Как найти коэффициент многочлена в степени при

После изучения одночленов переходим к многочленам. Данная статья расскажет о всех необходимых сведениях, необходимых для выполнения действий над ними. Мы определим многочлен с сопутствующими определениями члена многочлена, то есть свободный и подобный, рассмотрим многочлен стандартного вида, введем степень и научимся  ее находить, поработаем с его коэффициентами.

Многочлен и его члены – определения и примеры

Определение многочлена было дано еще в 7 классе после изучения одночленов. Рассмотрим его полное определение.

Определение 1

Многочленом считается сумма одночленов, причем сам одночлен – это частный случай многочлена.

Из определения следует, что примеры многочленов могут быть различными: 50, −1, x5·a·b3, x2·0,6·x·(−2)·y12, -213·x·y2·323·x·x3·y·z и так далее. Из определения имеем, что 1+x, a2+b2 и выражение x2-2·x·y+25·x2+y2+5,2·y·x являются многочленами.

Рассмотрим еще определения.

Определение 2

Членами многочлена называются его составляющие одночлены.

Рассмотрим такой пример, где имеем многочлен 3·x4−2·x·y+3−y3, состоящий из 4 членов: 3·x4, −2·x·y, 3 и −y3. Такой одночлен можно считать многочленом, который состоит из одного члена.

Определение 3

Многочлены, которые имеют в своем составе 2, 3 трехчлена имеют соответственное название – двучлен и трехчлен.

Отсюда следует, что выражение вида x+y – является двучленом, а выражение 2·x3·q−q·x·x+7·b – трехчленом.

По школьной программе работали с линейным двучленом вида a·x+b, где а и b являются некоторыми числами, а х – переменной. Рассмотрим примеры линейных двучленов вида: x+1, x·7,2−4 с примерами квадратных трехчленов x2+3·x−5 и  25·x2-3x+11.

Для преобразования и решения необходимо находить и приводить подобные слагаемые. Например, многочлен вида 1+5·x−3+y+2·x имеет подобные слагаемые 1 и -3, 5х и 2х. Их подразделяют в особую группу под названием подобных членов многочлена.

Определение 4

Подобные члены многочлена – это подобные слагаемые, находящиеся в многочлене.

В примере, приведенном выше, имеем, что 1 и -3, 5х и 2х являются подобными членами многочлена или подобными слагаемыми. Для того, что бы упростить выражение, применяют нахождение  и приведение подобных слагаемых.

Многочлен стандартного вида

У всех одночленов и многочленов имеются свои определенные названия.

Определение 5

Многочленом стандартного вида называют многочлен, у которого каждый входящий в него член  имеет одночлен стандартного вида и не содержит подобных членов.

Из определения видно, что возможно приведение многочленов стандартного вида, например, 3·x2−x·y+1 и __formula__, причем запись в стандартном виде. Выражения 5+3·x2−x2+2·x·z и 5+3·x2−x2+2·x·z многочленами стандартного вида не является, так как первый из них имеет подобные слагаемые в виде 3·x2 и −x2,  а второй содержит одночлен вида x·y3·x·z2, отличающийся от  стандартного многочлена.

Если того требуют обстоятельства, иногда многочлен приводится к стандартному виду. Многочленом стандартного вида считается и понятие свободного члена многочлена.

Определение 6

Свободным членом многочлена является многочлен стандартного вида, не имеющий буквенной части.

Иначе говоря, когда запись многочлена в стандартном виде имеет число, его называют свободным членом. Тогда число 5  является свободным членом многочлена x2·z+5, а многочлен 7·a+4·a·b+b3 свободного члена не имеет.

Степень многочлена – как ее найти?

Определение самой степени многочлена базируется на определении многочлена стандартного вида и на степенях одночленов, которые являются его составляющими.

Определение 7

Степенью многочлена стандартного вида называют наибольшую из степеней, входящих в его запись.

Рассмотрим на примере. Степень многочлена 5·x3−4 равняется 3, потому как одночлены, входящие в его состав, имеют степени 3 и 0, а большее из них 3 соответственно. Определение степени из многочлена 4·x2·y3−5·x4·y+6·x равняется наибольшему из  чисел, то есть 2+3=5, 4+1=5 и 1, значит 5.

Следует выяснить, каким образом находится сама степень.

Определение 8

Степень многочлена произвольного числа  – это степень соответствующего ему многочлена в стандартном виде.

Когда многочлен записан не в стандартном виде, но нужно найти его степень, необходимо приведение к стандартному, после чего находить искомую степень.

Пример 1

Найти степень многочлена 3·a12−2·a·b·c·a·c·b+y2·z2−2·a12−a12.

Решение

Для начала представим многочлен в стандартном виде. Получим выражение вида:

3·a12−2·a·b·c·a·c·b+y2·z2−2·a12−a12= =(3·a12−2·a12−a12)−2·(a·a)·(b·b)·(c·c)+y2·z2= =−2·a2·b2·c2+y2·z2

При получении многочлена стандартного вида получаем, что  отчетливо выделяются два из них −2·a2·b2·c2 и y2·z2. Для нахождения степеней посчитаем и получим, что 2+2+2=6 и 2+2=4. Видно, что наибольшая из них равняется 6. Из определения следует, что именно 6 является степенью многочлена −2·a2·b2·c2+y2·z2, следовательно и исходного значения.

Ответ: 6.

Коэффициенты членов многочлена

Определение 9

Когда все члены многочлена являются одночленами стандартного вида, то в таком случаем они имеют название коэффициентов членов многочлена. Иначе говоря, их можно называть коэффициентами многочлена.

При рассмотрении примера видно, что многочлен вида 2·x−0,5·x·y+3·x+7 имеет в  своем составе 4 многочлена: 2·x, −0,5·x·y, 3·x и 7 с соответствующими их коэффициентами 2, −0,5, 3 и 7. Значит, 2, −0,5, 3 и 7 считаются коэффициентами членов заданного многочлена вида 2·x−0,5·x·y+3·x+7. При преобразовании важно обращать внимание на коэффициенты, стоящие перед переменными.

Содержание:

Многочлен – это сумма одночленов, причем сам одночлен – это частный случай многочлена.

История многочелена:

Живший в 1050-1122 гг Омар Хаям известен в мире как мастер рубай. Однако имя Омара Хаяма также упоминается наряду с именами гениальных математиков. Именно Омар Хаям впервые представил общую формулу корней уравнения кубического многочлена Многочлен - виды, определение с примерами решения

Многочлены от одной переменной и действия над ними

Определение многочленов от одной переменной и их тождественное равенство

Рассмотрим одночлен и многочлен, которые зависят только от одной переменной, например, от переменной Многочлен - виды, определение с примерами решения

По определению одночлена числа и буквы (в нашем случае одна буква — Многочлен - виды, определение с примерами решения) в нем связаны только двумя действиями — умножением и возведением в натуральную степень. Если в этом одночлене произведение всех чисел записать перед буквой, а произведение всех степеней буквы записать как целую неотрицательную степень этой буквы (то есть записать одночлен в стандартном виде), то получим выражение вида Многочлен - виды, определение с примерами решения, где Многочлен - виды, определение с примерами решения — некоторое число. Поэтому одночлен от одной переменной Многочлен - виды, определение с примерами решения — это выражение вида Многочлен - виды, определение с примерами решения где Многочлен - виды, определение с примерами решения — некоторое число, Многочлен - виды, определение с примерами решения — целое неотрицательное число. Если Многочлен - виды, определение с примерами решения то показатель степени Многочлен - виды, определение с примерами решения переменной Многочлен - виды, определение с примерами решения называется степенью одночлена. Например, Многочлен - виды, определение с примерами решения — одночлен шестой степени, Многочлен - виды, определение с примерами решения — одночлен второй степени. Если одночлен является числом, не равным нулю, то его степень считается равной нулю. Для одночлена, заданного числом 0, понятие степени не определяется (поскольку Многочлен - виды, определение с примерами решения).

По определению многочлен от одной переменной Многочлен - виды, определение с примерами решения — это сумма одночленов от одной переменной Многочлен - виды, определение с примерами решения. Поэтому

многочленом от одной переменной Многочлен - виды, определение с примерами решения: называется выражение вида

Многочлен - виды, определение с примерами решения (1)

где коэффициенты Многочлен - виды, определение с примерами решения — некоторые числа.

Если Многочлен - виды, определение с примерами решения, то этот многочлен называют многочленом Многочлен - виды, определение с примерами решения степени от переменной Многочлен - виды, определение с примерами решения. При этом член Многочлен - виды, определение с примерами решения называют старшим членом многочлена Многочлен - виды, определение с примерами решения, число Многочлен - виды, определение с примерами решениякоэффициентом при старшем члене, а член Многочлен - виды, определение с примерами решениясвободным членом. Например, Многочлен - виды, определение с примерами решения — многочлен третьей степени, у которого свободный член равен 1, а коэффициент при старшем члене равен 5.

Заметим, что иногда нумерацию коэффициентов многочлена начинают с начала записи выражения (1), и тогда общий вид многочлена Многочлен - виды, определение с примерами решения записывают так:

Многочлен - виды, определение с примерами решения

где Многочлен - виды, определение с примерами решения — некоторые числа.

Теорема 1. Одночлены Многочлен - виды, определение с примерами решения где Многочлен - виды, определение с примерами решения и Многочлен - виды, определение с примерами решения где Многочлен - виды, определение с примерами решения, тождественно равны тогда и только тогда, когда Многочлен - виды, определение с примерами решения и Многочлен - виды, определение с примерами решения Одночлен Многочлен - виды, определение с примерами решения тождественно равен нулю тогда и только тогда, когда Многочлен - виды, определение с примерами решения

Поскольку равенство одночленов

Многочлен - виды, определение с примерами решения (2)

выполняется при всех значениях Многочлен - виды, определение с примерами решения (по условию эти одночлены тождественно равны), то, подставляя в это равенство Многочлен - виды, определение с примерами решения, получаем, что Многочлен - виды, определение с примерами решения Сокращая обе части равенства (2) на Многочлен - виды, определение с примерами решения (где Многочлен - виды, определение с примерами решения по условию), получаем Многочлен - виды, определение с примерами решения При Многочлен - виды, определение с примерами решения из этого равенства имеем: Многочлен - виды, определение с примерами решения Поскольку 2Многочлен - виды, определение с примерами решения то равенство Многочлен - виды, определение с примерами решения возможно только тогда, когда Многочлен - виды, определение с примерами решения Таким образом, из тождественного равенства Многочлен - виды, определение с примерами решения получаем, что Многочлен - виды, определение с примерами решения и Многочлен - виды, определение с примерами решения Если известно, что Многочлен - виды, определение с примерами решения для всех Многочлен - виды, определение с примерами решения то при Многочлен - виды, определение с примерами решения получаем Многочлен - виды, определение с примерами решения Поэтому одночлен Многочлен - виды, определение с примерами решения тождественно равен нулю при Многочлен - виды, определение с примерами решения (тогда Многочлен - виды, определение с примерами решения).

Далее любой одночлен вида Многочлен - виды, определение с примерами решения будем заменять на 0.

Теорема 2. Если многочлен Многочлен - виды, определение с примерами решения тождественно равен нулю (то есть принимает нулевые значения при всех значениях Многочлен - виды, определение с примерами решения), то все его коэффициенты равны нулю.

Многочлен - виды, определение с примерами решенияЗначком Многочлен - виды, определение с примерами решенияобозначено тождественное равенство многочленов.

Для доказательства используем метод математической индукции. Пусть Многочлен - виды, определение с примерами решения

При Многочлен - виды, определение с примерами решения имеем Многочлен - виды, определение с примерами решения поэтому Многочлен - виды, определение с примерами решения То есть в этом случае утверждение теоремы выполняется.

Предположим, что при Многочлен - виды, определение с примерами решения это утверждение также выполняется: если многочлен Многочлен - виды, определение с примерами решения то Многочлен - виды, определение с примерами решения

Докажем, что данное утверждение выполняется и при Многочлен - виды, определение с примерами решения Пусть Многочлен - виды, определение с примерами решения (3)

Поскольку равенство (3) выполняется при всех значениях Многочлен - виды, определение с примерами решения, то, подставляя в это равенство Многочлен - виды, определение с примерами решения получаем, что Многочлен - виды, определение с примерами решения Тогда равенство (3) обращается в следующее равенство: Многочлен - виды, определение с примерами решения Вынесем Многочлен - виды, определение с примерами решения в левой части этого равенства за скобки и получим

Многочлен - виды, определение с примерами решения (4)

Равенство (4) должно выполняться при всех значениях Многочлен - виды, определение с примерами решения. Для того чтобы оно выполнялось при Многочлен - виды, определение с примерами решения должно выполняться тождество

Многочлен - виды, определение с примерами решения В левой части этого тождества стоит многочлен со степенями переменной от Многочлен - виды, определение с примерами решения до Многочлен - виды, определение с примерами решения Тогда по предположению индукции все его коэффициенты равны нулю: Многочлен - виды, определение с примерами решения Но мы также доказали, что Многочлен - виды, определение с примерами решения поэтому наше утверждение выполняется и при Многочлен - виды, определение с примерами решения Таким образом, утверждение теоремы справедливо для любого целого неотрицательного Многочлен - виды, определение с примерами решения то есть для всех многочленов.

Многочлен, у которого все коэффициенты равны нулю, обычно называют нулевым многочленом, или нуль-многочленом, и обозначают Многочлен - виды, определение с примерами решения или просто Многочлен - виды, определение с примерами решения (поскольку Многочлен - виды, определение с примерами решения).

Теорема 3. Если два многочлена Многочлен - виды, определение с примерами решения и Многочлен - виды, определение с примерами решения тождественно равны, то они совпадают (то есть их степени одинаковы и коэффициенты при одинаковых степенях равны).

Пусть многочлен Многочлен - виды, определение с примерами решения, а многочлен Многочлен - виды, определение с примерами решения Рассмотрим многочлен Многочлен - виды, определение с примерами решенияПоскольку многочлены Многочлен - виды, определение с примерами решения и Многочлен - виды, определение с примерами решения по условию тождественно равны, то многочлен Многочлен - виды, определение с примерами решения тождественно равен 0. Таким образом, все его коэффициенты равны нулю.

Но Многочлен - виды, определение с примерами решения Тогда Многочлен - виды, определение с примерами решения Отсюда Многочлен - виды, определение с примерами решения Многочлен - виды, определение с примерами решенияКак видим, если допустить, что у какого-то из двух данных многочленов степень выше, чем у второго многочлена (например, Многочлен - виды, определение с примерами решения больше Многочлен - виды, определение с примерами решения), то коэффициенты разности будут равны нулю. Поэтому начиная с (Многочлен - виды, определение с примерами решения-го номера все коэффициенты Многочлен - виды, определение с примерами решения также будут равны нулю. То есть действительно многочлены Многочлен - виды, определение с примерами решения и Многочлен - виды, определение с примерами решения

имеют одинаковую степень и соответственно равные коэффициенты при одинаковых степенях.

Теорема 3 является основанием так называемого метода неопределенных коэффициентов. Покажем его применение на следующем примере.

Пример:

Докажите, что выражение Многочлен - виды, определение с примерами решения

является полным квадратом.

Решение:

► Данное выражение может быть записано в виде многочлена четвертой степени, поэтому оно может быть полным квадратом только многочлена второй степени вида Многочлен - виды, определение с примерами решения Получаем тождество:

Многочлен - виды, определение с примерами решения (5)

Раскрывая скобки в левой и правой частях этого тождества и приравнивая коэффициенты при одинаковых степенях Многочлен - виды, определение с примерами решения получаем систему равенств. Этот этап решения удобно оформлять в следующем виде:

Многочлен - виды, определение с примерами решения

Из первого равенства получаем Многочлен - виды, определение с примерами решения или Многочлен - виды, определение с примерами решения

При Многочлен - виды, определение с примерами решения из второго равенства имеем а из третьего — Многочлен - виды, определение с примерами решения Как видим, при этих значениях Многочлен - виды, определение с примерами решения и Многочлен - виды, определение с примерами решения последние два равенства также выполняются. Следовательно, тождество (5) выполняется при Многочлен - виды, определение с примерами решения Многочлен - виды, определение с примерами решения (аналогично можно также получить Многочлен - виды, определение с примерами решения). Таким образом, Многочлен - виды, определение с примерами решения

Действия над многочленами. Деление многочлена на многочлен с остатком

Сложение и умножение многочленов от одной переменной выполняется с помощью известных правил сложения и умножения многочленов. В результате выполнения действий сложения или умножения над многочленами от одной переменной всегда получаем многочлен от той же переменной.

Из определения произведения двух многочленов вытекает, что старший член произведения двух многочленов равен произведению старших членов множителей, а свободный член произведения равен произведению свободных членов множителей. Отсюда получаем, что степень произведения двух многочленов равна сумме степеней множителей.

При сложении многочленов одной степени получаем многочлен этой же степени, хотя иногда можно получить многочлен меньшей степени. Например, Многочлен - виды, определение с примерами решения При сложении многочленов разных степеней всегда получаем многочлен, степень которого равна большей степени слагаемого.

Например, Многочлен - виды, определение с примерами решения Деление многочлена на многочлен определяется аналогично делению целых чисел. Напомним, что целое число Многочлен - виды, определение с примерами решения делится на целое число Многочлен - виды, определение с примерами решения если существует такое целое число Многочлен - виды, определение с примерами решения что Многочлен - виды, определение с примерами решения

Определение: Многочлен Многочлен - виды, определение с примерами решения делится на многочлен Многочлен - виды, определение с примерами решения (где Многочлен - виды, определение с примерами решения— не нулевой многочлен), если существует такой многочлен Многочлен - виды, определение с примерами решения что Многочлен - виды, определение с примерами решения

Как и для целых чисел, операция деления многочлена на многочлен выполняется не всегда, поэтому во множестве многочленов вводится операция деления с остатком. Говорят, что

многочлен Многочлен - виды, определение с примерами решения делится на многочлен Многочлен - виды, определение с примерами решения (где Многочлен - виды, определение с примерами решения — не нулевой многочлен) с остатком, если существует такая пара многочленов Многочлен - виды, определение с примерами решения и Многочлен - виды, определение с примерами решения что Многочлен - виды, определение с примерами решения причем степень остатка Многочлен - виды, определение с примерами решения меньше степени делителя Многочлен - виды, определение с примерами решения (в этом случае многочлен Многочлен - виды, определение с примерами решенияназывают неполным частным.)

Например, поскольку Многочлен - виды, определение с примерами решения то при делении многочлена Многочлен - виды, определение с примерами решения на многочлен Многочлен - виды, определение с примерами решения получаем неполное частное Многочлен - виды, определение с примерами решения: и остаток 2.

Иногда деление многочлена на многочлен удобно выполнять «уголком», как и деление многозначных чисел, пользуясь следующим алгоритмом.

Пример №1

Разделим многочлен Многочлен - виды, определение с примерами решения на многочленМногочлен - виды, определение с примерами решения

Решение:

Многочлен - виды, определение с примерами решения Докажем, что полученный результат действительно является результатом деления Многочлен - виды, определение с примерами решения на Многочлен - виды, определение с примерами решения с остатком.

Если обозначить результат выполнения первого шага алгоритма через Многочлен - виды, определение с примерами решениявторого шага — через Многочлен - виды, определение с примерами решения третьего — через Многочлен - виды, определение с примерами решениято операцию деления, выполненную выше, можно записать в виде системы равенств:

Многочлен - виды, определение с примерами решения (1)

Многочлен - виды, определение с примерами решения (2)

Многочлен - виды, определение с примерами решения (3)

Сложим почленно равенства (1), (2), (3) и получим

Многочлен - виды, определение с примерами решения (4)

Учитывая, что степень многочлена Многочлен - виды, определение с примерами решения меньше степени делителя Многочлен - виды, определение с примерами решения обозначим Многочлен - виды, определение с примерами решения (остаток), а Многочлен - виды, определение с примерами решения (неполное частное). Тогда из равенства (4) имеем: Многочлен - виды, определение с примерами решения то есть Многочлен - виды, определение с примерами решения

Многочлен - виды, определение с примерами решения а это и означает, что мы разделили Многочлен - виды, определение с примерами решения на Многочлен - виды, определение с примерами решения с остатком.

Очевидно, что приведенное обоснование можно провести для любой пары многочленов Многочлен - виды, определение с примерами решения и Многочлен - виды, определение с примерами решения в случае их деления столбиком. Поэтому описанный выше алгоритм позволяет для любых делимого Многочлен - виды, определение с примерами решения и делителя Многочлен - виды, определение с примерами решения (где Многочлен - виды, определение с примерами решения — не нулевой многочлен) найти неполное частное Многочлен - виды, определение с примерами решения и остаток Многочлен - виды, определение с примерами решения

Отметим, что в случае, когда степень делимого Многочлен - виды, определение с примерами решения меньше степени делителя Многочлен - виды, определение с примерами решения, считают, что неполное частное Многочлен - виды, определение с примерами решения а остаток Многочлен - виды, определение с примерами решения

Теорема Безу. Корни многочлена. Формулы Виета

Рассмотрим деление многочлена Многочлен - виды, определение с примерами решения на двучлен Многочлен - виды, определение с примерами решения Поскольку степень делителя равна 1, то степень остатка, который мы получим, должна быть меньше 1, то есть в этом случае остатком будет некоторое число R. Таким образом, если разделить многочлен Многочлен - виды, определение с примерами решения на двучлен Многочлен - виды, определение с примерами решения, то получим

Многочлен - виды, определение с примерами решения

Это равенство выполняется тождественно, то есть при любом значении Многочлен - виды, определение с примерами решения При Многочлен - виды, определение с примерами решения имеем Многочлен - виды, определение с примерами решения Полученный результат называют теоремой БезуМногочлен - виды, определение с примерами решения.

Теорема 1 (теорема Безу). Остаток от деления многочлена Многочлен - виды, определение с примерами решения на двучлен Многочлен - виды, определение с примерами решенияравен Многочлен - виды, определение с примерами решения (то есть значению многочлена при Многочлен - виды, определение с примерами решения).

Пример №2

Докажите, что Многочлен - виды, определение с примерами решения делится на Многочлен - виды, определение с примерами решения без остатка.

Решение:

► Подставив в Многочлен - виды, определение с примерами решения вместо Многочлен - виды, определение с примерами решения значение 1, получаем: Многочлен - виды, определение с примерами решения. Таким образом, остаток от деления Многочлен - виды, определение с примерами решения на Многочлен - виды, определение с примерами решения равен 0, то есть Многочлен - виды, определение с примерами решения делится на Многочлен - виды, определение с примерами решения без остатка. <]

Определение: Число Многочлен - виды, определение с примерами решения называют корнем многочлена Многочлен - виды, определение с примерами решения если

Многочлен - виды, определение с примерами решения

Если многочлен Многочлен - виды, определение с примерами решения делится на Многочлен - виды, определение с примерами решения то Многочлен - виды, определение с примерами решения — корень этого многочлена.

Многочлен - виды, определение с примерами решенияБезу Этьен (1730-1783) — французский математик, внесший значительный вклад в развитие теории алгебраических уравнений.

Действительно, если Многочлен - виды, определение с примерами решения делится на Многочлен - виды, определение с примерами решения то Многочлен - виды, определение с примерами решения и поэтому Многочлен - виды, определение с примерами решения Таким образом, Многочлен - виды, определение с примерами решения — корень многочлена Многочлен - виды, определение с примерами решения

Справедливо и обратное утверждение. Оно является следствием теоремы Безу.

Теорема 2. Если число Многочлен - виды, определение с примерами решения является корнем многочлена Многочлен - виды, определение с примерами решения то этот многочлен делится на двучлен Многочлен - виды, определение с примерами решения без остатка.

По теореме Безу остаток от деления Многочлен - виды, определение с примерами решения на Многочлен - виды, определение с примерами решения равен Многочлен - виды, определение с примерами решения Но по условию Многочлен - виды, определение с примерами решения — корень Многочлен - виды, определение с примерами решения таким образом, Многочлен - виды, определение с примерами решения

Обобщением теоремы 2 является следующее утверждение.

Теорема 3. Если многочлен Многочлен - виды, определение с примерами решения имеет попарно разные корни Многочлен - виды, определение с примерами решения то он делится без остатка на произведение Многочлен - виды, определение с примерами решения

Для доказательства используем метод математической индукции.

При Многочлен - виды, определение с примерами решения утверждение доказано в теореме 2.

Допустим, что утверждение справедливо при Многочлен - виды, определение с примерами решения То есть если Многочлен - виды, определение с примерами решенияМногочлен - виды, определение с примерами решенияпопарно разные корни многочлена Многочлен - виды, определение с примерами решения то он делится на произведение Многочлен - виды, определение с примерами решения Тогда

Многочлен - виды, определение с примерами решения (1)

Докажем, что утверждение теоремы справедливо и при Многочлен - виды, определение с примерами решения Пусть Многочлен - виды, определение с примерами решения — попарно разные корни многочлена Многочлен - виды, определение с примерами решения Поскольку Многочлен - виды, определение с примерами решения — корень Многочлен - виды, определение с примерами решения то Многочлен - виды, определение с примерами решения. Принимая во внимание равенство (1), которое выполняется согласно допущению индукции, получаем:

Многочлен - виды, определение с примерами решения

По условию все корни Многочлен - виды, определение с примерами решения разные, поэтому ни одно из чисел Многочлен - виды, определение с примерами решения не равно нулю. Тогда Многочлен - виды, определение с примерами решения Таким образом, Многочлен - виды, определение с примерами решения — корень многочлена Многочлен - виды, определение с примерами решения Тогда по теореме 2 многочлен Многочлен - виды, определение с примерами решения делится на Многочлен - виды, определение с примерами решения то есть Многочлен - виды, определение с примерами решения Многочлен - виды, определение с примерами решения и из равенства (1) имеем

Многочлен - виды, определение с примерами решения

Это означает, что Многочлен - виды, определение с примерами решения делится на произведение

Многочлен - виды, определение с примерами решения то есть теорема доказана и при Многочлен - виды, определение с примерами решения

Таким образом, теорема справедлива для любого натурального Многочлен - виды, определение с примерами решения

Следствие. Многочлен степени Многочлен - виды, определение с примерами решенияимеет не больше Многочлен - виды, определение с примерами решения разных корней.

Допустим, что многочлен Многочлен - виды, определение с примерами решения степени имеет Многочлен - виды, определение с примерами решения разных корней: Многочлен - виды, определение с примерами решенияМногочлен - виды, определение с примерами решения Тогда Многочлен - виды, определение с примерами решения делится на произведение Многочлен - виды, определение с примерами решения Многочлен - виды, определение с примерами решения многочлен степени Многочлен - виды, определение с примерами решения но это невозможно. Поэтому многочлен Многочлен - виды, определение с примерами решения степени не может иметь больше чем Многочлен - виды, определение с примерами решения корней.

Пусть теперь многочлен Многочлен - виды, определение с примерами решения степени Многочлен - виды, определение с примерами решения Многочлен - виды, определение с примерами решения имеет Многочлен - виды, определение с примерами решения разных корней Многочлен - виды, определение с примерами решения Тогда этот многочлен делится без остатка на произведение Многочлен - виды, определение с примерами решенияМногочлен - виды, определение с примерами решения Это произведение является многочленом той же

Многочлен - виды, определение с примерами решения степени. Таким образом, в результате деления можно получить только многочлен нулевой степени, то есть число. Таким образом,

Многочлен - виды, определение с примерами решения (2)

Если раскрыть скобки в правой части равенства (2) и приравнять коэффициенты при старших степенях, то получим, что Многочлен - виды, определение с примерами решения то есть

Многочлен - виды, определение с примерами решения (3)

Сравнивая коэффициенты при одинаковых степенях Многочлен - виды, определение с примерами решения в левой и правой частях тождества (3), получаем соотношения между коэффициентами уравнения и его корнями, которые называют формулами Виета:

Многочлен - виды, определение с примерами решения (4)

Например, при Многочлен - виды, определение с примерами решения имеем:

Многочлен - виды, определение с примерами решения

а при Многочлен - виды, определение с примерами решения

Многочлен - виды, определение с примерами решения (5)

Выполнение таких равенств является необходимым и достаточным

условием того, чтобы числа Многочлен - виды, определение с примерами решения были корнями многочлена

Многочлен - виды, определение с примерами решения

Формулы (3) и (4) справедливы не только для случая, когда все корни многочлена Многочлен - виды, определение с примерами решения разные. Введем понятие кратного корня многочлена.

Если многочлен Многочлен - виды, определение с примерами решения делится без остатка на Многочлен - виды, определение с примерами решения но не делится без остатка на Многочлен - виды, определение с примерами решения то говорят, что число Многочлен - виды, определение с примерами решения является корнем кратности Многочлен - виды, определение с примерами решения многочлена Многочлен - виды, определение с примерами решения

Например, если произведение Многочлен - виды, определение с примерами решения записать в виде многочлена, то для этого многочлена число Многочлен - виды, определение с примерами решения является корнем кратности 3, число 1 — корнем кратности 2, а число Многочлен - виды, определение с примерами решения — корнем кратности 1.

При использовании формул Виета в случае кратных корней необходимо каждый корень записать такое количество раз, которое равно его кратности.

Пример №3

Проверьте справедливость формул Виета для многочлена Многочлен - виды, определение с примерами решения

Решение:

Многочлен - виды, определение с примерами решения

Многочлен - виды, определение с примерами решения

Поэтому Многочлен - виды, определение с примерами решения имеет корни: Многочлен - виды, определение с примерами решения (поскольку Многочлен - виды, определение с примерами решения — корень кратности 2).

Проверим справедливость формулы (5). В нашем случае: Многочлен - виды, определение с примерами решения Тогда

Многочлен - виды, определение с примерами решения

Как видим, все равенства выполняются, поэтому формулы Виета справедливы для данного многочлена.

Пример №4

Составьте квадратное уравнение, корнями которого являются квадраты корней уравнения Многочлен - виды, определение с примерами решения

Решение:

► Обозначим корни уравнения Многочлен - виды, определение с примерами решения через Многочлен - виды, определение с примерами решения и Многочлен - виды, определение с примерами решения Тогда корнями искомого уравнения должны быть числа Многочлен - виды, определение с примерами решения и Многочлен - виды, определение с примерами решения Поэтому искомое уравнение имеет вид Многочлен - виды, определение с примерами решения где

Многочлен - виды, определение с примерами решения

По формулам Виета имеем Многочлен - виды, определение с примерами решения Отсюда находим, что Многочлен - виды, определение с примерами решения а Многочлен - виды, определение с примерами решения Таким образом, искомое уравнение имеет вид Многочлен - виды, определение с примерами решения

Схема Горнера

Делить многочлен Многочлен - виды, определение с примерами решения на двучлен Многочлен - виды, определение с примерами решения иногда удобно с помощью

специальной схемы, которую называют схемой Горнера.

Пусть многочлен Многочлен - виды, определение с примерами решения необходимо разделить на двучлен Многочлен - виды, определение с примерами решения В результате деления многочлена Многочлен - виды, определение с примерами решения степени на многочлен первой степени получим некоторый многочлен Многочлен - виды, определение с примерами решения степени (то есть Многочлен - виды, определение с примерами решенияМногочлен - виды, определение с примерами решения, где Многочлен - виды, определение с примерами решения) и остаток Многочлен - виды, определение с примерами решения Тогда Многочлен - виды, определение с примерами решения то есть

Многочлен - виды, определение с примерами решения

Левая и правая части полученного равенства тождественно равны, поэтому, перемножив многочлены, стоящие в правой части, можем приравнять коэффициенты при соответствующих степенях Многочлен - виды, определение с примерами решения

Многочлен - виды, определение с примерами решения

Найдем из этих равенств коэффициенты Многочлен - виды, определение с примерами решения и остаток Многочлен - виды, определение с примерами решения

Многочлен - виды, определение с примерами решения

Как видим, первый коэффициент неполного частного равен первому коэффициенту делимого. Остальные коэффициенты неполного частного и остаток находятся одинаково: для того чтобы найти коэффициент Многочлен - виды, определение с примерами решениянеполного частного, достаточно предыдущий найденный коэффициент Многочлен - виды, определение с примерами решения умножить на Многочлен - виды, определение с примерами решения и добавить Многочлен - виды, определение с примерами решения коэффициент делимого. Эту процедуру целесообразно оформлять в виде специальной схемы-таблицы, которую называют схемой Горнера.

Многочлен - виды, определение с примерами решения

Пример №5

Разделите по схеме Горнера многочлен Многочлен - виды, определение с примерами решения на двучлен Многочлен - виды, определение с примерами решения

Решение:

► Запишем сначала все коэффициенты многочлена Многочлен - виды, определение с примерами решения (если в данном многочлене пропущена степень 2, то соответствующий коэффициент считаем равным 0), а потом найдем коэффициенты неполного частного и остаток по указанной схеме:

Многочлен - виды, определение с примерами решения

Таким образом, Многочлен - виды, определение с примерами решения

Пример №6

Проверьте, является ли Многочлен - виды, определение с примерами решения корнем многочлена Многочлен - виды, определение с примерами решения

Решение:

► По теореме Безу остаток от деления многочлена Многочлен - виды, определение с примерами решения на Многочлен - виды, определение с примерами решения равен Многочлен - виды, определение с примерами решенияпоэтому найдем с помощью схемы Горнера остаток от деления Многочлен - виды, определение с примерами решения на Многочлен - виды, определение с примерами решения

Многочлен - виды, определение с примерами решения

Поскольку Многочлен - виды, определение с примерами решения то Многочлен - виды, определение с примерами решения — корень многочлена Многочлен - виды, определение с примерами решения

Нахождение рациональных корней многочлена с целыми коэффициентами

Теорема 4. Если многочлен с целыми коэффициентами Многочлен - виды, определение с примерами решения имеет рациональный корень Многочлен - виды, определение с примерами решения, то Многочлен - виды, определение с примерами решения является делителем свободного члена Многочлен - виды, определение с примерами решения a Многочлен - виды, определение с примерами решения — делителем коэффициента при старшем члене Многочлен - виды, определение с примерами решения

Если Многочлен - виды, определение с примерами решения является корнем многочлена Многочлен - виды, определение с примерами решения то Многочлен - виды, определение с примерами решения Подставляем

Многочлен - виды, определение с примерами решения вместо Многочлен - виды, определение с примерами решения в Многочлен - виды, определение с примерами решения и из последнего равенства имеем

Многочлен - виды, определение с примерами решения (1)

Умножим обе части равенства (1) на Многочлен - виды, определение с примерами решения Получаем

Многочлен - виды, определение с примерами решения (2)

В равенстве (2) все слагаемые, кроме последнего, делятся на Многочлен - виды, определение с примерами решения Поэтому Многочлен - виды, определение с примерами решения делится на Многочлен - виды, определение с примерами решения

Но когда мы записываем рациональное число в виде Многочлен - виды, определение с примерами решения то эта дробь считается несократимой, то есть Многочлен - виды, определение с примерами решения и Многочлен - виды, определение с примерами решения не имеют общих делителей. Произведение Многочлен - виды, определение с примерами решения может делиться на Многочлен - виды, определение с примерами решения (если Многочлен - виды, определение с примерами решения и Многочлен - виды, определение с примерами решения— взаимно простые числа) только тогда, когда Многочлен - виды, определение с примерами решения делится на Многочлен - виды, определение с примерами решения Таким образом, Многочлен - виды, определение с примерами решения — делитель свободного члена Многочлен - виды, определение с примерами решения

Аналогично все слагаемые равенства (2), кроме первого, делятся на Многочлен - виды, определение с примерами решения ТогдаМногочлен - виды, определение с примерами решения делится на Многочлен - виды, определение с примерами решения Поскольку Многочлен - виды, определение с примерами решения и Многочлен - виды, определение с примерами решения взаимно простые числа, то Многочлен - виды, определение с примерами решения делится на Многочлен - виды, определение с примерами решения, следовательно, Многочлен - виды, определение с примерами решения — делитель коэффициента при старшем члене.

Отметим два следствия из этой теоремы. Если взять Многочлен - виды, определение с примерами решения то корнем многочлена будет целое число Многочлен - виды, определение с примерами решения — делитель Многочлен - виды, определение с примерами решения Таким образом, имеет место:

Следствие 1. Любой целый корень многочлена с целыми коэффициентами является делителем его свободного члена.

Если в заданном многочлене Многочлен - виды, определение с примерами решения коэффициент Многочлен - виды, определение с примерами решения то делителями Многочлен - виды, определение с примерами решения могут быть только числа Многочлен - виды, определение с примерами решения то есть Многочлен - виды, определение с примерами решения и имеет место:

Следствие 2. Если коэффициент при старшем члене уравнения с целыми коэффициентами равен 1, то все рациональные корни этого уравнения (если они существуют) — целые числа.

Пример №7

Найдите рациональные корни многочлена Многочлен - виды, определение с примерами решения

Решение:

► Пусть несократимая дробь Многочлен - виды, определение с примерами решения является корнем многочлена. Тогда Многочлен - виды, определение с примерами решениянеобходимо искать среди делителей свободного члена, то есть среди чисел Многочлен - виды, определение с примерами решения a Многочлен - виды, определение с примерами решения — среди делителей старшего коэффициента: Многочлен - виды, определение с примерами решения

Таким образом, рациональные корни многочлена необходимо искать среди чисел Многочлен - виды, определение с примерами решения Проверять, является ли данное число корнем многочлена, целесообразно с помощью схемы Горнера.

При Многочлен - виды, определение с примерами решения имеем следующую таблицу.

Многочлен - виды, определение с примерами решения

Кроме того, по схеме Горнера можно записать, что

Многочлен - виды, определение с примерами решения

Многочлен Многочлен - виды, определение с примерами решения не имеет действительных корней (а тем более рациональных), поэтому заданный многочлен имеет единственный рациональный корень Многочлен - виды, определение с примерами решения

Пример №8

Разложите многочлен Многочлен - виды, определение с примерами решения на множители.

Решение:

► Ищем целые корни многочлена среди делителей свободного члена: Многочлен - виды, определение с примерами решения

Подходит 1. Делим Многочлен - виды, определение с примерами решения на Многочлен - виды, определение с примерами решения с помощью схемы Горнера.

Многочлен - виды, определение с примерами решения

Тогда Многочлен - виды, определение с примерами решенияМногочлен - виды, определение с примерами решения

Ищем целые корни кубического многочлена Многочлен - виды, определение с примерами решения среди делителей его свободного члена: Многочлен - виды, определение с примерами решения Подходит Многочлен - виды, определение с примерами решения Делим на Многочлен - виды, определение с примерами решения

Многочлен - виды, определение с примерами решения

Имеем Многочлен - виды, определение с примерами решения

Квадратный трехчлен Многочлен - виды, определение с примерами решения не имеет действительных корней и на линейные множители не раскладывается.

Ответ: Многочлен - виды, определение с примерами решения

Отметим, что во множестве действительных чисел не всегда можно найти все корни многочлена (например, квадратный трехчлен Многочлен - виды, определение с примерами решения не имеет действительных корней). Таким образом, многочлен Многочлен - виды, определение с примерами решения степени не всегда можно разложить на произведение линейных множителей. Но многочлен нечетной степени всегда можно разложить на произведение линейных и квадратных множителей, а многочлен четной степени — на произведение квадратных трехчленов.

Например, многочлен четвертой степени раскладывается на произведение двух квадратных трехчленов. Для нахождения коэффициентов этого разложения иногда можно применить метод неопределенных коэффициентов.

Пример №9

Разложите на множители многочлен Многочлен - виды, определение с примерами решения

Решение:

► Попытка найти рациональные корни ничего не дает: многочлен не имеет рациональных (целых) корней.

Попытаемся разложить этот многочлен на произведение двух квадратных трехчленов. Поскольку старший коэффициент многочлена равен 1, то и у квадратных трехчленов возьмем старшие коэффициенты равными 1. То есть будем искать разложение нашего многочлена в виде:

Многочлен - виды, определение с примерами решения (3)

где Многочлен - виды, определение с примерами решения и Многочлен - виды, определение с примерами решения — неопределенные (пока что) коэффициенты. Многочлены, стоящие в левой и правой частях этого равенства, тождественно равны, поэтому и коэффициенты при одинаковых степенях Многочлен - виды, определение с примерами решения у них равны. Раскроем скобки в правой части равенства и приравняем соответствующие коэффициенты. Это удобно записать так:

Многочлен - виды, определение с примерами решения

Получаем систему

Многочлен - виды, определение с примерами решения (4)

Попытка решить эту систему методом подстановки приводит к уравнению 4-й степени, поэтому попробуем решить систему (4) в целых числах. Из последнего равенства системы (4) получаем, что Многочлен - виды, определение с примерами решения и Многочлен - виды, определение с примерами решения могут быть только делителями числа 6. Все возможные варианты запишем в таблицу.

Многочлен - виды, определение с примерами решения

Коэффициенты Многочлен - виды, определение с примерами решения и Многочлен - виды, определение с примерами решения в равенстве (3) равноправны, поэтому мы не рассматриваем случаи Многочлен - виды, определение с примерами решения и Многочлен - виды, определение с примерами решения или Многочлен - виды, определение с примерами решения и Многочлен - виды, определение с примерами решения и т. д.

Для каждой пары значений Многочлен - виды, определение с примерами решения и Многочлен - виды, определение с примерами решения из третьего равенства системы (4) найдем Многочлен - виды, определение с примерами решения а из второго равенства имеем Многочлен - виды, определение с примерами решения Зная Многочлен - виды, определение с примерами решения и Многочлен - виды, определение с примерами решения по теореме, обратной теореме Виета, находим а и с как корни квадратного уравнения. Найденные таким образом значения Многочлен - виды, определение с примерами решения подставим в четвертое равенство системы (4) Многочлен - виды, определение с примерами решения чтобы выбрать те числа, которые являются решениями системы (4). Удобно эти рассуждения оформить в виде таблицы:

Многочлен - виды, определение с примерами решения

Как видим, системе (4) удовлетворяет набор целых чисел Многочлен - виды, определение с примерами решенияМногочлен - виды, определение с примерами решения Тогда равенство (3) имеет вид

Многочлен - виды, определение с примерами решения (5)

Поскольку квадратные трехчлены Многочлен - виды, определение с примерами решения и Многочлен - виды, определение с примерами решения не имеют не только рациональных, но и действительных корней, то равенство (5) дает окончательный ответ.

Деление многочлена на многочлен

Задача. Объём подарочных коробок, размеры которых даны в сантиметрах, можно смоделировать функцией Многочлен - виды, определение с примерами решения – положительное целое число и . Если высоты коробок можно определить при помощи линейной функции Многочлен - виды, определение с примерами решения, то как можно выразить другие размеры коробки в виде многочлена? Вы сможете решить эту задачу, изучив правило деления многочлена на многочлен.

Исследование. Изучите, как правило деления многозначных чисел столбиком можно применить при делении многочлена.

Многочлен - виды, определение с примерами решения

a) Для каждого из двух случаев укажите, какие числа и какие многочлены соответствуют понятиям делимое, делитель и частное.

b) Как был найден первый член при делении многочлена? Каковы сходные и отличительные черты данного деления и деления многозначных чисел?

c) Как вы убедились,что каждое из двух делений выполнено правильно?

Выражение вида Многочлен - виды, определение с примерами решения называется многочленом Многочлен - виды, определение с примерами решения степени от одной переменной. Здесь Многочлен - виды, определение с примерами решения – переменная, Многочлен - виды, определение с примерами решения – определенные числа и Многочлен - виды, определение с примерами решения – старший член, Многочлен - виды, определение с примерами решения– коэффициент при старшем члене, Многочлен - виды, определение с примерами решения-свободный член. Многочлен можно разделить на многочлен аналогично правилу деления целых чисел столбиком.

Деление целого числа па целое число можно проверить равенством

Многочлен - виды, определение с примерами решения

Аналогичное правило справедливо и при делении многочлена на многочлен. Если многочлен Многочлен - виды, определение с примерами решения -делимое, Многочлен - виды, определение с примерами решения – делитель, Многочлен - виды, определение с примерами решения – неполное частное, Многочлен - виды, определение с примерами решения – остаток, то справедливо равенство

Многочлен - виды, определение с примерами решения или Многочлен - виды, определение с примерами решения.

Здесь, степень многочлена Многочлен - виды, определение с примерами решения ниже степени многочлена Многочлен - виды, определение с примерами решения Если делителем является двучлен Многочлен - виды, определение с примерами решения, то остатком может являться определенное число Многочлен - виды, определение с примерами решения

В этом случае: Многочлен - виды, определение с примерами решения

Пример №10

а) Разделите многочлен Многочлен - виды, определение с примерами решения на двучлен Многочлен - виды, определение с примерами решения.

Ответ запишите в виде Многочлен - виды, определение с примерами решения

b) Определите множество допустимых значений переменной.

c) Выполните проверку.

Решение:

Многочлен - виды, определение с примерами решения

b) При этом Многочлен - виды, определение с примерами решения или Многочлен - виды, определение с примерами решения, иначе возникает деление на нуль.

c) Должно выполняться тождество

Многочлен - виды, определение с примерами решения

Пример №11

Разделите Многочлен - виды, определение с примерами решения на многочлен Многочлен - виды, определение с примерами решения.

Решение:

запишем делимое в порядке убывания степеней. Введем в запись отсутствующие члены с коэффициентом равным 0. Многочлен - виды, определение с примерами решения

Пример №12

1) Исследуйте деление столбиком многочлена Многочлен - виды, определение с примерами решения на двучлен Многочлен - виды, определение с примерами решения .

2) На каждом шаге деления делимое делится на старший член делителя, на Многочлен - виды, определение с примерами решения и результат записывается в частное. Установите, как можно найти первый член при делении на каждом из следующих шагов.

Многочлен - виды, определение с примерами решения Правило синтетического деления многочлена на двучлен Многочлен - виды, определение с примерами решения(схема Горнера)

При делении многочлена на двучлен вида Многочлен - виды, определение с примерами решения можно использовать метод, альтернативный делению столбиком – метод синтетического деления. При синтетическом делении, используя только коэффициенты, выполняется меньшее количество вычислений.

Пример №13

Разделите многочлен Многочлен - виды, определение с примерами решения на двучлен Многочлен - виды, определение с примерами решения методом синтетического деления.

Решение:

коэффициенты делимого записываются в порядке убывания степеней (отсутствующий член записывается с коэффициентом равным нулю). Если двучлен имеет вид Многочлен - виды, определение с примерами решения, то его записывают в виде Многочлен - виды, определение с примерами решения.

Запишем двучлен Многочлен - виды, определение с примерами решения в виде Многочлен - виды, определение с примерами решения.

Многочлен - виды, определение с примерами решения

Таким образом, для делимого Многочлен - виды, определение с примерами решения и делителя Многочлен - виды, определение с примерами решениячастным будет Многочлен - виды, определение с примерами решения, а остатком Многочлен - виды, определение с примерами решения.

Деление можно записать в виде: Многочлен - виды, определение с примерами решения В общем случае, правило синтетического деления (или схема Горнера) многочлена и-ой степени на двучлен х -т приведено в таблице ниже.

Многочлен - виды, определение с примерами решения

Теорема об остатке

Теорема об остатке (Теорема Безу)

Остаток от деления многочлена Многочлен - виды, определение с примерами решения на двучлен Многочлен - виды, определение с примерами решения равен значению многочлена Многочлен - виды, определение с примерами решения в точке Многочлен - виды, определение с примерами решения

Многочлен - виды, определение с примерами решения

Доказательство: В равенстве Многочлен - виды, определение с примерами решения запишем Многочлен - виды, определение с примерами решения. Многочлен - виды, определение с примерами решения, тогда Многочлен - виды, определение с примерами решения.

Пример №14

Найдите остаток от деления многочлена Многочлен - виды, определение с примерами решения на двучлен Многочлен - виды, определение с примерами решения, применив теорему об остатке.

Решение: запишем делитель в виде Многочлен - виды, определение с примерами решения, тогда Многочлен - виды, определение с примерами решения. По теореме об остатке получим, что остаток равен Многочлен - виды, определение с примерами решения

Многочлен - виды, определение с примерами решения.

Проверим решение.

Многочлен - виды, определение с примерами решения

Теорема о разложении многочлена на множители

Значения переменной Многочлен - виды, определение с примерами решения, которые обращают многочлен Многочлен - виды, определение с примерами решения в нуль (т.е. корни уравнения Многочлен - виды, определение с примерами решения), называются корнями (или нулями) многочлена.

Теорема. Если число Многочлен - виды, определение с примерами решения является корнем многочлена Многочлен - виды, определение с примерами решения, то двучлен Многочлен - виды, определение с примерами решения является множителем многочлена Многочлен - виды, определение с примерами решения.

Действительно, если Многочлен - виды, определение с примерами решения, то из равенства Многочлен - виды, определение с примерами решения имеем Многочлен - виды, определение с примерами решения. Верно и обратное утверждение, т.е. если двучлен Многочлен - виды, определение с примерами решения является множителем многочлена Многочлен - виды, определение с примерами решения.

Пример №15

При помощи теоремы о разложении многочлена на множители определите, являются ли двучлены Многочлен - виды, определение с примерами решения множителями многочлена Многочлен - виды, определение с примерами решения.

Решение: вычислим значение многочлена Многочлен - виды, определение с примерами решения при Многочлен - виды, определение с примерами решения.

Многочлен - виды, определение с примерами решения

Значит, Многочлен - виды, определение с примерами решения не является множителем, а Многочлен - виды, определение с примерами решения является одним из множителей данного многочлена.

Пример №16

Зная, что Многочлен - виды, определение с примерами решения, разложите многочлен Многочлен - виды, определение с примерами решения на множители.

Решение: так как Многочлен - виды, определение с примерами решения, то двучлен Многочлен - виды, определение с примерами решения один из множителей многочленаМногочлен - виды, определение с примерами решения . Другой множитель найдем, используя метод синтетического деления.

Многочлен - виды, определение с примерами решения

Учитывая, что Многочлен - виды, определение с примерами решения получим: Многочлен - виды, определение с примерами решения .

Отсюда получаем, что Многочлен - виды, определение с примерами решения являются нулями многочлена.

Примечание: Если многочлен задан в виде Многочлен - виды, определение с примерами решения (здесь Многочлен - виды, определение с примерами решения), то число Многочлен - виды, определение с примерами решения является Многочлен - виды, определение с примерами решения кратным корнем многочлена Многочлен - виды, определение с примерами решения (повторяется Многочлен - виды, определение с примерами решения раз). Например, если разложение многочлена на множители имеет вид Многочлен - виды, определение с примерами решения, то число Многочлен - виды, определение с примерами решения является корнем кратности 3.

Нахождение рациональных корней

Теорема о рациональных корнях

Если для многочлена Многочлен - виды, определение с примерами решения с целыми коэффициентами существует рациональный корень, то этот корень имеет вид

Многочлен - виды, определение с примерами решения

Доказательство. Пусть несократимая дробь Многочлен - виды, определение с примерами решения является корнем многочлена Многочлен - виды, определение с примерами решения с целыми коэффициентами:

Многочлен - виды, определение с примерами решения

Умножим обе части равенства на Многочлен - виды, определение с примерами решения

Многочлен - виды, определение с примерами решения

Так как в последнем равенстве каждый член, кроме члена Многочлен - виды, определение с примерами решения, содержит множитель Многочлен - виды, определение с примерами решения и каждый член, кроме члена Многочлен - виды, определение с примерами решения, содержит множитель Многочлен - виды, определение с примерами решения.то коэффициент Многочлен - виды, определение с примерами решения должен делится на Многочлен - виды, определение с примерами решения, а коэффициент Многочлен - виды, определение с примерами решения должен делится на Многочлен - виды, определение с примерами решения.

Пример №17

Найдите рациональные корни многочлена Многочлен - виды, определение с примерами решения.

Решение: свободный член 6, старший коэффициент 2.

Для Многочлен - виды, определение с примерами решения, запишем все возможные числа вида Многочлен - виды, определение с примерами решения

Многочлен - виды, определение с примерами решения, т.е. одним из множителей является двучлен Многочлен - виды, определение с примерами решения. Другие множители найдем, используя синтетическое деление: Многочлен - виды, определение с примерами решения

Так как, Многочлен - виды, определение с примерами решенияМногочлен - виды, определение с примерами решения, получим, что Многочлен - виды, определение с примерами решения являются корнями многочлена.

Следствие 1. Если старший коэффициент Многочлен - виды, определение с примерами решения и многочлен имеет рациональный корень, то он является целым числом.

Следствие 2. Целые корни многочлена с целыми коэффициентами (если они имеются) являются делителями свободного члена.

Пример №18

Найдите корни многочлена Многочлен - виды, определение с примерами решения

Решение: по теореме о рациональных корнях многочлена, целый корень данного многочлена (если он существует) надо искать среди делителей числа 5. Это числа ±5; ±1.

Многочлен - виды, определение с примерами решения

Запишем это короче при помощи синтетического деления и проверим, являются ли эти числа корнями многочлена.

Так как Многочлен - виды, определение с примерами решения то, решив квадратное уравнение Многочлен - виды, определение с примерами решения получим другие корни: Многочлен - виды, определение с примерами решения Значит данный многочлен третьей степени имеет три корня: Многочлен - виды, определение с примерами решения

Внимание! Если коэффициенты многочлена являются рациональными числами, то для нахождения рациональных корней уравнения Многочлен - виды, определение с примерами решения сначала обе части уравнения надо умножить на такое число (отличное от нуля), чтобы коэффициенты стали целыми. Например, для нахождения корней многочлена

Многочлен - виды, определение с примерами решения надо умножить все члены уравнения Многочлен - виды, определение с примерами решения на 12, а затем решить полученное

уравнение Многочлен - виды, определение с примерами решения

Для нахождения рациональных корней выполните следующие действия.

1. Записывается множество всех возможных дробей, числителями которых являются делители свободного члена, а знаменателями являются делители старшего коэффициента.

2. Из этих чисел выбирается число Многочлен - виды, определение с примерами решения (обращающее значение многочлена в нуль), которое является корнем многочлена, т. е. определяется двучлен Многочлен - виды, определение с примерами решения на который многочлен делится без остатка.

3. Для данного многочлена при помощи синтетического деления на двучлен Многочлен - виды, определение с примерами решения определяется другой множитель.

4. Если другой множитель является квадратным трехчленом или его можно разложить при помощи формул сокращенного умножения, находятся другие корни. Иначе все линейные множители находятся синтетическим делением.

5. Возможно, что ни одно число из списка не будет нулем многочлена. В этом случае многочлен не имеет рациональных корней. Например, рациональными корнями многочлена Многочлен - виды, определение с примерами решения могут являться числа ±1.

Проверим: Многочлен - виды, определение с примерами решения Значит, многочлен Многочлен - виды, определение с примерами решения не имеет рациональных корней.

Основная теорема алгебры

Покажем на примере, что многочлен Многочлен - виды, определение с примерами решенияой степени имеет Многочлен - виды, определение с примерами решения корней.

Пример №19

Найдите все корни многочлена Многочлен - виды, определение с примерами решения

Решение: рациональными корнями данного многочлена (если они существуют), согласно правилу, могут являться числа ±1, ±5. Проверим:

Многочлен - виды, определение с примерами решения

Значит, Многочлен - виды, определение с примерами решения является корнем данного многочлена Многочлен - виды, определение с примерами решения Другие корни найдем синтетическим делением.

Многочлен - виды, определение с примерами решения

В выражении Многочлен - виды, определение с примерами решения для множителя Многочлен - виды, определение с примерами решения вновь применим теорему о рациональных корнях и синтетическое деление. Тогда Многочлен - виды, определение с примерами решения Многочлен - виды, определение с примерами решенияРешим уравнение Многочлен - виды, определение с примерами решения

Многочлен - виды, определение с примерами решения ( корень кратности 2);

Многочлен - виды, определение с примерами решения

Корни: Многочлен - виды, определение с примерами решения

Во всех рассмотренных нами примерах уравнение Многочлен - виды, определение с примерами решенияой степени всегда имеет Многочлен - виды, определение с примерами решения корней, включая кратные корни (действительных или комплексных).

Теорема. Любой многочлен ненулевой степени имеет хотя бы один корень на множестве комплексных чисел.

Если Многочлен - виды, определение с примерами решения является многочленом ненулевой степени с комплексными коэффициентами, то согласно основной теореме алгебры, у него есть хотя бы один корень Многочлен - виды, определение с примерами решенияПо теореме о разложении многочлена на множители получим Многочлен - виды, определение с примерами решения При этом многочлен Многочлен - виды, определение с примерами решения имеет степень Многочлен - виды, определение с примерами решения Если Многочлен - виды, определение с примерами решения то Многочлен - виды, определение с примерами решения если Многочлен - виды, определение с примерами решения то согласно той же теореме, многочлен Многочлен - виды, определение с примерами решения имеет хотя бы один корень. Обозначим его через Многочлен - виды, определение с примерами решения тогда справедливо разложение Многочлен - виды, определение с примерами решения где Многочлен - виды, определение с примерами решения – многочлен степени Многочлен - виды, определение с примерами решения Значит, можно записать Многочлен - виды, определение с примерами решения Аналогично, если Многочлен - виды, определение с примерами решения то Многочлен - виды, определение с примерами решения при Многочлен - виды, определение с примерами решения на основании той же теоремы, многочлен Многочлен - виды, определение с примерами решения имеет хотя бы один корень. Обозначим его через Многочлен - виды, определение с примерами решения получим Многочлен - виды, определение с примерами решения т. е. можно записать Многочлен - виды, определение с примерами решения

Продолжая процесс Многочлен - виды, определение с примерами решения раз, получаем Многочлен - виды, определение с примерами решения Тогда для многочлена Многочлен - виды, определение с примерами решения можно записать следующее разложение:

Многочлен - виды, определение с примерами решения

здесь числа Многочлен - виды, определение с примерами решения являются нулями многочлена Многочлен - виды, определение с примерами решения Эти нули могут и не быть различными.

Следствие. Многочлен Многочлен - виды, определение с примерами решенияой степени Многочлен - виды, определение с примерами решения на множестве комплексных чисел имеет ровно Многочлен - виды, определение с примерами решения корней, включая кратные корни.

Отметим, что если комплексное число Многочлен - виды, определение с примерами решения является корнем многочлена с действительными коэффициентами, то сопряженное комплексное число Многочлен - виды, определение с примерами решения гак же является корнем данного многочлена.

Любой многочлен с действительными коэффициентами можно представить в виде произведения двучленов вида Многочлен - виды, определение с примерами решения соответствующих действительным корням, и трехчленов вида Многочлен - виды, определение с примерами решения соответствующих сопряженным комплексным корням.

Отсюда можно сделать вывод, что многочлен нечетной степени с действительными коэффициентами всегда имеет действительные корни.

Пример №20

Запишите в виде произведения множителей многочлен наименьшей степени, если коэффициент при старшем члене равен 2, а корни равны 3 и Многочлен - виды, определение с примерами решения

Решение: так как число Многочлен - виды, определение с примерами решения является корнем многочлена, то сопряженное комплексное число Многочлен - виды, определение с примерами решения также является корнем этого многочлена. Тогда искомый многочлен можно записать в виде

Многочлен - виды, определение с примерами решения

  • Заказать решение задач по высшей математике
Пример №21

При движении скоростной карусели в Лунапарке изменение высоты (в метрах) кабины от нулевого уровня за первые 5 секунд можно смоделировать функцией Многочлен - виды, определение с примерами решения В какие моменты в течении 5 секунд после начала движения кабина карусели находилась на нулевом уровне?

Решение: во всех случаях, кроме значений Многочлен - виды, определение с примерами решения равных нулю, кабина карусели находится либо ниже, либо выше нулевого уровня. Значит, мы должны найти корни заданного многочлена. Применим правило нахождения рациональных корней.

1. Проверим, является ли число Многочлен - виды, определение с примерами решения корнем.

Многочлен - виды, определение с примерами решения

2. Число Многочлен - виды, определение с примерами решения является корнем, значит одним из множителей данного многочлена является Многочлен - виды, определение с примерами решения Другие корни найдем при помощи синтетического деления.

Многочлен - виды, определение с примерами решения

Многочлен - виды, определение с примерами решения

Учитывая, что Многочлен - виды, определение с примерами решения запишем многочлен в виде Многочлен - виды, определение с примерами решения т. е. Многочлен - виды, определение с примерами решения являются корнями уравнения. Значения Многочлен - виды, определение с примерами решения принадлежат временному интервалу в 5 секунд, и в этих моментах кабина карусели находилась на нулевом уровне. То, что корни найдены верно показывает график многочлена, построенный при помощи графкалькулягора.

Многочлен - виды, определение с примерами решения

Функция-многочлен

График функции-многочлен

В стандартном виде функция – многочлен записывается как Многочлен - виды, определение с примерами решения В частном случае, при Многочлен - виды, определение с примерами решения получаем линейную функцию (график – прямая линия), при Многочлен - виды, определение с примерами решения получаем квадратичную функцию (график- парабола). Любой многочлен определен на множестве действительных чисел и его графиком является непрерывная (сплошная) линия.

При возрастании значений аргумента по абсолютному значению многочлен ведет себя как функция старшего члена Многочлен - виды, определение с примерами решения Ниже показаны примеры графиков функции – многочлен и их свойства.

Многочлен - виды, определение с примерами решения

Пример №22

Определите характер поведения функции – многочлен в зависимости от степени и коэффициента при старшем члене при возрастании аргумента по абсолютному значению.

a) Многочлен - виды, определение с примерами решения б) Многочлен - виды, определение с примерами решения

Решение: а) степень многочлена Многочлен - виды, определение с примерами решения нечетная (равна 3). Коэффициент старшего члена равен Многочлен - виды, определение с примерами решения По таблице видно, что в данном случае при Многочлен - виды, определение с примерами решения а при Многочлен - виды, определение с примерами решения

b) степень многочлена Многочлен - виды, определение с примерами решения четная (равна 4). Коэффициент старшего члена равен 1. В данном случае при Многочлен - виды, определение с примерами решения при Многочлен - виды, определение с примерами решения

Пример №23

По графику определите как ведет себя функция – многочлен при неограниченном возрастании аргументов но абсолютному значению, четность или нечетность степени многочлена, знак коэффициента старшего члена.

Многочлен - виды, определение с примерами решения

Решение:

при Многочлен - виды, определение с примерами решения

при Многочлен - виды, определение с примерами решения

Многочлен нечетной степени

Многочлен - виды, определение с примерами решения

Многочлен - виды, определение с примерами решения

Решение:

при Многочлен - виды, определение с примерами решения

при Многочлен - виды, определение с примерами решения

Многочлен четной степени

Многочлен - виды, определение с примерами решения

Отметим, что если Многочлен - виды, определение с примерами решения нечетно, то функция – многочлен имеет хотя бы один действительный нуль, если Многочлен - виды, определение с примерами решения четно, то их вообще может и не быть.

Алгоритм построения эскиза графика функции – многочлен.

1. Находятся точки пересечения графика с осями координат (если они есть). Эти точки отмечаются на координатной плоскости.

2. Вычисляются значения функции в некоторых точках между действительными нулями. Соответствующие точки отмечаются на координатной плоскости.

3. Определяется поведение графика при больших значениях аргумента по абсолютному значению.

4. На основе полученных данных строят схематически график.

Пример №24

Постройте график функции Многочлен - виды, определение с примерами решения

Решение:

1. Применим теорему о рациональных корнях. Разложим многочлен на множители и найдем нули функции.

По теореме возможные рациональные нули надо искать среди чисел, которые являются делителями числа Многочлен - виды, определение с примерами решения

Проверим Многочлен - виды, определение с примерами решения Многочлен - виды, определение с примерами решения

Значит, двучлен Многочлен - виды, определение с примерами решения является одним из множителей. Остальные множители найдем синтетическим делением.

Многочлен - виды, определение с примерами решения

Многочлен - виды, определение с примерами решения

Зная, что Многочлен - виды, определение с примерами решения запишем все линейные множители многочлена: Многочлен - виды, определение с примерами решения

Отсюда находим нули Многочлен - виды, определение с примерами решения Т. е. график пересекает ось абсцисс в точках Многочлен - виды, определение с примерами решения и Многочлен - виды, определение с примерами решения Так как Многочлен - виды, определение с примерами решения то точка Многочлен - виды, определение с примерами решения является точкой пересечения с осью Многочлен - виды, определение с примерами решения Отметим эти точки на координатной плоскости.

2. Найдем еще несколько значений функции в точках, не требующих сложных вычислений. Например, в точках Многочлен - виды, определение с примерами решения и Многочлен - виды, определение с примерами решения

Многочлен - виды, определение с примерами решения

Отметим точки Многочлен - виды, определение с примерами решения

3. Определим, как меняется график при уменьшении или увеличении значений Многочлен - виды, определение с примерами решения Степень при старшем члене равна 3, а коэффициент положителен, функция нечетная. Значит, при Многочлен - виды, определение с примерами решения при Многочлен - виды, определение с примерами решения

4. Соединим отмеченные точки и получим схематический график функции Многочлен - виды, определение с примерами решения

Многочлен - виды, определение с примерами решения

Рациональная функция

Рациональной функцией называется функция, которою можно представить в виде отношения двух многочленов:

Многочлен - виды, определение с примерами решения

Самым простым примером рациональной функции является функция Многочлен - виды, определение с примерами решения

График функции Многочлен - виды, определение с примерами решения называется гиперболой.

Многочлен - виды, определение с примерами решения

При стремлении значений Многочлен - виды, определение с примерами решения к нулю точки гиперболы стремятся к оси ординат, т е. к прямой Многочлен - виды, определение с примерами решения при неограниченном увеличении Многочлен - виды, определение с примерами решения но абсолютному значению точки гиперболы неограниченно приближаются к оси абсцисс, т. е. к прямой Многочлен - виды, определение с примерами решения Прямая Многочлен - виды, определение с примерами решения называется вертикальной асимптотой, а прямая Многочлен - виды, определение с примерами решения называется горизонтальной асимптотой гиперболы Многочлен - виды, определение с примерами решения При параллельном переносе гиперболы Многочлен - виды, определение с примерами решения на вектор Многочлен - виды, определение с примерами решения получается график функции Многочлен - виды, определение с примерами решения. В этом случае начало координат преобразуется в точку Многочлен - виды, определение с примерами решения и вертикальной асимптотой становится прямая Многочлен - виды, определение с примерами решения а горизонтальной- прямая Многочлен - виды, определение с примерами решения

Многочлен - виды, определение с примерами решения

Пример №25

Постройте график функции Многочлен - виды, определение с примерами решения

Решение: точки пересечения с осью Многочлен - виды, определение с примерами решения найдем из уравнения Многочлен - виды, определение с примерами решения Многочлен - виды, определение с примерами решения

При Многочлен - виды, определение с примерами решения получим Многочлен - виды, определение с примерами решения и график пересекает ось Многочлен - виды, определение с примерами решения в точке Многочлен - виды, определение с примерами решения Разделим почленно числитель функции на знаменатель и запишем ее в виде Многочлен - виды, определение с примерами решения Прямая Многочлен - виды, определение с примерами решения является вертикальной асимптотой, а прямая Многочлен - виды, определение с примерами решения – горизонтальной асимптотой. Зададим таблицу значений для нескольких точек справа и слева от вертикальной асимптоты

Многочлен - виды, определение с примерами решения

Отметим на координатной плоскости точки, соответствующие парам значений из таблицы и, учитывая горизонтальную и вертикальную асимптоту, изобразим ветви гиперболы, которые пересекают координатные оси в точках Многочлен - виды, определение с примерами решения и Многочлен - виды, определение с примерами решения

Многочлен - виды, определение с примерами решения

В общем случае, для построения графика рациональной функции надо найти точки пересечения с осями координат (если они есть) и ее асимптоты. Если выражение, которое задает рациональную функцию, имеет вид дроби, знаменатель которой обращается в нуль в точке Многочлен - виды, определение с примерами решения а числитель отличен от нуля, то данная функция имеет вертикальную асимптоту. Горизонтальные асимптоты для рациональной функции Многочлен - виды, определение с примерами решения определяются в соответствии со степенью Многочлен - виды, определение с примерами решения и Многочлен - виды, определение с примерами решения данных многочленов Многочлен - виды, определение с примерами решения и Многочлен - виды, определение с примерами решения

Для Многочлен - виды, определение с примерами решения т. е. если степень многочлена в числителе на 1 единицу больше степени многочлена в знаменателе, частное, полученное при делении, имеет вид Многочлен - виды, определение с примерами решения и является линейной функцией. При возрастании Многочлен - виды, определение с примерами решения по абсолютному значению график функции приближается к данной прямой. В этом случае говорят, что прямая Многочлен - виды, определение с примерами решения является наклонной асимптотой.

Пример №26

Найдите асимптоты и схематично изобразите график функции

Многочлен - виды, определение с примерами решения

Решение: Точки пересечения с осью Многочлен - виды, определение с примерами решения найдем из уравнения Многочлен - виды, определение с примерами решения При Многочлен - виды, определение с примерами решения получим Многочлен - виды, определение с примерами решения и график пересекает ось Многочлен - виды, определение с примерами решения в точке Многочлен - виды, определение с примерами решения При Многочлен - виды, определение с примерами решения знаменатель обращается в нуль, а числитель отличен от нуля. Значит, прямая Многочлен - виды, определение с примерами решения является вертикальной асимптотой. Горизонтальной асимптоты у данной функции нет Многочлен - виды, определение с примерами решения Разделив числитель на знаменатель, запишем функцию в виде:

Многочлен - виды, определение с примерами решения

Для больших, но модулю, значений Многочлен - виды, определение с примерами решения дробь Многочлен - виды, определение с примерами решения по абсолютному значению уменьшается и график заданной функции бесконечно приближается к прямой Многочлен - виды, определение с примерами решения т. е. прямая Многочлен - виды, определение с примерами решения является наклонной асимптотой данной функции. Составим таблицу значений для некоторых точек слева и справа от вертикальной оси.

Многочлен - виды, определение с примерами решения

Отметим точки, координаты которых соответствуют парам из таблицы. Учитывая вертикальную и наклонную асимптоту, схематично изобразим график функции.

Многочлен - виды, определение с примерами решения

Многочлены в линейной алгебре

Многочленом от переменной х степени n называется выражение вида:

Многочлен - виды, определение с примерами решения, где Многочлен - виды, определение с примерами решения – действительные или комплексные числа, называемые коэффициентами, n – натуральное число, х – переменная величина, принимающая произвольные числовые значения.

Если коэффициент Многочлен - виды, определение с примерами решения приМногочлен - виды, определение с примерами решениямногочлена Многочлен - виды, определение с примерами решенияотличен от нуля, а коэффициенты при более высоких степенях равны нулю, то число n называется степенью многочлена, Многочлен - виды, определение с примерами решения – старшим коэффициентом, а Многочлен - виды, определение с примерами решения – старшим членом многочлена. Коэффициент Многочлен - виды, определение с примерами решения называется свободным членом. Если все коэффициенты многочлена равны нулю, то многочлен называется нулевым и обозначается 0. Степень нулевого многочлена не определена.

Два многочлена называются равными, если они имеют одинаковую степень и коэффициенты при одинаковых степенях равны.

Суммой многочленов Многочлен - виды, определение с примерами решения и Многочлен - виды, определение с примерами решенияназывается многочлен

Многочлен - виды, определение с примерами решения

Произведением многочленов Многочлен - виды, определение с примерами решения и Многочлен - виды, определение с примерами решенияназывается многочлен: Многочлен - виды, определение с примерами решения

Легко проверить, что сложение и умножение многочленов ассоциативно, коммутативно и связаны между собой законом дистрибутивности.

Многочлен Многочлен - виды, определение с примерами решения называется делителем многочлена Многочлен - виды, определение с примерами решения , если существует многочлен Многочлен - виды, определение с примерами решениятакой, что Многочлен - виды, определение с примерами решения

Теорема о делении с остатком

Для любых многочленов Многочлен - виды, определение с примерами решения существуют многочлены Многочлен - виды, определение с примерами решения такие, что Многочлен - виды, определение с примерами решения причем степень Многочлен - виды, определение с примерами решенияменьше степени g(x) илиМногочлен - виды, определение с примерами решения. Многочлены g(x) и r(x) определены однозначно.

Многочлены g(x) и r(x) называются соответственно частным и остатком. Если g(x) делит Многочлен - виды, определение с примерами решения, то остаток Многочлен - виды, определение с примерами решения.

Число с называется корнем многочлена Многочлен - виды, определение с примерами решения, если Многочлен - виды, определение с примерами решения.

Теорема Безу

Число с является корнем многочлена Многочлен - виды, определение с примерами решения тогда и только тогда, когда Многочлен - виды, определение с примерами решения делится на x – с.

Пусть с – корень многочлена Многочлен - виды, определение с примерами решения, т.е.Многочлен - виды, определение с примерами решения. Разделим Многочлен - виды, определение с примерами решения на

Многочлен - виды, определение с примерами решения где степень r(х) меньше степени (x-с) которая равна 1. Значит, степень г(х) равна 0, т.е. r(х) = const. Значит, Многочлен - виды, определение с примерами решения. Так как Многочлен - виды, определение с примерами решения, то из последнего равенства следует, что r=0, т.е. Многочлен - виды, определение с примерами решения

Обратно, пусть (х-с) делит Многочлен - виды, определение с примерами решения, т.е. Многочлен - виды, определение с примерами решения. Тогда Многочлен - виды, определение с примерами решения

Следствие. Остаток от деления многочлена Многочлен - виды, определение с примерами решения на (x-с) равен Многочлен - виды, определение с примерами решения.

Многочлены первой степени называются линейными многочленами. Теорема Безу показывает, что разыскание корней многочлена Многочлен - виды, определение с примерами решения равносильно разысканию его линейных делителей со старшим коэффициентом 1.

Многочлен Многочлен - виды, определение с примерами решения можно разделить на линейный многочлен х-с с помощью алгоритма деления с остатком, но существует более удобный способ деления, известный под названием схемы Горнера.

Пусть Многочлен - виды, определение с примерами решения и пустьМногочлен - виды, определение с примерами решения где Многочлен - виды, определение с примерами решения Сравнивая коэффициенты при одинаковых степенях неизвестной с левой и правой частях последнего равенства, имеем:

Многочлен - виды, определение с примерами решения

Число с-называется корнем кратности к многочлена Многочлен - виды, определение с примерами решения, если Многочлен - виды, определение с примерами решения делит Многочлен - виды, определение с примерами решения, но Многочлен - виды, определение с примерами решения уже не делит Многочлен - виды, определение с примерами решения.

Чтобы поверить, будет ли число с корнем многочлена Многочлен - виды, определение с примерами решения и какой кратности, можно воспользоваться схемой Горнера. Сначала Многочлен - виды, определение с примерами решения делится на х-с, затем, если остаток равен нулю, полученное частное делится на х-с, и т.д. до получения не нулевого остатка.

Число различных корней многочлена не превосходит его степени.

Большое значение имеет следующая основная теорема.

Основная теорема. Всякий многочлен с числовыми коэффициентами ненулевой степени имеет хотя бы один корень (может быть комплексный).

Следствие. Всякий многочлен степени Многочлен - виды, определение с примерами решенияимеет в С (множестве комплексный чисел) столько корней, какова его степень, считая каждый корень столько раз, какова его кратность.

Многочлен - виды, определение с примерами решения

где Многочлен - виды, определение с примерами решения– корни Многочлен - виды, определение с примерами решения, т.е. во множестве С всякий многочлен разлагается в произведение линейных множителей. Если одинаковые множители собрать вместе, то: Многочлен - виды, определение с примерами решениягде Многочлен - виды, определение с примерами решения уже различные корни Многочлен - виды, определение с примерами решения, Многочлен - виды, определение с примерами решения – кратность корня Многочлен - виды, определение с примерами решения

Если многочлен Многочлен - виды, определение с примерами решения, с действительными коэффициентами имеет корень с, то число с также корень Многочлен - виды, определение с примерами решения

Значит, у многочлена с действительными коэффициентами комплексные корни входят парами.

Следствие. Многочлен с действительными коэффициентами нечетной степени имеет нечетное число действительных корней.

Пусть Многочлен - виды, определение с примерами решения корни Многочлен - виды, определение с примерами решения Тогда Многочлен - виды, определение с примерами решения делится на х-с и Многочлен - виды, определение с примерами решения, но так как у Многочлен - виды, определение с примерами решения и х-с, нет общих делителей, то Многочлен - виды, определение с примерами решения делится на произведение Многочлен - виды, определение с примерами решения

Утверждение 2. Многочлен с действительными коэффициентами степени Многочлен - виды, определение с примерами решениявсегда разлагается на множестве действительных чисел в произведение линейных многочленов, отвечающих его вещественным корням, и многочленов 2-ой степени, отвечающих паре сопряженных комплексных корней.

При вычислении интегралов от рациональных функций нам понадобится представление рациональной дроби в виде суммы простейших.

Рациональной дробью называется дробь гдеМногочлен - виды, определение с примерами решения многочлены с действительными коэффициентами, причем многочлен Многочлен - виды, определение с примерами решения Рациональная дробь Многочлен - виды, определение с примерами решения называется правильной, если степень числителя меньше степени знаменателя. Если рациональная дробь не является правильной, то, произведя деление числителя на знаменатель по правилу деления многочленов, ее можно представить в виде Многочлен - виды, определение с примерами решения некоторые многочлены, а Многочлен - виды, определение с примерами решения правильная рациональная дробь.

Лемма 1, Если Многочлен - виды, определение с примерами решения правильная рациональная дробь, а число Многочлен - виды, определение с примерами решения является вещественным корнем кратности Многочлен - виды, определение с примерами решения многочлена Многочлен - виды, определение с примерами решения, т.е.Многочлен - виды, определение с примерами решения, то существует вещественное число A и многочлен Многочлен - виды, определение с примерами решения с вещественными коэффициентами, такие, что Многочлен - виды, определение с примерами решения где дробь Многочлен - виды, определение с примерами решения является правильной.

При этом несложно показать, что полученное выражение является рациональной дробью с вещественными коэффициентами.

Лемма 2. Если Многочлен - виды, определение с примерами решения правильная рациональная дробь, а числоМногочлен - виды, определение с примерами решенияявляется корнем кратности Многочлен - виды, определение с примерами решения многочлена g(x), т.е. Многочлен - виды, определение с примерами решения и если Многочлен - виды, определение с примерами решения, то существуют вещественные числа M и N многочлен Многочлен - виды, определение с примерами решения с вещественными коэффициентами, такие, Многочлен - виды, определение с примерами решения где дробь , Многочлен - виды, определение с примерами решениятакже является правильной.

Рациональные дроби видаМногочлен - виды, определение с примерами решенияМногочлен - виды, определение с примерами решения – трехчлен с действительными коэффициентами, не имеющий действительных корней, называются простейшими (или элементарными) дробями.

Всякая правильная рациональная дробь представима единственным образом в виде суммы простейших дробей.

При практическом получении такого разложения оказывается удобным так называемый метод неопределенных коэффициентов.

Он состоит в следующем:

При этом если степень многочлена Многочлен - виды, определение с примерами решенияравна n, то в числителе после приведения к общему знаменателю получается многочлен степени n-1, т.е. многочлен Многочлен - виды, определение с примерами решения коэффициентами.

Число неизвестных Многочлен - виды, определение с примерами решения‘ также равняется n: Многочлен - виды, определение с примерами решения

Таким образом, получается система n уравнений с n неизвестными. Существование решения у этой системы следует из приведенной выше теоремы.

  • Квадратичные формы – определение и понятие
  • Системы линейных уравнений с примерами
  • Линейное программирование
  • Дифференциальное исчисление функций одной переменной
  • Кривые второго порядка
  • Евклидово пространство
  • Матрица – виды, операции и действия с примерами
  • Линейный оператор – свойства и определение


Математика| Степени

Видео: Математика| Степени

Содержание

  • Примеры степени полинома
  • Таблица 1. Примеры многочленов и их степеней.
  • Порядок работы с многочленами
  • Упорядочить, уменьшить и дополнить многочлен
  • Важность степени полинома при сложении и вычитании
  • Решенные упражнения
  • – Упражнение решено 1
  • Решение
  • – Упражнение выполнено 2
  • Решение
  • Ссылки

В степень полинома в а переменная задается членом с наибольшим показателем, и если многочлен имеет две или более переменных, то степень определяется суммой показателей каждого члена, причем большая сумма является степенью полинома.

Давайте посмотрим, как определить степень многочлена на практике.

Предположим, что многочлен P (x) = -5x + 8x3 + 7 – 4x2. Этот многочлен является одной переменной, в данном случае это переменная Икс. Этот многочлен состоит из нескольких членов, а именно:

-5x; 8x3; 7; – 4x2

 Давайте выберем из четырех членов тот, у которого показатель больше, это член:

8x3

А теперь какой показатель? Ответ: 3. Следовательно, P (x) – многочлен степени 3.

Если рассматриваемый многочлен имеет более одной переменной, то степень может быть:

-Абсолютный

-По отношению к переменной

Абсолютная степень находится, как объяснено в начале: добавление показателей каждого члена и выбор наибольшего.

Вместо этого степень полинома по отношению к одной из переменных или букв является наибольшим значением показателя степени, которое имеет указанная буква. Суть станет яснее с примерами и решенными упражнениями в следующих разделах.

Примеры степени полинома

Многочлены могут быть классифицированы по степени: первая степень, вторая степень, третья степень и так далее. В примере на рисунке 1 энергия является одночленом первой степени массы.

Также важно отметить, что количество членов, которые имеет многочлен, равно класс плюс 1. Так:

-Полиномы первой степени имеют 2 члена:1х + аили

-У полинома второй степени есть 3 члена:2Икс2 + а1х + аили

-Полином третьей степени состоит из 4 членов:3Икс3 + а2Икс2 + а1х + аили

И так далее. Внимательный читатель заметит, что многочлены в предыдущих примерах записаны в виде уменьшение, то есть помещая термин на первое место Высокий класс.

В следующей таблице показаны различные полиномы, как от одной, так и от нескольких переменных, и их соответствующие абсолютные градусы:

Таблица 1. Примеры многочленов и их степеней.

Полиномиальный Степень
3x4+ 5x3-2x + 3 4
7x3-2x2+ 3x-6 3
6 0
х-1 1
Икс5-bx4+ abx3+ab3Икс2 6
3x3Y5 + 5x2Y4 – 7xy2 + 6 8

Последние два полинома имеют более одной переменной. Из них термин с наивысшей абсолютной степенью был выделен жирным шрифтом, чтобы читатель мог быстро проверить степень. Важно помнить, что если переменная не имеет записанного показателя степени, подразумевается, что указанный показатель равен 1.

Например, в избранном термине ab3Икс2 есть три переменные, а именно: к, б Y Икс. В этот срок к повышается до 1, то есть:

а = а1

Таким образом ab3Икс2 = а1б3Икс2

Поскольку показатель b равен 3, а показатель x равен 2, немедленно следует, что степень этого члена равна:

1+3+2 = 6

Y – это абсолютная степень многочлена, поскольку ни один другой член не имеет более высокой степени.

Порядок работы с многочленами

При работе с многочленами важно обращать внимание на его степень, так как в первую очередь и перед выполнением какой-либо операции удобно выполнить следующие шаги, в которых степень предоставляет очень важную информацию:

-Закажите полином предпочтения в порядке убывания. Таким образом, термин с самой высокой степенью находится слева, а член с самой низкой степенью – справа.

-Уменьшить подобные термины, процедура, которая состоит в алгебраическом сложении всех терминов одной и той же переменной и степени, найденных в выражении.

-Если это точно, полиномы дополняются, вставляя члены с коэффициентом 0, если отсутствуют члены с показателем степени.

Упорядочить, уменьшить и дополнить многочлен

Учитывая многочлен P (x) = 6x2 – 5x4– 2х + 3х + 7 + 2х5 – 3x3 + х7 -12 предлагается расположить его в порядке убывания, сократить аналогичные термины, если они есть, и дополнить отсутствующие термины, если необходимо.

Первое, что нужно искать, – это член с наибольшим показателем, который представляет собой степень многочлена, который оказывается равным:

Икс7

Следовательно, P (x) имеет степень 7. Затем полином упорядочивается, начиная с этого члена слева:

Р (х) = х7 + 2x5 – 5x4 – 3x3 + 6x2 – 2х + 3х + 7-12

Теперь подобные термины уменьшены, а именно: – 2x и 3x с одной стороны. А 7 и -12 с другой. Чтобы уменьшить их, коэффициенты складываются алгебраически, а переменная остается неизменной (если переменная не появляется рядом с коэффициентом, помните, что x0 = 1):

-2x + 3x = х

7 -12 = -5

Замените эти результаты на P (x):

Р (х) = х7 + 2x5 – 5x4 – 3x3 + 6x2 + х -5

И, наконец, проверяется полином на предмет отсутствия какой-либо экспоненты, и действительно, отсутствует член с показателем 6, поэтому он завершается такими нулями:

Р (х) = х7 + 0x6 + 2x5 – 5x4 – 3x3 + 6x2 + х – 5

Теперь можно заметить, что в полиноме осталось 8 членов, поскольку, как было сказано ранее, количество членов равно степени +1.

Важность степени полинома при сложении и вычитании

С полиномами вы можете выполнять операции сложения и вычитания, в которых добавляются или вычитаются только одинаковые члены, которые имеют одинаковую переменную и одинаковую степень. Если одинаковых терминов нет, просто указывается сложение или вычитание.

После того, как было выполнено сложение или вычитание, последнее является суммой противоположных величин, степень полученного многочлена всегда равна или меньше степени многочлена при добавлении наивысшей степени.

Решенные упражнения

– Упражнение решено 1

Найдите следующую сумму и определите ее абсолютную степень:

к3– 8ax+ х3 + 5а2х – 6ax2 – Икс3 + 3а3 – 5 место2х – х3 + а3+ 14ax2 – Икс3

Решение

Это многочлен с двумя переменными, поэтому его удобно сократить:

к3– 8ax+ х3 + 5а2х – 6ax2 – Икс3 + 3а3 – 5 место2х – х3 + а3+ 14ax2 – Икс3 =

= а3 + 3а3 + а3 – 8ax2 – 6ax2+ 14ax2 + 5а2x – 5 место2х + х3– Икс3– Икс3– Икс3 =

= 5а3 – 2x3

Оба члена имеют степень 3 по каждой переменной. Следовательно, абсолютная степень полинома равна 3.

– Упражнение выполнено 2

Выразите площадь следующей плоской геометрической фигуры в виде многочлена (рисунок 2 слева). Какова степень полученного многочлена?

Решение

Поскольку это площадь, результирующий многочлен должен иметь степень 2 от переменной x. Чтобы определить подходящее выражение для площади, фигура разбивается на известные области:

Площадь прямоугольника и треугольника соответственно: основание x высота Y основание x высота / 2

К1 = х. 3x = 3x2; К2 = 5. х = 5х; К3 = 5. (2x / 2) = 5x

Заметка: основание треугольника 3x – x = 2x, а его высота 5.

Теперь три полученных выражения складываются, и мы получаем площадь фигуры как функцию от Икс:

3x2 + 5x + 5x = 3x2 + 10x

Ссылки

  1. Балдор, А. 1974. Элементарная алгебра. Cultural Venezolana S.A.
  2. Хименес, Р. 2008. Алгебра. Прентис Холл.
  3. Викиучебники. Полиномы. Получено с: es. wikibooks.org.
  4. Википедия. Степень (полиномиальная). Получено с: es.wikipedia.org.
  5. Зилл, Д. 1984. Алгебра и тригонометрия. Мак Гроу Хилл.

9.2.1.
Многочлены с комплексными коэффициентами
от комплексной переменной
.
Многочленом -ой
степени называется функция

где

– постоянные комплексные числа
(коэффициенты многочлена), ,

– комплексная переменная. Число ,
в котором многочлен принимает нулевое
значение (),
называется корнем
многочлена.

Справедлива
следующая теорема, которая называется
основной
теоремой алгебры
:
любой многочлен степени
имеет комплексный корень.

Пусть
– произвольная точка комплексной
плоскости. Представим
в виде многочлена по степеням
(как мы делали это в разделе 7.7.1.
Формула Тейлора для многочленов):

.
Здесь

– новые значения коэффициентов,
получающиеся после раскрытия степеней
и приведения подобных членов. Очевидно,

,
отсюда следует утверждение: для того,
чтобы число
было корнем многочлена
,
необходимо и достаточно, чтобы коэффициент
при нулевой степени в разложении

по степеням
был равен нулю:
.
Но тогда

.

Таким образом,
доказана теорема
Безу
: для
того, чтобы многочлен -ой
степени
имел комплексный корень ,
необходимо и достаточно, чтобы он без
остатка делился на ,
т.е. чтобы
представлялся в виде ,
где
– многочлен -1-ой
степени.

Пусть
– корень многочлена ,
тогда, по теореме Безу, .
Возможны два варианта: 1. Число
не является корнем многочлена ,
в этом случае
называется простым корнем многочлена
.
2. Число
является корнем многочлена ,
тогда, применяя теорему Безу уже к ,
получим ,
.
Применяя к
те же рассуждения, придём к выводу: если

– корень многочлена ,
то
единственным образом представляется
в виде ,
где .
Число
в этом случае называется кратностью
корня .

Согласно основной
теореме алгебры, любой многочлен
при
имеет хотя бы один корень ;
если кратность этого корня равна
,
то, согласно изложенному,
представляется в виде ,
где .
Если ,
то многочлен
имеет корень ,
и представляется в виде .
Если ,
эти выкладки можно продолжить;
окончательный вывод формулируется так:
любой многочлен
степени

при старшем
коэффициенте
единственным (с точностью до порядков
сомножителей) образом может быть
представлен в виде,
где– (попарно различные) корни многочлена,
– их кратности,
количество различных корней. Общее
число корней многочлена с учётом их
кратностей равна :
.

9.2.2.
Многочлены с действительными
коэффициентами
.
В этом разделе мы рассмотрим многочлен


от комплексной переменной ,
в предположении, что его коэффициенты


действительные числа. Сформулируем и
докажем ряд свойств такого многочлена.

1.Если
– число, сопряжённое к числу ,
то .
Док-во: Для любого действительного числа

операция сопряжения не меняет это число:
,
поэтому

(см. сформулированные
в разделе 9.
Комплексные числа

свойства операции сопряжения).

2. Если

корень многочлена ,
то

– тоже корень этого многочлена. Док-во:
если ,
то
.

3. Если

корень многочлена с действительными
коэффициентами ,
то
без остатка делится на квадратный
трёхчлен ,
где .
Док-во: так как числа
– корни ,
то
представляется в виде
.

4. Если

корень многочлена
кратности ,
то

– корень этого многочлена той же кратности.
Док-во: непосредственно следует из
утверждений 2,3.

5. Любой многочлен
-ой
степени
может быть представлен, и притом
единственным с точностью до порядка
сомножителей образом, в виде

,
где

– попарно различные
действительные корни этого многочлена,

– их кратности, квадратные трёхчлены
(соответствующие попарно различным
парам сопряжённых корней

кратностей )

с действительными коэффициентами не
имеют действительных корней (т.е. ),
.
Это утверждение непосредственно следует
из результатов этого и предыдущего
разделов.

6. При выводе
предыдущего утверждения мы существенно
использовали тот факт, что
– комплексная переменная (в частности,
когда ссылались на основную теорему
алгебры). В то же время в самом полученном
представлении многочлена все участвующие
величины (кроме )
– действительные числа. Предположим
теперь, чтобы переменная
принимает только действительные
значения, т.е. .
Тогда утверждение 5 можно переформулировать
так: любой многочлен с действительными
коэффициентами
от действительной переменной
может быть представлен, и притом
единственным с точностью до порядка
сомножителей образом, в виде

,
где смысл всех параметров описан выше.

Соседние файлы в папке lec2

  • #
  • #
  • #
  • #
  • #

Схема Горнера

11 июля 2022

Схема Горнера — это алгоритм для быстрого (счёт идёт на секунды) вычисления значения многочлена

[Pleft( x right)={{a}_{n}}{{x}^{n}}+{{a}_{n-1}}{{x}^{n-1}}+ldots +{{a}_{1}}x+{{a}_{0}}]

в точке $x=a$. Также схема Горнера позволяет быстро (быстрее, чем столбиком) делить многочлен $Pleft( x right)$ на линейные двучлены вида $x-a$, искать остатки от деления и многое другое.

Содержание

  1. Описание Схемы Горнера
  2. Вычисление значения многочлена
  3. Деление многочлена с остатком
  4. Перебор корней уравнения
  5. Разложение на множители
  6. Разложение по степеням
  7. Как всё это работает

1. Описание схемы Горнера

Итак, рассмотрим многочлен

[Pleft( x right)= color{blue}{{a}_{n}}{{x}^{n}}+color{blue}{{a}_{n-1}}{{x}^{n-1}}+ldots +color{blue}{{a}_{1}}x+color{blue}{{a}_{0}}]

Для наглядности коэффициенты выделены синим цветом. Распишем схему Горнера для многочлена $Pleft( x right)$ в точке $x=color{red}{a}$. Для этого заполним таблицу

[begin{array}{c|c|c|c|c|c|c} {} & color{blue}{{a}_{n}} & color{blue}{{a}_{n-1}} & color{blue}{{a}_{n-2}} & ldots & color{blue}{{a}_{1}} & color{blue}{{a}_{0}} \ hlinecolor{red}{a} & {} & {} & {} & {} & {} & {} \ end{array}]

В первой строке мы видим коэффициенты многочлена $Pleft( x right)$ в порядке убывания степеней. Таких коэффициентов всегда на один больше, чем степень многочлена: для квадратного многочлена всего 3 коэффициента, для кубического — уже 4, и т.д.

Во второй строке таблицы мы вписываем лишь число $color{red}{a}$ в самой левой клетке. Остальные клетки заполняются последовательно по следующему алгоритму.

В первую свободную клетку мы переносим элемент из верхней строки без изменений. Назовём этот элемент ${{b}_{n-1}}$ — дальше вы поймёте, зачем нужна такая нумерация:

[begin{array}{c|c|c|c|c|c|c} {} & color{blue}{{a}_{n}} & color{blue}{{a}_{n-1}} & color{blue}{{a}_{n-2}} & ldots & color{blue}{{a}_{1}} & color{blue}{{a}_{0}} \ hlinecolor{red}{a} & {{b}_{n-1}}={{a}_{n}} & {} & {} & {} & {} & {} \ end{array}]

Вторая клетка — элемент ${{b}_{n-2}}$ — считается по формуле ${{b}_{n-2}}={{b}_{n-1}}cdot color{red}{a}+color{blue}{{a}_{n-1}}$. Другими словами, берём элемент слева, умножаем на число $a$ и добавляем элемент сверху:

[begin{array}{c|c|c|c|c|c|c} {} & color{blue}{{a}_{n}} & color{blue}{{a}_{n-1}} & color{blue}{{a}_{n-2}} & ldots & color{blue}{{a}_{1}} & color{blue}{{a}_{0}} \ hlinecolor{red}{a} & {{b}_{n-1}} & {{b}_{n-2}}={{b}_{n-1}}cdot color{red}{a}+color{blue}{{a}_{n-1}} & {} & {} & {} & {} \ end{array}]

Далее находим элемент ${{b}_{n-3}}$ по аналогичной формуле: ${{b}_{n-3}}={{b}_{n-2}}cdot color{red}{a}+color{blue}{{a}_{n-2}}$. Заносим результат в третью клетку:

[begin{array}{c|c|c|c|c|c|c} {} & color{blue}{{a}_{n}} & color{blue}{{a}_{n-1}} & color{blue}{{a}_{n-2}} & ldots & color{blue}{{a}_{1}} & color{blue}{{a}_{0}} \ hlinecolor{red}a & {{b}_{n-1}} & {{b}_{n-2}} & {{b}_{n-3}}={{b}_{n-2}}cdot color{red}{a}+color{blue}{{a}_{n-2}} & {} & {} & {} \ end{array}]

Аналогично находим элементы ${{b}_{n-4}}$, ${{b}_{n-5}}$ и далее. Берём элемент слева, умножаем на исходное число $color{red}{a}$, добавляем элемент сверху, результат записываем в клетку:

[{{b}_{k-1}}={{b}_{k}}cdotcolor{red}{a}+color{blue}{{a}_{k}}]

В какой-то момент мы доберёмся до элемента ${{b}_{0}}$, который находится в клетке под коэффициентом $color{blue}{{a}_{1}}$:

[begin{array}{c|c|c|c|c|c|c} {} & color{blue}{{a}_{n}} & color{blue}{{a}_{n-1}} & color{blue}{{a}_{n-2}} & ldots & color{blue}{{a}_{1}} & color{blue}{{a}_{0}} \ hlinecolor{red}{a} & {{b}_{n-1}} & {{b}_{n-2}} & {{b}_{n-3}} & ldots & {{b}_{0}}={{b}_{1}}cdot color{red}{a}+color{blue}{{a}_{1}} & {} \ end{array}]

Элемент в последней клетке считается по той же схеме: ${{b}_{0}}cdot color{red}{a}+color{blue}{{a}_{0}}$. Обозначим его буквой $r$:

[begin{array}{c|c|c|c|c|c|c} {} & color{blue}{{a}_{n}} & color{blue}{{a}_{n-1}} & color{blue}{{a}_{n-2}} & ldots & color{blue}{{a}_{1}} & color{blue}{{a}_{0}} \ hlinecolor{red}{a} & {{b}_{n-1}} & {{b}_{n-2}} & {{b}_{n-3}} & ldots & {{b}_{0}} & r={{b}_{0}}cdot color{red}{a}+color{blue}{{a}_{0}} \ end{array}]

Итак, мы заполнили все клетки и получили таблицу:

[begin{array}{c|c|c|c|c|c|c} {} & color{blue}{{a}_{n}} & color{blue}{{a}_{n-1}} & color{blue}{{a}_{n-2}} & ldots & color{blue}{{a}_{1}} & color{blue}{{a}_{0}} \ hlinecolor{red}{a} & {{b}_{n-1}} & {{b}_{n-2}} & {{b}_{n-3}} & ldots & {{b}_{0}} & r \ end{array}]

Схема заполнения этой таблицы как раз и называется схемой Горнера. Найденные элементы ${{b}_{n-1}}$, …, ${{b}_{0}}$ и $r$ позволяют переписать исходный многочлен $Pleft( x right)$ в виде

[Pleft( x right)=left( {{b}_{n-1}}{{x}^{n-1}}+ldots +{{b}_{1}}x+{{b}_{0}} right)left( x-color{red}{a} right)+r]

Такая запись оказывается грозным оружием для решения задач с многочленами, если знать её свойства. И сегодня мы изучим все эти свойства, но сначала немного практики.

Пример 1. Простой многочлен

Заполните таблицу по схеме Горнера для многочлена

[Pleft( x right)=2{{x}^{4}}-7{{x}^{3}}+{{x}^{2}}+2x-3]

в точке $x=3$.

Решение. Для начала аккуратно запишем коэффициенты исходного многочлена. Для наглядности они вновь помечены синим:

[Pleft( x right)= color{blue}{2}cdot {{x}^{4}}+left( color{blue}{-7} right)cdot {{x}^{3}}+color{blue}{1}cdot {{x}^{2}}+color{blue}{2} cdot x+left( color{blue}{-3} right)]

Составим таблицу. Поскольку степень многочлена $deg Pleft( x right)=4$, в таблице будет пять основных столбцов и один дополнительный столбец слева, в котором мы запишем число $x=color{red}{3}$:

[begin{array}{c|c|c|c|c|c} {} & color{blue}{2} & color{blue}{-7} & color{blue}{1} & color{blue}{2} & color{blue}{-3} \ hlinecolor{red}{3} & {} & {} & {} & {} & {} \ end{array}]

Заполняем пустые клетки во второй строке. В первую клетку переносим без изменений элемент сверху:

[begin{array}{c|c|c|c|c|c} {} & color{blue}{2} & color{blue}{-7} & color{blue}{1} & color{blue}{2} & color{blue}{-3} \ hlinecolor{red}{3} & 2 & {} & {} & {} & {} \ end{array}]

Элемент во второй клетке считается по формуле $2cdot color{red}{3}+left( color{blue}{-7} right)=-1$:

[begin{array}{c|c|c|c|c|c} {} & color{blue}{2} & color{blue}{-7} & color{blue}{1} & color{blue}{2} & color{blue}{-3} \ hlinecolor{red}{3} & 2 & -1 & {} & {} & {} \ end{array}]

Третью и четвёртую клетку заполняем аналогично: сначала $-1cdot color{red}{3}+color{blue}{1}=-2$, затем $-2cdot color{red}{3}+color{blue}{2}=-4$:

[begin{array}{c|c|r|r|r|c} {} & color{blue}{2} & color{blue}{-7} & color{blue}{1} & color{blue}{2} & color{blue}{-3} \ hlinecolor{red}{3} & 2 & -1 & -2 & -4 & {} \ end{array}]

Наконец, последняя клетка: $-4cdot color{red}{3}+left( color{blue}{-3} right)=-15$:

[begin{array}{c|c|r|r|r|r} {} & color{blue}{2} & color{blue}{-7} & color{blue}{1} & color{blue}{2} & color{blue}{-3} \ hlinecolor{red}{3} & 2 & -1 & -2 & -4 & -15 \ end{array}]

Готово! Мы заполнили таблицу по схеме Горнера.

Пример 2. Пропущенные коэффициенты

Заполните таблицу по схеме Горнера для многочлена

[Pleft( x right)={{x}^{4}}+3{{x}^{3}}-4]

в точке $x=1$.

Решение. Обратите внимание: в записи многочлена отсутствуют одночлены ${{x}^{2}}$ и $x$. Другими словами, коэффициенты в этих двух одночленах равны нулю:

[Pleft( x right)= color{blue}{1}cdot {{x}^{4}}+color{blue}{3}cdot {{x}^{3}}+color{blue}{0}cdot {{x}^{2}}+color{blue}{0} cdot x+left( color{blue}{-4} right)]

Для наглядности мы вновь отметили коэффициенты синим цветом — всего их снова пять, т.е. на один больше степени многочлена. И все они переносятся в таблицу. Пропуск нулевых коэффициентов будет грубой ошибкой:

[begin{array}{c|c|c|c|c|c} {} & color{blue}{1} & color{blue}{3} & color{blue}{0} & color{blue}{0} & color{blue}{-4} \ hlinecolor{red}{1} & {} & {} & {} & {} & {} \ end{array}]

Заполняем таблицу по схеме Горнера. Первый элемент переносим сверху:

[begin{array}{c|c|c|c|c|c} {} & color{blue}{1} & color{blue}{3} & color{blue}{0} & color{blue}{0} & color{blue}{-4} \ hlinecolor{red}{1} & 1 & {} & {} & {} & {} \ end{array}]

Второй, третий и четвёртый элемент считаем по формуле: $1cdot color{red}{1}+color{blue}{3}=4$; $4cdot color{red}{1}+color{blue}{0}=4$; $4cdot color{red}{1}+color{blue}{0}=4$:

[begin{array}{c|c|c|c|c|c} {} & color{blue}{1} & color{blue}{3} & color{blue}{0} & color{blue}{0} & color{blue}{-4} \ hlinecolor{red}{1} & 1 & 4 & 4 & 4 & {} \ end{array}]

Наконец, последний элемент таблицы: $4cdot color{red}{1}+left( color{blue}{-4} right)=0$:

[begin{array}{c|c|c|c|c|r} {} & color{blue}{1} & color{blue}{3} & color{blue}{0} & color{blue}{0} & color{blue}{-4} \ hlinecolor{red}{1} & 1 & 4 & 4 & 4 & 0 \ end{array}]

Готово! Таблица заполнена, последний элемент оказался равен нулю. И это не случайно. Скоро узнаем почему.:)

2. Вычисление значения многочлена

Чтобы понять, зачем нужна схема Горнера, давайте вкратце повторим всю цепочку рассуждений. Берём произвольный многочлен

[Pleft( x right)= color{blue}{{a}_{n}}{{x}^{n}}+color{blue}{{a}_{n-1}}{{x}^{n-1}}+ldots +color{blue}{{a}_{1}}x+color{blue}{{a}_{0}}]

и произвольную точку $x=color{red}{a}$. Составляем таблицу:

[begin{array}{c|c|c|c|c|c|c} {} & color{blue}{{a}_{n}} & color{blue}{{a}_{n-1}} & color{blue}{{a}_{n-2}} & ldots & color{blue}{{a}_{1}} & color{blue}{{a}_{0}} \ hlinecolor{red}{a} & {{b}_{n-1}} & {{b}_{n-2}} & {{b}_{n-3}} & ldots & {{b}_{0}} & r \ end{array}]

Найденные коэффициенты ${{b}_{n-1}}$, …, ${{b}_{0}}$, $r$ позволяют переписать многочлен $Pleft( x right)$ в новом виде:

[Pleft( x right)=left( {{b}_{n-1}}{{x}^{n-1}}+ldots +{{b}_{1}}x+{{b}_{0}} right)left( x-color{red}{a} right)+r]

Но чем так примечательна эта запись? В ближайших четырёх пунктах мы детально разберём все её свойства. И начнём с самого простого. Подставим в эту новую запись число $x=color{red}{a}$, т.е. вычислим $Pleft( color{red}{a} right)$:

[Pleft( color{red}{a} right)=left( {{b}_{n-1}}{color{red}{a}^{n-1}}+ldots +{{b}_{1}}color{red}{a}+{{b}_{0}} right)left( color{red}{a}-color{red}{a} right)+r=r]

Итак, последнее число $r$ в таблице — это значение многочлена $Pleft( x right)$ в точке $x=color{red}{a}$:

[Pleft( color{red}{a} right)=r]

А это значит, что благодаря схеме Горнера можно считать значения многочленов быстро (нет операции возведения в степень) и надёжно (в сложении мы ошибаемся реже, чем в умножении).

Так, из Примера 1 следует, что значение многочлена

[Pleft( x right)=2{{x}^{4}}-7{{x}^{3}}+{{x}^{2}}+2x-3]

в точке $x=3$ равно

[Pleft( 3 right)=r=-15]

Сравните это с прямой подстановкой $x=3$ в многочлен:

[begin{align} Pleft( 3 right) &=2cdot {{3}^{4}}-7cdot {{3}^{3}}+{{3}^{2}}+2cdot 3-3= \ &=2cdot 81-7cdot 27+left( 9+6-3 right)= \ &=162-189+12= \ &=-15 end{align}]

Результат один и тот же, но объём вычислений вырос на порядок.

Пример 3. «Некрасивые» значения

С помощью схемы Горнера найдите значение многочлена

[Pleft( x right)=8{{x}^{4}}-12{{x}^{3}}-24{{x}^{2}}+11x+7]

в точке $x=2,5$.

Решение. Выделим коэффициенты многочлена

[Pleft( x right)= color{blue}{8}cdot {{x}^{4}}+left( color{blue}{-12} right)cdot {{x}^{3}}+left( color{blue}{-24} right)cdot {{x}^{2}}+color{blue}{11} cdot x+color{blue}{7}]

и заполним таблицу для $x=color{red}{2,5}$:

[begin{array}{c|c|c|c|c|c} {} & color{blue}{8} & color{blue}{-12} & color{blue}{-24} & color{blue}{11} & color{blue}{7} \ hlinecolor{red}{2,5} & 8 & 8 & -4 & 1 & 9,5 \ end{array}]

Итого значение многочлена $Pleft( color{red}{2,5} right)=9,5$. Точно такое же значение можно получить прямой подстановкой, но вычисления будут настолько громоздкими, что мы не будем приводить их.

3. Деление многочлена с остатком

Напомню, что разделить многочлен $color{blue}{Pleft( x right)}$ на многочлен $color{red}{Aleft( x right)}$ с остатком — значит найти многочлены $Qleft( x right)$ и $Rleft( x right)$ такие, что

[color{blue}{Pleft( x right)}=Qleft( x right)cdot color{red}{Aleft( x right)}+Rleft( x right)]

причём степень многочлена $Rleft( x right)$ строго меньше степени делителя $color{red}{Aleft( x right)}$:

[deg Rleft( x right) lt deg color{red}{Aleft( x right)}]

Многочлен $Qleft( x right)$ называют неполным частным, $Rleft( x right)$ — остатком от деления. Можно показать, что $Qleft( x right)$ и $Rleft( x right)$ определены однозначно для исходных многочленов $color{blue}{Pleft( x right)}$ и $color{red}{Aleft( x right)}$.

3.1. Случай линейного делителя

Пусть $Aleft( x right)=x- color{red}{a}$ — линейный двучлен. Очевидно, его степень $deg Aleft( x right)=1$.

Рассмотрим произвольный многочлен

[Pleft( x right)= color{blue}{{a}_{n}}{{x}^{n}}+color{blue}{{a}_{n-1}}{{x}^{n-1}}+ldots +color{blue}{{a}_{1}}x+color{blue}{{a}_{0}}]

и составим таблицу для $x=color{red}{a}$ по схеме Горнера:

[begin{array}{c|c|c|c|c|c|c} {} & color{blue}{{a}_{n}} & color{blue}{{a}_{n-1}} & color{blue}{{a}_{n-2}} & ldots & color{blue}{{a}_{1}} & color{blue}{{a}_{0}} \ hlinecolor{red}{a} & {{b}_{n-1}} & {{b}_{n-2}} & {{b}_{n-3}} & ldots & {{b}_{0}} & r \ end{array}]

Получим новую запись многочлена $Pleft( x right)$:

[Pleft( x right)=left( {{b}_{n-1}}{{x}^{n-1}}+ldots +{{b}_{1}}x+{{b}_{0}} right)left( x-color{red}{a} right)+r]

где $r$ — обычное число, т.е. $deg r=0 lt deg Aleft( x right)$. Но тогда многочлен

[Qleft( x right)={{b}_{n-1}}{{x}^{n-1}}+{{b}_{n-2}}{{x}^{n-1}}+ldots +{{b}_{1}}x+{{b}_{0}}]

является неполным частным при делении $Pleft( x right)$ на двучлен $x-color{red}{a}$, а число $r$ — остаток этого деления:

[Pleft( x right)=Qleft( x right)cdot left( x-color{red}{a} right)+r]

Итак, схема Горнера позволяет быстро находить неполное частное и остаток от деления произвольного многочлена $Pleft( x right)$ на двучлен $x-color{red}{a}$.

Пример 4. Деление с остатком

Найдите частное и остаток при делении многочлена

[{{x}^{4}}-2{{x}^{3}}+4{{x}^{2}}-6x+10]

На многочлен $x-1$.

Решение. Выделим синим цветом коэффициенты исходного многочлена:

[color{blue}{1}cdot {{x}^{4}}+left( color{blue}{-2} right)cdot {{x}^{3}}+color{blue}{4}cdot {{x}^{2}}+left( color{blue}{-6} right)cdot x+color{blue}{10}]

Заполним таблицу по схеме Горнера для $x=color{red}{1}$:

[begin{array}{c|c|r|c|r|c} {} & color{blue}{1} & color{blue}{-2} & color{blue}{4} & color{blue}{-6} & color{blue}{10} \ hlinecolor{red}{1} & 1 & -1 & 3 & -3 & 7 \ end{array}]

Первые четыре числа — это коэффициенты многочлена-частного. Отметим их зелёным цветом:

[begin{array}{c|c|r|c|r|c} {} & color{blue}{1} & color{blue}{-2} & color{blue}{4} & color{blue}{-6} & color{blue}{10} \ hlinecolor{red}{1} & color{#green}{1} & color{#green}{-1} & color{#green}{3} & color{#green}{-3} & 7 \ end{array}]

Остаток от деления равен $r=7$. Составим многочлен-частное:

[Qleft( x right)= color{#green}{1}cdot {{x}^{3}}+left( color{#green}{-1} right)cdot {{x}^{2}}+color{#green}{3}cdot x+left( color{#green}{-3} right)]

Очевидно, при делении на линейный двучлен степень частного должна быть на единицу меньше степени исходного многочлена. Так и получилось:

[deg Qleft( x right)=4-1=3]

Пример 5. Проверка делимости

Убедитесь, что многочлен

[{{x}^{5}}-6{{x}^{4}}+16{{x}^{2}}-33{{x}^{2}}+44x-28]

делится на двучлен ${{left( x-2 right)}^{2}}$.

Решение. Многочлен делится без остатка на ${{left( x-2 right)}^{2}}$, если сначала он делится на двучлен $x-2$, а затем частное вновь делится на $x-2$. Следовательно, решение состоит из двух шагов.

Первый шаг: выделим коэффициенты исходного многочлена

[color{blue}{1}cdot {{x}^{5}}+left( color{blue}{-6} right)cdot {{x}^{4}}+color{blue}{16}cdot {{x}^{2}}+left( color{blue}{-33} right)cdot {{x}^{2}}+color{blue}{52} cdot x+left( color{blue}{-36} right)]

[begin{align}color{blue}{1}cdot {{x}^{5}} &+left( color{blue}{-6} right)cdot {{x}^{4}}+color{blue}{16}cdot {{x}^{2}}+ \ &+left( color{blue}{-33} right)cdot {{x}^{2}}+color{blue}{52} cdot x+left( color{blue}{-36} right) \ end{align}]

Составим таблицу для $x=color{red}{2}$. В ней будет 6 основных столбцов:

[begin{array}{c|c|c|c|c|c|c} {} & color{blue}{1} & color{blue}{-6} & color{blue}{16} & color{blue}{-33} & color{blue}{52} & color{blue}{-36} \ hlinecolor{red}{2} & {} & {} & {} & {} & {} & {} \ end{array}]

Заполним все пустые клетки по схеме Горнера:

[begin{array}{c|c|c|c|r|c|c} {} & color{blue}{1} & color{blue}{-6} & color{blue}{16} & color{blue}{-33} & color{blue}{52} & color{blue}{-36} \ hlinecolor{red}{2} & color{green}{1} & color{green}{-4} & color{green}{8} & color{green}{-17} & color{green}{18} & 0 \ end{array}]

Получили остаток $r=0$, поэтому исходный многочлен действительно делится на $x-color{red}{2}$, а частное равно

[Qleft( x right)= color{green}{1}cdot {{x}^{4}}+left( color{green}{-4} right)cdot {{x}^{3}}+color{green}{8}cdot {{x}^{2}}+left( color{green}{-17} right) cdot x+color{green}{18}]

Следовательно, исходный многочлен можно представить так:

[begin{align} & {{x}^{5}}-6{{x}^{4}}+16{{x}^{2}}-33{{x}^{2}}+44x-28= \ = & left( {{x}^{4}}-4{{x}^{3}}+8{{x}^{2}}-17x+18 right)cdot left( x-color{red}{2} right) \ end{align}]

Второй шаг: выделяем коэффициенты и заполняем ту же самую таблицу, но уже для многочлена $Qleft( x right)$.

[Qleft( x right)= color{blue}{1}cdot {{x}^{4}}+left( color{blue}{-4} right)cdot {{x}^{3}}+color{blue}{8}cdot {{x}^{2}}+left( color{blue}{-17} right) cdot x+color{blue}{18}]

Но все коэффициенты в нужном количестве уже присутствуют в таблице, которую мы получили на предыдущем шаге. А потому достаточно приписать к этой таблице ещё одну строку и вновь заполнить её для $x=color{red}{2}$:

[begin{array}{c|c|c|c|r|c|c} {} & 1 & -6 & 16 & -33 & 52 & -36 \ hlinecolor{red}{2} & color{blue}{1} & color{blue}{-4} & color{blue}{8} & color{blue}{-17} & color{blue}{18} & 0 \ hlinecolor{red}{2} & color{green}{1} & color{green}{-2} & color{green}{4} & color{green}{-9} & 0 & {} \ end{array}]

Остаток от деления равен нулю, поэтому многочлен $Qleft( x right)$ делится на $x-color{red}{2}$, и его можно переписать так:

[Qleft( x right)=left( color{green}{1}cdot {{x}^{3}}+left( color{green}{-2} right){{x}^{2}}+color{green}{4} cdot x+left( color{green}{-9} right) right)cdot left( x-color{red}{2} right)]

Возвращаясь к исходному многочлену, получим

[begin{align} & {{x}^{5}}-6{{x}^{4}}+16{{x}^{2}}-33{{x}^{2}}+44x-28= \ = & left( {{x}^{3}}-2{{x}^{2}}+4x-9 right)cdot {{left( x-color{red}{2} right)}^{2}} \ end{align}]

Такая запись, как и приведённая выше таблица, доказывает, что исходный многочлен делится на ${{left( x-color{red}{2} right)}^{2}}$.

Обратите внимание: на каждом следующем шаге количество коэффициентов уменьшается на единицу:

  • В первой строке мы выписали все 6 коэффициентов исходного многочлена.
  • Во второй строке осталось лишь 5 коэффициентов, а последнее число — остаток.
  • Третья срока — 4 коэффициента и вновь остаток.

Всё это пригодится нам в следующем пункте.

4. Перебор корней уравнения

До сих пор мы применяли схему Горнера для некоторой точки $x=color{red}{a}$, которая была прямо указана в условии задачи. Но что если найти такую точку — как раз и есть условие задачи?

Рассмотрим уравнение

[color{blue}{{a}_{n}}{{x}^{n}}+color{blue}{{a}_{n-1}}{{x}^{n-1}}+ldots +color{blue}{{a}_{1}}x+color{blue}{{a}_{0}}=0]

Число $x=color{red}{a}$ будет корнем этого уравнения, если $Pleft( color{red}{a} right)=0$. Это значит, что последний элемент в схеме Горнера должен быть равен нулю:

[begin{array}{c|c|c|c|c|c|c} {} & color{blue}{{a}_{n}} & color{blue}{{a}_{n-1}} & color{blue}{{a}_{n-2}} & ldots & color{blue}{{a}_{1}} & color{blue}{{a}_{0}} \ hlinecolor{red}{a} & {{b}_{n-1}} & {{b}_{n-2}} & {{b}_{n-3}} & ldots & {{b}_{0}} & color{green}{0} \ end{array}]

Следовательно, мы можем быстро проверить, является ли число $x=color{red}{a}$ корнем уравнения. Достаточно просто подставить его в таблицу и найти последний элемент.

Кроме того, мы знаем, что последний элемент — это остаток $r$. При $r=color{green}{0}$ исходное уравнение примет вид

[left( {{b}_{n-1}}{{x}^{n-1}}+ldots +{{b}_{1}}x+{{b}_{0}} right)left( x-color{red}{a} right)=0]

Произведение равно нулю тогда и только тогда, когда хотя бы один из множителей равен нулю. Откуда либо $x-color{red}{a}=0$ (этот случай мы уже разобрали), либо

[color{blue}{{b}_{n-1}}{{x}^{n-1}}+ldots +color{blue}{{b}_{1}}x+color{blue}{{b}_{0}}=0]

Получили новое уравнение — меньшей степени, чем исходное. Коэффициенты этого уравнения уже занесены в таблицу, и к нему вновь применима схема Горнера для перебора кандидатов в корни.

Более того: этот перебор можно ускорить. Но об этом чуть позже. Сначала рассмотрим пару простых примеров.

Пример 6. Уравнение третьей степени

Решите уравнение:

[{{x}^{3}}+9{{x}^{2}}+23x+15=0]

Решение. Заметим, что все коэффициенты многочлена положительны, поэтому уравнение не имеет положительных корней. Иначе, если $x gt 0$, левая часть равенства представляет собой сумму положительных чисел, которая никогда не равна нулю.

Рассмотрим отрицательные числа. Начнём с $x=color{red}{-1}$:

[begin{array}{c|c|c|c|c} {} & color{blue}{1} & color{blue}{9} & color{blue}{23} & color{blue}{15} \ hlinecolor{red}{-1} & 1 & 8 & 15 & color{green}{0} \ end{array}]

Получили $r=color{green}{0}$. Следовательно, $x=color{red}{-1}$ — корень, и всё уравнение можно переписать так:

[left( {{x}^{2}}+8x+15 right)left( x+1 right)=0]

Далее уравнение разделяется на линейное $x+1=0$, которое мы уже решили, и квадратное

[{{x}^{2}}+x+15=0]

Такое уравнение можно решить через дискриминант или по теореме Виета. Получим корни $x=-3$ и $x=-5$.

Окончательный ответ: $x=-1$, $x=-3$, $x=-5$.

Впрочем, с тем же успехом мы могли продолжить решение по схеме Горнера:

[begin{array}{r|c|c|c|c} {} & color{blue}{1} & color{blue}{9} & color{blue}{23} & color{blue}{15} \ hlinecolor{red}{-1} & 1 & 8 & 15 & color{green}{0} \ hlinecolor{red}{-3} & 1 & 5 & color{green}{0} & {} \ hlinecolor{red}{-5} & 1 & color{green}{0} & {} & {} \ end{array}]

При этом уравнение примет вид

[left( x+3 right)left( x+5 right)left( x+1 right)=0]

По сути, мы получили разложение на множители. И чуть ниже об этом будет отдельный пункт.

Пример 7. Ещё одно уравнение

Решите уравнение:

[2{{x}^{3}}-{{x}^{2}}-5x-2=0]

Решение. В этот раз мы видим, что корни вполне могут быть положительными. Начнём с $x=color{red}{1}$:

[begin{array}{c|c|r|r|r} {} & color{blue}{2} & color{blue}{-1} & color{blue}{-5} & color{blue}{-2} \ hlinecolor{red}{1} & 2 & 1 & -4 & color{red}{-6} \ end{array}]

Получили $r=color{red}{-6}ne 0$. Следовательно, $x=color{red}{1}$ не является корнем. Проверим $x=color{red}{2}$:

[begin{array}{c|c|r|r|r} {} & color{blue}{2} & color{blue}{-1} & color{blue}{-5} & color{blue}{-2} \ hlinecolor{red}{1} & 2 & 1 & -4 & color{red}{-6} \ hlinecolor{red}{2} & 2 & 3 & 1 & color{green}{0} \ end{array}]

Обратите внимание: при заполнении третьей строки таблицы мы игнорируем вторую строку, где нас постигла неудача. И если бы мы могли стирать строки, то схема Горнера выглядела бы так:

[begin{array}{c|c|r|r|r} {} & color{blue}{2} & color{blue}{-1} & color{blue}{-5} & color{blue}{-2} \ hlinecolor{red}{2} & 2 & 3 & 1 & color{green}{0} \ end{array}]

В любом случае мы получили $r=color{green}{0}$, поэтому $x=color{red}{2}$ — корень, и уравнение примет вид

[left( 2{{x}^{2}}+3x+1 right)left( x-2 right)=0]

Далее можно решить квадратное уравнение через дискриминант, а можно продолжить заполнять таблицу. Например, для $x=color{red}{-1}$:

[begin{array}{r|c|r|r|r} {} & 2 & -1 & -5 & -2 \ hline1 & 2 & 1 & -4 & -6 \ hline2 & color{blue}{2} & color{blue}{3} & color{blue}{1} & color{green}{0} \ hline-1 & 2 & 1 & color{green}{0} & {} \ end{array}]

Вновь получили ноль в последней клетке, поэтому $x=color{red}{-1}$ — тоже корень, а уравнение примет вид

[left( 2x+1 right)left( x+1 right)left( x-2 right)=0]

Теперь ответ очевиден: $x=2$, $x=-1$, $x=-0,5$.

Помните: «неудачные» строки — это нормально. Их бывает много. Главное при переборе корней — игнорировать такие строки и заполнять таблицу так, будто этих строк не существует.

4.1. Теорема Безу

Теорема Безу и следствия из неё позволяет значительно сузить круг потенциальных корней.

Теорема Безу. Остаток от деления многочлена

[Pleft( x right)={{a}_{n}}{{x}^{n}}+{{a}_{n-1}}{{x}^{n-1}}+ldots +{{a}_{1}}x+{{a}_{0}}]

на двучлен $x-a$ равен $Pleft( a right)$.

Несложно заметить, что схема Горнера и следующая из неё запись многочлена

[Pleft( x right)=left( {{b}_{n-1}}{{x}^{n-1}}+ldots +{{b}_{1}}x+{{b}_{0}} right)left( x-color{red}{a} right)+r]

является прямым доказательством этой теоремы. Действительно, если подставить в эту запись значение $x=color{red}{a}$, мы получим

[Pleft( color{red}{a} right)=left( {{b}_{n-1}}color{red}{{a}^{n-1}}+ldots +{{b}_{1}}color{red}{a}+{{b}_{0}} right)left( color{red}{a}-color{red}{a} right)+r=r]

У теоремы Безу огромное количество полезных приложений — см. урок «Теорема Безу». Сейчас же нас интересует не сама теорема, а следствие из неё, связанное с корнями многочлена.

Пусть $x=color{red}{a}$ — корень многочлена $Pleft( x right)$. Распишем многочлен по схеме Горнера для $x=color{red}{a}$:

[Pleft( x right)=left( {{b}_{n-1}}{{x}^{n-1}}+ldots +{{b}_{1}}x+{{b}_{0}} right)left( x-color{red}{a} right)]

Поскольку $x=color{red}{a}$ — корень, остаток $r=0$, и мы получили разложение многочлена $Pleft( x right)$ на множители. А теперь выполним обратную операцию — раскроем скобки и приведём подобные слагаемые:

[Pleft( x right)={{b}_{n-1}}{{x}^{n}}+ldots -color{red}{a}cdot {{b}_{0}}]

Получается, что корень $x=color{red}{a}$ является делителем свободного члена $Pleft( x right)$. Более того, можно показать, что в многочлене

[Pleft( x right)= color{blue}{{a}_{n}}{{x}^{n}}+color{blue}{{a}_{n-1}}{{x}^{n-1}}+ldots +color{blue}{{a}_{1}}x+color{blue}{{a}_{0}}]

с целыми коэффициентами $color{blue}{{a}_{n}}$, …, $color{blue}{{a}_{0}}$ все рациональные корни имеют вид

[x=frac{m}{n}]

где $min mathbb{Z}$ — делитель свободного члена $color{blue}{{a}_{0}}$, а $nin mathbb{N}$ — делитель старшего коэффициента $color{blue}{{a}_{n}}$.

И хоть при первом взгляде на все эти рассуждения они могут показаться сложными, на практике теорема Безу значительно упрощает поиск корней. Взгляните на примеры.:)

Пример 8. Сплошной перебор

Решите уравнение:

[{{x}^{5}}+8{{x}^{4}}+24{{x}^{3}}+35{{x}^{2}}+28x+12=0]

Решение. Слева от знака равенства стоит многочлен пятой степени. Старший коэффициент многочлена ${{a}_{5}}=color{blue}{1}$, свободный член ${{a}_{0}}=color{blue}{12}$. Если такой многочлен имеет рациональные корни вида

[x=frac{m}{n}]

то $n=1$ — это единственный натуральный делитель для ${{a}_{5}}=color{blue}{1}$. А вот число $m$ будем искать среди делителей числа ${{a}_{0}}=color{blue}{12}$:

[m=pm 1, pm 2, pm 3, pm 4, pm 6, pm 12.]

Итого 12 вариантов. Далее заметим, что все коэффициенты исходного многочлена положительны, поэтому достаточно проверить лишь отрицательные корни. Начнём с $x=color{red}{-1}$, затем $x=color{red}{-2}$, $x=color{red}{-3}$ и т.д.:

[begin{array}{r|c|c|c|c|c|c} {} & color{blue}{1} & color{blue}{8} & color{blue}{24} & color{blue}{35} & color{blue}{28} & color{blue}{12} \ hline color{red}{-1} & 1 & 7 & 17 & 18 & 10 & color{red}{2} \ hline color{red}{-2} & 1 & 6 & 12 & 11 & 6 & color{green}{0} \ hline color{red}{-3} & 1 & 3 & 3 & 2 & color{green}{0} & {} \ end{array}]

Как видим, вариант $x=color{red}{-1}$ не подошёл, поэму строку с проверкой этого числа можно вычеркнуть. Зато $x=color{red}{-2}$ и $x=color{red}{-3}$ — корни. Более того: можно повторно проверить $x=color{red}{-2}$. Получим интересный результат:

[begin{array}{r|c|c|c|c|c|c} {} & color{blue}{1} & color{blue}{8} & color{blue}{24} & color{blue}{35} & color{blue}{28} & color{blue}{12} \ hline color{red}{-2} & 1 & 6 & 12 & 11 & 6 & color{green}{0} \ hline color{red}{-3} & 1 & 3 & 3 & 2 & color{green}{0} & {} \ hline color{red}{-2} & 1 & 1 & 1 & color{green}{0} & {} & {} \ end{array}]

Другими словами, исходное уравнение можно переписать так:

[left( {{x}^{2}}+x+1 right){{left( x+2 right)}^{2}}left( x+1 right)=0]

Число $x=color{red}{-2}$ оказалось корнем второй кратности, а квадратное уравнение

[{{x}^{2}}+x+1=0]

не имеет корней. Поэтому окончательный ответ: $x=-2$, $x=-3$.

Пример 9. Дробные корни

Решите уравнение:

[3{{x}^{4}}+5{{x}^{3}}-{{x}^{2}}-5x-2=0]

Решение. По теореме Безу получаем, что рациональные корни вида

[x=frac{m}{n}]

должны быть составлены из чисел $min left{ pm 1, pm 2 right}$ и $nin left{ 1,3 right}$. Всего существует восемь таких комбинаций:

[xin left{ pm 1; pm 2; pm frac{1}{3}; pm frac{2}{3} right}]

Рассмотрим самые простые корни: $x=color{red}{1}$ и $x=color{red}{-1}$. Причём на каждом шаге будем проверять возможную кратность:

[begin{array}{r|c|c|c|c|c} {} & color{blue}{3} & color{blue}{5} & color{blue}{-1} & color{blue}{-5} & color{blue}{-2} \ hline color{red}{1} & 3 & 8 & 7 & 2 & color{green}{0} \ hline color{red}{1} & 3 & 11 & 18 & color{red}{20} & {} \ hline color{red}{-1} & 3 & 5 & 2 & color{green}{0} & {} \ hline color{red}{-1} & 3 & 2 & color{green}{0} & {} & {} \ end{array}]

Получили корень $x=color{red}{1}$ (первой кратности) и $x=color{red}{-1}$ (как минимум второй кратности), а само уравнение можно переписать так:

[left( 3x+2 right){{left( x+1 right)}^{2}}left( x-1 right)=0]

Теперь очевидно, что всего уравнение имеет три корня: $x=1$, $x=-1$ и $x=-{2}/{3};$.

4.2. Учёт кратности корней

Как видим, схема Горнера позволяет не просто перебирать корни, но и определять их кратность. Это особенно важно при решении неравенств и задач с параметрами.

Чтобы определить кратность корня $x=color{red}{a}$, достаточно подставлять его в таблицу до тех пор, пока не появится остаток, отличный от нуля. Либо пока исходный многочлен не будет полностью разложен на множители.

Пример 10. Корень четвёртой кратности

Решите уравнение и определите кратность корней:

[{{x}^{5}}-10{{x}^{3}}-20{{x}^{2}}-15x-4=0]

Решение. Слева стоит многочлен с целыми коэффициентами. Выпишем потенциальные корни по теореме Безу:

[xin left{ pm 1; pm 2; pm 4 right}]

Начнём с самых простых чисел: $x=color{red}{1}$ и $x=color{red}{-1}$. Проверим их по схеме Горнера:

[begin{array}{r|c|r|r|r|r|r} {} & color{blue}{1} & color{blue}{0} & color{blue}{-10} & color{blue}{-20} & color{blue}{-15} & color{blue}{-4} \ hlinecolor{red}{1} & 1 & 1 & -9 & -29 & -44 & color{red}{-48} \ hlinecolor{red}{-1} & 1 & -1 & -9 & -11 & -4 & color{green}{0} \ hlinecolor{red}{-1} & 1 & -2 & -7 & -4 & color{green}{0} & {} \ hlinecolor{red}{-1} & 1 & -3 & -4 & color{green}{0} & {} & {} \ hlinecolor{red}{-1} & 1 & -4 & color{green}{0} & {} & {} & {} \ end{array}]

Перепишем исходное уравнение:

[{{left( x+1 right)}^{4}}left( x-1 right)left( x-4 right)=0]

Итого уравнение имеет три различных корня: $x=-1$ (четвёртой кратности), $x=1$ (первой кратности) и $x=4$ (тоже первой кратности).

Ключевая мысль: с помощью схемы Горнера можно решать даже уравнения высших степеней. Поэтому если при решении текстовой задачи (и особенно задачи с параметром) возникло уравнение 3-й степени и выше, это вовсе не означает, что вы где-то ошиблись. Вполне возможно, что составители задачи хотят проверить, умеете ли вы решать уравнения высших степеней.

5. Разложение на множители

Схему Горнера часто применяют для разложения многочлена на множители. Мы знаем, что для всякого $x=color{red}{a}$ такого, что последний элемент таблицы $r=color{green}{0}$, можно переписать исходный многочлен $Pleft( x right)$ в виде

[Pleft( x right)=left( x-color{red}{a} right)cdot Qleft( x right)]

Коэффициенты многочлена $Qleft( x right)$ будут также даны в таблице, и к нему тоже применима схема Горнера.

Пример 11. Простой многочлен

Разложите на множители многочлен

[{{x}^{4}}+2{{x}^{3}}+4{{x}^{2}}+3x-10]

Решение. Рассмотрим многочлен

[Pleft( x right)= color{blue}{1}cdot {{x}^{4}}+color{blue}{2}cdot {{x}^{3}}+color{blue}{4}cdot {{x}^{2}}+color{blue}{3}cdot x+left( color{blue}{-10} right)]

Будем выделять из него двучлены вида $left( x-color{red}{a} right)$, где $x=color{red}{a}$ — корни многочлена $Pleft( x right)$. Рассмотрим в качестве таких корней делители свободного члена ${{a}_{0}}=color{blue}{-10}$. Начнём с $x=color{red}{1}$ и $x=color{red}{-1}$:

[begin{array}{r|c|c|c|c|c} {} & color{blue}{1} & color{blue}{2} & color{blue}{4} & color{blue}{3} & color{blue}{-10} \ hlinecolor{red}{1} & 1 & 3 & 7 & 10 & color{green}{0} \ hlinecolor{red}{-1} & 1 & 2 & 5 & color{red}{5} & {} \ hlinecolor{red}{-2} & 1 & 1 & 5 & color{green}{0} & {} \ end{array}]

Итого одна неудачная попытка и две удачных. Получили разложение многочлена

[Pleft( x right)=left( x-1 right)left( x+2 right)left( {{x}^{2}}+x+5 right)]

Квадратный трёхчлен в третьей скобке всегда положителен:

[{{x}^{2}}+x+5 gt 0]

Его нельзя разложить на множители, поэтому указанное разложение $Pleft( x right)$ — окончательное.

Пример 12. Сложный многочлен

Разложите на множители многочлен

[{{x}^{5}}-6{{x}^{4}}+2{{x}^{3}}+36{{x}^{2}}-27x-54]

Решение. Рассмотрим многочлен

[Pleft( x right)= color{blue}{1}cdot {{x}^{5}}+left( color{blue}{-6} right)cdot {{x}^{4}}+color{blue}{2}cdot {{x}^{3}}+color{blue}{36}cdot {{x}^{2}}+left( color{blue}{-27} right)cdot x+left( color{blue}{-54} right)]

[begin{align}Pleft( x right)= color{blue}{1}cdot {{x}^{5}} &+left( color{blue}{-6} right)cdot {{x}^{4}}+color{blue}{2}cdot {{x}^{3}}+ \ &+color{blue}{36}cdot {{x}^{2}}+left( color{blue}{-27} right) cdot x+left( color{blue}{-54} right) \ end{align}]

Проверим делители свободного члена ${{a}_{0}}=color{blue}{-54}$. Таких делителей очень много, поэтому начнём с самых простых: $x=color{red}{1}$ и $x=color{red}{-1}$:

[begin{array}{r|c|c|c|c|c|c} {} & color{blue}{1} & color{blue}{-6} & color{blue}{2} & color{blue}{36} & color{blue}{-27} & color{blue}{-54} \ hlinecolor{red}{1} & 1 & -5 & -3 & 33 & 6 & color{red}{-48} \ hlinecolor{red}{-1} & 1 & -7 & 9 & 27 & -54 & color{green}{0} \ hlinecolor{red}{-1} & 1 & -8 & 17 & 10 & color{red}{-64} & {} \ hlinecolor{red}{2} & 1 & -5 & -1 & 25 & color{red}{-4} & {} \ hlinecolor{red}{-2} & 1 & -9 & 27 & -27 & color{green}{0} & {} \ hlinecolor{red}{3} & 1 & -6 & 9 & color{green}{0} & {} & {} \ hlinecolor{red}{3} & 1 & -3 & color{green}{0} & {} & {} & {} \ hlinecolor{red}{3} & 1 & color{green}{0} & {} & {} & {} & {} \ end{array}]

Получили три неудачных попытки и пять удачных. В целом многочлен привет вид

[Pleft( x right)=left( x+1 right)left( x+2 right){{left( x-3 right)}^{3}}]

Это и есть искомое разложение на множители.

Обратите внимание: после проверки корня $x=color{red}{-2}$ в таблице возникла формула сокращённого умножения — куб разности:

[{{x}^{3}}-9{{x}^{2}}+27x-27={{left( x-3 right)}^{3}}]

С этим замечанием дальше можно было вообще не заполнять таблицу, поскольку многочлен сразу примет вид

[Pleft( x right)=left( x+1 right)left( x+2 right){{left( x-3 right)}^{3}}]

6. Разложение по степеням

Наконец, ещё одно применение схемы Горнера — это разложение многочлена по степеням двучлена $left( x-color{red}{a} right)$. Для этого достаточно составлять таблицу с указанным $x=color{red}{a}$ до тех пор, пока не закончатся столбцы с коэффициентами.

Полученные остатки будут коэффициентами искомого разложения. Взгляните на примеры.

Пример 13. Разложение многочлена

Разложите по степеням $left( x-1 right)$ многочлен

[{{x}^{4}}-6{{x}^{3}}+16{{x}^{2}}-17x-5]

Решение. Выделим коэффициенты многочлена:

[Pleft( x right)= color{blue}{1}cdot {{x}^{4}}+left( color{blue}{-6} right)cdot {{x}^{3}}+color{blue}{16}cdot {{x}^{2}}+left( color{blue}{-17} right)cdot x+left( color{blue}{-5} right)]

[begin{align}Pleft( x right)= color{blue}{1}cdot {{x}^{4}} &+left( color{blue}{-6} right)cdot {{x}^{3}}+color{blue}{16}cdot {{x}^{2}}+ \ &+left( color{blue}{-17} right) cdot x+left( color{blue}{-5} right) \ end{align}]

Занесём эти коэффициенты в таблицу и будем заполнять её по схеме Горнера для $x=color{red}{1}$ до тех пор, пока не вычеркнем все столбцы:

[begin{array}{c|c|c|c|c|c} {} & color{blue}{1} & color{blue}{-6} & color{blue}{16} & color{blue}{-17} & color{blue}{-5} \ hlinecolor{red}{1} & 1 & -5 & 11 & -6 & color{green}{-11} \ hlinecolor{red}{1} & 1 & -4 & 7 & color{green}{1} & {} \ hlinecolor{red}{1} & 1 & -3 & color{green}{4} & {} & {} \ hlinecolor{red}{1} & 1 & color{green}{-2} & {} & {} & {} \ hlinecolor{red}{1} & color{green}{1} & {} & {} & {} & {} \ end{array}]

Числа, выделенные зелёным — это остатки от деления в каждой новой строке. Они и будут коэффициентами разложения в порядке возрастания степеней. Внизу таблицы находится старший коэффициент, а в первой строке — свободный член:

[Pleft( x right)= color{green}{1}cdot {{left( x-1 right)}^{4}}+left( color{green}{-2} right)cdot {{left( x-1 right)}^{3}}+color{green}{4}cdot {{left( x-1 right)}^{2}}+color{green}{1}cdot left( x-1 right)+left( color{green}{-11} right)]

[begin{align}Pleft( x right) &=color{green}{1}cdot {{left( x-1 right)}^{4}}+left( color{green}{-2} right)cdot {{left( x-1 right)}^{3}}+ \ &+color{green}{4}cdot {{left( x-1 right)}^{2}}+color{green}{1}cdot left( x-1 right)+left( color{green}{-11} right) \ end{align}]

Представим эту запись более компактно:

[Pleft( x right)={{left( x-1 right)}^{4}}-2{{left( x-1 right)}^{3}}+4{{left( x-1 right)}^{2}}+left( x-1 right)-11]

[begin{align}Pleft( x right) &={{left( x-1 right)}^{4}}-2{{left( x-1 right)}^{3}}+ \ &+4{{left( x-1 right)}^{2}}+left( x-1 right)-11 \ end{align}]

Это и есть искомое разложение.

Пример 14. Финал

Разложите по степеням $left( x-2 right)$ многочлен

[{{x}^{4}}-8{{x}^{3}}+24{{x}^{2}}-50x+48]

Решение. В раз не будем переписывать многочлен с выделением коэффициентов, а сразу составим таблицу:

[begin{array}{c|c|c|c|c|c} {} & color{blue}{1} & color{blue}{-8} & color{blue}{24} & color{blue}{-50} & color{blue}{48} \ hlinecolor{red}{2} & 1 & -6 & 12 & -26 & color{green}{-4} \ hlinecolor{red}{2} & 1 & -4 & 4 & color{green}{-18} & {} \ hlinecolor{red}{2} & 1 & -2 & color{green}{0} & {} & {} \ hlinecolor{red}{2} & 1 & color{green}{0} & {} & {} & {} \ hlinecolor{red}{2} & color{green}{1} & {} & {} & {} & {} \ end{array}]

Запишем найденное разложение в порядке убывания степеней:

[color{green}{1}cdot {{left( x-2 right)}^{4}}+color{green}{0}cdot {{left( x-2 right)}^{3}}+color{green}{0}cdot {{left( x-2 right)}^{2}}+left( color{green}{-18} right)cdot left( x-2 right)+left( color{green}{-4} right)]

[begin{align}color{green}{1}cdot {{left( x-2 right)}^{4}}&+color{green}{0}cdot {{left( x-2 right)}^{3}}+color{green}{0}cdot {{left( x-2 right)}^{2}}+ \ &+left( color{green}{-18} right)cdot left( x-2 right)+left( color{green}{-4} right) \ end{align}]

То же самое разложение, но более компактно:

[{{left( x-2 right)}^{4}}-18left( x-2 right)-4]

Это окончательный ответ.

7. Как работает Схема Горнера

Очень просто. Вернёмся к исходному многочлену:

[Pleft( x right)= color{blue}{{a}_{n}}{{x}^{n}}+color{blue}{{a}_{n-1}}{{x}^{n-1}}+ldots +color{blue}{{a}_{1}}x+color{blue}{{a}_{0}}]

Вынесем за скобки множитель $x$ из всех слагаемых, кроме последнего:

[Pleft( x right)=left( color{blue}{{a}_{n}}{{x}^{n-1}}+color{blue}{{a}_{n-1}}{{x}^{n-2}}+ldots +color{blue}{{a}_{1}} right)cdot x+color{blue}{{a}_{0}}]

В скобках стоит новый многочлен. Вновь вынесем за скобки $x$. Сделаем так много раз и в какой-то момент получим запись вида

[Pleft( x right)=left( ldots left( left( color{blue}{{a}_{n}} right)cdot x+color{blue}{{a}_{n-1}} right)cdot x+ldots +color{blue}{{a}_{1}} right)cdot x+color{blue}{{a}_{0}}]

Мы видим множество скобок. Обозначим элемент в самой внутренней скобке через ${{b}_{n-1}}$:

[{{b}_{n-1}}=color{blue}{{a}_{n}}]

Элемент в предыдущей скобке обозначим ${{b}_{n-2}}$:

[{{b}_{n-2}}={{b}_{n-1}} cdot x+color{blue}{{a}_{k}}]

И так далее по уже известной формуле

[{{b}_{k-1}}={{b}_{k}} cdot x+color{blue}{{a}_{k}}]

В какой-то момент мы находим ${{b}_{0}}$ и $r$:

[begin{align} {{b}_{0}} &={{b}_{1}}cdot x+color{blue}{{a}_{1}} \ r &={{b}_{0}}cdot x+color{blue}{{a}_{0}} end{align}]

Собираем все найденные значения в таблицу:

[begin{array}{c|c|c|c|c|c|c} {} & color{blue}{{a}_{n}} & color{blue}{{a}_{n-1}} & color{blue}{{a}_{n-2}} & ldots & color{blue}{{a}_{1}} & color{blue}{{a}_{0}} \ hline x & {{b}_{n-1}} & {{b}_{n-2}} & {{b}_{n-3}} & ldots & {{b}_{0}} & r \ end{array}]

Легко показать, что $r=Pleft( x right)$. Кроме того, согласно теореме Безу, при подстановке $x=color{red}{a}$ найденное число $r=Pleft( color{red}{a} right)$ есть остаток от деления многочлена $Pleft( x right)$ на двучлен $x-color{red}{a}$:

[Pleft( x right)=Qleft( x right)cdot left( x-color{red}{a} right)+r]

В частности, при $r=0$ деление выполнено без остатка, поэтому многочлен $Pleft( x right)$ раскладывается на множители:

[Pleft( x right)=Qleft( x right)cdot left( x-color{red}{a} right)]

Далее по индукции или прямым вычислением можно показать, что коэффициенты $Qleft( x right)$ — это те самые числа ${{b}_{n-1}}$, …, ${{b}_{0}}$ из таблицы. Поскольку $deg Qleft( x right)=n-1$, на каждом шаге степень этого многочлена будет уменьшаться.

В какой-то момент окажется, что $Qleft( x right)= color{blue}{{a}_{n}}$ — константа, и дальнейшее заполнение таблицы по схеме Горнера невозможно. Вот и всё.:)

Смотрите также:

  1. Бином Ньютона
  2. Теорема Безу и корни многочленов
  3. Решение задач B12: №448—455
  4. Задача B3 — работа с графиками
  5. Пример решения задачи 15
  6. Задача B15: частный случай при работе с квадратичной функцией

Добавить комментарий