5. Асинхронные машины
ности при увеличении полезной нагрузки P2 (рис. 5.24). Ток и потребляемая мощность при значении полезной мощности, равном нулю, отличны от нуля и определяются величиной тока и мощности холостого хода.
Коэффициент полезного действия электродвигателя
η =1− |
рΣ |
=1− |
рΣ |
, |
(5.115) |
||
Р + |
р |
||||||
Р |
Σ |
||||||
1 |
2 |
где p∑ – суммарные потери мощности; P1 – потребляемая асинхронным двигателем (его статорной обмоткой) активная электрическая мощность; P2 – полезная механическая мощность (снимаемая с вала двигателя).
КПД современных асинхронных двигателей при номинальной нагрузке для машин мощностью свыше 100 кВт составляет 0,92−0,96, мощностью 1−100 кВт – 0,7−0,9, а микромашин – 0,4−0,6 (большие значения относятся к машинам большей мощности).
Так же, как в трансформаторе, потери мощности асинхронного двигателя следует разделить на потери постоянные и переменные (или потери холостого хода и короткого замыкания). Постоянные потери не зависят от нагрузки. Это потери магнитные, механические, электрические холостого хода.
Магнитные потери определяются аналогично магнитным потерям трансформатора с помощью формулы Штейнметца:
р |
= k |
p |
B |
2 |
f |
1,3 |
G , |
(5.116) |
||
мг |
d 1,0 / 50 |
50 |
с |
где p1,0/50 – удельные потери в стали на единицу массы при частоте 50 Гц и индукции 1,0 Тл; B – индукция на участке магнитопровода; Gc – масса
сердечника (магнитопровода) или его участка.
Частота перемагничивания в роторе f2 = f1s в рабочем режиме двигателя существенно меньше частоты магнитной индукции в статоре; масса магнитопровода ротора также меньше аналогичной массы статора. Обычно в практических расчетах асинхронных двигателей общепромышленного применения пренебрегают магнитными потерями в роторе.
Механические потери pмх состоят из потерь в подшипниках pподш, потерь на трение щеток о кольца pтр.щ (только для фазного ротора), вентиля-
220
5. Асинхронные машины
ционных потерь pвент, включающих в себя потери на трение частей машины о воздух и потери в крыльчатке вентилятора, установленной на валу машины:
рмх = рподш + рвент + ртр.щ . |
(5.117) |
Механические потери зависят только от частоты вращения и составляют не более 2 % от номинальной мощности машины. Поскольку частота вращения асинхронного двигателя при изменении нагрузки от нуля до номинальной изменяется мало, то механические потери считают постоянными.
В отличие от трансформатора в асинхронном двигателе учитывают электрические потери холостого хода, поскольку ток холостого хода в нем существенно больше, чем в трансформаторе, и составляет от 20 до 50 % от номинального тока (причины такого значения I0 объяснены в п. 5.1):
р |
эл0 |
= m r I 2 . |
(5.118) |
1 1 0 |
Таким образом, потери холостого хода
р0 = рмх + рмг + рэл0 . |
(5.119) |
К потерям переменным (короткого замыкания) относят электрические потери в обмотках статора и ротора:
рэл1 = m1r1I12; рэл2 = m1r2′(I2′)2 . |
(5.120) |
К переменным потерям относят и добавочные потери, вызванные различными причинами: неравномерностью зазора, технологическими погрешностями, вытеснением тока в проводниках обмотки, пульсациями магнитного потока и т. д. Обычно эти потери рассчитывают как определенный процент от номинальной мощности по формуле (5.73).
Итак, переменные потери, как следует из формул (5.120), (5.73), зависят от второй степени тока или второй степени коэффициента нагрузки kнг = I/Iн (отношения тока текущей нагрузки к номинальному его значению):
pк = pэл2 + pд = m1rк(I2′)2 +(I Iн )2 pд = kнг2 ркн, |
(5.121) |
где pкн – потери короткого замыкания при номинальном токе.
Таким образом, суммарные потери мощности можно представить в следующем виде:
pΣ = p0 + pк = p0 + kнг2 pкн . |
(5.122) |
221
5. Асинхронные машины
р,% |
η,% |
η |
|||||||||
12 |
80 |
ηmax |
рΣ |
||||||||
8 |
60 |
||||||||||
рк |
|||||||||||
6 |
40 |
||||||||||
р0 |
|||||||||||
4 |
|||||||||||
20 |
kнг |
||||||||||
0 |
|||||||||||
0,2 |
0,4 |
0,6 |
0,8 |
1,0 |
|||||||
Iкр |
Рис. 5.23. Зависимость КПД двигателя и его потерь от коэффициента нагрузки
Формулу (5.115) запишем с учетом выражения (5.122):
р |
+ k 2 |
р |
|||||||
η =1− |
0 |
нг |
кн |
. |
(5.123) |
||||
k |
нг |
Р + р + k 2 |
р |
||||||
2 |
0 |
нг |
кн |
Характер зависимости КПД от коэффициента нагрузки такой же, как
иу трансформатора. При увеличении нагрузки КПД возрастает за счет уве-
личения Р2, но одновременно быстрее, чем Р2, возрастают переменные потери рк, поэтому при некотором токе Iкр рост КПД прекращается и в дальнейшем начинает уменьшаться (рис. 5.23). Если исследовать функцию
(5.123) на экстремум (взять производную dη/dkнг и приравнять ее к нулю), то получим условие максимума КПД: он наступает при равенстве переменных
ипостоянных потерь рк = р0. При проектировании электрической машины стремятся так распределить потери мощности, чтобы указанное условие выполнялось при наиболее вероятной нагрузке машины, несколько мень-
шей номинальной. Во вращающихся электрических машинах средней и большой мощности это условие выполняется при нагрузках 60−80 % от номинальной (коэффициент нагрузки kнг = 0,6−0,8). На рис. 5.23 приведены зависимости изменения КПД и потерь мощности от коэффициента нагрузки.
Коэффициент мощности асинхронной машины определяют как отношение активного тока к полному току или активной потребляемой мощности к полной мощности по выражению
I |
P1 |
P1 |
|||||
cos ϕ = |
1а |
= |
= |
. |
(4.53) |
||
1 |
I1 |
S |
m1U1I1 |
||||
222
5. Асинхронные машины |
|||||||||||||
cosϕ |
I2′ |
cosψ2 |
|||||||||||
1,0 |
cosϕ |
||||||||||||
1,0 |
I2′ |
||||||||||||
0,8 |
|||||||||||||
0,6 |
0,5 |
||||||||||||
0,4 |
I2′а |
cosψ2 |
|||||||||||
0,2 |
|||||||||||||
kнг |
s |
||||||||||||
0 |
|||||||||||||
0 |
|||||||||||||
0,5 |
1,0 |
||||||||||||
0,5 |
1,0 |
||||||||||||
Рис. 5.24. Характеристика |
Рис. 5.25. Зависимости тока |
||||||||||||
коэффициента мощности |
роторной обмотки и cosψ2 |
от скольжения
Асинхронный двигатель, так же как и трансформатор, независимо от нагрузки потребляет из сети отстающий ток, поэтому его cos φ1 всегда меньше единицы.
При холостом ходе асинхронного двигателя коэффициент мощности мал и составляет cos φ0 = 0,08−0,15 (рис. 5.24). Это объясняется малой величиной активной составляющей тока, идущего на покрытие лишь достаточно небольших потерь активной мощности. В то же время реактивная составляющая тока холостого хода сравнительно велика, поскольку потребляется двигателем для создания основного магнитного потока, практически не зависящего от нагрузки. При увеличении нагрузки cos φ1 сначала довольно быстро растет при увеличении момента на валу, затем рост его замедляется и достигает максимума при мощности, близкой к номинальной (рис. 5.24). Но при увеличении момента уменьшается частота вращения и растет скольжение. При этом увеличивается частота тока в роторе f2 = f1s, его индуктивное сопротивление. Снижается и cos φ1, как правило, при нагрузках, выше номинальных.
Вследствие массового использования асинхронных двигателей для рационального электроснабжения предприятий следует так организовывать технологический процесс, чтобы асинхронные двигатели были загружены в соответствии сихноминальной мощностью инеработали нахолостомходу.
Величина коэффициента мощности для двигателей с короткозамкнутым ротором мощностью до 100 кВт достигает 0,7−0,9, а для двигателей свыше 100 кВт cos φ1 = 0,9−0,95. В двигателях с фазным ротором cos φ1 и КПД несколько ниже, что объясняется дополнительными потерями на трение щеток, худшим использованием объема ротора из-за наличия изоляции в его пазах и увеличением намагничивающего тока в результате уменьшения сечения зубцов ротора.
223
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
На шильдиках многих электромоторов (электродвигателей и др. устройств) указывают активную мощность в Вт и cosφ / или λ /или PF. Что тут к чему см. ниже.
Подразумеваем,что переменное напряжение в сети синусоидальное – обычное, хотя все рассуждения ниже верны и для всех гармоник по отдельности других периодических напряжений.
Полная, или кажущаяся мощность S (apparent power) измеряется в вольт-амперах (ВА или VA, кВА или kVA) и определяется произведением переменных напряжения и тока системы. Удобно считать, что полная мощность в цепи переменного тока выражается комплексным числом таким, что активная мощность является его действительной частью, реактивная мощность — мнимой. Генератор, должен поставить в сеть именно ее и именно поэтому мощность генератора дается в кВА.
|
Активная мощность P (active power = real power =true power) измеряется в ваттах (Вт, W) и это та мощность, которая потребляется электрическим сопротивлением системы на тепло и полезную работу. Для сетей переменного тока:
- P=U*I*cosφ, где U и I – действующие=эффективные=среднеквадратичные значения напряжения и тока, а φ- сдвиг фаз между ними
- Мощность необходимого генератора вычисляется через активную мощность как S = P/cosφ и выражается в ВА, а не в Вт в однофазной сети,
- Мощность необходимого генератора вычисляется через активную мощность как S = √3P/cosφ и выражается в ВА, а не в Вт в трехфазной сети,
Реактивная мощность Q (reactive power) измеряется в вольт-амперах реактивных (вар, var) и это электромагнитная мощность, которая запасается в приемнике и отдается обратно в сеть колебательным контуром системы. Реактивная мощность в идеале не выполняет работы, т.е. название вводит в заблуждение. Легко догадаться глядя на рисунок, что:
- P=U*I*sinφ, где U и I – действующие=эффективные=среднеквадратичные значения напряжения и тока, а φ- сдвиг фаз между ними
- Мощность необходимого генератора вычисляется через реактивную мощность как S = P/sinφ и выражается в ВА, а не в Вт в однофазной сети– это, конечно, фантастика, что реактивная мощнать известна, а активная – нет 🙂
- Мощность необходимого генератора вычисляется через активную мощность как S = √3P/sinφ и выражается в ВА, а не в Вт в трехфазной сети,
Сама концепция активной и реактивной мощности актуальна для устройств (приемников) переменного тока. Она малоактуальна=никогда не упоминатеся для приемников постоянного тока в силу малости (мизерности) соответствующих эффектов, связанных только с переходными процессами при включении/выключении.
Любая система, как известно, имеет емкость и индуктивность = является неким колебательным контуром. Переменный ток в одной фазе накачивает электромагнитное поле этого контура энергией а в противоположной фазе эта энергия уходит обратно в генератор ( в сеть). Это вызывает в РФ 3 проблемы (для поставщика энергии!)
- Хотя теоретически, при нулевых сопротивлениях передачи, на выработку реактивной мощности не тратится мощность генератора, но практически для передачи реактивной мощности по сети требуется дополнительная, активная мощность генератора (потери передачи).
- Сеть должна пропускать и активные и реактивные токи, т.е иметь запас по пропускным характеристикам.
- Генератор мог бы, выдавая те же ток и напряжение, поставлять потребителю электроэнергии больше активной мощности.
попробуем догадаться, что делает поставщик электроэнергии? Правильно, пытается навязать Вам различные тарифы для разлиных значений cos φ. Что можно сделать: можно заказать компенсацию реактивной мощности ( т.е. установку неких блоков конденсаторов или катушек), которые заставят реактивную нагрузку колебаться внутри Вашего предприятия/устройства. Стоит ли это делать? Зависит от стоимости установки, наценок за коэффициент мощности и очень даже часто не имеет экономического смысла. В некоторых странах качество питающего напряжения тоже может пострадать от избытка реактивной мощности, но в РФ проблема неактуальна в силу изначально очень низкго качества в питающей сети.
Естественно, хотелось бы ввести величину, которая характеризовала бы степень линейности нагрузки. И такая величина вводится под названием коэффициент мощности (“косинус фи”, power factor, PF), как отношение активной мощности к полной, естественно сразу в 2-х видах, в РФ это:
- λ=P/S*100% – то есть, если в %, то это лямбда, P в (Вт), S в (ВА)
- cosφ=P/S – более распространенная величина , P в (Вт), S в (ВА)
Коэффициент мощности для однофазной нагрузки:
cosφ = P / (U*I), где
- cosφ = косинус фи
- P = активная мощность (Вт)
- U = Напряжение межфазное (В)
- I = Ток (А)
Коэффициент мощности для трехфазного асинхронного (обычного) электродвигателя и любой трехфазной нагрузки:
cosφ = P / (√3*U*I), где
- cosφ = косинус фи
- √3 = квадратный корень из трех
- P = активная мощность (Вт)
- U = Напряжение межфазное (В)
- I = Ток (А)
Как понимать “хороший” или “плохой” коэффициент мощности?
- 1 – оптимальное значение;
- 0.95 – хороший показатель;
- 0.90 – удовлетворительный показатель;
- 0.80 – средний показатель (современный электродвигателей);
- 0.70 – низкий показатель;
- 0.60 – плохой показатель.
Расчет коэффициента мощности, cos(φ) электродвигателя
Расчет коэффициента мощности () электродвигателя онлайн
Популярные сообщения из этого блога
Найти тангенс фи , если известен косинус фи
Калькулятор коэффициент мощности cos fi в tg fi Как найти тангенс фи, если известен косинус фи формула: tg φ = (√(1-cos²φ))/cos φ Калькулятор онлайн – косинус в тангенс cos φ: tg φ: Поделиться в соц сетях: Найти синус φ, если известен тангенс φ Найти косинус φ, если известен тангенс φ
Индекс Руфье калькулятор
Проба Руфье калькулятор онлайн. Первые упоминания теста относиться к 1950 году. Именно в это время мы находим первое упоминание доктора Диксона о “Использование сердечного индекса Руфье в медико-спортивном контроле”. Проба Руфье – представляет собой нагрузочный комплекс, предназначенный для оценки работоспособности сердца при физической нагрузке. Индекс Руфье для школьников и студентов. У испытуемого, находящегося в положении лежа на спине в течение 5 мин, определяют число пульсаций за 15 сек (P1); После чего в течение 45 сек испытуемый выполняет 30 приседаний. После окончания нагрузки испытуемый ложится, и у него вновь подсчитывается число пульсаций за первые 15 с (Р2); И в завершении за последние 15 сек первой минуты периода восстановления (Р3); Оценку работоспособности сердца производят по формуле: Индекс Руфье = (4(P1+P2+P3)-200)/10; Индекс Руфье для спортсменов Измеряют пульс в положении сидя (Р1); Спортсмен выполняет 30 глубоких приседаний в
Найти косинус фи (cos φ), через тангенс фи (tg φ)
tg фи=… чему равен cos фи? Как перевести тангенс в косинус формула: cos(a)=(+-)1/sqrt(1+(tg(a))^2) Косинус через тангенс, перевести tg в cos, калькулятор – онлайн tg φ: cos φ: ± Поделиться в соц сетях:
На шильдиках некоторых устройств можно увидеть непонятный параметр: косинус фи (cos φ). Что же этот параметр означает? В данной статье мы доходчиво и вкратце объясним что это такое.
Косинус фи (cos φ) часто называют «Коэффициент мощности». Это почти одно и то же при правильной синусоидальной форме тока.
Иногда, для обозначения коэффициента мощности используется λ, эту величину выражают в процентах, или PF.
Условные обозначения
P — активная мощность S — полная мощность Q — реактивная мощность, U — напряжение I — ток.
Что такое Косинус фи (cos φ) — «Коэффициент мощности»
Косинус фи (cos φ) – это косинус угла между фазой напряжения и фазой тока.
При активной нагрузке фаза напряжения совпадает с фазой тока, φ (между фазами) равен 0 (нулю). А, как мы знаем, cos0=1. То есть, при активной нагрузке коэффициент мощности равен 1 или 100%.
Активная нагрузка
При емкостной или индуктивной нагрузке фаза тока не совпадает с фазой напряжения. Получается «сдвиг фаз».
При индуктивной или активно-индуктивной нагрузке (с катушками: двигатели, дросселя, трансформаторы) фаза тока отстает от фазы напряжения.
При емкостной нагрузке (конденсатор) фаза тока опережает фазу напряжения.
А почему тогда косинус фи (cos φ) это тоже самое, что коэффициент мощности? Да потому что S=U*I.
Посмотрите на графики ниже. Здесь φ равно 90 косинус фи (cosφ)=0(нулю).
Емкостная нагрузка
Индуктивная нагрузка
Попытаемся вычислить мощность. Для простоты возьмем максимальное значение напряжения, равное 1 (100%) в этот момент ток равен 0(нулю). Соответственно, их произведение, то есть мощность, равны 0(нулю). И наоборот, когда ток максимальный, напряжение равно нулю.
Получается что полезная, активная мощность равна 0(нулю).
Коэффициент мощности – это соотношение полезной активной мощности к полной мощности, то есть cosφ=P/S.
Треугольник мощностей
Посмотрите на треугольник мощностей. Вспомним тригонометрию (это что то из математики) вот здесь то она нам и пригодится.
P=U x I x cos φ
Q =U x I x sin φ
На практике.
Если подключить асинхронный двигатель в сеть без нагрузки, в холостую. Напряжение вроде как есть, ток, если замерить, тоже есть. При этом, никакой полезной работы не совершается. Соответственно, активная мощность минимальна.
Если на двигателе увеличить нагрузку, то сдвиг фаз начнет уменьшаться и, соответственно, косинус фи (cos φ) будет увеличиваться, а с ним и активная мощность.
К счастью, счётчики активной мощности фиксируют соответственно только активную мощность, что логично. И нам не приходится переплачивать за полную мощность.
Однако, у реактивной мощности есть большой минус: она создает бесполезную нагрузку на электрическую сеть из-за чего образуются потери.
Диэлектрическими потерями называют энергию, рассеиваемую в электроизоляционном материале под воздействием на него электрического поля. Способность диэлектрика рассеивать энергию в электрическом поле обычно характеризуют углом диэлектрических потерь, а также тангенсом угла диэлектрических потерь. При испытании диэлектрик рассматривается как диэлектрик конденсатора, у которого измеряется емкость и угол δ, дополняющий до 90° угол сдвига фаз между током и напряжением в емкостной цепи. Этот угол называется углом диэлектрических потерь.
Низкий коэффициент мощности и его последствия
Рассмотренное запаздывание тока относительно напряжения — это не хорошее явление. Как оно может сказаться на ваших лампочках или проводке?
- во-первых, это повышенное потребление электроэнергии
Часть энергии будет просто “болтаться” в катушке, при этом не принося никакой пользы. Правда не пугайтесь, ваш бытовой счетчик реактивную энергию не считает и платить вы за нее не будете.
Например, если вы включите в розетку инструмент или светильник с полной мощностью 100Ва, на блоке питания которого будет указано cos ϕ=0,5. То прибор учета накрутит вам только на половину от этой величины, то есть 50Вт.
- во-вторых, величина тока в проводке увеличится
- в-третьих, для эл.станций и трансформаторов это чревато перегрузкой
Казалось бы, выбросить катушку и вся проблема исчезнет. Однако, делать это нельзя.
В большинстве светильников, лампы работают не отдельно, а в паре с источниками питания. И в этих самых источниках, как раз и присутствуют разнообразные катушки.
Катушки просто необходимы как функциональная часть всей схемы и избавиться от них не получится. Например, в тех же дроссельных лампах ДРЛ, ДНАТ, люминесцентных и т.п.
Ноль означает, что полезная работа не совершается. Единица – вся энергия идет на совершение полезной работы.
Чем выше коэффициент мощности, тем ниже потери электроэнергии. Вот таблица косинуса фи для различных потребителей:
Как измерить коэффициент мощности
Если вы не знаете точный коэффициент мощности своего прибора, или его нет на бирке, можно ли измерить косинус фи в домашних условиях, не прибегая к различным формулам и вычислениям? Конечно можно.
Для этого достаточно приобрести широко распространенный инструмент – цифровой ваттметр в розетку.
Подключая любое оборудование через него, можно легко без замеров и сложных вычислений, узнать фактический cos ϕ.
Зачастую, фактические данные могут быть даже точнее, чем написанные на шильдике, которые рассчитаны для идеальных условий.
Если он слишком низкий, что делать, чтобы привести его значение как можно ближе к единице? Можно это дело определенным образом компенсировать. Например, с помощью конденсаторов.
#электричество #электрика #коэффициент мощности #ремонт #полезные советы
Спасибо за внимание и не пропустите следующие статьи.
Подписаться.
Обратитесь к специалистам компании xiot.ru “Разумная автоматизация” и мы разработаем для Вас детальный проект любой сложности.
Приобрести оборудование Вы можете в нашем магазине xiot-shop.ru.
Больше полезных советов, обзоров, интересных статей, оборудования умных домов и новостей о нём Вы можете найти на новостной странице нашего сайта, Ютубе и Инстаграм.
Давайте рассмотрим и объясним этот косинус, как можно более простыми словами, исключая всякие непонятные научные определения, типа электромагнитная индукция. В двух словах про него конечно не расскажешь, а вот в трех можно попробовать.
Практическое значение
Коэффициент трансформации
В электроэнергетике при проектировании сетей cos коэффициент фи стремятся повысить как можно больше. Соотношение cos угла fi подразумевает, что в случае его малого показателя для обеспечения нужной мощности цепи потребуется использовать электрический ток очень большой силы. Существует корреляция между применением высокого тока и потерями энергии в подводящих кабелях: если показания электросчетчика заметно выше ожидаемых, всегда проверяют правильность расчетов угла фи.
Показатель может быть выяснен с помощью специального прибора – фазометра. При недостаточности коэффициента в дело идут усилители и другие установки, призванные скомпенсировать энергетические потери. Если угол фи рассчитан неправильно, будут иметь место снижение эффективности работы электрооборудования и рост энергопотребления.
Сдвиг фаз между напряжением и током
Коэффициент пульсации
Фазовый сдвиг – показатель, описывающий разность исходных фаз двух параметров, имеющих свойство меняться во времени с одинаковыми скоростями и периодами. Именно сдвиг между силой и напряжением определяет, сколько будет значение угла фи.
В радиотехнической промышленности используются цепочки для получения асинхронного хода. Одна RC-цепь создает 60-градусный сдвиг, для получения 180-градусного для трехфазной структуры организуют последовательное соединение трех цепочек.
При трансформации электродвижущей силы во вторичных обмотках прибора для всех вариаций тока ее значение идентично по фазе таковому для первичной обмотки. Если обмотки трансформатора включить в противофазе, значение напряжения получает обратный знак. Если напряжение идет по синусоиде, происходит сдвиг на 180 градусов.
В простом случае (к примеру, включение электрического чайника) фазы двух показателей совпадают, и они в одно и то же время достигают пиковых значений. Тогда при расчете потребительской мощности применять угол фи не требуется. Когда к переменному току подключен электродвигатель с составной нагрузкой, содержащей активный и индуктивный компоненты (двигатель стиральной машинки и т.д.), напряжение сразу подается на обмотки, а ток отстает вследствие действия индуктивности. Таким образом, между ними возникает сдвиг. Если индуктивный компонент (обмотки) подменен использованием достижений химии в виде емкостного аккумулятора, отстающей величиной, напротив, оказывается напряжение.
Косинус фи не следует путать с другим показателем, рассчитываемым для комплексных нагрузок, – коэффициентом демпфирования. Он широко используется в усилителях мощности и равен частному номинального сопротивлению прибора и выходному – усилка.
Важный показатель
Косинус фи — показатель приборов, работающих от электротока. Это параметр, который характеризует искажения формы переменного тока. Если говорить математическим языком, этот показатель можно охарактеризовать как отношение активной мощности к полной. Чем выше это значение, тем эффективнее устройство расходует электроэнергию.
Для объяснения физического значения коэффициента в пример можно взять расчет других связанных с ним параметров для одного из устройств. Допустим:
- В сеть переменного тока был включен идеальный конденсатор.
- Поскольку переменное напряжение периодически меняет свою полярность, устройство будет то заряжаться, то вновь возвращать сохраненную энергию к источнику.
- В итоге будет происходить циркуляция электронов.
https://youtube.com/watch?v=-MBd7x6GmHU
В электросетях с постоянным током мощность, как и другие ключевые параметры, остается неизменной в течение некоторого периода. Для таких случаев применимо понятие мощности, представляющей собой произведение двух важных параметров тока — его силы и напряжения. Однако это нельзя сказать о токе переменном, ведь его параметры постоянно меняются. Именно поэтому нельзя просто определить значение по той формуле коэффициента мощности, которая используется для ее определения в случае с электросетью с постоянным током. По этой причине было введено такое понятие, как мгновенная мощность.
Треугольник мощностей
Рассматриваемый коэффициент может быть измерен так же, как частное полезного активного значения мощности к общей (S=I*U). Для иллюстрации влияния фазового сдвига на косинус фи применяется прямоугольный треугольник мощностей. Катеты, образующие прямо угол, представляют реактивное и активное значение, гипотенуза – общее. Косинус выделенного угла равен частному активной и общей мощностей, то есть он является коэффициентом, демонстрирующим, какой процент от полной мощности требуется для нагрузки, имеющей место в данный момент. Чем меньший вес имеет реактивный компонент, тем больше полезная мощность.
Важно! Строго говоря, данный параметр полностью соответствует коэффициенту мощности только при идеально синусоидальном движении тока в электросети. Для получения максимально точной цифры требуется анализ искажений нелинейного характера, присущих переменным току и напряжению. В практических подсчетах эти искажения чаще всего игнорируют и полагают показатель cos fi примерно равным требуемому коэффициенту.
Далекий от электротехники, но весьма наглядный пример
Чтобы объяснить, каким образом угол ϕ (а точнее его косинус) влияет на мощность, рассмотрим пример, не имеющий никакого отношения к электротехнике. Допустим нам необходимо передвинуть тележку, стоящую на рельсах. Чтобы удобнее было производить данную операцию, к ее передней части прикрепляем канат.
Если мы будем тянуть за веревку прямо вперед по направлению движения, то для перемещения тележки нам понадобится приложить достаточно небольшое усилие. Однако если находиться сбоку от рельсов и тянуть за канат в сторону, то для движения тележки с такой же скоростью необходимо будет приложить значительно большее усилие. Причем чем больше угол (ϕ) между направлением движения и прикладываемым усилием, тем больше «мощности» потребуется от нас.
Вывод! То есть, увеличение угла ϕ ведет к увеличению расходуемой нами энергии (при одной и той же выполненной работе).
Усредненные значения коэффициента мощности
ГОСТы указывают на необходимость корректного указания данной цифры. Для разных типов электроприборов характерные значения находятся в определенных границах:
- Нагревательные компоненты и лампы накаливания, несмотря на присутствие в составе катушек, рассматриваются как строго активная нагрузка, несущественную индуктивную составляющую в этом случае принято игнорировать. Косинус фи для них берут за единицу.
- У ударных и обычных дрелей, перфораторов и подобных ручных инструментов, работающих от электричества, индуктивная нагрузка выражена слабо, индикатор примерно равен 0,95-0,97. Обычно эту цифру не указывают в инструкциях из-за очевидного пренебрежимо малого значения индукции.
- Сварочные трансформаторы, высокомощные двигатели, люминесцентные лампочки несут существенную индуктивную нагрузку. Цифра может иметь значения в диапазоне 0,5-0,85. Ее надо правильно определить и учитывать при эксплуатации, к примеру, при выборе сечения кабелей питания (они не должны перегреваться).
Причины низкого «косинуса фи»
Недозагрузка электродвигателей переменного тока
При недозагрузке электродвигателя потребляемая им активная мощность уменьшается пропорционально нагрузке. В то же время реактивная мощность изменяется меньше. Поэтому чем меньше нагрузка двигателя, тем с меньшим коэффициентом мощности он работает.
Так, например, асинхронный двигатель в 400 кВт при 1000 оборотах в минуту имеет «косинус фи», равный при полной нагрузке 0,83. При ¾ нагрузки тот же двигатель имеет cos φ = 0,8. При ½ нагрузке cos φ = 0,7 и при ¼ нагрузки cos φ = 0,5.
Двигатели, работающие вхолостую, имеют «косинус фи», равный от 0,1 до 0,3 в зависимости от типа, мощности и скорости вращения.
Неправильный выбор типа электродвигателя
Двигатели быстроходные и большой мощности имеют более высокий «косинус фи», чем тихоходные и маломощные двигатели. Двигатели закрытого типа имеют cos φ ниже, чем двигатели открытого типа. Двигатели, неправильно выбранные по типу, мощности и скорости, понижают cos φ.
Повышение напряжения в сети
В часы малых нагрузок, обеденных перерывов и тому подобного напряжение сети на предприятии увеличивается на несколько вольт. Это ведет к увеличению намагничивающего тока индивидуальных потребителей (реактивной составляющей их полного тока), что в свою очередь вызывает уменьшение cos φ предприятия.
Неправильный ремонт двигателя
При перемотке электродвигателей обмотчики вследствие неправильного подбора проводов иногда не заполняют пазы машины тем количеством проводников, которое было в фабричной обмотке. При работе такого двигателя, вышедшего из ремонта, увеличивается магнитный поток рассеяния, что приводит к уменьшению cos φ двигателя.
При сильном износе подшипников ротор двигателя может задевать при вращении за статор. Вместо того чтобы сменить подшипники, обслуживающий персонал иногда идет по неправильному и вредному пути и подвергает ротор обточке.
Увеличение воздушного зазора между ротором и статором вызывает увеличение намагничивающего тока и уменьшение cos φ двигателя.
Способы расчета
Данный параметр можно представить, как отношение мощностей: полезной нагрузочной и общей. В формульном виде это записывается так:
cos fi = P/S,
где:
- S (полная мощность) = I*U=√P2¯+¯Q¯2¯;
- Q (реактивная мощность) = I*U*sin fi.
У асинхронного электродвигателя с тремя фазами можно посчитать коэффициент так:
cos fi=P/(U*I*√3).
Помимо этого, для вычисления показателя можно применять мощностный треугольник.
Особенности компенсации реактивной мощности в сетях напряжением 6.3-10.5/0,4 кВ
Целесообразность компенсации реактивной мощности для потребителя можно рассматривать, как в техническом, так и экономическом аспектах. В случае подключения потребителя к распределительной сети 6,3 (10,5) кВ конденсаторные установки могут интегрироваться на подстанции в балансовой принадлежности электросетевой компании и тогда потребитель будет иметь чисто техническую выгоду от качества получаемой электроэнергии. При установке КРМ 6,3 (10,5) кВ (или УКРМ 6,3 (10,5) кВ) на шинах РУ 6,3 (10,5) кВ предприятия, или на шинах РУ цеховых ТП 6-10/0,4 кВ, шинах первичных цеховых РП 0,4 кВ, а также непосредственно у электроприемников, потребитель будет иметь, как техническую, так и экономическую выгоду за счет возможности использования активной мощности в более полном объеме и соответственно снижения затрат на «балластную» реактивную мощность.
Единицы измерения
Иногда встает вопрос, в чем измеряется данный коэффициент, если его описывают, как безразмерную величину. Его обычно указывают в процентах или в сотых долях, во втором случае значения находятся в диапазоне от 0 до 1.
Чтобы приборы, подсоединенные к электрической сети, эксплуатировались возможно более долгий срок, необходимо знать, что такое показатель cos f в электричестве, и как его правильно определять. Его значение нужно учитывать в процессе подключения устройств и их дальнейшей эксплуатации.
Эффективность работы как важный параметр выбора
Еще одним важнейшим параметром работы светодиодного светильника является его энергоэффективность. Определяется он, как соотношение величины его светового потока к потребляемой мощности и задается в Лм/Вт.
На практике эффективность работы лед-прибора характеризует величину яркости при заданной мощности. Например, стандартное его значения для светодиодного источника – порядка 80 Лм/Вт, а для лампы накаливания – всего 11 Лм/Вт. Следовательно, при одинаковом энергопотреблении первый будет светить в 8 раз ярче второго.
Следует знать, что понятие эффективности работы нужно рассматривать раздельно для светодиода и самого светильника. Плафон, материал рассеивателя, система оптики и драйвер вносят свой вклад в потерю этого параметра. Это нужно обязательно учитывать при выборе лед-источника для того или иного типа прибора освещения.
Видео
1305 ₽ Подробнее
435 ₽ Подробнее
Док-станции