Как найти коэффициент частотных искажений

Основные технические характеристики усилителя

Коэффициент усиления по напряжению – отношение напряжения, получаемого на выходе усилителя, к напряжению, подведенному к его входу.

Коэффициент усиления по напряжению

Это один из основных показателей» характеризующих работу усилителя напряжения. Для усилителей мощности более важной величиной является выходная мощность. Для многокаскадного усилителя общий коэффициент усиления равен произведению коэффициентов усиления всех каскадов. Каскад – это часть электронной схемы, выполняющая определённую конечную функцию, – например предварительное усиление напряжения или согласование входных и выходных сопротивлений.

Общий коэффициент усиления по напряжению многокаскадного усилителя

Часто коэффициент усиления измеряется в логарифмических единицах – децибелах. Коэффициент усиления по напряжению, выраженный в децибелах определяют по формуле:

Коэффициент усиления по напряжению, выраженный в децибелах

Если коэффициенты усиления, выражены в децибелах, то общий коэффициент усиления усилителя равен сумме коэффициентов усиления каскадов.

Общий коэффициент усиления по напряжению многокаскадного усилителя, выраженный в децибелах

Кроме коэффициента усиления по напряжению, иногда пользуются коэффициентами усиления по току или коэффициентами усиления по мощности.
Выходная мощность является одной из основных величин, характеризующих оконечные каскады (усилители мощности). Максимальная мощность на выходе усилителя ограничена искажениями, возникающими за счет нелинейности характеристик ламп при больших амплитудах сигналов.
Номинальная выходная мощность – наибольшая мощность, при которой искажения не превышают допустимой величины.
Номинальное входное напряжение – напряжение, которое нужно подвести ко входу усилителя, чтобы получить номинальную выходную мощность.

Коэффициент полезного действия (к. п. д.) усилителя – позволяет оценивать его экономичность. Различают электрический и промышленный к. п. д.
Электрический к. п. д. усилительного каскада равен отношению его полезной выходной мощности к мощности, потребляемой от источника анодного напряжения.
Промышленный к. п. д. равен отношению полезной мощности к мощности, потребляемой от всех источников, питающих данный каскад.
Входное сопротивление усилителя – сопротивление переменному току, которое представляет входная цепь усилителя для источника входного напряжения. Входное сопротивление усилителя зависит от частоты напряжения, подведенного к его входу.
Диапазон усиливаемых частот (полоса пропускания) – область частот, в которой коэффициент усиления изменяется не больше, чем это допустимо по техническим условиям.
Необходимые минимальные граничные частоты полосы пропускания усилителей для некоторых трактов передачи и усиления:
Высококачественное ЧМ радиовещание ( УКВ и FM ) ……… 40 – 16000 Гц
Высококачественное AM радиовещание ( 1 -го класса ) ……… 50 – 8000 Гц
Радиовещание ( 2-го класса ) ………………………………… 80 – 5000 Гц
Магнитная звукозапись и звуковое кино ………………… 40 – 12000 Гц
Hi – End звуковоспроизведение …………………………… 20 – 20000 Гц
Телефония …………………………………………………… 300— 2500 Гц

Динамический диапазон амплитуд — отношение (в децибелах – дБ) амплитуд наиболее сильного и наиболее слабого сигналов. Уровень наиболее слабого передаваемого сигнала ограничивается в усилителе его собственными шумами или уровнем помех. Величина максимального передаваемого напряжения ограничена искажениями, возникающими в усилителе за счет нелинейности характеристик ламп. Передача будет вполне удовлетворительной, если воспроизводятся мощности, отличающиеся в 1 миллион раз. Для этого необходимо передавать напряжения, отличающиеся в 1000 раз (динамический диапазон 60 дБ).
Искажения в усилителях низкой частоты. Искажения, возникающие в усилителях вследствие нелинейности характеристик электронных ламп, полупроводниковых триодов и характеристик намагничивания трансформаторных сердечников, называются нелинейными искажениями. При наличии нелинейных искажений в усилителе на выходе его возникают новые частоты (гармоники), отсутствующие на входе.
Степень нелинейных искажений характеризуется коэффициентом нелинейных искажений (коэффициентом гармоник), представляющим собой отношение корня квадратного из суммы квадратов напряжений гармоник к напряжению основной частоты (первой гармоники):                 

коэффициент нелинейных искажений

Практически имеют значение только вторая и третья гармоники. Обычно коэффициент нелинейных искажений выражается в процентах. В пятидесятых годах прошлого столетия считалось, что в усилителях, предназначенных для АМ радиоприемников и магнитофонов величина коэффициента гармоник не должна превышать 5 – 7%, а в телевидении и радиотелефонии допускается 15—20%. Современная ламповая схемотехника, позволяет значительно снизить эти величины вплоть до 1 – 2%.

Комбинационные тона – получаются тогда, когда на вход усилителя, вносящего нелинейные искажения, подводятся одновременно колебания нескольких частот. В этом случае на входе, кроме этих частоти их гармоник, появляются суммарные и разностные частотные комбинации между любой, в том числе и первой, гармоникой одной частоты и любой гармоникой другой частоты. Комбинационные тона могут получаться при усилении любой аудиопрограммы.

Искажения, обусловленные изменением величины коэффициента усиления на различных частотах, называются частотными искажениями.

Частотные искажения можно оценить по частотной характеристике усилителя.
Частотной характеристикой усилителя называется зависимость коэффициента усиления от частоты или зависимость от частоты отклонения от среднего значения коэффициента усиления.

Частотная характеристика усилителя

На схеме показан пример частотной характеристики усилителя звуковой частоты. Изменение усиления на разных частотах по отношению к коэффициенту усиления К0 в области средних частот выражено в децибелах. Масштаб по оси частот логарифмический.
Коэффициент частотных искажений – отношение коэффициента усиления на средней частоте к коэффициенту усиления на данной частоте. Для частотных искажений в области нижних частот

Величина частотных  искажений в области низких частот

и в области верхних частот, усиливаемого диапазона

Величина частотных  искажений в области верхних частот

где К0, Кн и Кв – коэффициенты усиления на средних, низких и высоких – частотах соответственно.
Фазовыми искажениями – называются искажения, возникающие при сдвиге фазы выходного напряжения усилителя на угол φ относительно фазы входного напряжения.

Переходные искажения появляются в результате наложения на воспроизводимый сигнал неустановившихся процессов. Особенно существенными в этом отношении являются неустановившиеся процессы подвижной системы громкоговорителей. Для уменьшения переходных искажений нужно уменьшать выходное сопротивление усилителя.

Микрофонные помехи (микрофонный эффект) – наведение в цепях усилителя мешающего напряжения в результате воздействия на шасси и лампы усилителя механических колебаний в виде звуковых волн, вибраций, ударов и пр.

Фон питающей сети – может присутствовать на выходе усилителя, питаемого от сети переменного тока. Представляет собой переменное напряжение с частотой питающего тока и его гармоник (50, 100, 150, 200 Гц и т. д.), вследствие чего в громкоговорителе бывает слышен фон переменного тока. ГОСТом на радиовещательные приемники от 1956 года, устанавливался уровень напряжения фона на выходе усилителей, который должен был быть меньше наибольшего напряжения полезного сигнала, в 200 раз (46 дб) для приемников 1-го класса, в 70 раз (37 дб) – для приемников 2-го класса и в 20 раз (26 дб) – для приемников 3-го класса.

Искажения в усилителях

При
усилении электрических сигналов могут
возникнуть нелинейные, частотные и
фазовые искажения.

Нелинейные
искажения

представляют собой изменение формы
кривой усиливаемых колебаний, вызванное
нелинейными свойствами цепи, через
которую эти колебания проходят.

Основной
причиной появления нелинейных искажений
в усилителе является нелинейность
характеристик усилительных элементов,
а также характеристик намагничивания
трансформаторов или дросселей с
сердечниками.

Появление
искажений формы сигнала, вызванных
нелинейностью входных характеристик
транзистора, иллюстрируется на графике
рис.1. Предположим, что на вход усилителя
подан испытательный сигнал синусоидальной
формы. Попадая на нелинейный участок
входной характеристики транзистора,
этот сигнал вызывает изменения входного
тока, форма которого отличается от
синусоидальной. В связи с этим и выходной
ток, а значит, и выходное напряжение
изменят свою форму по сравнению с входным
сигналом.

Чем
больше нелинейность усилителя, тем
сильнее искажается им синусоидальное
напряжение, подаваемое на вход. Известно
(теорема Фурье), что всякая несинусоидальная
периодическая кривая может быть
представлена суммой гармонических
колебаний и высших гармоник. Таким
образом, в результате нелинейных
искажений на выходе усилителя появляются
высшие гармоники, т.е. совершенно новые
колебания, которых не было на входе.

Степень
нелинейных искажений усилителя обычно
оценивают величиной коэффициента
нелинейных искажений
(коэффициента
гармоник
)

где

– сумма электрических мощностей,
выделяемых на нагрузке гармониками,
появившимися в результате нелинейного
усиления;– электрическая мощность первой гармоники.

В
тех случаях, когда сопротивление нагрузки
имеет одну и ту же величину для всех
гармонических составляющих усиленного
сигнала, коэффициент гармоник определяется
по формуле

,

где

и т.д. – действующие или амплитудные
значения первой, второй, третьей и т.д.
гармоник тока на выходе;и т.д. действующие или амплитудные
значения гармоник выходного напряжения.

Коэффициент
гармоник обычно выражают в процентах,
поэтому найденное по формулам значение
следует умножить на 100. Общая величина
нелинейных искажений, возникающих на
выходе усилителя и созданных отдельными
каскадами этого усилителя, определяется
по приближенной формуле:

где

нелинейные искажения вносимые каждым
каскадом усилителя.

Допустимая
величина коэффициента гармоник всецело
зависит от назначения усилителя. В
усилителях контрольно-измерительной
аппаратуры допустимое значение
коэффициента гармоник
составляет десятые доли процента.

Частотные
называются
искажения
,
обусловленные изменением величины
коэффициента усиления на различных
частотах. Причиной частотных искажений
является присутствие в схеме реактивных
элементов – конденсаторов, катушек
индуктивности, междуэлектродных емкостей
усилительных элементов, емкости монтажа
и т.д.

Зависимость
величины реактивного сопротивления
от частоты не позволяет получить
постоянный коэффициент усиления в
широкой полосе частот. Частотные
искажения, вносимые усилителем,
оценивают по его амплитудно-частотной
характеристике
,
представляющей собой зависимость
коэффициента усиления от частоты
усиливаемого сигнала.

Для
примера на рис. 2 показана амплитудно-частотная
характеристика УНЧ.

Рис.
2. Амплитудно-частотная
Рис. 3. Фазочастотная характеристика

характеристика
УНЧ.
усилителя.

При
построении амплитудно-частотных
характеристик частоту по оси абсцисс
удобнее откладывать не в линейном, а в
логарифмическом масштабе. Для каждой
частоты фактически по оси откладывается
величина lgf,
а
подписывается значение частоты.

Степень
искажений на отдельных частотах
выражается коэффициентом
частотных искажений

М,
равным
отношению коэффициента усиления на
данной частоте

Обычно
наибольшие частотные искажения возникают
на границах диапазона частот fн
и
fв.
Коэффициенты частотных искажений в
этом случае равны

,

где
Кн
и
К
в

соответственно коэффициенты усиления
на нижних и верхних частотах диапазона.

Для
усилителей низкой частоты идеальной
частотной характеристикой является
горизонтальная прямая линия (линия АВ
на рис. 2).

где
Кн
и
Кв

соответственно коэффициенты усиления
на нижних и
верхних частотах диапазона. Из определения
коэффициента ча­стотных искажений
следует, что если М
> 1, то частотная характе­ристика
в области данной частоты имеет завал,
а если М
< 1, — то
подъем. Для усилителя низкой частоты
идеальной частотной характеристикой
является горизонтальная прямая (линия
АВ на рис. 12.5).

Коэффициент
частотных искажений многокаскадного
усилителя равен
произведению коэффициентов частотных
искажений отдель­ных
каскадов

М
= М
1
М2
М3.
..М
n.

Следовательно,
частотные искажения, возникающие в
одном каскаде
усилителя, могут быть скомпенсированы
в другом, чтобы общий
коэффициент частотных искажений не
выходил за пределы заданного.
Коэффициент частотных искажений, так
же как и коэф­фициент
усиления, удобно выражать в децибелах:

МДБ
=


20lgМ.

В
случае многокаскадного усилителя

МДБ
= М
1ДБ
+

М
2ДБ
+ М
3ДБ

+…+ М
nДБ

Допустимая
величина частотных искажений зависит
от назна­чения
усилителя. Для усилителей
контрольно-измерительной ап­паратуры,
например, допустимые искажения
определяются тре­буемой точностью
измерения и могут составлять десятые
и даже сотые доли децибела.

Следует
иметь в виду, что частотные искажения
в усилителе всегда сопровождаются
появлением сдвига фаз между входным и
выходным сигналами, т. е. фазовыми
искажениями. При этом под фазовыми
искажениями обычно подразумевают лишь
сдвиги, со­здаваемые
реактивными элементами усилителя, а
поворот фазы самим усилительным элементом
во внимание не принимается.

Фазовые
искажения,
вносимые
усилителем, оцениваются по его
фазочастотной
характеристике, представляющей собой
график за­висимости
угла сдвига фазы φ
между входным и выходным напря­жениями
усилителя от частоты рис. 3. Фазовые
искажения в
усилителе отсутствуют, когда фазовый
сдвиг линейно зависит от частоты.
Идеальной фазочастотной характеристикой
является прямая, начинающаяся в начале
координат – пунктирная линия на рис.
3. Фазочастотная характеристика реального
усилителя имеет вид, показанный на рис.
3. сплошной линией.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

    02.03.201612.64 Mб85Электрооборудование судов – Осокин, Хайдуков..djvu

Каждый электронщик должен знать основные параметры усилителя, так как усилитель в электронике используется абсолютно везде. В этой статье мы рассмотрим самые важные параметры усилителей.

Входное и выходное сопротивление

Кто в первый раз сталкивается с этими понятиями, читайте эту статью. Кому лень читать, вкратце объясню здесь из прошлой статьи. Каждый усилительный каскад имеем свое входное и выходное сопротивление. На схеме Rвх и Rвых

основная схема усилителя

Входное сопротивление усилителя находится по формуле Rвх =Uвх / Iвх . Думаю, здесь вопросов возникать не должно. Эта формула справедлива как для постоянного тока, так и для переменного. В случае с постоянным током — это у нас будет усилитель постоянного тока (УПТ).

Немного иначе обстоят дела с выходным сопротивлением. В теории, можно замкнуть выходные клеммы 3 и 4 накоротко. В этом случае во выходной цепи усилителя у нас появится ток короткого замыкания Iкз

Основные параметры усилителя

Более наглядно:

Основные параметры усилителя

Ну и по закону Ома нетрудно догадаться, что Rвых = Eвых / Iкз . Но как же найти Евых ? Достаточно разомкнуть цепь и просто и замерить напряжение мультиметром. Это и будет Eвых. Физический смысл очень простой. Так как вольтметр обладает очень высоким входным сопротивлением, то в цепи у нас почти не будет течь ток, так как по закону Ома I=U/R. А если сопротивление нагрузки бесконечно большое, то, следовательно, Iкз будет бесконечно малое.

В этом случае этим бесконечно маленьким током можно пренебречь и считать, что в цепи нет никакой силы тока. А раз сила тока равна нулю, то  и падение напряжения на Rвых также будет равняться нулю или формулой: URвых = IRвых = 0 Вольт. Следовательно, на клеммах 3 и 4 мы будем замерять Eвых .

Основные параметры усилителя

Выходное сопротивление усилителя можно найти двумя способами: теоретическим и практическим. Теоретический способ, часто сложен, поскольку неизвестны многие параметры «черного ящика», называемого усилителем. Проще определить выходное сопротивление практическим путем.

Как найти выходное сопротивление на практике

Что нужно для этого? Номинальная мощность усилителя и допустимое напряжение на выходе. Не важно — усилитель это постоянного или переменного тока (напряжения). Тестирование усилителя любого типа желательно выполнять на уровне 70% допустимой выходной мощности. Это общая практика.

Основные параметры усилителя

Если вы не забыли, мультиметр в этом случае нам покажет ЭДС  Eвых , т. е. в данном случае Eвых = Uвых . (Что такое ЭДС).

Основные параметры усилителя

Номинал нагрузочного сопротивления должен выбираться исходя из допустимого тока и мощности усилителя.

Пример:

Выходная мощность усилителя 10 Вт, допустимое выходное напряжение (эффективное) 100 В. В этом случае, резистор нагрузки должен иметь сопротивление не менее R=U2/P = 10000/10 = 1 кОм. Мощность резистора: PR = U2/R = 10000/1000 = 10 Вт

Какой же физический смысл этого опыта? В результате этих шагов,  у нас цепь станет замкнутой, а два сопротивления, Rвых и Rн , образуют делитель напряжения. Сюда же можно приписать закон Ома для полной цепи, который выражается формулой:

Основные параметры усилителя

где

I — сила тока в цепи, А

E — ЭДС, В

R — сопротивление нагрузки, Ом

r — внутреннее сопротивление источника ЭДС, Ом

Применительно к нашей ситуации, формула будет иметь такой вид:

Основные параметры усилителя

Отсюда получаем:

Основные параметры усилителя

Основные параметры усилителя

Или словами, ЭДС равняется сумме падений напряжения на каждом сопротивлении.

Как вы могли заметить, падение напряжения на сопротивлении Rвых зависит от силы тока в цепи. Чем больше сила тока в цепи, тем больше падение напряжения на выходном сопротивлении Rвых . Но от чего же зависит сила тока в цепи? От нагрузки Rн ! Чем она меньше, тем больше сила Iвых в цепи, тем больше будет падение напряжения на Rвых , а значит, падение напряжения на U будет меньше.

Основные параметры усилителя

Теперь, зная этот принцип, можно косвенно вычислить выходное сопротивление Rвых .

Шаг номер 3: Замеряем напряжение на нагрузке U. Вспоминаем формулу выше:

Основные параметры усилителя

отсюда

Основные параметры усилителя

из формулы

Основные параметры усилителя

Получаем, что

Основные параметры усилителя

Далее что нам требуется — это увеличивать входное напряжение и снимать выходное напряжение — так мы увидим всю нелинейность выходной характеристики от тока и сможем замерить выходное сопротивление в диапазоне нагрузок, так как большинство усилителей мощности имеют нелинейность выходного сопротивления от допустимого тока нагрузки.

Коэффициент усиления

Про коэффициенты усиления мы писали еще в прошлой статье.

Рабочий диапазон частот

Рабочий диапазон — это диапазон частот, где коэффициент усиления изменяется в допустимых пределах, заданных в технических условиях на усилитель. Для этого надо построить АЧХ усилителя. Обычно этот предел устанавливается на уровне -3 децибел. Почему именно -3 дБ? В свое время так было удобнее учитывать передаваемую энергию. В полосе — 3 дБ передается 50% мощности сигнала.

рабочий диапазон частот

Но иногда требуется незначительное изменение коэффициента усиления. Например, в -1 дБ. В этом случае рабочий диапазон частот усилителя будет меньше:

Основные параметры усилителя

Собственные шумы усилителя.

Что же такое шум?

В электронике шумом называют беспорядочные колебания амплитуды сигнала, которые глушат полезный сигнал. Сюда же относятся разного рода помехи. Собственные шумы усилителя — это шумы, которые зарождаются как внутри самого усилителя, так и могут быть вызваны внешним источником помех, либо некачественным питанием усилителя. Давайте рассмотрим основные виды шумов усилителя.

Фон

Этот шум вызван некачественным питанием усилителя. Если источник питания собран на сетевом трансформаторе, то шум  будет на частоте 100 Гц (2х50Гц, по схеме диодного моста). То есть на выходе такого усилителя мы услышим гудение, если подцепим к выходу динамик. Думаю, вы часто слышали такое выражение «что-то динамики фонят». Это все из этой серии.

Помехи и наводки

Это могут быть внешние источники, которые так или иначе действуют на усилитель. Это может быть наводка от сети 220 Вольт (очень часто ее можно увидеть, если просто прикоснуться к сигнальному щупу осциллографа), это также может быть какая-либо искра, которая образуется в свечах двигателей внутреннего сгорания.

Небольшое лирическое отступление. Помню, как смотрел диснеевские мультики по первому каналу, а через дорогу сосед пилил дрова с помощью бензопилы Дружба-2. Тогда на экране ТВ были такие помехи, что я  про себя тихо материл соседа.

Ну а как же без грозовых разрядов? Благодаря электромагнитному импульсу у нас появилось такое изобретение, как радио.

К источникам помех можно также отнести радио- и ТВ-станции, рядом лежащее и стоящее электрооборудование, типа мощных коммутационных механических ключей, разрядников и тд.

Ну и конечно, это шум самих радиоэлементов. Сюда относится тепловой шум (джонсоновский), дробовой шум, а также фликкер-шум.

Наиболее существенными являются шумы, которые возникают на входе усилителя в самом первом каскаде. Этот шум в дальнейшем усиливается также, как и входной полезный сигнал. В результате на выходе усилителя у нас будет усилен как полезный сигнал, так и шумовой. Поэтому, при проектировании качественных усилителей стараются как можно сильнее минимизировать шум на входе первого каскада усилителя.

Отношение сигнал/шум

Пусть у вас дома стоит телевизор, который ловит аналоговое вещание. На экране телевизора мы видим четкую картинку:

Основные параметры усилителя

Но вдруг антенна на крыше вашего дома из-за сильного ветра чуток отклонилась в сторону и изображение ухудшилось

Основные параметры усилителя

Потом антенна вообще упала с крыши, и на телевизоре мы видим теперь что-то типа этого

Основные параметры усилителя

В каком случае отношение сигнал/шум будет больше, а в каком меньше? На первой картинке, где четкое изображение, отношение сигнала к шуму будет очень большое, так как не первой картинке мы простым взглядом не можем уловить каких-либо помех на изображении, хотя по идее они есть).

Основные параметры усилителя

На второй картинке мы видим, что в изображении появились помехи, которые делают некомфортным просмотр картинки. Здесь отношение сигнала к шуму  уже будет намного меньше, чем на первой картинке.

Основные параметры усилителя

Ну и на третьей картинке шумы почти полностью одолели изображение. В этом случае можно сказать , что отношение сигнала к шуму будет ну очень малым.

Основные параметры усилителя

Отношение сигнал/шум является количественной безразмерной величиной.

В аналоговой электронике для нормальной работы усилителя полезный сигнал должен в несколько раз превышать шумы, иначе это сильно скажется на качестве усиления, так как полезный сигнал суммируется с шумовым.

Отношение сигнал/шум в англоязычной литературе обозначается как SNR или S/N.

формула сигнал шум

Так как порой это отношение достигает очень больших значений в цифрах, поэтому чаще всего его выражают в децибелах:

формула сигнал шум в децибелах

где

Ucигнал —  среднеквадратичное значение полезного сигнала, В

Uшум  — среднеквадратичное значение шумового сигнала, В

Pсигнал  — мощность сигнала

Pшум  — мощность шума

То есть в нашем случае с котиком на первой картинке амплитуда  полезного видеосигнала в разы превосходила амплитуду шума, поэтому первая картинка была четкой. На третьей картинке амплитуда полезного видеосигнала почти была равна амплитуде шума, поэтому картинка получилась очень зашумленной.

Еще один пример. Вот синусоидальный сигнал с SNR=10:

сигнал шум

А вот тот же самый синус с SNR=3

отношение сигнал шум

Как вы могли заметить, сигнал с SNR=10 намного «чище», чем с SNR=3.

SNR чаще всего можно увидеть при описании характеристик усилителя звука. Чем выше SNR, тем лучше по качеству звучания будет усилитель. Для HI-FI систем звучания этот показатель должен быть от 90 дБ и выше.  Для телефонных разговоров вполне достаточно и 30 дБ.

На практике SNR измеряется на выходе усилителя с помощью милливольтметра с trueRMS, либо с помощью анализатора спектра.

Амплитудная характеристика

Амплитудная характеристика усилителя — это зависимость амплитуды сигнала на выходе от входного сигнала при фиксированной частоте. Обычно она составляет 1 кГц.

Амплитудная характеристика идеального усилителя по идее должна выглядеть вот так:

Основные параметры усилителя

Это луч, который начинается от нулевой точки отсчета координат и простирается в бесконечность.

Но на самом деле реальная амплитудная характеристика усилителя выглядит вот так:

амплитудная характеристика усилителя

Здесь мы видим, что если даже входное напряжение Uвх =0, то на выходе усилителя мы все равно получим какой-то уровень сигнала. Это будет напряжение шума Uш .

Динамический диапазон усилителя

Динамический диапазон — это отношение максимально допустимого уровня выходного сигнала к его минимальному уровню, при котором  обеспечивается заданное отношение сигнал/шум:

формула динамического диапазона усилителя

Чтобы понять концовку определения «обеспечивается заданное отношение сигнал/шум» динамического диапазона, давайте рассмотрим наш рисунок:

Основные параметры усилителя

Допустим, наш усилитель должен иметь SNR=90 дБ. Будет ли правильно, если мы возьмем Uвых мин  за  Uшум?

Основные параметры усилителя

Конечно же нет!  В этом случае в этой точке на графике амплитуды сигнала и шума будут равны, а следовательно, по формуле

Основные параметры усилителя

получим, что SNR=0 дБ.

Непорядок. Значит, надо взять такое значение Uвых , при котором бы соблюдалось равенство

Основные параметры усилителя

Допустим, что Uшум =1 мкВ, подставляем в формулу

Основные параметры усилителя

Из этого уравнения находим Uвых . Это  будет как раз являться Uвых. мин. для формулы:

Основные параметры усилителяпри SNR=90.  В нашем случае это будет точка А.

Uвых макс берем в точке B, так как в этом случае это максимальное значение, при котором у нас в усилителе не возникают нелинейные искажения (о них чуть ниже).

Основные параметры усилителя

Рабочая область усилителя будет обеспечиваться на отрезке АВ. В этом случае у нас будут минимальные искажения в сигнале, так как эта область линейная. Отношение максимально допустимого выходного сигнала к уровню шума — это предельный уровень динамического диапазона для аналогового усилителя.

Для усилителей звука выход за пределы этой рабочей области в большую сторону будет чреват нелинейными искажениями, а в меньшую — полезный сигнал задавят помехи. Да вы и сами, наверное замечали, что выкрутив на полную катушку ручку громкости дешевой китайской магнитолы, у нас качество звучания оставляло желать лучшего, так как в дело «вклинивались» нелинейные искажения.

Коэффициент полезного действия (КПД)

КПД представляет из себя отношение мощности на нагрузке усилителя к мощности, которая потребляется усилителем от источника питания

кпд усилителя

где

Pвых  — это мощность на нагрузке, Вт

Pи.п.  — мощность, потребляемая источником питания, Вт

Искажения, вносимые усилителем

Искажения определяют сравнением формы сигнала на входе и на выходе. Идеальным является усилитель, который в точности повторяет форму сигнала, поданного на вход. Но так как наш мир не идеален, и радиоэлементы тоже не идеальны, то и на выходе у нас сигнал будет всегда немного искаженный. Главное, чтобы эти искажения не были столь критичны.

В основном искажения делятся на 4 группы:

  • Частотные
  • Фазовые
  • Переходные
  • Нелинейные

Частотные искажения

Частотные искажения возникают вследствие того, что коэффициент усиления во всем диапазоне частот не одинаковый. Или простыми словами, какие-то частоты усиливаются хорошо, а какие-то плохо). Чтобы в этом разобраться, достаточно посмотреть на АЧХ усилителя.

ачх усилителя

В данном случае мы можем увидеть, что низкие и высокие частоты будут усиливаться меньше, чем средние частоты. А так как сложный сигнал состоит из множества частотных составляющих, вследствие этого и возникнут частотные искажения.

Фазовые искажения

Фазовые искажения возникают из-за того, что разные частоты с разной задержкой по времени появляются на выходе усилителя. Какие-то частоты запаздывают больше, а какие-то меньше. Давайте все это рассмотрим на примере двух картинок.

Допустим, мы «загоняем» на вход синусоидальный сигнал с низкой частотой и на выходе получаем уже усиленный сигнал, но немного с небольшой задержкой.

фазовые искажения

Но также не забывайте, что катушки и конденсаторы являются частото-зависимыми радиоэлементами. Их реактивное сопротивление зависит от частоты сигнала, поэтому, прогоняя через усилитель сигнал с другой частотой, мы получим уже совсем другую задержку сигнала

Основные параметры усилителя

То есть в нашем случае t1 ≠ t2 . Хорошо это или плохо?  Если мы будем усиливать синусоиду, то в принципе нам по барабану. Какая разница раньше он появится на выходе или позже? Главное то, что сигнал будет усиленный.

Все бы ничего, но стоит помнить, что сложные сигналы состоят из суммы множества синусоид различных частот и амплитуд.

Чтобы понять, что такое сумма сигналов, достаточно рассмотреть вот такие примеры:

сумма сигналов

ну и еще один, мне не жалко)

Основные параметры усилителя

Складываем амплитуды в одинаковые моменты времени и получаем сумму этих двух сигналов.

А вот так из разных синусоид разных частот складывается прямоугольный сигнал:

спектр прямоугольного сигнала

В данном случае мы пытаемся «собрать» прямоугольный сигнал из суммы синусоид разных амплитуд и частот.

Но так как у нас усилитель задерживает разные сигналы по частоте по-разному, то у нас между сигналами происходит разнобой. Лучше всего это объяснит рисунок ниже. Имеем два синусоидальных сигнала с разной частотой и амплитудой:

сложение двух сигналов

Если их сложить, получим сложный сигнал:

Основные параметры усилителя

Но что будет, если второй сигнал сдвинется по фазе относительно первого?

сумма двух сигналов

Смотрим теперь сумму этих сигналов:

Основные параметры усилителя

Абсолютно другой сигнал! Чувствуете разницу? Чуток сдвинули фазу, а форма сигнала уже поменялась.

То есть на выходе усилителя мы хотели получить вот такой усиленный сигнал:

Основные параметры усилителя

а получили такой:

Основные параметры усилителя

В результате фазовых искажений наш сложный сигнал, состоящий  из двух синусоид, поменял форму. На выходе усилителя мы получили совсем другой сигнал. А как вы помните, роль усилителя заключается в том, чтобы усиливать сигнал, сохраняя при этом его форму.

Фазо-частотная характеристика (ФЧХ) усилителя — это график зависимости угла сдвига фаз, вносимого усилителем, от частоты. Выглядеть она может примерно вот так:

фазочастотная характеристика усилителя

где

φ — это сдвиг фазы относительно входного и выходного сигнала

f — частота сигнала

Человеческое ухо не замечает фазовых искажений, несмотря на то, что даже изменяется форма сигнала. Поэтому при проектировании звуковых усилителей  фазовые искажения не принимают во внимание.

Частотные искажения и фазовые искажения относят к линейным искажениям, так как оба вида искажений  обусловлены линейными элементами схемы.  Если сказать по научному, у нас в спектре сигнала не появляется дополнительных гармоник.

Переходные искажения

Переходным искажением называют искажение прямоугольного импульса, которое подается на вход усилителя. На выходе такой импульс будет иметь уже другую форму, вызванную искажением сигнала внутри самого усилителя.

Для оценки переходных искажений используют переходную характеристику. Она представляет из себя зависимость напряжения или тока на выходе усилителя от времени от подачи на его вход прямоугольного импульса.

На рисунке ниже имеем прямоугольный сигнал, который подаем на вход усилителя, а на выходе усилителя уже будет искаженный усиленный сигнал. Это искажения вызваны, как обычно, с наличием в схеме усилителя реактивных радиоэлементов, то есть тех же самых катушек индуктивности и конденсаторов.

переходные искажения усилителя

Для оценки переходных искажений используют такие параметры:

основные параметры импульса

Um — это амплитуда импульса, отсчитывается от плоской вершины импульса, В

ΔUв — это выброс фронта импульса, В

ΔUс — спад вершины импульса, В

Следующие два параметра измеряются в диапазоне от 0,1Uи до 0,9Um :

tф  — длительность фронта импульса

tc — длительность спада импульса

А длительность самого импульса tи измеряется на уровне 0,5Um .

Нелинейные искажения

Ну и напоследок мы с вами разберем нелинейные искажения. Нелинейными она называются из-за того, что такие искажения уже меняют форму сигнала, в отличие от линейных искажений. Все дело в том, что электронные лампы и полупроводники имеют нелинейную характеристику. Давайте рассмотрим все это дело более подробно.

нелинейные искажения усилителя

Как вы могли заметить, на выходе у нас форма сигнала изменилась. Нашу верхнюю часть синусоиды усиленного сигнала немного «придавило». То есть мы подавали сигнал одной формы, а вышел сигнал совсем другой формы. Это не есть хорошо и с этим надо бороться.

Если сказать более научным радиотехническим языком, в нашем сигнале появились дополнительные гармоники, которых не было в исходном сигнале. В данном случае мы на вход загоняли простой синусоидальный сигнал, состоящий из одной гармоники, а получили на выходе сложный сигнал, состоящий уже из нескольких гармоник.

Для количественной оценки нелинейных искажений используется коэффициент гармонических искажений (КГИ). Он выражается формулой:

коэффициент гармонических искажений формула

Эта величина находится как отношение среднеквадратичного напряжения суммы высших гармоник сигнала, кроме первой, к напряжению первой гармоники при воздействии на вход усилителя синусоидального сигнала.

или на английский манер

Основные параметры усилителя

Также есть и подобный параметр коэффициент нелинейных искажений (КНИ). Он выражается формулой:

коэффициент нелинейных искажений формула

на английский манер

Основные параметры усилителя

Эти два параметра выражаются в процентах. Для малых значений коэффициенты КГИ и КНИ почти совпадают. Так что коэффициент искажений можно считать как по первой, так и по второй формуле.

Консультант Jeer

Основным качественным показателем усилителя является точность воспроизведения формы усиливаемого сигнала. В идеальном усилителе форма сигнала на выходе должна точно повторять форму входного сигнала. Отклонение формы выходного сигнала от формы сигнала, подаваемого на его вход, называется искажением.

В усилителях различают два вида искажений – линейные и нелинейные. Оба вида искажений изменяют форму входного сигнала, но причины их появления различны.

Линейные искажения обусловлены зависимостью модуля коэф­фициента усиления напряжения или тока, а также фазового сдвига между входными и выходными величинами от часто­ты входного сигнала. Линейные искажения можно разделить на частотные и фазовые.

Форма сложного сигнала на выходе усилителя, работаю­щего в линейном режиме, будет отличаться от входной в том случае, если гармонические составляющие входного сигнала будут усиливаться в усилителе неодинаково, а также, если вносимые усилителем фазовые сдвиги будут различными для отдельных гармонических составляющих. Вызываемые ука­занными причинами изменения формы выходного сигнала на­зывают соответственно частотными и фазовыми искажениями.

Частотные искажения – это искажения, обусловленные изменением значения коэффициента усиления на различных частотах. Идеальная АЧХ должна иметь одинаковый коэффициент усиления во всем диапазоне рабочих частот. Реальная же характеристика имеет «завалы» на частотах, близких к границам диапазона рабочих частот. Снижение коэффициента усиления на низших частотах объясняется возрастанием емкостного сопротивления разделительных конденсаторов

хC = 1 / wC

по мере снижения частоты сигнала.

Снижение KU на высших частотах объясняется влиянием паразитных емкостей «коллектор – база», «коллектор – эмиттер» и «база – эмиттер», а также паразитных емкостей, которые возникают при монтаже. Эти емкости на высоких частотах приводят к закорачиванию транзисторов и снижению усиления сигнала.

Для количественной оценки частотных искажений используют коэффициент частотных искажений (M), равный отношению коэффициента усиления на средних частотах (Kср) к коэффициенту усиления на данной частоте (K¦):

M = Kср/ K¦.

Поскольку наибольшие частотные искажения имеются на границах рабочего диапазона, то при расчете усилителя задают коэффициенты частотных искажений на низшей и высшей частотах, т.е.

Mн = Kср/ Kн                    и                    Mв = Kср/Kв.

Частотные искажения в усилителе всегда сопровождаются появлением фазовых искажений. При усилении синусоидального сигнала с неизменной час­тотой линейные искажения не играет большой роли: на одной определенной частоте всегда можно добиться доста­точного усиления, а фазовые сдвиги скомпенсировать.

Проб­лема линейных искажений возникает тогда, когда сигнал имеет сложную форму. Для такого сигнала фазочастотные искажения не менее, а часто более существен­ны, чем амплитудно-частотные.

Фазовые искажения не влияют на спектральный состав и соотношение амплитуд гармонических составляющих сложного сигнала, а вызывают изменение его формы в результате различных фазовых сдвигов, возникающих у отдельных составляющих сигнала после прохождения через усилитель.

Влияние фазовых искажений на форму сигнала, состоящего из двух гармоник, упрощенно поясняется на рис. 6.7, а и б. Построение проведено при условии, что коэффициент усиления не зависит от частоты, но для второй гармоники усилитель вносит сдвиг фаз на угол φ = π/4.

Из графика (рис. 6.7, б) видно, что форма выходного сигнала очень сильно отличается от формы входного, следовательно, большие фазовые искажения не менее существенно, чем частотные, влияют на качество работы усилителя.

Фазочастотные искажения от­сутствуют при отсутствии относительного сдвига гармоник. Для этого должно соблюдаться условие:

jn = nj1.

Это условие выполняется, если фазочастотная характеристика линейна (рис. 6.7, в):

j = aw

В отличие от линейных искажений, нелинейные искажения в усилителях обусловлены наличием нелинейных элемен­тов, в первую очередь, транзисторов, а также друг

3.1. Коэффициент усиления усилителя

3.2. Амплитудная характеристика и динамический диапазон усилителя. Помехи в усилителях

3.3. Амплитудно-частотная и фазо-частотная характеристики

3.4. Нелинейные искажения

3.5. Временные характеристики усилителя

3.1. Коэффициент усиления усилителя

Всякий усилитель имеет две пары входных клемм и его можно представить в виде четырёхполюсника связи рис. 2.2 и рис. 2.6:

Рис. 2.6. Усилитель как четырёхполюсник связи

Рис. 2.6. Усилитель как четырёхполюсник связи

Отношение выходного напряжения UВЫХ к входному напряжению принято называть коэффициентом усиления по напряжению:

где: ; φн = φн.вых – φн.вх — учитывает изменение фазы сигнала при усилении. Аналогично, коэффициент усиления по току КТ равен:

;

φт = φт.вых – φт.вх — учитывает изменение фазы тока при усилении.

Выходной ток IВЫХ, как видно из рис. 2.6, равен:

Влияние выходного сопротивления усилителя учитывается с помощью коэффициента усиления по ЭДС (сквозной коэффициент усиления)

Сквозной коэффициент усиления можно определить и по другому:

;

где – коэффициент передачи входной цепи. Приведённые коэффициенты усиления по напряжению и току являются безразмерными величинами. Иногда используются величины:

и

Называется сопротивление передачи (ZT) и крутизны (D) усилителя и имеющие размерность [Ом] и [См]. Усиление усилителя по мощности КМ равно:

;

В технике связи коэффициенты усиления обычно выражают в логарифмических единицах (децибелах) обозначая их соответственно:

3.2. Амплитудная характеристика и динамический диапазон усилителя. Помехи в усилителях

Амплитудной характеристикой усилителя называется зависимость UВЫХ = f (UВХ). Она имеет вид, показанный на рис. 2.7:

Рис. 2.7. Амплитудная характеристика усилителя

Рис. 2.7. Амплитудная характеристика усилителя

Как видно из рис. 2.7амплитудная характеристика имеет три участка: два нелинейных (I и III) и линейный участок (II). Первый участок обусловлен влиянием собственных помех усилителя, а третий – нелинейностью характеристик усилительных элементов. Рабочим участком является второй. Он позволяет определить минимальное UВХ. min и максимальное значение входного сигнала. Отношение входных напряжений определяет динамический диапазон усилителя:

;

По амплитудной характеристике можно найти напряжение собственных помех UПОМ.ВЫХ усилителя при UВХ = 0. Это напряжение представляет сумму напряжений собственных шумов усилительных элементов усилителя, напряжение тепловых шумов резисторов, наводок, пульсаций источника питания (питание от сети). Собственные помехи усилителя характеризуют часто коэффициентом шума:

[дБм]

где РПОМ.ВЫХ.ИД. – мощность собственных помех на выходе усилителя, элементы которого обладают помехами теплового происхождения.

Угол наклона характеристики α характеризует усилительные свойства усилителя. При большом коэффициенте усиления амплитудная характеристика идёт круче (угол α больше).

Коэффициент усиления и фаза любого усилителя зависят от частоты. Зависимость коэффициента усиления K(f) называется амплитудно-частотной характеристикой, а аргумента φ(f) фазо-частотной характеристикой. Их часто обозначают сокращенно: АЧХ и ФЧХ соответственно.

Форма сигнала после его усиления может быть сохранена в том случае, если усилитель является идеальным (т.е. не вносит искажений). Искажения будут отсутствовать, если в диапазоне частот, соответствующем спектру этого сигнала (от fН до fВ) АЧХ и ФЧХ будут иметь вид показанный на рис.2.8 и 2.9 соответственно.

В реальных усилителях эти условия обычно не выполняются. Отличие реальных характеристик от идеальных определяют амплитудно-частотные фазо-частотные искажения усилителя.

Рис. 2.10. Зависимость коэффициента усиления по напряжению от частоты

Рис. 2.10. Зависимость коэффициента усиления по напряжению от частоты

Количественно амплитудно-частотные искажения на любой частоте fi определяются коэффициентом амплитудно-частотных искажений Mi (индекс i показывает частоту fi):

;

Здесь КФ = К0 – коэффициент усиления в области средних частот. Часто коэффициент амплитудно-частотных искажений определяют в логарифмических единицах:

Мi = 100,05·∆Si

В технике МСП часто используют усилители, частотные характеристики усиления которых имеют заданную форму, отличную от идеальной. В данном случае задаются допустимым отклонением коэффициента усиления реального усилителя от номинального значения на различных частотах рабочего диапазона. На рис. 2.11 показана заданная частотная характеристика (пунктирная линия) и характеристика реального усилителя (сплошная линия).

Рис. 2.11. АЧХ группового усилителя МСП ?S – допустимые отклонения АЧХ

Рис. 2.11. АЧХ группового усилителя МСП ∆S – допустимые отклонения АЧХ

Во многих случаях допустимые фазо-частотными искажениями усилителя вообще не задаются, поскольку они не имеют значения. Чаще используют характеристику неравномерности группового времени распространения ∆tГР(f):

∆tГР. i = tГР. i – tГР. МИН.

Где tГР. i – абсолютное время задержки сигнала усилителем на данной частоте; tГР. МИН. – абсолютное время задержки, определённое на той частоте рабочего диапазона, усилителя, где оно минимально. Величина tГР(f) связана с ФЧХ уравнением:

Т.о. tГР(f) соответствует крутизне ФЧХ усилителя на данной частоте.

3.4. Нелинейные искажения

Элементы схемы усилителя в определённой степени зависят от воздействующего на них напряжения (тока) и, следовательно, обладают некоторой нелинейностью. Наиболее значительной нелинейностью обладают усилительные элементы, индуктивности и ферромагнитными сердечниками, трансформаторы. Нелинейность элементов схемы приводит к тому, что зависимость выходного напряжения усилителя от входного также становится нелинейной, рис. 2.12:

Рис. 2.12. Влияние нелинейности характеристик усилительного элемента на форму выходного сигнала.

Рис. 2.12. Влияние нелинейности характеристик усилительного элемента на форму выходного сигнала.

В результате на выходе усилителя появляются спектральные составляющие, которые отсутствовали в исходном сигнале.

В многоканальной системе передачи нелинейность характеристик не только искажает передаваемую информацию, но вызывает дополнительные помехи, т.к. сигналы одних каналов могут образовывать спектральные составляющие, попадающие в полосу частот сигналов других каналов. Количественная оценка нелинейных искажений в усилителе производится с помощью коэффициента нелинейных искажений КГ, равно:

;

где U1Г, U, … , U – амплитуды напряжений 1, 2, … , n-й гармоник, возникающих на выходе усилителя при подаче на его вход синусоидального напряжения.

В технике МСП часто оценивают степень нелинейности по 2-ой и 3-ей гармоникам:

; ;

или в логарифмических единицах – затуханием нелинейности (в децибелах) по соответствующим гармоникам:

Установлено, что при возрастании уровня сигнала на выходе усилителя на ∆p:

затухание по i-ой гармонике уменьшается на величину (i – 1)·∆p, дБ:

На рис. 2.13 приведены зависимости затухания нелинейности по второй и третьей гармоникам от выходного уровня сигнала.

Рис. 2.13. Зависимость затухания нелинейности по второй и третьей гармоникам от выходного уровня сигнала

Рис. 2.13. Зависимость затухания нелинейности по второй и третьей гармоникам от выходного уровня сигнала

Отметим, что затухание A’i2 справедливо лишь при малой нелинейности усилителя, т.е. до определённого значения РВЫХ. МАКС. Нужно иметь ввиду, что основная доля нелинейных искажений возникает за счет выходного каскада усилителя, поэтому нелинейными искажениями за счет предварительных каскадов, обычно приобретают. Заметим, что величины А2Г0 и А3Г0 соответствуют выходной мощности РВЫХ = 1 мВт.

3.5. Временные характеристики усилителя

При передачи импульсных сигналов в усилителях возникают искажения, обусловленные нестационарными (переходными) процессами из-за наличия в нём реактивных элементов (емкостей и индуктивностей). Для оценки этих искажений пользуются временными характеристиками: переходной и импульсной.

Переходной характеристикой h(t) усилителя называется зависимость мгновенного значения напряжения на его выходе от времени UВЫХ(t) при подаче на вход напряжения в виде единичной функции 1(t). Различают переходную характеристику для малых и больших времён. На рис. 2.14 приведена h(t) для малых времён.

Рис. 2.14. Зависимость выходного напряжения усилителя при подаче на вход единичной функции 1(t) в области малых времен

Рис. 2.14. Зависимость выходного напряжения усилителя при подаче на вход единичной функции 1(t) в области малых времен

Характеристика для малых времён определяет вид искажений фронтов импульсного сигнала. Реальная переходная характеристика для малых времён чаще всего изменяется по закону экспоненты, рис. 2.14 а). Реже переходный процесс сопровождается колебательным процессом, рис.2.14 б). Меру искажения импульсного сигнала определяют по времени установления tУСТ. Время в течение которого напряжение на выходе изменяется от 0,1 до 0,9 от установившегося значения:

tУСТ = t2 – t1;

При колебательном процессе tУСТ меньше, но при этом появляются дополнительные искажения в виде выброса δUВЫХ:

.

Отметим, что искажение фронтов заметны при усиление импульсов малой длительности. При усилении импульсов большой длительности важно знать – насколько долго усилитель может сохранять постоянное напряжение на выходе, после подачи на вход усилителя единичной функции 1(t), рис 2.15.

Рис. 2.15. Зависимость выходного напряжения усилителя при подаче на вход единичной функции 1(t) в области больших времен.

Рис. 2.15. Зависимость выходного напряжения усилителя при подаче на вход единичной функции 1(t) в области больших времен.

Реальная h(t) для больших времён чаще всего спадает плавно. Искажения оцениваются величиной спада:

Искажения импульсных и гармонических сигналов взаимосвязаны. Те и другие обусловлены реактивными элементами схем и инерционностью работы усилительных элементов. Поэтому эти искажения называются линейными.

Добавить комментарий