднятого на некоторую высоту тела равна работе, которую выполнит сила тяжести за время падения тела с данной высоты: Механическая энергия и работа в физике - виды, формулы и определения с примерами Поскольку Механическая энергия и работа в физике - виды, формулы и определения с примерами (рис. 32.5), то Механическая энергия и работа в физике - виды, формулы и определения с примерами Потенциальная энергия поднятого на некоторую высоту тела равна произведению массы m тела, ускорения свободного падения g и высоты h, на которой расположено тело: Механическая энергия и работа в физике - виды, формулы и определения с примерами Потенциальная энергия тела зависит от высоты, на которой находится тело, поэтому выбор нулевого уровня, — уровня, от которого будет измеряться высота, — влияет на значение потенциальной энергии (рис. 32.6).

Механическая энергия и работа в физике - виды, формулы и определения с примерами

Механическая энергия и работа в физике - виды, формулы и определения с примерами

Механическая энергия и работа в физике - виды, формулы и определения с примерами

Доказываем, что упруго деформированные тела обладают потенциальной энергией:

В упруго деформированном теле части тела взаимодействуют силами упругости. Если тело «освободить», то силы упругости вернут его в недеформированное состояние, выполнив механическую работу. Следовательно, упруго деформированное тело тоже обладает потенциальной энергией (рис. 32.7). Потенциальная энергия упруго деформированной (растянутой или сжатой) пружины определяется по формуле: Механическая энергия и работа в физике - виды, формулы и определения с примерами где k — жесткость; x — удлинение пружины. Свойство деформированной пружины «запасать» потенциальную энергию, а потом за ее счет выполнять механическую работу используют во многих механизмах: механических часах, дверных замках, клапанах автомобильных двигателей, амортизаторах автомобилей и т. п.

Механическая энергия и работа в физике - виды, формулы и определения с примерами

Кинетическая энергия тела

Вспомним пример с шаром для боулинга: он катится, разбрасывает кегли и уменьшает скорость своего движения. Шар выполнил работу, поэтому его механическая энергия уменьшилась. Вместе с тем потенциальная энергия шара не изменилась, ведь шар все время находился на одной и той же высоте, — изменилась только скорость его движения. Следовательно, энергия, позволившая шару выполнить работу, была обусловлена движением шара. В физике эту энергию называют кинетической. Кинетическая энергия зависит от массы тела и скорости его движения (см. рис. 32.8, 32.9). Так, из двух шаров, движущихся с одинаковой скоростью, шар большей массы отодвинет один и тот же брусок на большее расстояние, то есть выполнит большую работу. Это значит, что при одинаковой скорости движения шар большей массы обладает большей кинетической энергией (рис. 32.8).

Механическая энергия и работа в физике - виды, формулы и определения с примерами

Если масса шаров одинакова, то большую работу выполнит тот шар, который движется с большей скоростью, то есть именно этот шар обладает большей кинетической энергией (рис. 32.9). В физике определена зависимость кинетической энергии от массы и скорости движения тела.

Кинетическая энергия — это энергия, которая обусловлена движением тела и равна половине произведения массы тела на квадрат скорости его движения: Механическая энергия и работа в физике - виды, формулы и определения с примерами где Механическая энергия и работа в физике - виды, формулы и определения с примерами — кинетическая энергия тела; m — масса тела; v — скорость движения тела. Кинетическая энергия тела для разных наблюдателей может быть разной, поскольку относительно них может быть разной скорость движения данного тела (рис. 32.10, 32.11).

Механическая энергия и работа в физике - виды, формулы и определения с примерами

Определение полной механической энергии тела

Достаточно часто тело имеет и потенциальную энергию, и кинетическую. Например, самолет, который летит над землей на некоторой высоте, имеет и потенциальную энергию (поскольку взаимодействует с землей), и кинетическую энергию (поскольку движется).сумму кинетической и потенциальной энергий тела называют полной механической энергией тела:

Механическая энергия и работа в физике - виды, формулы и определения с примерами

Итоги:

Если тело (или система тел) может выполнить механическую работу, то говорят, что оно (она) имеет энергию. Энергию обозначают символом E или W.

Единица энергии в СИ — джоуль (Дж). Энергию, обусловленную взаимодействием тел или частей одного тела, называют потенциальной энергией. Потенциальной энергией обладают упруго деформированные тела и тела, поднятые на некоторую высоту.

Потенциальную энергию поднятого на некоторую высоту тела можно вычислить по формуле: Механическая энергия и работа в физике - виды, формулы и определения с примерами, где m — масса тела; g — ускорение свободного падения; h — высота, на которой находится тело относительно нулевого уровня. Энергию, обусловленную движением тела, называют кинетической энергией Механическая энергия и работа в физике - виды, формулы и определения с примерами Кинетическую энергию тела вычисляют по формуле Механическая энергия и работа в физике - виды, формулы и определения с примерами , где m — масса тела; v — скорость движения тела. Сумму кинетической и потенциальной энергий тела называют полной механической энергией тела: Механическая энергия и работа в физике - виды, формулы и определения с примерами

Закон сохранения и превращения механической энергии

Наверное, каждый из вас играл с мячиком-попрыгунчиком. Вспомните: мячик взлетает вверх, падает на пол, отскакивает от него, снова взлетает и снова падает… Когда мячик летит вверх, скорость его движения уменьшается, затем мячик на миг останавливается на некоторой высоте, а после этого начинает движение вниз. При движении вверх кинетическая энергия мячика уменьшается. А может ли исчезнуть энергия мячика совсем?

Механическая энергия и работа в физике - виды, формулы и определения с примерами

Превращение потенциальной энергии в кинетическую, и наоборот

Одним из фундаментальных законов природы является закон сохранения и превращения энергии: энергия никуда не исчезает и ниоткуда не возникает, она лишь превращается из одного вида в другой, передается от одного тела к другому. Для примера рассмотрим превращение потенциальной энергии в кинетическую и наоборот во время свободных колебаний шарика на нити (маятника) (рис. 33.1). Будем считать, что трением можно пренебречь. За нулевой уровень примем самое нижнее положение шарика — положение равновесия (на рис. 33.1 — положение 2).

Механическая энергия и работа в физике - виды, формулы и определения с примерами

Отклоним шарик до положения 1. В данном опыте в положении 1 шарик будет находиться на максимальной высоте и, следовательно, будет обладать максимальной потенциальной энергией Механическая энергия и работа в физике - виды, формулы и определения с примерами. В положении 1 шарик не движется, поэтому его кинетическая энергия равна нулю Механическая энергия и работа в физике - виды, формулы и определения с примерами Когда шарик начинает движение, скорость его движения постепенно увеличивается, а значит, возрастает его кинетическая энергия. При этом потенциальная энергия шарика уменьшается, поскольку уменьшается высота h, на которой он находится. В момент, когда шарик оказывается в положении 2, его потенциальная энергия уменьшается до нуля Механическая энергия и работа в физике - виды, формулы и определения с примерами В этот момент скорость движения шарика максимальна, поэтому максимальна и его кинетическая энергия Механическая энергия и работа в физике - виды, формулы и определения с примерами За счет запаса кинетической энергии шарик продолжает движение, поднимаясь все выше, вследствие чего возрастает его потенциальная энергия. А вот скорость движения шарика уменьшается, а значит, уменьшается его кинетическая энергия. Когда шарик на миг остановится в положении 3 — на высоте Механическая энергия и работа в физике - виды, формулы и определения с примерами его кинетическая энергия станет равной нулю, а потенциальная энергия достигнет максимального значения.

Таким образом, во время колебаний маятника один вид механической энергии переходит в другой: потенциальная энергия превращается в кинетическую, и наоборот. Попробуйте объяснить превращение энергии во время колебаний пружинного маятника (рис. 33.2).

Механическая энергия и работа в физике - виды, формулы и определения с примерами

Закон сохранения и превращения механической энергии

Вернемся к примеру с мячиком ­попрыгунчиком. Когда мячик летит вверх (рис. 33.3), высота, на которой он находится, увеличивается, а значит, возрастает его потенциальная энергия. Скорость движения мячика уменьшается, соответственно уменьшается его кинетическая энергия. При отсутствии силы сопротивления воздуха кинетическая энергия мячика уменьшается на столько, на сколько увеличивается его потенциальная энергия. Таким образом, полная механическая энергия системы мячик—Земля не изменяется. То же самое можно сказать о колеблющихся маятниках: при отсутствии сил трения полная механическая энергия маятников остается неизменной. Теоретические и экспериментальные исследования позволили сформулировать закон сохранения и превращения механической энергии:

Механическая энергия и работа в физике - виды, формулы и определения с примерами

В системе тел, взаимодействующих друг с другом только силами упругости и силами тяжести, полная механическая энергия не изменяется: Механическая энергия и работа в физике - виды, формулы и определения с примерами где Механическая энергия и работа в физике - виды, формулы и определения с примерами полная механическая энергия системы тел в начале наблюдения; Механическая энергия и работа в физике - виды, формулы и определения с примерами— полная механическая энергия системы тел в конце наблюдения.

Что происходит с энергией, если в системе существуют силы трения

Еще раз подчеркнем: закон сохранения и превращения механической энергии* выполняется только в случаях, когда нет потерь механической энергии, в частности при отсутствии трения. Если в системе присутствует трение, то механическая энергия (или ее часть) превращается во внутреннюю энергию**. В качестве примера рассмотрим преобразование механической энергии во внутреннюю при торможении поезда. Когда машинист нажимает на тормоз, тормозные колодки прижимаются к колесам (рис. 33.4).

Механическая энергия и работа в физике - виды, формулы и определения с примерами

В результате действия силы трения скольжения скорость вращения колеса, а следовательно, скорость движения поезда уменьшаются, то есть уменьшается его механическая энергия. При этом, если прикоснуться к тормозным колодкам или колесу сразу после торможения, то можно обжечься — настолько сильно они нагреваются. Нагревание свидетельствует о том, что внутренняя энергия этих тел увеличилась. Следовательно, кинетическая энергия поезда превратилась во внутреннюю энергию тормозных колодок, колеса и окружающей среды.

Далее для краткости данный закон будем, как правило, называть «закон сохранения механической энергии».

Внутренняя энергия тела — это энергия движения и взаимодействия молекул (атомов, ионов), из которых состоит тело. С увеличением температуры тела его внутренняя энергия увеличивается.

Пример №13

Тело массой 1 кг начинает падать с высоты 20 м. На какой высоте кинетическая энергия тела будет равна 100 Дж? Сопротивлением воздуха пренебречь.

Механическая энергия и работа в физике - виды, формулы и определения с примерами

Анализ физической проблемы. При отсутствии сопротивления воздуха полная механическая энергия системы тело—Земля не изменяется, поэтому для решения задачи можем воспользоваться законом сохранения механической энергии. Тело начинает движение, поэтому его начальная скорость равна нулю: v0 = 0. Выполним пояснительный рисунок, на котором укажем положение тела в начале и в конце наблюдения. За нулевой уровень примем поверхность Земли. Задачу будем решать в единицах СИ.

Дано:

Механическая энергия и работа в физике - виды, формулы и определения с примерами,Механическая энергия и работа в физике - виды, формулы и определения с примерами,Механическая энергия и работа в физике - виды, формулы и определения с примерами,Механическая энергия и работа в физике - виды, формулы и определения с примерами,Механическая энергия и работа в физике - виды, формулы и определения с примерами

Найти:

Механическая энергия и работа в физике - виды, формулы и определения с примерами

Решение:

По закону сохранения механической энергии:

Механическая энергия и работа в физике - виды, формулы и определения с примерами

На начальной высотеМеханическая энергия и работа в физике - виды, формулы и определения с примерами

Механическая энергия и работа в физике - виды, формулы и определения с примерами(поскольку Механическая энергия и работа в физике - виды, формулы и определения с примерами)

Механическая энергия и работа в физике - виды, формулы и определения с примерами

На искомой высоте h:

Механическая энергия и работа в физике - виды, формулы и определения с примерами(поскольку тело движется);

Механическая энергия и работа в физике - виды, формулы и определения с примерами

Следовательно: Механическая энергия и работа в физике - виды, формулы и определения с примерами

Отсюда имеем: Механическая энергия и работа в физике - виды, формулы и определения с примерами

Проверим единицы, найдем значение искомой величины:

Механическая энергия и работа в физике - виды, формулы и определения с примерамиМеханическая энергия и работа в физике - виды, формулы и определения с примерами

Ответ: Механическая энергия и работа в физике - виды, формулы и определения с примерами

Пример №14

Тело бросают вертикально вверх со скоростью 20 м/с. На какой высоте потенциальная энергия тела будет равна его кинетической энергии? Сопротивлением воздуха пренебречь. Анализ физической проблемы. Поскольку сопротивлением воздуха следует пренебречь, то полная механическая энергия системы тело—Земля не изменяется, поэтому для решения задачи можем воспользоваться законом сохранения механической энергии. Уровень, с которого бросают тело, примем за нулевой. Задачу будем решать в единицах СИ.

Дано:

Механическая энергия и работа в физике - виды, формулы и определения с примерами,Механическая энергия и работа в физике - виды, формулы и определения с примерами,Механическая энергия и работа в физике - виды, формулы и определения с примерами,Механическая энергия и работа в физике - виды, формулы и определения с примерами

Найти:

Механическая энергия и работа в физике - виды, формулы и определения с примерами

Решение:

По закону сохранения механической энергии:

Механическая энергия и работа в физике - виды, формулы и определения с примерами

На начальной высоте Механическая энергия и работа в физике - виды, формулы и определения с примерами

Механическая энергия и работа в физике - виды, формулы и определения с примерами

Механическая энергия и работа в физике - виды, формулы и определения с примерами(поскольку Механическая энергия и работа в физике - виды, формулы и определения с примерами).

На искомой высоте h:

Механическая энергия и работа в физике - виды, формулы и определения с примерами — по условию;

Механическая энергия и работа в физике - виды, формулы и определения с примерами

Следовательно:Механическая энергия и работа в физике - виды, формулы и определения с примерами

Из полученного уравнения найдем искомую высоту:

Механическая энергия и работа в физике - виды, формулы и определения с примерами

Найдем значение искомой величины:

Механическая энергия и работа в физике - виды, формулы и определения с примерами

Ответ: h =10 м.

Итоги:

Потенциальная энергия тела (системы тел) может превращаться в кинетическую энергию, и наоборот. Закон сохранения и превращения механической энергии: в системе тел, взаимодействующих друг с другом только силами упругости и силами тяжести, полная механическая энергия не изменяется: Механическая энергия и работа в физике - виды, формулы и определения с примерами Если в системе есть трение, то полная механическая энергия со временем уменьшается: часть механической энергии превращается во внутреннюю.

Момент силы и условие равновесия рычага

Проведите опыт. Возьмите длинную линейку и разместите ее на опоре так, как показано на рисунке. ближе к опоре положите (или подвесьте) любой груз, а рукой нажмите на другой конец линейки (подальше от опоры), — вы легко удержите груз. а теперь передвиньте груз дальше от опоры, а руку положите ближе к ней. Почему в этом случае вам приходится прилагать больше усилий, ведь груз остался тем же?

Механическая энергия и работа в физике - виды, формулы и определения с примерами

Давно известно, что тяжелое тело поднять значительно легче, если просунуть под него крепкий стержень — лом. В данном случае лом играет роль простого механизма — рычага. Рычаг — это твердое тело, которое может вращаться вокруг неподвижной оси — оси вращения. Лом, лопата (рис. 34.1), линейка, которой мы удерживали груз во время опыта, — все это примеры рычагов.

Механическая энергия и работа в физике - виды, формулы и определения с примерами

Рычаг — простейший механизм, которой люди пользуются тысячи лет. Изображение рычага можно найти на скалах и в пещерах, на стенах древних храмов и в папирусах. И сегодня применение рычага мы наблюдаем повсюду (рис. 34.2). Чаще всего в качестве рычага используют длинный стрежень с закрепленной осью вращения.

Механическая энергия и работа в физике - виды, формулы и определения с примерами

Условие равновесия рычага

Механическая энергия и работа в физике - виды, формулы и определения с примерами

Механическая энергия и работа в физике - виды, формулы и определения с примерами

Выясним, при каком условии рычаг находится в равновесии. Для этого воспользуемся лабораторным рычагом. С помощью проволочных крючков будем подвешивать к рычагу грузы. Передвигая крючки, будем изменять плечи сил, действующих на рычаг (рис. 34.3).

Плечо силы — это наименьшее расстояние от оси вращения рычага до линии, вдоль которой сила действует на рычаг. Например, подвесим слева от оси вращения на расстоянии Механическая энергия и работа в физике - виды, формулы и определения с примерамисм груз весом Механическая энергия и работа в физике - виды, формулы и определения с примерами. Справа от оси вращения подвесим грузы общим весом Механическая энергия и работа в физике - виды, формулы и определения с примерами и будем передвигать этот крючок, пока не добьемся равновесия рычага. Это произойдет, когда грузы общим весом 3 Н окажутся на расстоянии Механическая энергия и работа в физике - виды, формулы и определения с примерами см от оси вращения. Найдем отношение Механическая энергия и работа в физике - виды, формулы и определения с примерами значений сил, с которыми грузы действуют на рычаг, и отношение Механическая энергия и работа в физике - виды, формулы и определения с примерами плеч этих сил: Механическая энергия и работа в физике - виды, формулы и определения с примерами Итак, получаем равенство — условие равновесия рычага, или правило рычага: Механическая энергия и работа в физике - виды, формулы и определения с примерами Обратите внимание на то, что силы Механическая энергия и работа в физике - виды, формулы и определения с примерами пытаются вращать рычаг в противоположных направлениях (в нашем опыте сила Механическая энергия и работа в физике - виды, формулы и определения с примерами пытается вращать рычаг против хода часовой стрелки, сила Механическая энергия и работа в физике - виды, формулы и определения с примерами — по ходу часовой стрелки. Правило рычага установил древнегреческий ученый Архимед. По легенде, именно ему принадлежат слова: «Дайте мне точку опоры — и я переверну Землю» (рис. 34.4).

Механическая энергия и работа в физике - виды, формулы и определения с примерами

Всегда ли рычаг применяют для получения выигрыша в силе

Обычно говорят, что с помощью рычага можно получить выигрыш в силе. Например, прикладывая достаточно малую силу Механическая энергия и работа в физике - виды, формулы и определения с примерами можно поднять сравнительно тяжелое тело (рис. 34.5, а). Но выигрыш в силе всегда сопровождается проигрышем в расстоянии: плечо меньшей силы больше Механическая энергия и работа в физике - виды, формулы и определения с примерами поэтому, когда человек с помощью рычага поднимает тяжелое тело даже на небольшую высоту, рука преодолевает значительное расстояние. И наоборот, действуя на короткое плечо рычага, мы проиграем в силе, но во столько же раз выиграем в расстоянии (рис. 34.5, б). Рассмотрите рис. 34.6. Какой рычаг применяют для выигрыша в силе, а какой — для выигрыша в расстоянии?

Момент силы

Для характеристики способности силы вращать твердое тело введена физическая величина момент силы.

Момент силы — физическая величина, равная произведению силы, действующей на тело, на плечо этой силы: Механическая энергия и работа в физике - виды, формулы и определения с примерами где M — момент силы; F — значение силы; d — плечо силы. Единица момента силы в СИ — ньютон-метр: [M]=Н⋅м. Сила 1 Н создает момент силы 1 Н·м, если плечо силы равно 1 м.

Механическая энергия и работа в физике - виды, формулы и определения с примерами

Механическая энергия и работа в физике - виды, формулы и определения с примерами

Правило моментов

Воспользуемся свойством пропорции и запишем правило рычага Механическая энергия и работа в физике - виды, формулы и определения с примерами иначе: Механическая энергия и работа в физике - виды, формулы и определения с примерами. Поскольку произведение силы F на плечо d силы — это момент силы (M), получим: Механическая энергия и работа в физике - виды, формулы и определения с примерами Итак, условие равновесия рычага при действии двух вращающих сил можно сформулировать следующим образом: рычаг находится в равновесии, если момент силы, вращающей рычаг против хода часовой стрелки, равен моменту силы, вращающей рычаг по ходу часовой стрелки. Чаще всего на рычаг действуют более двух сил. В общем случае условие равновесия рычага (правило моментов) формулируется так:

Рычаг находится в равновесии, если сумма моментов сил, вращающих рычаг против хода часовой стрелки, равен сумме моментов сил, вращающих рычаг по ходу часовой стрелки.

Например, когда на плечи рычага действуют три силы (рис. 34.7), условие его равновесия будет выглядеть так: Механическая энергия и работа в физике - виды, формулы и определения с примерами Обратите внимание! 1. На рычаг (рис. 34.7) кроме сил Механическая энергия и работа в физике - виды, формулы и определения с примерамипытающихся его вращать, действуют еще сила тяжести Механическая энергия и работа в физике - виды, формулы и определения с примерами (рычаг имеет массу) и сила нормальной реакции опоры Механическая энергия и работа в физике - виды, формулы и определения с примерами Но плечи этих сил, а следовательно, их моменты равны нулю, поэтому данные силы не влияют на вращение рычага.

Механическая энергия и работа в физике - виды, формулы и определения с примерами

2. Рычаг неподвижен. Это означает, что силы, действующие на рычаг, скомпенсированы: Механическая энергия и работа в физике - виды, формулы и определения с примерами Понятно, что силы будут скомпенсированы для любого рычага, который находится в равновесии.

Пример №15

Определите массу груза 1 (см. рисунок), если масса груза 2 равна 4 кг. Массой рычага пренебречь.

Механическая энергия и работа в физике - виды, формулы и определения с примерами

Анализ физической проблемы. На плечи изображенного на рисунке рычага действуют две силы: вес груза 1 (сила Механическая энергия и работа в физике - виды, формулы и определения с примерами) и вес груза 2 (сила Механическая энергия и работа в физике - виды, формулы и определения с примерами). Эти силы пытаются вращать рычаг в противоположных направлениях: сила Механическая энергия и работа в физике - виды, формулы и определения с примерами — против хода часовой стрелки, сила Механическая энергия и работа в физике - виды, формулы и определения с примерами — по ходу часовой стрелки. Из рисунка видно, что плечи этих сил таковы: Механическая энергия и работа в физике - виды, формулы и определения с примерами , aгде a — длина одного отрезка. Грузы неподвижны, поэтому вес каждого из них можно определить по формуле: F= mg. Рычаг находится в равновесии, поэтому можем воспользоваться правилом рычага.

Дано:

Механическая энергия и работа в физике - виды, формулы и определения с примерами,Механическая энергия и работа в физике - виды, формулы и определения с примерами,Механическая энергия и работа в физике - виды, формулы и определения с примерами

Найти:

Механическая энергия и работа в физике - виды, формулы и определения с примерами

Решение:

По правилу рычага:Механическая энергия и работа в физике - виды, формулы и определения с примерами

Поскольку Механическая энергия и работа в физике - виды, формулы и определения с примерами получим:

Механическая энергия и работа в физике - виды, формулы и определения с примерами

Следовательно Механическая энергия и работа в физике - виды, формулы и определения с примерами

Проверим единицу, найдем значение искомой величины:

Механическая энергия и работа в физике - виды, формулы и определения с примерами

Анализ результата: к меньшему плечу рычага подвешен груз массой 4 кг, к большему — груз массой 2,4 кг. Результат правдоподобен.

Ответ: Механическая энергия и работа в физике - виды, формулы и определения с примерами

Итоги:

Рычаг — это твердое тело, которое может вращаться вокруг неподвижной оси. Плечо силы — кратчайшее расстояние от оси вращения рычага до линии действия силы.

Момент силы — физическая величина, характеризующая вращающее действие силы и равная произведению силы F, вращающей тело, на плечо d этой силы: M= Fd. Рычаг находится в равновесии, если сумма моментов сил, вращающих рычаг против хода часовой стрелки, равна сумме моментов сил, вращающих рычаг по ходу часовой стрелки.

Подвижный и неподвижный блоки

Первый блок был изобретен, когда через колесо, вращающееся вокруг своей оси, неизвестный механик древности перебросил веревку и с помощью этого устройства стал поднимать грузы. По легенде, Архимед с помощью нескольких блоков смог спустить на воду тяжелое судно, которое не могли сдвинуть с места десятки лошадей. сейчас блоки используют во многих машинах и механизмах. Чем объясняется их широкое применение?

Связь неподвижного блока и рычага

На рис. 35.1, а изображено колесо (1) с желобом (2). Колесо может вращаться вокруг своей оси (3), неподвижно закрепленнной в обойме (4). Через желоб переброшен шнур (5). Перед вами простой механизм — неподвижный блок. блок — это простой механизм, имеющий форму колеса с желобом по ободу, через который переброшен шнур (канат, веревка).

На первый взгляд, рычаг и неподвижный блок — абсолютно разные механизмы. На самом деле неподвижный блок — это рычаг с одинаковыми плечами. Действительно, приложим к концам шнура, переброшенного через блок, силы Механическая энергия и работа в физике - виды, формулы и определения с примерами и проведем перпендикуляры из точки опоры к линиям действия сил (рис. 35.1, б, в). Видим, что плечо каждой силы равно радиусу R блока: Механическая энергия и работа в физике - виды, формулы и определения с примерами Из условия равновесия рычага Механическая энергия и работа в физике - виды, формулы и определения с примерами следует, что Механическая энергия и работа в физике - виды, формулы и определения с примерамиили: Механическая энергия и работа в физике - виды, формулы и определения с примерами Таким образом, неподвижный блок не дает выигрыша в силе, однако позволяет изменять направление действия силы (см., например, рис. 35.1–35.3). Рассмотрите рис. 35.1, б, в. Если свободный конец шнура тянуть вниз, куда будет двигаться груз? куда будет двигаться тележка?

Механическая энергия и работа в физике - виды, формулы и определения с примерами

Механическая энергия и работа в физике - виды, формулы и определения с примерами

Механическая энергия и работа в физике - виды, формулы и определения с примерами

Исследуем подвижный блок:

С помощью обоймы прикрепим груз к оси блока. Сам блок подвесим на шнуре, один конец которого закреплен (рис. 35.4). Если поднимать свободный конец шнура, то за шнуром будет подниматься и блок с грузом. Полученный простой механизм — это подвижный блок. Подвижный блок можно рассматривать как рычаг, который вращается вокруг оси, проходящей через точку опоры O (см. рис. 35.4). Из рисунка видно, что плечо силы Механическая энергия и работа в физике - виды, формулы и определения с примерами равно радиусу блока (отрезок OA), а плечо силы Механическая энергия и работа в физике - виды, формулы и определения с примерами — диаметру блока (отрезок ОВ), то есть двум его радиусам. Воспользовавшись условием равновесия рычага Механическая энергия и работа в физике - виды, формулы и определения с примерами и учитывая, что Механическая энергия и работа в физике - виды, формулы и определения с примерамиМеханическая энергия и работа в физике - виды, формулы и определения с примерами получим: Механическая энергия и работа в физике - виды, формулы и определения с примерами или: Механическая энергия и работа в физике - виды, формулы и определения с примерами Таким образом, использование подвижного блока позволяет получить выигрыш в силе в два раза. Понятно, что выигрыш в силе будет сопровождаться таким же проигрышем в расстоянии: если свободный конец шнура поднять на высоту h, то блок вместе с грузом поднимется лишь на высоту Механическая энергия и работа в физике - виды, формулы и определения с примерами (рис. 35.5).

Механическая энергия и работа в физике - виды, формулы и определения с примерамиМеханическая энергия и работа в физике - виды, формулы и определения с примерами

Как и рычаг, подвижный блок можно также использовать для получения выигрыша в расстоянии (либо выигрыша в скорости движения). Для этого груз прикрепляют к свободному концу шнура, а тянут за обойму, к которой прикреплена ось блока (рис. 35.6). Неподвижные и подвижные блоки, как правило, используются одновременно — в виде системы блоков (рис. 35.7). Как вы считаете, позволяет ли система блоков на рис. 35.7 изменить направление действия силы? получить выигрыш в силе?

Механическая энергия и работа в физике - виды, формулы и определения с примерами

Пример №16

На рис. 35.8 представлена система блоков. Определите силы натяжения шнуров a и b, если масса груза равна 20 кг. Какой выигрыш в силе дает данная система блоков? На какое расстояние Механическая энергия и работа в физике - виды, формулы и определения с примерами опустится точка A, если груз поднимется на высоту 10 см? Массой блоков и силой трения пренебречь.

Механическая энергия и работа в физике - виды, формулы и определения с примерами

Анализ физической проблемы. Система блоков состоит из двух подвижных блоков (1 и 2) и одного неподвижного блока (3). По условию массой блоков следует пренебречь, значит, натяжение шнура вызвано только весом груза. Для определения выигрыша в силе сравним вес P груза и силу F, которая приложена к свободному концу шнура и под действием которой поднимается груз. Следует учесть, что, выиграв в силе, мы во столько же раз проигрываем в расстоянии, на которое перемещается груз.

Дано:

Механическая энергия и работа в физике - виды, формулы и определения с примерами,Механическая энергия и работа в физике - виды, формулы и определения с примерами,Механическая энергия и работа в физике - виды, формулы и определения с примерами

Найти:Механическая энергия и работа в физике - виды, формулы и определения с примерами,Механическая энергия и работа в физике - виды, формулы и определения с примерами,Механическая энергия и работа в физике - виды, формулы и определения с примерами,Механическая энергия и работа в физике - виды, формулы и определения с примерами

Решение:

Найдем вес груза:Механическая энергия и работа в физике - виды, формулы и определения с примерами

Подвижный блок 1, к обойме которого подвешен груз, дает выигрыш в силе в 2 раза, следовательно, сила натяжения шнура a в 2 раза меньше, чем вес груза:Механическая энергия и работа в физике - виды, формулы и определения с примерами

Подвижный блок 2, к обойме которого подвешен шнур a, тоже дает выигрыш в силе в 2 раза, следовательно, сила натяжения шнура b равна:Механическая энергия и работа в физике - виды, формулы и определения с примерами

Сила F — сила натяжения шнура b:Механическая энергия и работа в физике - виды, формулы и определения с примерами

Поэтому выигрыш в силе составляет:Механическая энергия и работа в физике - виды, формулы и определения с примерами

Во сколько раз мы выигрываем в силе, во столько же раз проигрываем в расстоянии:Механическая энергия и работа в физике - виды, формулы и определения с примерами

Анализ результата: в системе два подвижных блока, оба используются для выигрыша в силе. Каждый подвижный блок дает выигрыш в силе в 2 раза, поэтому общий выигрыш в силе равен 4. Таким образом, получен реальный результат.

Ответ:Механическая энергия и работа в физике - виды, формулы и определения с примерами выигрыш в силе — 4; Механическая энергия и работа в физике - виды, формулы и определения с примерами

Итоги:

Блок — это простой механизм, имеющий форму колеса с желобом по ободу, через который переброшен шнур (канат, веревка). Различают подвижный и неподвижный блоки. Неподвижный блок похож на рычаг с одинаковыми плечами, поэтому он не дает выигрыша в силе, но позволяет изменять направление действия силы. Подвижный блок похож на рычаг с отношением плеч 1 : 2, поэтому он дает выигрыш в силе в 2 раза. Однако это сопровождается проигрышем в расстоянии в 2 раза. Подвижный блок также применяют для получения выигрыша в расстоянии (выигрыша в скорости движения). Для большей эффективности обычно используют комбинации подвижных и неподвижных блоков.

Простые механизмы и коэффициент полезного действия механизмов

Простые механизмы — это «труженики» со стажем работы более 40 веков, однако они ничуть не «состарились»: в каждом современном техническом устройстве обязательно найдется простой механизм, и не один. эти устройства позволяют изменить направление действия силы, получить выигрыш в силе или расстоянии. А дают ли они выигрыш в работе?

Характеристика простых механизмов

Вы уже знаете, что рычаги с разными плечами и подвижные блоки позволяют получить выигрыш в силе, но такой выигрыш дается не «даром», ведь, получив преимущество в силе, мы обязательно проиграем в расстоянии (рис. 36.1). Древнее так называемое «золотое правило» механики гласит: «Во сколько раз мы выиграем в силе, во столько же раз проиграем в расстоянии». А действительно ли это так? Допустим, что нужно поднять груз на определенную высоту. Воспользуемся неподвижным блоком: следует перебросить через блок шнур, привязать к шнуру груз и, взявшись за свободный конец шнура, равномерно тянуть его вниз (рис. 36.2). Неподвижный блок можно представить как равноплечий рычаг, поэтому сила, с которой тянут шнур, должна быть равна весу груза: F= P. Однако на практике вращению блока всегда мешает сила трения, поэтому, чтобы поднять груз, к свободному концу шнура следует приложить большую, чем вес груза, силу: Механическая энергия и работа в физике - виды, формулы и определения с примерами(см. рис. 36.2). Так, при подъеме груза на высоту h выполняется полезная работа: Механическая энергия и работа в физике - виды, формулы и определения с примерами Полная работа, то есть работа, которую выполняют, вытягивая шнур на длину, равную высоте h, вычисляется по формуле: Механическая энергия и работа в физике - виды, формулы и определения с примерами

Механическая энергия и работа в физике - виды, формулы и определения с примерами

Поскольку Механическая энергия и работа в физике - виды, формулы и определения с примерами то полная работа больше полезной. Полезная работа, выполняемая с помощью любого механизма, всегда меньше полной работы: Механическая энергия и работа в физике - виды, формулы и определения с примерами. Только в идеальных условиях полезная работа может быть равна полной работе, однако такого никогда не случается. Какую часть полной работы механизм превращает в полезную, показывает физическая величина коэффициент полезного действия (КПД).коэффициент полезного действия (кПд) механизма — это физическая величина, которая характеризует механизм и равна отношению полезной работы к полной работе: Механическая энергия и работа в физике - виды, формулы и определения с примерами Коэффициент полезного действия (КПД) обозначают символом η (ета). Обычно КПД выражают в процентах: Механическая энергия и работа в физике - виды, формулы и определения с примерами Поскольку при использовании механизмов полезная работа всегда меньше полной, КПД любого механизма всегда меньше 100%.

Наклонная плоскость

Кроме рычага и блока люди с античных времен используют еще один простой механизм — наклонную плоскость (рис. 36.3). С помощью наклонной плоскости можно поднимать тяжелые предметы, прикладывая к ним относительно небольшую силу.

Механическая энергия и работа в физике - виды, формулы и определения с примерами

Выведем формулу для определения КПД наклонной плоскости. Пусть требуется поднять тело массой m на высоту h по наклонной плоскости длиной l (рис. 36.4). Чтобы поднять тело вертикально (без наклонной плоскости), нужно приложить к нему силу Механическая энергия и работа в физике - виды, формулы и определения с примерами, по значению равную силе тяжести: Механическая энергия и работа в физике - виды, формулы и определения с примерами Тело необходимо поднять на высоту h, поэтому полезная работа будет равна: Механическая энергия и работа в физике - виды, формулы и определения с примерами (то есть будет равна увеличению потенциальной энергии груза). Чтобы поднять тело на ту же высоту h по наклонной плоскости, нужно приложить силу тяги Механическая энергия и работа в физике - виды, формулы и определения с примерами, направленную вдоль наклонной плоскости. Работа, выполняемая при этом (полная работа), вычисляется по формуле: Механическая энергия и работа в физике - виды, формулы и определения с примерами, где l — длина наклонной плоскости. По определению КПД получим:

Механическая энергия и работа в физике - виды, формулы и определения с примерами

Подумайте, как можно увеличить КПД наклонной плоскости. Движению тела по наклонной плоскости препятствует сила трения. При отсутствии трения между телом и наклонной плоскостью полезная работа была бы равна полной работе: Механическая энергия и работа в физике - виды, формулы и определения с примерами (см. рис. 36.4).

Механическая энергия и работа в физике - виды, формулы и определения с примерами

В таком случае мы получили бы наибольший выигрыш в силе: Механическая энергия и работа в физике - виды, формулы и определения с примерами Свойства наклонной плоскости давать выигрыш в силе и изменять направление действия этой силы используют в эскалаторах, конвейерах, пандусах, обычных ступеньках и т. п. (рис. 36.5).

Разновидности наклонной плоскости

Одна из разновидностей наклонной плоскости — клин. Чтобы облегчить рубку дров, в трещину бревна вставляют клин и бьют по нему обухом топора (рис. 36.6). На клин во время удара действуют три тела: сверху — обух топора, по бокам — две части бревна. Соответственно клин действует на обух топора вверх, а на древесину бревна — в стороны, то есть раздвигает части бревна. Таким образом, клин изменяет направление силы удара топора. Кроме того, каждая из двух сил, с которыми клин раздвигает части бревна, намного больше силы, с которой топор ударяет по клину. Еще одна разновидность наклонной плоскости — винт. Возьмем треугольник, вырезанный из тонкого картона, и расположим его рядом с цилиндром (рис. 36.7). Наклонной плоскостью будет служить ребро картона. Обернув картонный треугольник вокруг цилиндра, получим винтовую наклонную плоскость. Собственно нарезка винта — это наклонная плоскость, многократно обернутая вокруг цилиндра. Подобно клину винт может изменять направление и значение приложенной силы.

Механическая энергия и работа в физике - виды, формулы и определения с примерами

Механическая энергия и работа в физике - виды, формулы и определения с примерами

Принцип действия винта используют во многих механизмах и устройствах: механических домкратах и подъемниках, мясорубке, тисках, струбцинах, сверлах, шурупах, резьбовых креплениях и т. п. Какие свойства винтовой наклонной плоскости мы используем, поднимаясь по горным «серпантинам»? винтовым лестницам?

Если в задаче дан КПД или предлагается его найти, решение лучше начинать с записи формулы для расчета КПД. В условии значение КПД удобнее выражать в частях и далее пользоваться формулой Механическая энергия и работа в физике - виды, формулы и определения с примерами), а в ответе значение КПД лучше записывать в процентах.

Пример №17

Груз массой 95 кг равномерно поднимают на третий этаж дома с помощью подвижного и неподвижного блоков (см. рисунок). Определите КПД данной системы, если к свободному концу шнура прикладывают силу 500 Н. Анализ физической проблемы. Для определения КПД системы нужно найти: работу, которую следует выполнить, чтобы поднять груз на высоту h, то есть полезную работу Механическая энергия и работа в физике - виды, формулы и определения с примерами работу, которую выполняют, когда тянут шнур, действуя на него с некоторой силой Механическая энергия и работа в физике - виды, формулы и определения с примерами, то есть полную работу Механическая энергия и работа в физике - виды, формулы и определения с примерами В системе один подвижный блок, поэтому проигрыш в расстоянии — в 2 раза: поднимая груз на высоту h, шнур вытягивают на длину Механическая энергия и работа в физике - виды, формулы и определения с примерами Неподвижный блок лишь изменяет направление действия силы.

Дано:

Механическая энергия и работа в физике - виды, формулы и определения с примерами,Механическая энергия и работа в физике - виды, формулы и определения с примерами,Механическая энергия и работа в физике - виды, формулы и определения с примерами

Найти:

Механическая энергия и работа в физике - виды, формулы и определения с примерами

Решение:

По определению КПД:Механическая энергия и работа в физике - виды, формулы и определения с примерами

Что делают? Поднимают груз на высоту h, поэтому полезная работа равна увеличению потенциальной энергии груза:Механическая энергия и работа в физике - виды, формулы и определения с примерами

Как это делают? Тянут за шнур, прикладывая силу Механическая энергия и работа в физике - виды, формулы и определения с примерами Поэтому полная работа, которую выполняют для поднятия груза, равна Механическая энергия и работа в физике - виды, формулы и определения с примерами

Механическая энергия и работа в физике - виды, формулы и определения с примерами

Подставив выражения для Механическая энергия и работа в физике - виды, формулы и определения с примерами в формулу КПД, получим:

Механическая энергия и работа в физике - виды, формулы и определения с примерами

Проверим единицу, найдем значение искомой величины:

Механическая энергия и работа в физике - виды, формулы и определения с примерами

Анализ результата: КПД механизма меньше 100 % — это правдоподобный результат.

Ответ: Механическая энергия и работа в физике - виды, формулы и определения с примерами

Итоги:

Для облегчения труда люди с древних времен использовали простые механизмы — устройства для преобразования силы. Простые механизмы — неотъемлемые составляющие и современных машин. К простым механизмам относят рычаг и его разновидности (подвижный и неподвижный блоки, коловорот); наклонная плоскость и ее разновидности (клин, винт). На практике полезная работа, выполняемая с помощью любого механизма, всегда меньше полной работы: Механическая энергия и работа в физике - виды, формулы и определения с примерами Физическая величина, которая характеризует механизм и равна отношению полезной работы к полной работе, называется коэффициентом полезного действия механизма:

Механическая энергия и работа в физике - виды, формулы и определения с примерами. Обычно КПД выражают в процентах: Механическая энергия и работа в физике - виды, формулы и определения с примерами КПД любого механизма всегда меньше 100 %

Итоги:

Вы узнали о механической работе, механической энергии и мощности.

Механическая энергия и работа в физике - виды, формулы и определения с примерами

Вы научились различать кинетическую и потенциальную энергии и узнали о полной механической энергии.

Механическая энергия и работа в физике - виды, формулы и определения с примерами

Вы ознакомились с законом сохранения и превращения механической энергии и узнали, как изменяется механическая энергия, если существует трение:

Механическая энергия и работа в физике - виды, формулы и определения с примерами

Вы ознакомились с простыми механизмами.

Механическая энергия и работа в физике - виды, формулы и определения с примерами

Вы узнали, что ни один простой механизм не дает выигрыша в работе, ознакомились с физической величиной — коэффициентом полезного действия механизма. Использование простых механизмов для поднятия тел.Механическая энергия и работа в физике - виды, формулы и определения с примерами

Механическая энергия и работа в физике - виды, формулы и определения с примерами

  • Золотое правило механики
  • Потенциальная энергия
  • Кинетическая энергия
  • Закон сохранения и превращения механической энергии
  • Инерциальные системы отсчета
  • Энергия в физике
  • Мощность в физике
  • Взаимодействие тел

Сегодня мы отбросим лишние научные абстракции и попробуем придать энергии численное значение. Что важнее, мы разберемся в двух крайне важных концепциях механической энергии — в том, что такое потенциальная энергия и что такое кинетическая энергия. Мы узнаем, как выглядит формула потенциальной энергии и формула кинетической энергии. А на закуску ответим на вопрос: «Как найти высоту потенциальной энергии?»

Всеми любимые американские горки, которые можно встретить в любом парке аттракционов. Не исключено, что вы хотя бы раз сами имели удовольствие сидеть в связке цветастых вагонеток. Вы поднимаетесь цепью на завораживающую высоту и… Красота.

Возможность рассмотреть городскую панораму, адреналин, ощущение свободного падения, истошные крики соседей по «вагону». Конечно, самые длинные очереди собираются именно около кассы с билетами на американские горки.

Чем наслаждается Образавр? Правильно: механической энергией!

Устройство горок на удивление прозаично. Имеется группа вагончиков на жесткой сцепке, рельсы и цепной привод. Привод единожды тянет конструкцию высоко наверх.

Все — никаких двигателей внутри вагончиков или дополнительных механизмов, дающих разгон, по траектории движения. А вагончики, идеально останавливаясь в точке старта, успевают пройти на большой скорости кластер крутых виражей. Включая мертвые петли!

Как же это работает?

Механическая энергия

Вспомним, что по одному из определений:

Энергия — это способность тела производить работу.

Мы также помним, что энергия проявляет себя в самых различных формах и системах. Что бы мы ни взяли (магнит, атом или чашку чая), каждый объект Вселенной обладает энергией.

Однако не будем закапываться в кварки, кванты, электрические импульсы и прочее. Лучше остановиться на проявлении энергии в обычных механических системах (совокупности материальных точек). Здесь очевидно следующее:

Любой объект механической системы либо находится в состоянии покоя, либо в движении.

Что-то либо стоит, лежит, сидит… либо двигается. Третьего не дано. Следовательно, механическая энергия делится на две категории: энергию «лежания» и энергию «движения».

Хорошо-хорошо, ваши аргументы «против» принимаются. Но что насчет, например, яблока, которое, созрев, падает с дерева? Если бы яблоко не обладало энергией «лежания», в нашем случае — энергией «висения», оно бы никак не смогло прийти в движение.

Тело и механическая энергия, которой оно обладает

Энергия не может взяться из ниоткуда, как по мановению волшебной палочки. Так что если мы не будем учитывать энергию «лежания», будет сложно говорить об энергии «движения». Ведь не будет стартовой точки.

Не зря определение энергии включает в себя условность в виде слова «способность». Уже сама способность производить работу говорит о том, что тело обладает энергией. Энергия «лежания» лишь дает понимание, насколько на практике велика эта способность. Так что в определение, выходит, вшито и «лежание», и «движение» — два варианта развития событий.

Ну, единственное, нам бы термины научнее.

Потенциальная энергия механической системы

Этим как раз в XIX веке и озаботился Уильям Ренкин, шотландский механик. С его легкой руки выше нами описанные умозаключения приобрели физическую строгость. В виде термина «потенциальная энергия».

Какую энергию называют потенциальной?

Потенциальная энергия — способность материального тела совершать работу за счет своего нахождения в поле сил. Является частью общей механической энергии системы.

Другими словами, тело находится в поле действия силы и от этого имеет способность совершить работу. Конечно, фактически работу выполняет сила, действующая на тело. Если говорить о механических системах, указанное в определении поле сил включает в себя две возможности:

  • Сила тяжести. Яблоко, падающее на землю, совершает работу за счет нахождения в поле действия силы гравитационного притяжения. Как только точка опоры пропадает, Земля притягивает яблоко к себе. Лежи яблоко само по себе на земле, упасть никуда оно бы не смогло. Таким образом, потенциальная энергия тела выражает потенциал работы с некоторой высоты от тела до земли
  • Сила упругости. На упругое тело в сжатом или разжатом состоянии действует сила упругости. Она стремится вернуть его в положение равновесия. Например, пружина, легко поддающаяся деформации. Если видоизменить пружину сжатием или разжатием, вы сообщаете ей потенциальную энергию — определенный потенциал работы от точки деформации до положения равновесия.  

Выходит, что внутри механических систем потенциальная энергия определяет потенциал движения тела. Так, сколько работы совершается телом, если сила, действующая на тело, превысит по значению равнодействующую силу. Потенциальную энергию в этом плане можно рассматривать как «резерв» или «запас» работы.

Формула потенциальной энергии

О потенциальной энергии деформированной механической системы мы обязательно поговорим. Но как-нибудь далее в курсе физики. Для начала нужен ряд определений для механики деформации. Так что пока остановимся на потенциальной энергии под действием знакомой нам силы — силы тяжести.

Если взять за ноль потенциальную энергию точки, находящейся на земле, то потенциальная энергия точки, находящейся на некотором расстоянии от земли, определяется работой, которая выполнится гравитационной силой при падении.

Договоримся обозначать такую потенциальную энергию как $E_П$. Далее вспомним важное условие:

Работа равна изменению энергии тела.

Следовательно $A=Delta{E_п}$. Помним, что работа равна произведению значения силы на пройденный путь, $A=Fcdot s$. Теперь формула потенциальной энергии в шаге от готовности, если вспомнить, что $F=ma$. Под силой сейчас понимается конкретная сила — сила тяжести $mg$. Тогда заметим, что:

$A=mgcdot s$.

Но это еще не конечный вариант того, как выглядит формула потенциальной энергии. Пройденный путь $s$ имеет немного другое прочтение, когда речь идет о гравитационном притяжении. Раз мы говорим прежде всего о падении, путь такой работы — высота, на которую было поднято тело.

Получается, что формула потенциальной энергии, с учетом всех моментов, выглядит так:

$$A=Delta{E_п}=mgh,$$

где $m$ — масса тела, $h$ — высота подъема, $g$ — ускорение свободного падения.

Как найти высоту потенциальной энергии

«Высота подъема» — формулировка условная. Еще ее часто определяют в справочной литературе как «высота от центра тяжести до Земли». Дадим этому разъяснение.

Для примера рассмотрим следующую конструкцию. Пусть есть стол, на котором лежит коробка, на верху которой, в свою очередь, расположен предмет — кастрюля. Итого, как найти высоту потенциальной энергии кастрюли?

Высота потенциальной энергии может быть определена относительно стола. Или относительно пола. Может быть, уровня земли, если стол расположен внутри здания. Относительно подвала? Иными словами, подъем тела рассчитывается относительно чего угодно. Выходит, нужно всегда заранее условиться, относительно какого уровня производится замер.

Однако помните, что именно «условиться» — выбрать точку отсчета можно произвольно. Чтобы она была максимально удобная для расчетов. Намного важнее — величина изменения потенциальной энергии, а совсем не то, как найти высоту потенциальной энергии. Очевидно, вне зависимости от выбранной точки отсчета, изменение потенциальной энергии будет одним и тем же.

Еще немаловажен фактор центра тяжести. Если тело маленькое и располагается на поверхности «земли», говорят, что его потенциальная энергия равна нулю. Расстоянием от центра тяжести до нулевого уровня можно пренебречь. Другое дело, когда тело габаритное.

Обратите внимание на изображение. Несмотря на то, что крупный предмет находится на нулевом уровне, его потенциальная энергия больше нуля. В общей сложности, важнее не вопрос «как найти высоту потенциальной энергии», ибо он не конкретен. Важнее вопрос — какую точку отсчета выбрать?

Высота потенциальной энергии: задача на расчет

Условие. Альпинист покоряет гору высотой $6000~м$. На предпоследний день он решает разбить перевалочный лагерь на высоте $5100~м$, чтобы утром следующего дня выдвинуться на вершину. Какую работу совершит альпинист при подъеме на вершину горы от станции перевалочного лагеря? Масса альпиниста — $80~кг$.

Альпинист совершает работу против силы тяжести, поднимаясь на вершину. Помним, что работа всегда равняется изменению энергии тела, $A=Delta{E}$, согласно имеющимся по задаче данным — изменению потенциальной энергии $Delta{E_п}$.

С учетом, что формула потенциальной энергии $E_п=mgh$:

$$A=Delta{E_п}=mgh_2-mgh_1,$$

где $h_2$ — высота подъема тела в конце работы, $h_1$ — высота подъема тела в начале работы. 

Также помним, что при расчете потенциальной энергии в первую очередь выбирается точка отсчета. У нас два варианта:

  • принять за ноль уровень моря;
  • принять за ноль высоту, на которой расположен перевалочный лагерь.

Не забываем, точка отсчета — условность, и хорошо выбирать ее так, чтобы математические вычисления проводились проще. Ростом альпиниста и соответствующими вычислениями центра тяжести можем пренебречь, поскольку дистанции рассматриваются километражные.

Вернемся к точкам отсчета. Если остановиться на варианте с уровнем моря, нам придется рассчитывать потенциальную энергию $mgh_1$, с учетом, что $h_1=5100~м$, а после рассчитывать потенциальную энергию $mgh_2$, с учетом, что $h_2=6000~м$. Числовые значения выйдут громоздкими, поэтому примем для удобства за нулевой уровень расположение перевалочного лагеря:
$Delta{h}=h_2-h_1=6000-5100=900~м$.

Альпинист суммарно поднялся вверх на $900~м$. В нашем случае формула потенциальной энергии — $A=mgDelta{h}$. Определим по ней совершенную работу альпинистом при подъеме на эту высоту:

$A=mgDelta{h}=80~кгcdot 9,8~м/сcdot 900~м=705600~Дж=705,6~кДж$.

Кстати!

Вспомним единицы измерения энергии с прошлого урока: в переводе на килокалории, 705,6 Дж — это примерно 1686 ккал.

Для справки, подобное значение составляет половину суточной нормы для активных людей. Получается, чтобы подняться на вершину, альпинисту пришлось затратить целую половину от всего съеденного им за день рациона!

Кинетическая энергия механической системы

«Запасом» работы обладают не только лишь те тела, которые находятся в поле действия определенных сил. Так что, естественно, второе органичное проявление энергии связано, наконец, с движением.

Как меняются значения кинетической (KE) и потенциальной (PE) энергий при движении американских горок.

Вспомним американские горки, о которых мы говорили в самом начале. За счет подъема на высоту, вагончики запасаются потенциальной энергией $mgh$. При этом чем выше поднять вагончики, тем больший запас энергии сообщается механической системе. И тем дальше вагончики смогут проехать вперед по рельсам.

Как только конструкция начинает движение вниз, потенциальная энергия начинает поступательное превращение в энергию движения. Так, вагончики без толчка самостоятельно въезжают на крутой уклон или проходят петли. Все потому, что они обладают скоростью.

Видим взаимосвязь: скорость — энергия — работа.

Таким образом, мы можем сделать вывод, что тело, имеющее скорость отличную от нуля, всегда обладает энергией. И способностью, как следствие, совершать работу благодаря движению.

О таком теле говорят, что оно обладает кинетической энергией. Это и есть ранее нами не очень научный термин об «энергии движения».

Теперь, когда все термины и их смысл окончательно сформированы, мы готовы дать определение:

Кинетическая энергия — мера способности движущегося материального тела совершать работу.

Лирическое отступление — На тропу войны

«Бог создал людей сильными и слабыми. Сэмюэл Кольт сделал их равными», — гласит старое американское присловье конца XIX века.  

Сэмюэл Кольт.
Инженер, оружейник и очень талантливый изобретатель. Именно он первым запатентовал культовое короткоствольное оружие с вращающимся барабаном, которое мы знаем под названием «револьвер», произошедшее от английского глагола ‘revolve’, в переводе — «вращаться». Кольт создал бренд, сотворил империю, возвел целую стрелковую эпоху…

Философски заметить — вообще-то стал причиной гибели огромного количества людей. А все потому, что кинетическая энергия по своей природе ну никак не безобидна.

Еще задолго до револьвера Кольта и подъема оружейной промышленности, человек понял, что движущиеся предметы обладают разрушительной способностью. Например, копье, летящее с расстояния в плиоценского мамонта, вонзается в тело животного из-за того, что человек сообщает инструменту кинетическую энергию. И древний человек хорошо понимал эту взаимосвязь, кидая на дистанции камни, палки с заостренными концами и прочие колюще-режущие-убивающие предметы.

Вечно тело в движении находиться не может. Либо его остановит по пути потеря энергии на преодоление трения — кинетическая энергия преобразуется как следствие в тепловую, — либо это тело остановит что-то, как бы принимая удар, вбирая в себя энергию. Вот так, фундаментальная сила природы стала основанием для учинения хаоса на планете, ведь любое стрелковое оружие — это предмет, сообщающий кинетическую энергию некоему предмету, находящемуся внутри. Пуле ли, снаряду, или ядру.

Формула кинетической энергии

Раз тело движущееся и энергией обладает именно за счет движения, можно выдвинуть кое-какое предположение. Логично, что при формула кинетической энергии «завязана» со значением скорости.

Во-вторых, неглупо предположить, что масса также связана с количеством энергии в системе. Если кинуть в соседа бумажный самолетик, это будет называться шалостью — величина кинетической энергии несущественная. А вот если кинуть в соседа кирпич… Не шалость. Целое покушение!

Понятие о том, что совершенная работа равна изменению энергии, остается неизменным. Просто на этот раз будем иметь в виду энергию кинетическую. Условимся обозначать ее как $E_к$. Заранее обозначим связь работы и кинетической энергии:
$A=Delta{E_к}$.

Продолжим выяснять, как выглядит формула кинетической энергии. Для этого предположим, что на тело с массой $m$ действует постоянная сила $F$. В результате тело проходит некоторое расстояние $s$. По второму закону Ньютона значение силы равно произведению массы на ускорение:
$F=ma$.

Перемещение при равноускоренном движении, при условии, что тело начинает движение из состояния покоя, равно:
$s=frac{upsilon^2}{2a}$.

Связывая две обозначенных формулы с формулой работы, находим:
$A=Fcdot s=Fcdot frac{upsilon^2}{2a}=frac{macdot upsilon^2}{2a}=frac{mv^2}{2}$.

Полученное в результате подстановок полупроизведение массы на квадрат скорости — это и есть формула кинетической энергии $E_к$.

Экспериментально формула кинетической энергии была подкреплена нидерландским ученым Вильгельмом Гравезандом в XVIII веке. Он обнаружил, что мячик, брошенный в стену с удвоенной скоростью, оставляет в четыре раза большее углубление. Следовательно энергия пропорциональна квадрату скорости. Это мы непосредственно и наблюдаем в формуле, выведенной от работы и перемещения.  

Формула кинетической энергии: задача на расчет

Условие. Автомобиль массой $1~т$ тянет буксир с постоянной силой. Определите кинетическую энергию автомобиля в момент времени $4~с$ на основе предложенного графика зависимости скорости от времени.

Решение. Формула кинетической энергии:
$E_к=frac{m upsilon^2}{2}$.

Опираясь на график, находим, что в момент времени $4~с$ скорость автомобиля составляла $8~м/с$. Масса автомобиля указана в тоннах, переведем ее в СИ: $m=1~т=1000~кг$. Подставим значения с формулу и посчитаем кинетическую энергию.

Получается:
$E_к=frac{1000~кг cdot (8frac{м}{с})^2}{2}=32000~Дж=32~кДж$.

Если бы мы каким-нибудь образом придумали устройство, которое бы позволяло переводить кинетическую энергию нашего автомобиля из задачи в электроэнергию, мы бы здорово удивились. $32~кДж$ хватило бы максимум на час работы двух энергосберегающих лампочек мощностью $20~Вт$.

Потенциальная энергия: в заключение

И вот мы закономерно, изучив понятия о механической энергии и ее видах, приходим к логичному выводу, что кинетическая энергия имеет прямую связь с потенциальной энергией.

Вот, вагонетка поднимается цепным приводом наверх, а после летит с огромной скоростью вниз, вновь забираясь на горку, но уже без помощи цепи. Созревшее яблоко с дерева падает к земле. Толчок пороховых газов придает пуле ускорение, выбрасывая ее из ствола. Сжатая пружина получает возможность свободного хода и толчками совершает возвратно-поступательные движения. Все рассмотренные нами случаи и примеры показывают, как один вид энергии преобразуется в другой. Кинетическая энергия в потенциальную. И наоборот.

Об этой потрясающей связи, а также о глубокомысленном «ничто ниоткуда не берется и в никуда не исчезает» вы узнаете уже на следующем уроке.

Упражнения

Упражнение №1

Какой потенциальной энергией относительно Земли обладает тело массой $100 space кг$ на высоте $10 space м$?

Дано:
$m = 100 space кг$
$h = 10 space м$
$g = 9.8 frac{Н}{кг}$

$E_п — ?$

Посмотреть решение и ответ

Скрыть

Решение:

Рассчитаем потенциальную энергию тела по формуле:
$E_п = gmh$.

$E_п = 9.8 frac{Н}{кг} cdot 100 space кг cdot 10 space м = 9800 space Дж = 9.8 space кДж$.

Ответ: $E_п = 9.8 space кДж$.

Упражнение №2

В каких местах реки — у истоков или в устье — каждый кубический метр воды обладает большей потенциальной энергией? Ответ обоснуйте.

Посмотреть ответ

Скрыть

Ответ:

Потенциальная энергия определяется по формуле: $E_п = gmh$. Очевидно, что чем больше высота нахождения воды, тем большей потенциальной энергией она будет обладать.

В истоке реки кубический метр воды будет обладать большей потенциальной энергий, чем тот же объем воды в ее устье. Это объясняется тем, что исток реки обычно находится выше уровня моря, где расположено ее устье.

Упражнение №3

В какой реке — горной или равнинной — каждый кубический метр текущей воды обладает большей кинетической энергией? Почему?

Посмотреть ответ

Скрыть

Ответ:

Кинетическая энергия определяется по формуле: $E_к = frac{m upsilon^2}{2}$. То есть, чем больше скорость движения воды, тем большей кинетической энергией она будет обладать.

Значит, в горной реке каждый кубический метр воды обладает большей кинетической энергией, чем такой же объем воды в равнинной реке. Ведь в горных реках скорость течения намного больше, чем в спокойных равнинных.

Упражнение №4

Определите, какой кинетической энергией будет обладать пуля, вылетевшая из ружья. Скорость ее при вылете из ружья равна $600 frac{м}{с}$, а масса — $7.5 space г$.

Дано:
$m = 7.5 space г$
$upsilon = 600 frac{м}{с}$

СИ:
$m = 7.5 cdot 10^{-3} space кг$

$E_к — ?$

Посмотреть решение и ответ

Скрыть

Решение:

Рассчитаем кинетическую энергию пули по формуле:
$E_к = frac{m upsilon^2}{2}$.

$E_к = frac{7.5 cdot 10^{-3} space кг cdot {600 frac{м}{с}}^2}{2} = frac{2700 space Дж}{2} = 1350 space Дж$.

Ответ: $E_к = 1350 space Дж$.

Энергия – скалярная величина. Любую энергию в системе СИ измеряют в Джоулях.

В механике рассматривают два вида энергии тел – кинетическую энергию и потенциальную энергию.

Сумма кинетической и потенциальной энергии называется полной механической энергией

Кинетическая энергия

Кинетическая энергия – это энергия движения. Любое тело, находящееся в движении, обладает кинетической энергией.

В русском языке есть глагол «кинуть». Бросим (кинем) камень – он будет находиться в движении, то есть, будет обладать кинетической энергией.

Когда тело изменяет свою скорость, изменяется его кинетическая энергия.
Скорость увеличивается – кинетическая энергия тоже растет, скорость падает – кинетическая энергия уменьшается.
Если тело покоится, кинетической энергии нет. Математики в таком случае запишут: (E_{k}=0 ).

Рассмотрим тело, движущееся по поверхности с какой-либо скоростью (рис 1а).

Тело движется по горизонтальной поверхности поступательно

Рис. 1. Тело, обозначенное на рисунке шаром, движется по горизонтальной поверхности поступательно

Зная массу и скорость тела, можно рассчитать его кинетическую энергию с помощью формулы:

[ large boxed{ E_{k} = m cdot frac{v^{2}}{2}}]

( E_{k} left( text{Дж}right) ) – кинетическая энергия;

( m left( text{кг}right) ) – масса тела;

( v left( frac{text{м}}{c}right) ) – cскорость, с которой тело движется.

Потенциальная энергия

Любое тело, поднятое над поверхностью, обладает потенциальной возможностью упасть и совершить работу. Например, потенциальная энергия поднятого над гвоздем молотка переходит в работу по забиванию гвоздя в доску.

Физики говорят: поднятое на высоту тело обладает потенциальной энергией.

Примечание: Потенциальная энергия возникает у тела из-за притяжения Земли.

Вообще, потенциальная энергия – это энергия взаимодействия (притяжения, или отталкивания). В нашем примере – энергия притяжения тела и Земли.

Если тело изменит высоту, на которой оно находится, будет изменяться его потенциальная энергия.
Тело опускается вниз – потенциальная энергия уменьшается.
Тело поднимается выше – потенциальная энергия растет.
Когда тело находится на поверхности земли, потенциальной энергии у него нет (E_{p}=0).

Рассмотрим тело, находящееся на какой-либо высоте над поверхностью земли (рис 1б).

Тело над поверхностью

Рис. 2. Тело находится на небольшой высоте над поверхностью

Можно рассчитать потенциальную энергию тела, зная его массу и высоту тела над поверхностью земли, с помощью формулы:

[ large boxed{ E_{p} = m cdot g cdot  h}]

( E_{p} left( text{Дж}right) ) – потенциальная энергия;

( m left( text{кг}right) ) – масса тела;

( h left( text{м}right) ) – высота, на которую тело подняли над поверхностью земли.

Полная механическая энергия тела

Если сложить кинетическую энергию тела с его потенциальной энергией в какой-либо момент времени, мы получим полную механическую энергию, которой тело обладало в этот момент времени.

Летящий в небе самолет (рис. 3) одновременно будет обладать и кинетической энергией – он движется, и потенциальной энергией – он находится на высоте.

Тело движется поступательно, находясь на некоторой высоте

Рис. 3. Самолет движется поступательно, находясь на высоте над поверхностью

Любая энергия – это скаляр (просто число).  Значит, энергия направления не имеет и ее можно складывать алгебраически.

[ large boxed{ E_{k} + E_{p} = E_{text{полн. мех}} }]

( E_{p} left( text{Дж}right) ) – потенциальная энергия тела;

( E_{k} left( text{Дж}right) ) – кинетическая энергия, которой обладает тело;

( E_{text{полн. мех}} left( text{Дж}right) ) – полная механическая энергия этого тела;

Советую далее прочитать о законе сохранения энергии

Добавить комментарий