Как найти коэффициент букв

Числовой коэффициент — как найти его для буквенно-числовых и буквенных выражений

«Числовой коэффициент», или просто «коэффициент» — термин, который подразумевает под собой одно и то же математическое понятие. Усвоить, в чем смысл термина, очень просто, а найти числовой коэффициент на конкретном примере еще легче. Но для начала разберемся с официальным определением.

Что называют математическим числовым коэффициентом?

Согласно учебнику математики, если выражение состоит из одного числа и нескольких буквенных обозначений, умноженных друг на друга, то данное число и будет коэффициентом всего выражения. При этом количество букв не имеет значения — число может быть умножено на одну букву, на две или сразу на пять, оно все равно остается коэффициентом.

Например, рассмотрим следующие выражения:

  • 5*a. В этом примере присутствует одно число — «5» и одна буква «а», и они перемножены друг на друга. Соответственно, число «5» будет коэффициентом всего выражения.
  • 7*b*c. Здесь мы видим выражение из одного числа и сразу двух буквенных обозначений. Но поскольку перемножение между ними сохраняется, то число «7» также остается коэффициентом.
  • 6*9*a*b. В данном случае мы видим два буквенных обозначения — и целых два числа. Однако ситуации это не меняет, ведь принцип перемножения по-прежнему присутствует. Чтобы узнать коэффициент, нужно просто взять произведение «6» и «9», то есть «54», и переписать выражение как 54*a*b. Число «54» будет коэффициентом выражения.

Необходимо напомнить, что последнее правило распространяется и на выражения, где числовые обозначения стоят не друг рядом с другом, а разделены буквами. Например, 2*c*4*a — мы можем смело переписывать данное выражение в виде 2*4*с*а, потому что при умножении не имеет значения, в каком порядке стоят множители. И таким образом, коэффициент по-прежнему находится легко и просто — это будет число «8».

Не стоит теряться, если в задаче предлагается найти коэффициент для буквенного выражения без чисел — например, y*z. В данном случае всегда используется число «1» — поскольку выражение из примера можно записать в виде 1*y*z. Коэффициент находится в выражениях и с положительными, и с отрицательными множителями.

В каких случаях найти коэффициент для всего выражения нельзя?

Общий коэффициент не может быть найден, если предусмотрены другие действия, помимо умножения. Например, если взять 3*с + а, то число «3» будет коэффициентом лишь для одного из слагаемых, но никак не для всего выражения.

Буквенное выражение (или выражение с переменными) — это математическое выражение, которое состоит из чисел, букв и знаков математических операций. Например, следующее выражение является буквенным:

a + b + 4

С помощью буквенных выражений можно записывать законы, формулы, уравнения и функции. Умение манипулировать буквенными выражениями — залог хорошего знания алгебры и высшей математики.

Любая серьёзная задача в математике свóдится к решению уравнений. А чтобы уметь решать уравнения, нужно уметь работать с буквенными выражениями.

Чтобы работать с буквенными выражениями, нужно хорошо изучить базовую арифметику: сложение, вычитание, умножение, деление, основные законы математики, дроби, действия с дробями, пропорции. И не просто изучить, а понять досконально.

Переменные

Буквы, которые содержатся в буквенных выражениях, называются переменными.

Например, в выражении a + b + 4 переменными являются буквы a и b. Если вместо этих переменных подставить любые числа, то буквенное выражение a + b + 4 обратится в числовое выражение, значение которого можно будет найти.

Числа, которые подставляют вместо переменных называют значениями переменных. Например, изменим значения переменных a и b. Для изменения значений используется знак равенства

a = 2, b = 3

Мы изменили значения переменных a и b. Переменной a присвоили значение 2, переменной b присвоили значение 3. В результате буквенное выражение a + b + 4 обращается в обычное числовое выражение 2 + 3 + 4, значение которого можно найти:

2 + 3 + 4 = 9

Когда происходит умножение переменных, то они записываются вместе. Например, запись ab означает то же самое, что и запись a × b. Если подставить вместо переменных a и b числа 2 и 3, то мы получим 6

2 × 3 = 6

Слитно также можно записать умножение числа на выражение в скобках. Например, вместо a × (b + c) можно записать a(b + c). Применив распределительный закон умножения, получим a(b + c) = ab + ac.


Коэффициенты

В буквенных выражениях часто можно встретить запись, в которой число и переменная записаны вместе, например 3a. На самом деле это короткая запись умножения числа 3 на переменную a и эта запись выглядит как 3 × a.

Другими словами, выражение 3a является произведением числа 3 и переменной a. Число 3 в этом произведении называют коэффициентом. Этот коэффициент показывает во сколько раз будет увеличена переменная a. Данное выражение можно прочитать как «a три раза» или «трижды а«, или «увеличить значение переменной a в три раза», но наиболее часто читается как «три a«

К примеру, если переменная a равна 5, то значение выражения 3a будет равно 15.

3 × 5 = 15

Говоря простым языком, коэффициент это число, которое стоит перед буквой (перед переменной).

Букв может быть несколько, например 5abc. Здесь коэффициентом является число 5. Данный коэффициент показывает, что произведение переменных abc увеличивается в пять раз. Это выражение можно прочитать как «abc пять раз» либо «увеличить значение выражения abc в пять раз», либо «пять abc«.

Если вместо переменных abc подставить числа 2, 3 и 4, то значение выражения 5abc будет равно 120

5 × 2 × 3 × 4 = 120

Можно мысленно представить, как сначала перемнóжились числа 2, 3 и 4, и полученное значение увеличилось в пять раз:

пять умножить на два на три на четыре равно 120

Знак коэффициента отнóсится только к коэффициенту, и не отнóсится к переменным!

Рассмотрим выражение 6b. Минус, стоящий перед коэффициентом 6, отнóсится только к коэффициенту 6, и не отнóсится к переменной b. Понимание этого факта позвóлит не ошибаться в будущем со знаками.

Найдем значение выражения 6b при b = 3.

6b это короткая форма записи от × b. Для наглядности запишем выражение 6b в развёрнутом виде и подставим значение переменной b

−6b = −6 × b = −6 × 3 = −18


Пример 2. Найти значение выражения 6b при b = −5

Запишем выражение −6b в развёрнутом виде

−6b = −6 × b

и далее подставим значение переменной b

−6b = −6 × b = −6 × (−5) = 30


Пример 3. Найти значение выражения −5a + b при a = 3 и b = 2

−5a + b это короткая форма записи от −5 × a + b, поэтому для наглядности запишем выражение −5 × a + b в развёрнутом виде и подстáвим значения переменных a и b

−5a + b = −5 × a + b = −5 × 3 + 2 = −15 + 2 = −13


Иногда буквы записаны без коэффициента, например a или ab. В этом случае коэффициентом является единица:

1a, 1ab

но единицу по традиции не записывают, поэтому просто пишут a или ab

Если перед буквой стоит минус, то коэффициентом является число 1. Например, выражение −a на самом деле выглядит как −1a. Это произведение минус единицы и переменной a. Оно получилось следующим образом:

−1 × a = −1a

Здесь крóется небольшой подвох. В выражении −a минус, стоящий перед переменной a на самом деле относится к невидимой единице, а не к переменной a. Поэтому при решении задач следует быть внимательным.

К примеру, если дано выражение −a и нас прóсят найти его значение при a = 2, то в школе мы подставляли двойку вместо переменной a и получали ответ 2, не особо зацикливаясь на том, как это получалось. На самом деле происходило умножение минус единицы на положительное число 2

−a = −1 × a

−1 × a = −1 × 2 = −2

Если дано выражение −a и требуется найти его значение при a = −2, то мы подставляем −2 вместо переменной a

−a = −1 × a

−1 × a = −1 × (−2) = 2

Чтобы не допускать ошибок, первое время невидимые единицы можно записывать явно.

Пример 4. Найти значение выражения abc при a=2, b=3 и c=4

Выражение abc это короткая форма записи от 1×a×b×c. Для наглядности запишем выражение abc в развёрнутом виде и подставим значения переменных a, b и c

1 × a × b × c = 1 × 2 × 3 × 4 = 24


Пример 5. Найти значение выражения abc при a=−2, b=−3 и c=−4

Запишем выражение abc в развёрнутом виде и подставим значения переменных a, b и c

1 × a × b × c = 1 × (−2) × (−3) × (−4) = −24


Пример 6. Найти значение выражения abc при a=3, b=5 и c=7

Выражение abc это короткая форма записи от −1×a×b×c. Для наглядности запишем выражение abc в развёрнутом виде и подставим значения переменных a, b и c

−abc = −1 × a × b × c = −1 × 3 × 5 × 7 = −105


Пример 7. Найти значение выражения abc при a=−2, b=−4 и c=−3

Запишем выражение abc в развёрнутом виде:

−abc = −1 × a × b × c

Подставим значение переменных a, b и c

−abc = −1 × a × b × c = −1 × (−2) × (−4) × (−3) = 24


Как определить коэффициент

Иногда требуется решить задачу, в которой требуется определить коэффициент выражения. В принципе, данная задача очень простá. Достаточно уметь правильно умножать числа.

Чтобы определить коэффициент в выражении, нужно отдельно перемножить числа, входящие в это выражение, и отдельно перемножить буквы. Получившийся числовой сомножитель и будет коэффициентом.

Пример 1. Определить коэффициент в выражении: 7m×5a×(−3)×n

Выражение состоит из нескольких сомножителей. Это можно отчетливо увидеть, если записать выражение в развёрнутом виде. То есть произведения 7m и 5a записать в виде 7×m и 5×a

7 × m × 5 × a × (−3) × n

Применим сочетательный закон умножения, который позволяет перемножать сомножители в любом порядке. А именно, отдельно перемнóжим числа и отдельно перемнóжим буквы (переменные):

−3 × 7 × 5 × m × a × n = −105man

Коэффициент равен −105. После завершения буквенную часть желательно расположить в алфавитном порядке:

−105amn


Пример 2. Определить коэффициент в выражении: −a×(−3)×2

Перемножим отдельно числа и буквы:

−a × (−3 ) × 2 = −3 × 2 × (−a) = −6 × (−a) = 6a

Коэффициент равен 6.


Пример 3. Определить коэффициент в выражении: минус одна третья mn три a

Перемножим отдельно числа и буквы:

минус одна третья mn три a равно минус amn

Коэффициент равен −1. Обратите внимание, что единица не записана, поскольку коэффициент 1 принято не записывать.

Эти казалось бы простейшие задачи могут сыграть с нами очень злую шутку. Часто выясняется, что знак коэффициента поставлен не верно: либо пропущен минус либо наоборот он поставлен зря. Чтобы избежать этих досадных ошибок, тема умножения целых чисел должна быть изучена на хорошем уровне.


Слагаемые в буквенных выражениях

При сложении нескольких чисел получается сумма этих чисел. Числа, которые складывают называют слагаемыми. Слагаемых может быть несколько, например:

1 + 2 + 3 + 4 + 5

Когда выражение состоит из слагаемых, вычислять его намного проще, поскольку складывать легче, чем вычитать. Но в выражении может присутствовать не только сложение, но и вычитание, например:

1 + 2 − 3 + 4 − 5

В этом выражении числа 3 и 5 являются вычитаемыми, а не слагаемыми. Но нам ничего не мешает, заменить вычитание сложением. Тогда мы снова получим выражение, состоящее из слагаемых:

1 + 2 + (−3) + 4 + (−5)

Не суть, что числа −3 и −5 теперь со знаком минус. Главное, что все числа в данном выражении соединены знаком сложения, то есть выражение является суммой.

Оба выражения 1 + 2 − 3 + 4 − 5 и 1 + 2 + (−3) + 4 + (−5) равны одному и тому значению — минус единице:

1 + 2 − 3 + 4 − 5 = −1

1 + 2 + (−3) + 4 + (−5) = −1

Таким образом, значение выражения не пострадает от того, что мы где-то заменим вычитание сложением.

Заменять вычитание сложением можно и в буквенных выражениях. Например, рассмотрим следующее выражение:

7a + 6b − 3c + 2d − 4s

Заменим вычитание сложением там, где это можно:

7a + 6b + (−3c) + 2d + (−4s)

При любых значениях переменных a, b, c, d и s выражения 7a + 6b − 3c + 2d − 4s и 7a + 6b + (−3c) + 2d + (−4s) будут равны одному и тому же значению.

Вы должны быть готовы к тому, что учитель в школе или преподаватель в институте может называть слагаемыми даже те числа (или переменные), которые ими не являются.

Например, если на доске будет записана разность a − b, то учитель не будет говорить, что a — это уменьшаемое, а b — вычитаемое. Обе переменные он назовет одним общим словом — слагаемые. А всё потому, что выражение вида a − b математик видит, как сумму a + (−b). В таком случае выражение становится суммой, а переменные a и (−b) станóвятся слагаемыми.


Подобные слагаемые

Подобные слагаемые — это слагаемые, которые имеют одинаковую буквенную часть.

Например, рассмотрим выражение 7a + 6b + 2a. Слагаемые 7a и 2a имеют одинаковую буквенную часть — переменную a. Значит слагаемые 7a и 2a являются подобными.

Обычно подобные слагаемые складывают, чтобы упростить выражение или решить какое-нибудь уравнение. Это действие называют приведéнием подобных слагаемых.

Чтобы привести подобные слагаемые, нужно сложить коэффициенты этих слагаемых, и полученный результат умножить на общую буквенную часть.

Например, приведём подобные слагаемые в выражении 3a + 4a + 5a. В данном случае подобными являются все слагаемые. Слóжим их коэффициенты и результат умножим на общую буквенную часть — на переменную a

3a + 4a + 5a = (3 + 4 + 5)×a = 12a

Подобные слагаемые обычно привóдят в уме и результат записывают сразу:

3a + 4a + 5a = 12a

Также, можно рассуждать следующим образом:

Было 3 переменные a, к ним прибавили еще 4 переменные a и ещё 5 переменных a. В итоге получили 12 переменных a

двенадцать переменных a

Если подсчитать на рисунке количество переменных a, то насчитается 12.

Рассмотрим несколько примеров на приведение подобных слагаемых. Учитывая, что данная тема очень важна, на первых порах будем записывать подробно каждую мелочь. Несмотря на то, что здесь всё очень просто, большинство людей допускают множество ошибок. В основном по невнимательности, а не по незнанию.

Пример 1. Привести подобные слагаемые в выражении 3a + 2a + 6a + 8a

Сложим коэффициенты в данном выражении и полученный результат умножим на общую буквенную часть:

3a + 2a + 6a + 8a= (3 + 2 + 6 + 8) × a = 19a

Конструкцию (3 + 2 + 6 + 8) × a можно не записывать, поэтому сразу запишем ответ

3a + 2a + 6a + 8a = 19a


Пример 2. Привести подобные слагаемые в выражении 2a + a

Второе слагаемое a записано без коэффициента, но на самом деле перед ним стоит коэффициент 1, который мы не видим по причине того, что его не записывают. Стало быть, выражение выглядит следующим образом:

2a + 1a

Теперь приведем подобные слагаемые. То есть сложим коэффициенты и результат умножим на общую буквенную часть:

2a + 1a = (2 + 1) × a = 3a

Запишем решение покороче:

2a + a = 3a

Приводя подобные слагаемые в выражении 2a+a, можно рассуждать и по-другому:

Было 2 переменные a, добавили ещё одну переменную a, в итоге получилось 3 переменные a.

три переменные a


Пример 3. Привести подобные слагаемые в выражении 2a − a

Заменим вычитание сложением:

2a + (−a)

Второе слагаемое (−a) записано без коэффициента, но на самом деле оно выглядит как (−1a). Коэффициент −1 опять же невидимый по причине того, что его не записывают. Стало быть, выражение выглядит следующим образом:

2a + (−1a)

Теперь приведем подобные слагаемые. Сложим коэффициенты и результат умножим на общую буквенную часть:

2a + (−1a) = (2 + (−1)) × a = 1a = a

Обычно записывают короче:

2a − a = a

Приводя подобные слагаемые в выражении 2a−a можно рассуждать и по-другому:

Было 2 переменные a, вычли одну переменную a, в итоге осталась одна единственная переменная a

одна единственная переменная a


Пример 4. Привести подобные слагаемые в выражении 6a − 3a + 4a − 8a

Заменим вычитание сложение там, где это можно:

6a − 3a + 4a − 8a = 6a + (−3a) + 4a + (−8a)

Теперь приведем подобные слагаемые. Сложим коэффициенты и результат умножим на общую буквенную часть

(6 + (−3) + 4 + (−8)) × a = −1a = −a

Запишем решение покороче:

6a − 3a + 4a − 8a = −a


Встречаются выражения, которые содержат несколько различных групп подобных слагаемых. Например, 3a + 3b + 7a + 2b. Для таких выражений справедливы те же правила, что и для остальных, а именно складывание коэффициентов и умножение полученного результата на общую буквенную часть. Но чтобы не допустить ошибок, удобно разные группы слагаемых подчеркнуть разными линиями.

Например, в выражении 3a + 3b + 7a + 2b те слагаемые, которые содержат переменную a, можно подчеркнуть одной линией, а те слагаемые которые содержат переменную b, можно подчеркнуть двумя линиями:

три а плюс б плюс семь а плюс два б

Теперь можно привести подобные слагаемые. То есть сложить коэффициенты и полученный результат умножить на общую буквенную часть. Сделать это нужно для обеих групп слагаемых: для слагаемых, содержащих переменную a и для слагаемых содержащих переменную b.

3a + 3b + 7a + 2b = (3+7)×a + (3 + 2)×b = 10a + 5b

Опять же повторимся, выражение несложное, и подобные слагаемые можно приводить в уме:

3a + 3b + 7a + 2b = 10a + 5b


Пример 5. Привести подобные слагаемые в выражении 5a − 6a −7b + b

Заменим вычитание сложение там, где это можно:

5a − 6a −7b + b = 5a + (−6a) + (−7b) + b

Подчеркнём подобные слагаемые разными линиями. Слагаемые, содержащие переменные a подчеркнем одной линией, а слагаемые содержащие переменные b, подчеркнем двумя линиями:

пять а плюс минус шесть а плюс минус семь б плюс б

Теперь можно привести подобные слагаемые. То есть сложить коэффициенты и полученный результат умножить на общую буквенную часть:

5a + (−6a) + (−7b) + b = (5 + (−6))×a + ((−7) + 1)×b = −a + (−6b)


Если в выражении содержатся обычные числа без буквенных сомножителей, то они складываются отдельно.

Пример 6. Привести подобные слагаемые в выражении 4a + 3a − 5 + 2b + 7

Заменим вычитание сложением там, где это можно:

4a + 3a − 5 + 2b + 7 = 4a + 3a + (−5) + 2b + 7

Приведем подобные слагаемые. Числа −5 и 7 не имеют буквенных сомножителей, но они являются подобными слагаемыми — их необходимо просто сложить. А слагаемое 2b останется без изменений, поскольку оно единственное в данном выражении, имеющее буквенный сомножитель b, и его не с чем складывать:

4a + 3a + (−5) + 2b + 7 = (4 + 3)×a + 2b + (−5) + 7 = 7a + 2b + 2

Запишем решение покороче:

4a + 3a − 5 + 2b + 7 = 7a + 2b + 2


Слагаемые можно упорядочивать, чтобы те слагаемые, которые имеют одинаковую буквенную часть, располагались в одной части выражения.

Пример 7. Привести подобные слагаемые в выражении 5t+2x+3x+5t+x

Поскольку выражение является суммой из нескольких слагаемых, это позволяет нам вычислять его в любом порядке. Поэтому слагаемые, содержащие переменную t, можно записать в начале выражения, а слагаемые содержащие переменную x в конце выражения:

5t + 5t + 2x + 3x + x

Теперь можно привести подобные слагаемые:

5t + 5t + 2x + 3x + x = (5+5)×t + (2+3+1)×x = 10t + 6x

Запишем решение покороче:

5t + 2x + 3x + 5t + x = 10t + 6x


Сумма противоположных чисел равна нулю. Это правило работает и для буквенных выражений. Если в выражении встретятся одинаковые слагаемые, но с противоположными знаками, то от них можно избавиться на этапе приведения подобных слагаемых. Иными словами, просто вычеркнуть их из выражения, поскольку их сумма равна нулю.

Пример 8. Привести подобные слагаемые в выражении 3t − 4t − 3t + 2t

Заменим вычитание сложением там, где это можно:

3t − 4t − 3t + 2t = 3t + (−4t) + (−3t) + 2t

Слагаемые 3t и (−3t) являются противоположными. Сумма противоположных слагаемых равна нулю. Если убрать этот ноль из выражения, то значение выражения не изменится, поэтому мы его и уберём. А уберём мы его обычным вычеркиванием слагаемых 3t и (−3t)

три т плюс минус четыре т плюс минус три т плюс два т

В итоге у нас останется выражение (−4t) + 2t. В данном выражении можно привести подобные слагаемые и получить окончательный ответ:

(−4t) + 2t = ((−4) + 2)×t = −2t

Запишем решение покороче:

три т плюс минус четыре т плюс минус три т плюс два т короткое рещение


Упрощение выражений

Часто можно встретить задание, в котором сказано «упростите выражение» и далее приводится выражение, которое требуется упростить. Упростить выражение значит сделать его прóще и корóче.

На самом деле мы уже занимались упрощением выражений, когда сокращали дроби. После сокращения дробь становилась короче и проще для восприятия.

Рассмотрим следующий пример. Упростить выражение две четвёртых .

Это задание буквально можно понять так: «Примените к данному выражению любые допустимые действия, но сделайте его прóще».

В данном случае можно осуществить сокращение дроби, а именно разделить числитель и знаменатель дроби на 2:

сокращение дроби две четвертых на два Что ещё можно сделать? Можно вычислить полученную дробь одна вторая . Тогда мы получим десятичную дробь 0,5

сокращение дроби две четвертых на два второй этап

В итоге дробь две четвёртых упростилась до 0,5.

Первый вопрос, который нужно себе задавать при решении подобных задач, должен быть: «а что можно сделать?». Потому что есть действия, которые можно делать, и есть действия, которые делать нельзя.

Ещё один важный момент, о котором нужно помнить, заключается в том что значение выражение не должно измениться после упрощения выражения. Вернемся к выражению две четвёртых. Данное выражение представляет собой деление, которое можно выполнить. Выполнив это деление, мы получаем значение данного выражения, которое равно 0,5

два разделить на четыре равно пять десятых решение уголком

Но мы упростили выражение две четвёртых и получили новое упрощённое выражение одна вторая. Значение нового упрощённого выражения по-прежнему равно 0,5

единица разделить на два пятое действие

Но выражение одна вторая мы тоже попытались упростить, вычислив его. В итоге получили окончательный ответ 0,5.

Таким образом, как бы мы не упрощали выражение, значение получаемых выражений по-прежнему равно 0,5. Значит упрощение выполнялось верно на каждом этапе. Именно к этому нужно стремиться при упрощении выражений — значение выражения не должно пострадать от наших действий.

Часто требуется упрощать буквенные выражения. Для них справедливы те же правила упрощения, что и для числовых выражений. Можно выполнять любые допустимые действия, лишь бы не изменилось значение выражения.

Рассмотрим несколько примеров.

Пример 1. Упростить выражение 5,21s × t × 2,5

Чтобы упростить данное выражение, можно отдельно перемножить числа и отдельно перемножить буквы. Это задание очень похоже на то, которое мы рассматривали, когда учились определять коэффициент:

5,21s × t × 2,5 = 5,21 × 2,5 × s × t = 13,025 × st = 13,025st

Таким образом, выражение 5,21s × t × 2,5 упростилось до 13,025st.


Пример 2. Упростить выражение −0,4 × (−6,3b) × 2

Второе произведение (−6,3b) можно перевести в понятный для нас вид, а именно записать в виде (−6,3)×b, затем отдельно перемножить числа и отдельно перемножить буквы:

0,4 × (−6,3b) × 2 = 0,4 × (−6,3) × b × 2 = 5,04b

Таким образом, выражение −0,4 × (−6,3b) × 2 упростилось до 5,04b


Пример 3. Упростить выражение две третьих а умножить на минус одну целую одну вторую б ц

Распишем данное выражение более подробно, чтобы хорошо увидеть, где числа, а где буквы:

две третьих а умножить на минус одну целую одну вторую б ц в подробном виде

Теперь отдельно перемножим числа и отдельно перемножим буквы:

две третьих а умножить на минус одну целую одну вторую б ц в подробном виде вычисление

Таким образом, выражение две третьих а умножить на минус одну целую одну вторую б ц упростилось до −abc. Данное решение можно записать покороче:

две третьих а умножить на минус одну целую одну вторую б ц в подробном виде короткое вычисление

При упрощении выражений, дроби можно сокращать в процессе решения, а не в самом конце, как мы это делали с обычными дробями. Например, если в ходе решения мы наткнёмся на выражение вида Двенадцать умножить на девять умножить на шесть разделить на три умножить на два умножить на четыре , то вовсе необязательно вычислять числитель и знаменатель и делать что-то вроде этого:

Двенадцать умножить на девять умножить на шесть разделить на три умножить на два умножить на четыре полное решение

Дробь можно сократить, выбирая по множителю в числителе и в знаменателе и сокращать эти множители на их наибольший общий делитель. Другими словами, использовать короткую версию сокращения дроби, в которой мы не расписываем подробно на что был разделен числитель и знаменатель.

Например, в числителе множитель 12 и в знаменателе множитель 4 можно сократить на 4. Четвёрку храним в уме, а разделив 12 и 4 на эту четвёрку, ответы записываем рядом с этими числами, предварительно зачеркнув их

Двенадцать умножить на девять умножить на шесть разделить на три умножить на два умножить на четыре сократили на три 12 и 4

Далее в числителе множитель 9 и в знаменателе множитель 3 можно сократить на 3

Двенадцать умножить на девять умножить на шесть разделить на три умножить на два умножить на четыре сократили на три 9 и 3

Далее в числителе множитель 6 и в знаменателе множитель 2 можно сократить на 2

Двенадцать умножить на девять умножить на шесть разделить на три умножить на два умножить на четыре сократили на три 6 и 2

Теперь можно перемножить получившиеся маленькие множители. В данном случае их немного и можно перемножить в уме:

Двенадцать умножить на девять умножить на шесть разделить на три умножить на два умножить на четыре короткое решение

Со временем можно обнаружить, что решая ту или иную задачу, выражения начинают «толстеть», поэтому желательно приучиться к быстрым вычислениям. То, что можно вычислить в уме, нужно вычислять в уме. То, что можно быстро сократить, нужно быстро сокращать.

Пример 4. Упростить выражение минус три целых одна третья а умножить на минус ноль целых девять б на пять двенадцатых

Перемножим отдельно числа и отдельно буквы:

минус три целых одна третья а умножить на минус ноль целых девять б на пять двенадцатых равно пять четвертых ab

Таким образом, выражение минус три целых одна третья а умножить на минус ноль целых девять б на пять двенадцатых упростилось до пять четвертых ab


Пример 5. Упростить выражение минус три четвертых м умножить на минус две третьих умножить на два м

Перемножим отдельно числа и отдельно буквы:

минус три четвертых м умножить на минус две третьих умножить на два м равно мн

Таким образом, выражение минус три четвертых м умножить на минус две третьих умножить на два м упростилось до mn.


Пример 6. Упростить выражение минус шесть целых четыре умножить на минус три четвертых x

Запишем данное выражение более подробно, чтобы хорошо увидеть, где числа, а где буквы:

минус шесть целых четыре умножить на минус три четвертых x расписано

Теперь отдельно перемножим числа и отдельно буквы. Для удобства вычислений десятичную дробь −6,4 и смешанное число Минус одна целая и одна третья можно перевести в обыкновенные дроби:

минус шесть целых четыре умножить на минус три четвертых x равно минус тридцать пятых stx

Таким образом, выражение минус шесть целых четыре умножить на минус три четвертых x упростилось до минус шесть целых четыре десятых stx

Решение для данного примера можно записать значительно короче. Выглядеть оно будет следующим образом:

минус шесть целых четыре умножить на минус три четвертых x короткое решение


Пример 7. Упростить выражение шестнадцать вторых ab умножить на одну десятую c умножить на шесть десятых d

Перемножим отдельно числа и отдельно буквы. Для удобства вычисления смешанное число шестнадцать целых две третьих и десятичные дроби 0,1 и 0,6 можно перевести в обыкновенные дроби:

шестнадцать вторых ab умножить на одну десятую c умножить на шесть десятых d равно abcd

Таким образом, выражение шестнадцать вторых ab умножить на одну десятую c умножить на шесть десятых d упростилось до abcd. Если пропустить подробности, то данное решение можно записать значительно короче:

шестнадцать вторых ab умножить на одну десятую c умножить на шесть десятых d равно abcd коротко

Обратите внимание на то, как сократилась дробь. Новые множители, которые получаются в результате сокращения предыдущих множителей, тоже допускается сокращать.

line

Теперь поговорим о том, чего делать нельзя. При упрощении выражений категорически нельзя перемножать числа и буквы, если выражение является суммой, а не произведением.

Например, если требуется упростить выражение 5a + 4b, то нельзя записывать следующим образом:

5a плюс 4б не равно двадцть аб

Это равносильно тому, что если бы нас попросили сложить два числа, а мы бы их перемножали вместо того, чтобы складывать.

При подстановке любых значений переменных a и b выражение 5a  +4b обращается в обыкновенное числовое выражение. Предположим, что переменные a и b имеют следующие значения:

a = 2, b = 3

Тогда значение выражения будет равно 22

5a + 4b = 5 × 2 + 4 × 3 = 10 + 12 = 22

Сначала выполняется умножение, а затем полученные результаты складывают. А если бы мы попытались упростить данное выражение, перемножив числа и буквы, то получилось бы следующее:

5a + 4b = 5 × 4 × a × b = 20ab

20ab = 20 × 2 × 3 = 120

Получается совсем другое значение выражения. В первом случае получилось 22, во втором случае 120. Это означает, что упрощение выражения 5a + 4b было выполнено неверно.

После упрощения выражения, его значение не должно изменяться при одних и тех же значениях переменных. Если при подстановке в изначальное выражение любых значений переменных получается одно значение, то после упрощения выражения должно получаться то же самое значение, что и до упрощения.

С выражением 5a + 4b на самом деле ничего делать нельзя. Оно не упрощается.

line

Если в выражении содержатся подобные слагаемые, то их можно сложить, если нашей целью является упрощение выражения.

Пример 8. Упростить выражение 0,3a−0,4a+a

Чтобы упростить данное выражение можно привести подобные слагаемые:

0,3a − 0,4a + a = 0,3a + (−0,4a) + a = (0,3 + (−0,4) + 1)×a = 0,9a

или покороче: 0,3a − 0,4a + a = 0,9a

Таким образом, выражение 0,3a−0,4a+a упростилось до 0,9a


Пример 9. Упростить выражение −7,5a − 2,5b + 4a

Чтобы упростить данное выражение можно привести подобные слагаемые:

−7,5a − 2,5b + 4a = −7,5a + (−2,5b) + 4a = ((−7,5) + 4)×a + (−2,5b) = −3,5a + (−2,5b)

или покороче −7,5a − 2,5b + 4a = −3,5a + (−2,5b)

Слагаемое (−2,5b) осталось без изменений, поскольку его не с чем было складывать.


Пример 10. Упростить выражение две третьих а плюс одна целая одна третья а минус одна третья а

Чтобы упростить данное выражение можно привести подобные слагаемые:

две третьих а плюс одна целая одна третья а минус одна третья а равно пять третьих а

Коэффициент одна целая одна третья был переведён в неправильную дробь для удобства вычисления.

Таким образом, выражение две третьих а плюс одна целая одна третья а минус одна третья а упростилось до пять третьих а


Пример 11. Упростить выражение минус одна четвертая x плюс x плюс три четрвертых x

Чтобы упростить данное выражение можно привести подобные слагаемые:

минус одна четвертая x плюс x плюс три четрвертых x равно минус одна вторая x

Таким образом, выражение минус одна четвертая x плюс x плюс три четрвертых x упростилось до минус пять десятых икс.

В данном примере целесообразнее было бы сложить первый и последний коэффициент в первую очередь. В этом случае мы получили бы короткое решение. Выглядело бы оно следующим образом:

минус одна четвертая x плюс x плюс три четрвертых x равно минус одна вторая x коротко


Пример 12. Упростить выражение минус две пятых б минус три седьмых ц минус одна десятая б

Чтобы упростить данное выражение можно привести подобные слагаемые:

минус две пятых б минус три седьмых ц минус одна десятая б равно минус одна вторая б плюс минус три седьмых ц

Таким образом, выражение минус две пятых б минус три седьмых ц минус одна десятая б упростилось доминус одна вторая b плюс минус три седьмых ц.

Слагаемое минус три седьмых ц осталось без изменения, поскольку его не с чем было складывать.

Данное решение можно записать значительно короче. Выглядеть оно будет следующим образом:

минус две пятых б минус три седьмых ц минус одна десятая б коротко

В коротком решении пропущены этапы замены вычитания сложением и подробная запись, как дроби приводились к общему знаменателю.

Ещё одно различие заключается в том, что в подробном решении ответ выглядит как минус одна вторая b плюс минус три седьмых ц, а в коротком как минус одна вторая б минус три седьмых ц. На самом деле, это одно и то же выражение. Различие в том, что в первом случае вычитание заменено сложением, поскольку в начале когда мы записывали решение в подробном виде, мы везде где можно заменили вычитание сложением, и эта замена сохранилась и для ответа.


Тождества. Тождественно равные выражения

После того как мы упростили какое-нибудь выражение, оно станóвится проще и короче. Чтобы проверить верно ли упрощено выражение, достаточно подстáвить любые значения переменных сначала в предыдущее выражение, которое требовалось упростить, а затем в новое, которое упростили. Если значение в обоих выражениях будет одинаковым, то это означает, что выражение упрощено верно.

Рассмотрим простейший пример. Пусть требуется упростить выражение 2a × 7b. Чтобы упростить данное выражение, можно по-отдельности перемнóжить числа и буквы:

2a × 7b = 2 × 7 × a × b = 14ab

Проверим верно ли мы упростили выражение. Для этого подставим любые значения переменных a и b сначала в первое выражение, которое требовалось упростить, а затем во второе, которое упростили.

Пусть значения переменных a, b будут следующими:

a = 4
b = 5

Подстáвим их в первое выражение 2a × 7b

2a × 7b = 2 × 4 × 7 × 5 = 280

Теперь подстáвим те же значения переменных в выражение, которое получилось в результате упрощения выражения 2× 7b, а именно в выражение 14ab

14ab = 14 × 4 × 5 = 280

Видим, что при a = 4 и b = 5 значение первого выражения 2× 7b и значение второго выражения 14ab равны

2a × 7b = 2 × 4 × 7 × 5 = 280

14ab = 14 × 4 × 5 = 280

То же самое произойдет и для любых других значений. Например, пусть a = 1 и b = 2

2a × 7b = 2 × 1 × 7 × 2 = 28

14ab = 14 × 1 × = 28

Таким образом, выражения 2× 7b и 14ab при любых значениях переменных равны одному и тому же значению. Такие выражения называют тождественно равными.

Делаем вывод, что между выражениями 2× 7b и 14ab можно поставить знак равенства, поскольку они равны одному и тому же значению:

2× 7b = 14ab

Равенством называют любое выражение, которые соединено знаком равенства (=).

А равенство вида 2× 7b = 14ab называют тождеством.

Тождеством называют равенство, которое верно при любых значениях переменных.

Другие примеры тождеств:

a + b = b + a

a(b + c) = ab + ac

a(bc) = (ab)c

Да, законы математики, которые мы изучали, являются тождествами.

Верные числовые равенства тоже являются тождествами. Например:

2 + 2 = 4

3 + 3 = 5 + 1

10 = 7 + 2 + 1

Решая сложную задачу, чтобы облегчить себе вычисление, сложное выражение заменяют на более простое выражение, тождественно равное предыдущему. Такую замену называют тождественным преобразованием выражения или просто преобразованием выражения.

Например, мы упростили выражение 2× 7b, и получили более простое выражение 14ab. Это упрощение можно называть тождественным преобразованием.

Часто можно встретить задание, в котором сказано «докажите, что равенство является тождеством» и далее приводится равенство, которое требуется доказать. Обычно это равенство состоит из двух частей: левой и правой части равенства. Наша задача состоит в том, чтобы выполнить тождественные преобразования с одной из частей равенства и получить другую часть. Либо выполнить тождественные преобразования с обеими частями равенства и сделать так, чтобы в обеих частях равенства оказались одинаковые выражения.

Например, докажем, что равенство 0,5a × 5b = 2,5ab является тождеством.

Упростим левую часть этого равенства. Для этого перемножим числа и буквы по отдельности:

0,5 × 5 × a × b = 2,5ab

2,5ab = 2,5ab

В результате небольшого тождественного преобразования, левая часть равенства стала равна правой части равенства. Значит мы доказали, что равенство 0,5a × 5b = 2,5ab является тождеством.

Из тождественных преобразований мы научились складывать, вычитать, умножать и делить числа, сокращать дроби, приводить подобные слагаемые, а также упрощать некоторые выражения.

Но это далеко не все тождественные преобразования, которые существуют в математике. Тождественных преобразований намного больше. В будущем мы ещё не раз в этом убедимся.

Задания для самостоятельного решения:

Задание 1. Найдите значение выражения два икс игрек при икс равно одна вторая и игрек равно одна четвертая

Задание 2. Найдите значение выражения минус икс игрек при икс равно одна целая одна вторая и игрек равно две целых одна четверть

Задание 4. Найдите значение выражения минус две сотых а б при а равно четыре десятых и б минус сто двадцать пять

Задание 5. Запишите в виде буквенного выражения следующую последовательность действий:

  • Число a умножить на три, и из этого произведения вычесть пятнадцать
  • Число t умножить на девять, и к полученному произведению прибавить тридцать пять

Задание 6. Приведите подобные слагаемые в следующем выражении:

Задание 7. Приведите подобные слагаемые в следующем выражении:

Задание 8. Приведите подобные слагаемые в следующем выражении:

Задание 9. Приведите подобные слагаемые в следующем выражении:

Задание 10. Приведите подобные слагаемые в следующем выражении:

Задание 11. Упростите выражение:

Задание 12. Упростите выражение:

Задание 13. Упростите выражение:

Задание 14. Упростите выражение:

Задание 15. Упростите выражение:

Задание 16. Упростите выражение:

Задание 17. Упростите выражение:

Задание 18. Упростите выражение:

Задание 19. Упростите выражение:

Задание 20. Упростите выражение:


Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках

Возникло желание поддержать проект?
Используй кнопку ниже


В предыдущих уроках мы уже познакомились со свойствами действий с рациональными числами и раскрытием скобок. В этих темах у нас зачастую фигурируют не числа, а выражения.

В некоторых случаях у выражения можно выделить такое число, которое называют коэффициентом.

О том, что это такое, чему он равен, какой у него может быть знак и где его можно применить, мы узнаем в сегодняшнем уроке.

Эта информация доступна зарегистрированным пользователям

Мы уже знаем переместительное и сочетательное свойства умножения.

Они позволяют нам упрощать выражения, что делает работу удобнее.

Упростим выражение (mathbf{frac{1}{2}acdot(-frac{2}{3}b)}), используя эти свойства.

(mathbf{frac{1}{2}acdot(-frac{2}{3}b)=frac{1}{2}cdot acdot(-frac{2}{3})cdot b=frac{1}{2}cdot(-frac{2}{3})cdot acdot b=-frac{1}{3}cdot acdot b=-frac{1}{3}ab})

Мы представили выражения как произведение четырех множителей, сгруппировали в начало численные множители, а в конец буквенные, далее мы перемножили имеющиеся численные множители так, чтобы получилось одно число.

В данном случае коэффициентом выражения будет являться число (mathbf{-frac{1}{3}})

Эта информация доступна зарегистрированным пользователям

Определение: если выражения является произведением числа и одной или нескольких букв, то это число называется числовым коэффициентом (или сокращенно коэффициентом).

Коэффициент обычно пишут перед буквенными множителями; также после него можно написать знак умножения, но обычно его не пишут, а он просто подразумевается.

Пример:

Каков коэффициент выражения (mathbf{0.4a})?

Проверяем, подходит ли выражение под определение: да, оно подходит, так как является произведением.

Числовой множитель только один, значит, ничего считать не надо, и мы сразу можем сказать, что коэффициент данного выражения равен (mathbf{0.4})

Пример:

Каков коэффициент выражения (mathbf{3acdot 2b cdot 4cdot c}) ?

Опять же, данное выражение является произведением, правда коэффициент пока не ясен, так как числовой множитель не один.

В данном случае, как и в примере из начала урока множители необходимо сгруппировать, в результате получим, что коэффициент равен (mathbf{3cdot 2cdot 4=24})

Что если мы хотим посчитать коэффициент выражения, которое является произведением одних лишь буквенных множителей?

Тут нам поможет следующая логика.

Например, очевидно такое равенство: (mathbf{a=1cdot a})

Эта информация доступна зарегистрированным пользователям

Так мы можем приписать умножение на единицу к любому выражению, при этом значение выражения никак не изменится.

Таким образом мы получим необходимый для определения числовой множитель, он и будет коэффициентом.

Поэтому если мы видим выражения, состоящие из одних лишь буквенных множителей, то мы знаем, что их коэффициент равен единице.

Примеры:

(mathbf{ab=1cdot ab}) – коэффициент равен единице

(mathbf{ab+ab=1cdot ab+1cdot ab=ab(1 + 1)=abcdot 2=2ab}) – коэффициент равен 2

Эта информация доступна зарегистрированным пользователям

Как мы уже определили в прошлой главе, коэффициент будет являться произведением числовых множителей.

Значит, знак коэффициента будет соответствовать знаку этого произведения.

Посмотрим на примерах:

Пример:

Посчитаем коэффициент выражения (mathbf{3acdot (-3)cdot b}):

(mathbf{3acdot (-3)cdot b=3cdot(-3)cdot ab=-9ab})

В данном случае коэффициент получился равным (mathbf{-9}), то есть отрицательным, так как произведение числовых множителей получилось отрицательным.

Пример:

Посчитаем коэффициент выражения (mathbf{-frac{1}{3}acdot (-frac{1}{2})bc}):

(mathbf{-frac{1}{3}acdot (-frac{1}{2})bc=-frac{1}{3}cdot(-frac{1}{2})abc=frac{1}{6}abc})

В данном случае количество отрицательных множителей четное, поэтому и коэффициент получается меньше нуля.

Если бы отрицательных множителей было число нечетное, то коэффициент получился бы отрицательным.

Правило: если выражение является произведением числовых и буквенных множителей и отрицательных числовых множителей четное количество, а остальные множители больше нуля, то коэффициент будет положительным; если же их нечетное количество, то коэффициент будет отрицательным.

Также мы знаем, что произведение любых чисел и нуля равняется нулю.

То же самое касается и буквенных множителей.

Пример:

(mathbf{frac{1}{2}abcdot 0c=0})

Поэтому такие выражения, которые являются произведением, а один из их множителей равен нулю, сами равны нулю.

Сразу можно понять, как можно использовать эти знания.

Представим, что у нас есть некоторая сумма. И если для каждого выражения, которое является слагаемым, мы посчитаем коэффициент, то, возможно, некоторые слагаемые уничтожаться, потому что их коэффициент окажется равен нулю.

Пример:

(mathbf{2a+9438xycdot frac{1}{36}ccdot 0z+3b=2a+0+3b=2a+3b})

Как видите, нам не пришлось вдаваться в подробности слагаемого, так как один из его числовых множителей равен нулю.

Эта информация доступна зарегистрированным пользователям

Вы уже знаете с прошлых уроков, что умножение рациональных чисел обладает распределительным свойством относительно сложения.

То есть для любых рациональных чисел a, b и c будет верно равенство:

(mathbf{(a + b) cdot c = ac + bc})

Мы знаем, что выражение, состоящее из рациональных чисел и включающее в себя операции сложения, вычитания, умножения и деления, также будет равняться рациональному числу.

А значит, вместо а, b и c могли стоять не просто рациональные числа, но и целые выражения – главное, чтобы одной букве соответствовало одно и только одно выражение.

Также известно, что отношение равенства симметрично, то есть из того, что ((mathbf{a=b})) следует, что ((mathbf{b=a}))

Значит, мы можем использоваться распределительное свойство и так:

(mathbf{ab+bc=(a+b)cdot c})

Часто мы будем называть такой переход вынесением общего множителя (общим является множитель с).

Эта информация доступна зарегистрированным пользователям

Теперь применим все эти факты на практике.

Пример:

Упростим выражение (mathbf{345ab+345bc+345cd}) :

(mathbf{345ab+345bc+345cd=(345ab+345bc) + 345cd=345cdot(ab+bc)+345cd=})

(mathbf{=345cdot((ab+bc)+cd)=345cdot(ab+bc+cd)})

Первым делом мы добавили скобки для наглядности, чтобы показать, что дальше мы будет упрощать сумму первых двух слагаемых.

К ним мы применили распределительной свойство и вынесли общий множитель 345.

Заметим, что теперь выражение представляет из себя два слагаемых, и у них у обоих есть общий множитель 345.

Поэтому в следующем действие мы снова выносим общий множитель.

Теперь остается убрать ненужные скобки, и мы получаем упрощенное выражение.

Кстати, на этом примере становится понятно, что распределительно свойство работает на любом количестве слагаемых:

(mathbf{(a+b+c)d=ad+bd+cd})

(mathbf{(a+b+с+…+z)t=at+bt+ct+…+zt})

Под троеточием в данном случае подразумевается сколько угодно много слагаемых, главное, что они такого же вида, как первые и последние.

То есть первое троеточие обозначает слагаемые, состоящие из одного числа (буквы), второе же троеточие обозначает слагаемые вида «слагаемое из левой части выражения домноженное на t».

Как же в данном случае нам может помочь коэффициент?

В нашем примере мы выносили общий множитель. Им как раз и является коэффициент таких выражений, как ab, bc и cd.

В примере он уже был везде посчитан и нам ничего не приходилось умножать.

Пример:

Упростим выражение (mathbf{30a+15bcdot2c+10dcdot3e}) :

(mathbf{30a+15bcdot 2c+10dcdot 3e=30a+30bc+30de=30(a+bc+de)})

В данном случае мы сначала посчитали в каждом слагаемом коэффициент (слагаемые в данном случае являются не просто числами, а выражениями).

А далее мы поняли, что этот коэффициент является общим множителем и мы его выносим, пользуясь распределительным свойством.

Пример:

Упростим выражение (mathbf{3acdot b cdot 3c +3cdot a cdot 3c}) :

(mathbf{3acdot b cdot 3c +3cdot a cdot 3c=9abc+9ac=9cdot(abc+ac)})

Это выражение можно упростить еще сильнее, вынося общий буквенный множитель. В данном случае в скобках у слагаемых общий множитель a и с, их и вынесем:

(mathbf{9cdot(abc+ac)=9cdot(a(bc+c))=9cdot(a(bc+1c))=9cdot(a(c(b+1)))=9ac(b+1)})

Здесь мы применили тот факт, что если у выражения не стоит коэффициент, то мы считаем, что его коэффициент равен единице.

Эта информация доступна зарегистрированным пользователям

Ранее мы уже рассматривали одну ошибку в литературном произведении Джека Лондона.

Сегодня мы посмотрим не на ошибки, а на задачки в литературе.

Один из героев Жюля Верна пытался подсчитать, насколько его голова прошла более длинный путь за время одного кругосветного путешествия, чем его ступни.

На первый взгляд задача выглядит довольно непонятной.

Но если сделать ряд допущений, как это часто делают при решении задач реального мира, то наша задача становится вполне решаемой.

Во-первых, известно, что Земля имеет не совсем форму шара, но мы предположим, что траектория героя представляла из себя именно окружность с фиксированным радиусом – радиусом Земли (обозначим буквой R).

Во-вторых, предположим, что двигался он всегда в стоячем положении, а когда он спал, то не двигался.

Это нам нужно для того, чтобы предположить, что голова всегда была на определенном расстоянии от земли.

Тогда мы можем нарисовать следующий рисунок:

Эта информация доступна зарегистрированным пользователям

Выразим путь, который прошли ступни героя. Этот путь будет равняться длине окружности с радиусом R, то есть (mathbf{2pi R})

Пунктиром обозначен путь головы героя, он равняется длине окружности с радиусом (R+h), то есть (mathbf{2pi (R+h)})

Выразим разность второй и первой величины и получим результат:

(mathbf{2pi (R+h)-2pi R=2pi(R+h-R)=2pi h})

Видно, что результат не зависит от радиуса Земли, но зато зависит от высоты героя. Предположим, что его рост средний и равен 1.75 м.

Тогда (mathbf{2pi h = 2cdot 3.14cdot1.75=10.99}) м.

Ответ: на 10.99 м. голова героя прошла более длинный путь за время одного кругосветного путешествия, чем его ступни.

Как мы видим, для решения такой, на первый взгляд странной задачи, хватает весьма простой математики.

Читайте также

Анна Гречина

Профи

(952)


11 лет назад

коэффицент-число стоящее перел буквой
пример: 3а, 7р
если просто а, то у него коэффицент будет 1, но мы его не пишем
5d-коэффицент 5
8c-коэффмцент8
x-коэффицент 1
Надеюсь поняла:)

ТаисияКоновалова

Высший разум

(275539)


11 лет назад

Правила. Коэффициент
Переместительное и сочетательное свойства умножения позволяют упрощать выражения.
Пример 1. Упростим выражение 0,3a • (-0,7 b).
Решение. Это выражение является произведением четырех множителей:
0,3а • ( -0,7)b. Сгруппировав отдельно числовые и отдельно буквенные множители, получим:
0,3a • (-0,7b) = 0,3а • (-0,7) b = (0,3 • (-0,7)) • (аb) = -0,21аb.
Число -0,21 называют коэффициентом в полученном выражении.

Если выражение является произведением числа и одной или нескольких букв, то это число называют числовым коэффициентом (или просто коэффициентом) .
Коэффициент обычно пишут перед буквенными множителями.
Коэффициентом такого выражения, как а или аb, считают 1, так как а = 1 • а; ab = 1 • ab.
При умножении -1 на любое число а получается число -а:
-1 • a = -а.
Поэтому числовым коэффициентом выражения -a считают число -1.

_

Мыслитель

(6671)


11 лет назад

Коэффициент – множитель. Подразумевается какое-то фиксированное число.
Например, в функции y=2x перед икс стоит коэффициент “2”.

Коэффициент b

Коэффициент $b$ называют свободным. На графике он показывает длину отрезка, который отсекает линия функции по оси ординат относительно начала координат. 

Другими словами, коэффициент $b$ показывает, насколько график сдвинут вдоль оси $Oy$. Если $b > 0$, то график будет сдвинут вверх, и если $b < 0$, то график будет сдвинут вниз.

Так на нашем графике функции из примера про копилк

Так на нашем графике функции из примера про копилку видно, что прямая пересекает ось $Oy$ выше начала координат на $500$ единиц (этому числу и равен коэффициент $b$).

График функции $y=50x + 500$

График функции $y=50x + 500$
Видео

Видео

Примеры числовых коэффициентов и их особенности

Рассмотрим несколько примеров числовых коэффициентов в выражениях:

  1. —5*x+1, числовым коэффициентом в данном выражении является число -5.
  2. 3*(1x+1), аналогично в таком выражении числовым коэффициентом является число 3.
  3. 3x+y, в данном выражении число 3 не является числовым коэффициентом всего выражения 9, т.к. выражение содержит в себе знак суммы), но при этом является коэффициентом первого слагаемого, входящего в это выражение.
  4. π+12sinπ3+xcos2x—π3, в этом выражении числовым коэффициентом является π+12.
  5. 14y2—5y—1=, в этом уравнении числовыми коэффициентами являются 14, -5 и -1 соответственно.

Дополнительная информация

Ранее мы уже рассматривали одну ошибку в литературном произведении Джека Лондона.

Сегодня мы посмотрим не на ошибки, а на задачки в литературе.

Один из героев Жюля Верна пытался подсчитать, насколько его голова прошла более длинный путь за время одного кругосветного путешествия, чем его ступни.

На первый взгляд задача выглядит довольно непонятной.

Но если сделать ряд допущений, как это часто делают при решении задач реального мира, то наша задача становится вполне решаемой.

Во-первых, известно, что Земля имеет не совсем форму шара, но мы предположим, что траектория героя представляла из себя именно окружность с фиксированным радиусом — радиусом Земли (обозначим буквой R).

Во-вторых, предположим, что двигался он всегда в стоячем положении, а когда он спал, то не двигался.

Это нам нужно для того, чтобы предположить, что голова всегда была на определенном расстоянии от земли.

Тогда мы можем нарисовать следующий рисунок:

Выразим путь, который прошли ступни героя. Этот путь будет равняться длине окружности с радиусом R, то есть (mathbf{2pi R})

Пунктиром обозначен путь головы героя, он равняется длине окружности с радиусом (R+h), то есть (mathbf{2pi (R+h)})

Выразим разность второй и первой величины и получим результат:

(mathbf{2pi (R+h)-2pi R=2pi(R+h-R)=2pi h})

Видно, что результат не зависит от радиуса Земли, но зато зависит от высоты героя. Предположим, что его рост средний и равен 1.75 м.

Тогда (mathbf{2pi h = 2cdot 3.14cdot1.75=10.99}) м.

Ответ: на 10.99 м. голова героя прошла более длинный путь за время одного кругосветного путешествия, чем его ступни.

Как мы видим, для решения такой, на первый взгляд странной задачи, хватает весьма простой математики.

Теги

Добавить комментарий