Как найти коэффициент мощности нагрузки трансформатора

Коэффициент мощности трансформатора – необходимая для расчета величина при составлении схемы трансформатора или другой схожей по принципу действия техники. Это физическая величина, которая кроме основного наименования в кругах радиолюбителей носит название косинуса фи. При помощи расчета возможно корректировать, ведь часто его значения недостаточны.

Содержание

  1. Что такое коэффициент мощности или косинус фи
  2. Как рассчитать коэффициент мощности трансформатора: формулы и математические расчёты
  3. Пример расчета
  4. Низкий коэффициент мощности: причины и последствия
  5. Нагрузочные потери в элементах сети
  6. Потери в силовом трансформаторе
  7. Коррекция коэффициента мощности

Что такое коэффициент мощности или косинус фи

В цепи переменного тока, который поступает в трансформатор, возникает несколько видов нагрузки. Каждая из их определяет параметр, который в зависимости от нагрузки может быть активным, реактивным или полным соединением двух).

Активное сопротивление рассчитывается с учетом того, что потери будут равным квадрату тока, умноженному на сопротивление. Сопровождается выделением тепла. Реактивное происходит без выделения тепла и потерь нагрузки, рассчитывается по формулам индуктивности и емкости. Коэффициент является в общем понимании слова соотношением между активной и пассивной компонентой.

Трансформатор

Как рассчитать коэффициент мощности трансформатора: формулы и математические расчёты

Определить его возможно по простой формуле: делятся усредненные значения модульных активных (ВТ) и полных (ВА).

При этом активная вычисляется как умноженные параметры напряжения и силы тока, умноженные на косинус фи. Для реактивной силы формула идентичная, но с тем учетом, что берется вместо косинуса синус. Полная вычисляется как умноженные напряжение на силу, равные корню из квадрата активной и реактивной.

Пример расчета

Если даны показатели вольтметра и амперметра или есть возможность измерить их, то вычислить косинус фи не составляет проблемы.

Например, если амперметр показывает 10 А, а вольтметр 120 В, а ваттметр 1 кВт, то вычисляем общий показатель, умножая значения напряжения на силу тока. Итого будет 10х120 = 1200 ВА. Косинус фи вычисляем по известной формуле: 1000 делим на 1200. Косинус фи составляет 0,83.

Низкий коэффициент мощности: причины и последствия

Низкий показатель приводит к максимуму устранения энергетической составляющей. Используются специальные приборы для компенсации, которые позволяют снизить потребление электричества и увеличить кпд устройства.

Модель трансформатора

Нагрузочные потери в элементах сети

Нагрузочные приводят к перераспределению и снижению энергетической составляющей. Уровень напряжения падает, что обуславливает значительный перегрев устройства. Следствие — потеря эффективности и работоспособности, быстрый выход оборудования из строя.

Специалист минимизируют силы нагрузочного типа. Это позволяет увеличить показатели пускового момента устройства.

Потери в силовом трансформаторе

Коэффициент, обладающий разрозненными характеристиками, вызывает уход электроэнергии. Энергия неправильно распределяется. Увеличив рассматриваемый показатель удается достигнуть необходимых характеристик. В условиях значительной стоимости энергия в современных реалиях для предприятия снижение потерь становится первостепенной задачей. Дополнительно можно подключить нагрузку.

устройство трансформатора

Коррекция коэффициента мощности

Он уменьшается посредством работы трансформаторов, систем освещения и двигателей асинхронного типа. Увеличить показать, то есть корректировать его к высокому углу, получается при помощи конденсаторов, двигателей асинхронного типа и генераторов. Поэтому они устанавливаются как дополнения в стандартную цепочку. Популярные методики коррекции:

  • установка конденсатора — параметры реактивной уменьшаются, то по формуле приводит к увеличению значения;
  • установка малой нагрузки — получить результат возможно при работе двигателей асинхронного типа;
  • выбор безопасных условий работы — не допуск к работе, если показатели номинального напряжения повышены;
  • своевременное проведение плановых отслуживающих работ — нагрузка определяет время работы, внимательно относиться стоит к оборудованию, которое постоянно работает при высоких показателях номинального напряжения.

Корректировка обязательна на производственных ресурсах, а также для оборудования, которое применяется в хозяйственных, индивидуальных целях. Методика позволяет эономить средства, особенно если речь идет о крупных производствах.

Содержание

  • 1 Как определить коэффициент мощности трансформатора?
  • 2 Как определить полную мощность трехфазной цепи?
  • 3 Как перевести полную мощность в активную?
  • 4 Как найти полную мощность трансформатора?
  • 5 Как определить коэффициент мощности цепи?
  • 6 Как определить коэффициент мощности?
  • 7 Как рассчитать мощность двигателя?
  • 8 Как посчитать мощность 3 х фазной сети?
  • 9 Чему равна активная мощность трехфазной цепи?
  • 10 Как перевести амперы в киловатты?
  • 11 Как перевести ква в Вт?
  • 12 Как перевести вольт амперы в киловатты?
  • 13 Как посчитать реактивную мощность?
  • 14 Какие существуют мощности?

Как определить коэффициент мощности трансформатора?

Как рассчитать коэффициент мощности трансформатора: формулы и математические расчёты Определить его возможно по простой формуле: делятся усредненные значения модульных активных (ВТ) и полных (ВА). При этом активная вычисляется как умноженные параметры напряжения и силы тока, умноженные на косинус фи.

Как определить полную мощность трехфазной цепи?

Мощность трехфазного тока равна тройной мощности одной фазы. При соединении в звезду PY=3·Uф·Iф·cosфи =3·Uф·I·cosфи. При соединении в треугольник P=3·Uф·Iф·cosфи=3·U·Iф·cosфи. На практике применяется формула, в которой ток и напряжение обозначают линейные величины и для соединения в звезду и в треугольник.

Как перевести полную мощность в активную?

Говоря языком потребителя: кВт — полезная мощность, а кВА — полная мощность. кВА-20%=кВт или 1кВА=0,8кВт. Для того, чтобы перевести кВА в кВт, требуется от кВА отнять 20% и получится кВт с малой погрешностью, которую можно не учитывать. P-активная мощность (кВт), S-полная мощность (кВА), Сos f- коэффициент мощности.

Как найти полную мощность трансформатора?

Полная мощность (S)

Произведение действующего значения напряжения на действующее значение тока в цепи переменного тока называется полной мощностью. Она является произведением значений напряжения и тока без учёта фазового угла. Единицей измерения полной мощности (S) является ВА, 1 ВА = 1 В х 1 А.

Как определить коэффициент мощности цепи?

Определение коэффициента мощности

PF = P (кВт)/S (кВА), где: P = активная мощность; S = полная мощность. Коэффициент мощности нагрузки, которая может являться электроприемником (ЭП) или совокупностью таких ЭП (например, вся система), задается отношением P/S, т.

Как определить коэффициент мощности?

Отношение активной мощности к полной называется коэффициентом мощности. Для удобства технических расчетов коэффициент мощности выражают через косинус условного угла «фи» (cosφ). При изменяющейся нагрузке определяют усредненный коэффициент мощности за какой-то период времени.

Как рассчитать мощность двигателя?

Для определения мощности двигателя в киловаттах, когда известен крутящий момент, можно по формуле такого вида: P = Mкр * n/9549, где: Mкр – крутящий момент (Нм), n – обороты коленвала (об./мин.), 9549 – коэффициент для перевода оборотов в об/мин.

Как посчитать мощность 3 х фазной сети?

Формула расчета мощности электрического тока

I = P/(U*cos φ), а для трехфазной сети: I = P/(1,73*U*cos φ), где U для трехфазной сети принимается 380 В, cos φ – это коэффициент мощности, отражающий соотношение активной и реактивной составляющих сопротивления нагрузки.

Чему равна активная мощность трехфазной цепи?

Активной мощностью трехфазной системы называется сумма активных мощностей всех фаз приемника. где — φ угол сдвига фаз между фазными напряжением и током.

Как перевести амперы в киловатты?

Как перевести амперы в киловатты в однофазной сети

  1. — Ампер = Ватты / Вольт:
  2. Для того чтобы Ватты (Вт) перевести в киловатты (кВт) нужно полученное значение разделить на 1000. …
  3. Как перевести амперы в киловатты в трехфазной сети …
  4. — Ампер = Ватты / (√3 * Вольт):

Как перевести ква в Вт?

P = S * cos φ * 1000

Р — активная мощность (Вт); S — полная мощность (кВА); cos φ — коэффициент мощности.

Как перевести вольт амперы в киловатты?

Вольт-ампер в киловатт

  1. Вольт-ампер =
  2. 0.001. киловатт
  3. киловатт =
  4. 1 000. Вольт-ампер Поделиться Перевести другие величины

Как посчитать реактивную мощность?

Тогда мощность рассчитывают по одной из формул:

  1. P=U*I.
  2. P=I2*R.
  3. P=U2/R. По этой же формуле определяется полная мощность в цепи переменного тока. …
  4. P=S*cosФ Здесь мы видим, новую величину cosФ. …
  5. cosФ=P/S. В свою очередь реактивная мощность рассчитывается по формуле:
  6. Q = U*I*sinФ

Какие существуют мощности?

Во всех справочниках по электротехнике различаются четыре вида мощности: мгновенная, активная, реактивная и полная.

На шильдиках некоторых устройств можно увидеть непонятный параметр: косинус фи (cos φ). Что же этот параметр означает? В данной статье мы доходчиво и вкратце объясним что это такое.

Косинус фи (cos φ) часто называют «Коэффициент мощности». Это почти одно и то же при правильной синусоидальной форме тока.
Иногда, для обозначения коэффициента мощности используется λ, эту величину выражают в процентах, или PF.

Условные обозначения

P — активная мощность S — полная мощность Q — реактивная мощность, U — напряжение I — ток.

Что такое Косинус фи (cos φ) — «Коэффициент мощности»

Косинус фи (cos φ) – это косинус угла между фазой напряжения и фазой тока.

При активной нагрузке фаза напряжения совпадает с фазой тока, φ (между фазами) равен 0 (нулю). А, как мы знаем, cos0=1. То есть, при активной нагрузке коэффициент мощности равен 1 или 100%.

Активная нагрузка

Косинус фи (cos φ) — Коэффициент мощности

При емкостной или индуктивной нагрузке фаза тока не совпадает с фазой напряжения. Получается «сдвиг фаз».

При индуктивной или активно-индуктивной нагрузке (с катушками: двигатели, дросселя, трансформаторы) фаза тока отстает от фазы напряжения.

При емкостной нагрузке (конденсатор) фаза тока опережает фазу напряжения.

А почему тогда косинус фи (cos φ) это тоже самое, что коэффициент мощности? Да потому что S=U*I.

Посмотрите на графики ниже. Здесь φ равно 90 косинус фи (cosφ)=0(нулю).

Емкостная нагрузка

Косинус фи (cos φ) — Коэффициент мощности

Индуктивная нагрузка

Косинус фи (cos φ) — Коэффициент мощности

Попытаемся вычислить мощность. Для простоты возьмем максимальное значение напряжения, равное 1 (100%) в этот момент ток равен 0(нулю). Соответственно, их произведение, то есть мощность, равны 0(нулю). И наоборот, когда ток максимальный, напряжение равно нулю.

Получается что полезная, активная мощность равна 0(нулю).

Коэффициент мощности – это соотношение полезной активной мощности к полной мощности, то есть cosφ=P/S.

Треугольник мощностей

Косинус фи (cos φ) — Коэффициент мощности

Посмотрите на треугольник мощностей. Вспомним тригонометрию (это что то из математики) вот здесь то она нам и пригодится.

P=U x I x cos φ

Q =U x I x sin φ

Косинус фи (cos φ) — Коэффициент мощности

На практике.

Если подключить асинхронный двигатель в сеть без нагрузки, в холостую. Напряжение вроде как есть, ток, если замерить, тоже есть. При этом, никакой полезной работы не совершается. Соответственно, активная мощность минимальна.

Если на двигателе увеличить нагрузку, то сдвиг фаз начнет уменьшаться и, соответственно, косинус фи (cos φ) будет увеличиваться, а с ним и активная мощность.

К счастью, счётчики активной мощности фиксируют соответственно только активную мощность, что логично. И нам не приходится переплачивать за полную мощность.

Однако, у реактивной мощности есть большой минус: она создает бесполезную нагрузку на электрическую сеть из-за чего образуются потери.

Диэлектрическими потерями называют энергию, рассеиваемую в электроизоляционном материале под воздействием на него электрического поля. Способность диэлектрика рассеивать энергию в электрическом поле обычно характеризуют углом диэлектрических потерь, а также тангенсом угла диэлектрических потерь. При испытании диэлектрик рассматривается как диэлектрик конденсатора, у которого измеряется емкость и угол δ, дополняющий до 90° угол сдвига фаз между током и напряжением в емкостной цепи. Этот угол называется углом диэлектрических потерь.

Низкий коэффициент мощности и его последствия

Рассмотренное запаздывание тока относительно напряжения — это не хорошее явление. Как оно может сказаться на ваших лампочках или проводке?

  • во-первых, это повышенное потребление электроэнергии

Часть энергии будет просто “болтаться” в катушке, при этом не принося никакой пользы. Правда не пугайтесь, ваш бытовой счетчик реактивную энергию не считает и платить вы за нее не будете.

Например, если вы включите в розетку инструмент или светильник с полной мощностью 100Ва, на блоке питания которого будет указано cos ϕ=0,5. То прибор учета накрутит вам только на половину от этой величины, то есть 50Вт.

  • во-вторых, величина тока в проводке увеличится
  • в-третьих, для эл.станций и трансформаторов это чревато перегрузкой

Казалось бы, выбросить катушку и вся проблема исчезнет. Однако, делать это нельзя.

В большинстве светильников, лампы работают не отдельно, а в паре с источниками питания. И в этих самых источниках, как раз и присутствуют разнообразные катушки.

Катушки просто необходимы как функциональная часть всей схемы и избавиться от них не получится. Например, в тех же дроссельных лампах ДРЛ, ДНАТ, люминесцентных и т.п.

Косинус фи (cos φ) — Коэффициент мощности

Ноль означает, что полезная работа не совершается. Единица – вся энергия идет на совершение полезной работы.

Чем выше коэффициент мощности, тем ниже потери электроэнергии. Вот таблица косинуса фи для различных потребителей:

Косинус фи (cos φ) — Коэффициент мощности
Косинус фи (cos φ) — Коэффициент мощности

Как измерить коэффициент мощности

Если вы не знаете точный коэффициент мощности своего прибора, или его нет на бирке, можно ли измерить косинус фи в домашних условиях, не прибегая к различным формулам и вычислениям? Конечно можно.

Для этого достаточно приобрести широко распространенный инструмент – цифровой ваттметр в розетку.

Косинус фи (cos φ) — Коэффициент мощности

Подключая любое оборудование через него, можно легко без замеров и сложных вычислений, узнать фактический cos ϕ.

Зачастую, фактические данные могут быть даже точнее, чем написанные на шильдике, которые рассчитаны для идеальных условий.

Если он слишком низкий, что делать, чтобы привести его значение как можно ближе к единице? Можно это дело определенным образом компенсировать. Например, с помощью конденсаторов.

#электричество #электрика #коэффициент мощности #ремонт #полезные советы

Спасибо за внимание и не пропустите следующие статьи.

Подписаться.

Обратитесь к специалистам компании xiot.ru “Разумная автоматизация” и мы разработаем для Вас детальный проект любой сложности.

Приобрести оборудование Вы можете в нашем магазине xiot-shop.ru.

Больше полезных советов, обзоров, интересных статей, оборудования умных домов и новостей о нём Вы можете найти на новостной странице нашего сайтаЮтубе и  Инстаграм.​

Номинальная
мощность.

Номинальной мощностью трансформатора
называется мощность, которую он может
отдавать длительное время, не перегреваясь
свыше допустимой температуры, определяемой
теплостойкостью изоляции его обмоток.
При этом срок службы силового трансформатора
должен быть не менее 20 лет. Так как нагрев
обмоток зависит от протекающего по ним
тока, в
паспорте трансформатора всегда указывают
полную мощность S
ном
в вольт-амперах или киловольт-амперах
.
В зависимости от коэффициента мощности
cos?2,
при котором работают потребители, от
трансформатора можно получить большую
или меньшую активную мощность. При
cos?2=
1 мощность подключенных к нему потребителей
может быть равна его номинальной мощности
Sном.
При cos?2 < 1 мощность потребителей не
должна превышать величины Sном
cos?2.

В
паспорте трансформаторов э. п. с.
переменного тока, которые имеют несколько
вторичных обмоток, указывают так
называемую типовую мощность. Она равна
полусумме номинальных мощностей всех
обмоток трансформатора, т. е. полусумме
произведений наибольшего длительно
допустимого в каждой обмотке тока на
допустимое напряжение.

Перегрузочная
способность трансформатора определяется
интенсивностью отвода тепла от его
обмоток и надежностью их крепления.
Силовые трансформаторы с масляным
охлаждением и трансформаторы, используемые
в выпрямительных установках, допускают
перегрузки на 30 % выше номинальной в
течение 2 ч и 60 % в течение 45 мин.

Коэффициент
мощности.

Коэффициент мощности cos?2
трансформатора определяется характером
нагрузки, подключенной к его вторичной
обмотке. При уменьшении нагрузки начинает
сильно сказываться индуктивное
сопротивление обмоток трансформатора,
и коэффициент мощности его снижается.
При отсутствии нагрузки (при холостом
ходе) трансформатор имеет очень низкий
коэффициент мощности, что оказывает
вредное влияние на работу источников
переменного тока и электрических сетей
(см. главу V). В этом случае трансформатор
необходимо отключить от сети переменного
тока.

Потери
мощности и к. п. д.

При передаче энергии из первичной
обмотки трансформатора во вторичную
возникают потери мощности (рис. 225,а) в
проводах обмоток (электрические потери
эл1
и ?Рэл2)
и в стали магнитопровода (магнитные
потери ?РМ).
При
холостом ходе трансформатор не передает
электрическую энергию потребителю и
потребляемая им мощность тратится в
основном на компенсацию магнитных
потерь мощности в магни-топроводе (в
результате вихревых токов и гистерезиса).
Их часто называют потерями холостого
хода. Чем меньше площадь поперечного
сечения магнитопровода, тем больше в
нем индукция, а сле-

Рис.
225. Диаграмма энергетического баланса
в трансформаторе (о) и зависимость его
к.п.д. от нагрузки (б)

довательно,
и магнитные потери. Они значительно
возрастают также при увеличении
напряжения, подводимого к первичной
обмотке, свыше номинального значения.
При работе мощных трансформаторов
магнитные потери составляют 0,3—0,5 %
номинальной мощности. Тем не менее их
стремятся максимально уменьшить.
Объясняется это тем, что магнитные
потери не зависят от того, работает
трансформатор вхолостую или под
нагрузкой. А так как общее время работы
трансформатора обычно довольно велико,
то суммарные годовые потери холостого
хода значительны.

При
нагрузке к потерям холостого хода
добавляются электрические потери в
обмотках. Эти потери при номинальном
токе численно равны мощности, потребляемой
трансформатором при коротком замыкании,
когда на его первичную обмотку подано
напряжение UK.
Для мощных трансформаторов они обычно
составляют 0,5—2 % номинальной мощности.

Уменьшение
суммарных потерь достигается
соответствующим выбором площади сечения
проводов обмоток трансформаторов
(снижение электрических потерь в
проводах), применением электротехнической
стали для изготовления магнитопровода
(снижение потерь от перемагничивания)
и расслоением магнитопровода на ряд
изолированных друг от друга листов
(снижение потерь от вихревых токов).

К.
п. д. трансформатора

?
= P2 / P1 = P2 / (P2 +?Pэл + ?Pм)

где
P1 и Р2 — потребляемая и отдаваемая
мощности; ?РЭЛ
= ?РЭЛ1+?РЭЛ2.

Благодаря
отсутствию в трансформаторе вращающихся
и трущихся деталей потери энергии в нем
по сравнению с вращающимися машинами
малы, а к. п. д. высок и достигает в
трансформаторах большой мощности
0,98—0,99. В трансформаторах малой мощности
к. п. д. составляет 0,5—0,7. При изменении
нагрузки к. п. д. трансформатора изменяется,
так как меняются полезная мощность Р2
и электрические потери ?РЭЛ
в проводниках обмоток. Однако он сохраняет
большое значение в довольно широком
диапазоне изменения нагрузки (рис.
225,б). При значительных недогрузках к.
п. д. понижается, так как полезная мощность
уменьшается, а магнитные потери ?Рм
остаются неизменными. При перегрузках
к. п. д. также снижается, так как резко
возрастают электрические потери ?РЭЛ
(они пропорциональны квадрату тока
нагрузки, в то время как полезная мощность
— только току в первой степени).

Максимальное
значение к. п. д. трансформатор имеет
при такой нагрузке, когда электрические
потери ?Р
ЭЛ
равны магнитным потерям ?Р
м
(см.
рис. 225,б). При проектировании трансформаторов
стремятся, чтобы максимальное значение
к. п. д. достигалось при нагрузке 50—75 %
номинальной; это соответствует наиболее
вероятной средней нагрузке работающего
трансформатора, называемой экономической.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Что такое коэффициент мощности, косинус фи и тангенс фи

Содержание

  • 1 Виды мощности
  • 2 Что такое коэффициент мощности
  • 3 Выгода электрооборудования с высоким коэффициентом мощности
  • 4 Как узнать коэффициент мощности
  • 5 Значения коэффициента для различных случаев
  • 6 Видео по теме

Одной из важнейших характеристик электрических устройств является мощность. Поэтому желательно знать, что такое коэффициент мощности и как он рассчитывается. Это поможет не только оценить эффективность использования электрической энергии, но и правильно организовать работу электроприбора.

Коэффициент мощности определяет эффективность-использования электроэнергии

Виды мощности

В цепи переменного электротока возникают три мощности: активная, реактивная и полная. Активную называют полезной или действующей мощностью. Это связано с тем, что она тратится на осуществление полезной работы. Обычно при этом электрическая энергия преобразуется в другие виды.

Реактивная мощность в процессе работы электроприбора не тратится, а лишь переходит из одной формы в другую. В данной мощности нуждаются устройства, принцип действия которых основывается на использовании электромагнитного поля.

Одним из примеров таких устройств может служить колебательный контур, включающий в себя индуктивность и ёмкость в предположении, что активное сопротивление деталей пренебрежимо мало. Ещё одним можно считать трансформатор. В нём ток и напряжение передаются по сердечнику с помощью колебаний электромагнитного поля.

Полную мощность можно получить векторным сложением активной и реактивной составляющих.

Треугольник мощностей

Что такое коэффициент мощности

Иногда бывает важно понять, какая часть мощности уходит на выполнение полезной работы. Для этого необходимо узнать активную и реактивную мощность рассматриваемого электрического прибора. Далее на их основе определяют полную.

В электротехнике для определения мощности в сети постоянного тока используется следующее соотношение:

Формула мощности

В цепи переменного тока вычисление искомой величины производится более сложным образом. При этом следует учитывать, что изменения напряжения и тока по времени совпадать не будут. Электроток в ёмкостной нагрузке опережает напряжение, а в индуктивной, наоборот, отстает.

Поэтому при вычислении мощности принято использовать эффективные значения тока и напряжения. При этом рассматривается такая постоянная величина тока и напряжения, которая на активном сопротивлении выделит то же количество тепла, что и рассматриваемые переменные величины.

Сдвиг между напряжением и током

Конечно, в таких случаях можно также вычислить мгновенную мощность. Для этого достаточно перемножить мгновенные значения тока и напряжения. Однако данная величина не учитывает сильную инерцию энергетических процессов, в связи с чем подобный расчет величин имеет ограниченное применение.

Чтобы определить коэффициент активной мощности нужно разделить активную мощность на полную. Данный коэффициент позволяет оценить эффективность использования рассматриваемого технического решения. Соотношение между реактивной и активной мощностью определяет тангенс «фи».

Полная мощность измеряется в вольт-амперах (ВА). Для активной используют ватты (Вт). Для реактивной применяется единица измерения вольт-ампер реактивный (ВАР).

Поскольку сложение мощностей происходит по векторным правилам, то нужно учитывать, что векторы активной и реактивной составляющих перпендикулярны друг к другу. Результат вычислений представляет собой гипотенузу прямоугольного треугольника с указанными катетами. Формула полной мощности выглядит следующим образом:

Выражение для полной мощности

Это следует из теоремы Пифагора. Здесь применяется правило для нахождения гипотенузы прямоугольного треугольника. Если выразить катеты через гипотенузу и угол «фи», то можно получить формулу для определения активной мощности:

Активная мощность

Аналогичным образом выражается и реактивная:

Реактивная мощность

Следовательно, из формулы для активной мощности можно найти cosφ:

Определение косинуса фи

Для трехфазного напряжения формула принимает следующий вид:

Формула для трёхфазного напряжения

Поэтому следует понимать, что такое косинус «фи» в данной формуле. А это все тот же коэффициент мощности, который позволяет оценивать электроприемники при наличии реактивной составляющей в потребляемом токе.

Называется cosφ коэффициентом мощности в связи с тем, что при векторном сложении в прямоугольном треугольнике значение косинуса угла φ можно найти, разделив длину катета, соответствующего активной мощности, на длину гипотенузы, выражающей полную мощность. Следовательно, формула коэффициента мощности выглядит так:

Выражение для коэффициента мощности

Коэффициент активной мощности cosφ может иметь значение в диапазоне от 0 до 1. Иногда его выражают в процентах. В таком случае коэффициент обозначают греческой буквой «лямбда». Соотношение катетов в прямоугольном треугольнике определяет тангенс «фи».

Коэффициент мощности является низким в тех случаях, когда активная составляющая мала по сравнению с полной мощностью. Это говорит о неэффективности применяемого оборудования.

Для тока и напряжения синусоидальной формы cosφ соответствует косинусу угла отставания по фазе для этих параметров.

Сущность косинуса фи

Выгода электрооборудования с высоким коэффициентом мощности

Это связано с наличием следующих факторов:

  • Поставщики электроэнергии в некоторых случаях контролируют коэффициент мощности оборудования, используемого потребителями. Они могут выставлять дополнительный счёт, если он будет ниже 0.95. В том случае, когда коэффициент меньше 0.85, поставка электроэнергии может быть ограничена.
  • Низкий коэффициент приводит к тому, что при относительно небольшом объёме полезной работы происходят повышенные траты электроэнергии. Таким образом, за определённый объём полезной работы потребителю приходится переплачивать.
  • В линиях электропередач наличие высоких показателей указывает на незначительные потери при передаче энергии.
  • Низкий коэффициент в системе электроснабжения может приводить к уменьшению напряжения в сети. Это часто становится причиной перегрева используемых потребителем устройств.

При рассмотрении работы электрических устройств нужно учитывать, что часть из них генерирует реактивную мощность, а другие являются потребителями. Следовательно, применение первых приводит к возрастанию реактивной мощности, а использование вторых — к её уменьшению.

Реактивная мощность генерируется при работе асинхронного электродвигателя, трансформаторов, ветряных генераторов, систем освещения на разрядных лампах. Наличие реактивной нагрузки ухудшает эффективность работы оборудования. В качестве потребителей рассматриваются конденсаторы, синхронные двигатели и генераторы.

Для уменьшения реактивной мощности можно использовать следующие способы:

  • В цепи устанавливаются конденсаторы. При их использовании совместно с индуктивностью они образуют колебательный контур. В нём мощность от индуктивности будет потребляться ёмкостью.
  • Следует избегать работы асинхронных двигателей вхолостую или с малой мощностью.
  • Нужно исключить возможность работы оборудования при напряжении, которое превышает номинальное.
  • Рекомендуется по мере замены двигателей переходить на те, которые имеют более высокий коэффициент полезного действия.

Оптимальной нагрузкой является номинальная. Если используется нагрузка, значение которой меньше или больше номинальной, то это существенно снижает эффективность работы оборудования.

Как узнать коэффициент мощности

Значение рассматриваемого коэффициента указывается в сопроводительной технической документации к приобретаемому промышленному оборудованию или бытовому прибору. Однако при этом речь идёт о номинальном значении.

Указание косинуса фи на этикетке

Более точно коэффициент измеряется с помощью специализированного прибора, который называется фазометром.

Такие приборы могут быть электродинамическими или цифровыми. С помощью измерений можно достаточно просто и с большой точностью узнать чему равен cosφ и какова эффективность использования прибора.

Если фазометра нет в распоряжении, следует воспользоваться амперметром, вольтметром и ваттметром, с помощью которых измеряются такие физические величины, как сила тока, напряжение и мощность, а затем с помощью соответствующих формул вычислить коэффициент мощности.

Фазометр

Значения коэффициента для различных случаев

При измерении или вычислении коэффициента мощности необходимо знать характерные значения для различных видов оборудования:

  • При использовании нагревательных устройств, несмотря на возможное присутствие индуктивных элементов, считается, что вся используемая мощность является активной. В таких случаях принимают косинус «фи» равный единице.
  • Для перфораторов и ударных дрелей этот коэффициент составляет 0.95-0.97.
  • Сварочные трансформаторы в значительной степени используют индуктивную нагрузку. Поэтому коэффициент мощности трансформатора обычно находится в диапазоне от 0.5 до 0.85.

Значение коэффициента мощности

Когда значения коэффициента являются широко известными, их могут не указывать в сопроводительной документации. Нужно помнить, что хотя в большинстве случаев напряжение меняется синусоидально, иногда оно может существенно отклоняться от этой формы. В такой ситуации говорят о присутствии высших гармоник в колебаниях.

Их появление ведёт к дополнительным затратам мощности, а также снижает компенсацию реактивной мощности, если она применялась. Подобное явление наблюдается при работе с дуговыми сталеплавильными печами, установками дуговой сварки, газоразрядными лампами.

Видео по теме

Добавить комментарий