Как найти коэффициент мощности трехфазной цепи

Трехфазная цепь
является обычной цепью синусоидального
тока с несколькими источниками.

Активная мощность
трехфазной цепи равна сумме активных
мощностей фаз

(7.5)

Формула (7.5)
используется для расчета активной
мощности в трехфазной цепи при
несимметричной нагрузке.

При симметричной
нагрузке:

При соединении в
треугольник симметричной нагрузки

При соединении в
звезду

.

В обоих случаях
.

3.7. Коэффициент мощности и способы его повышения

Площади поперечного
сечения приводов линий электропередачи
и электрических сетей, обмоток
электрических машин, трансформаторов,
электротехнических аппаратов и приборов
выбираются, исходя из нагревания, по
значению тока в них, который при заданном
напряжении переменного тока прямо
пропорционален полной мощности S.
А энергия, преобразуемая из электрической
в другие виды (в механическую, тепловую
и т. д.) и используемая в большей части
для практических целей, пропорциональна
активной энергии и соответствующей ей
активной мощности Р.

Как известно, между
указанными мощностями и реактивной
мощностью существуют соотношения

P = S cos
φ; S = P2
+ Q
2
.

Входящий в первое
выражение cos φ называется коэффициентом
мощности и показывает, какую часть
полной мощности составляет активная
мощность: cos φ = P/S=
Р/
P2
+ Q
2.

Считая, что активная
мощность установки, значение кото­рой
зависит в основном от мощности приемников,
остается постоянной, выясним, к чему
приведет увеличение коэффициента
мощности установки.

Как следует из
приведенных формул, при увеличении cos
φ мощность S
уменьшается.
При Р =
const это может происходить лишь за счет
уменьшения реактивной мощности Q
установки.
Снижение мощности S
приводит к
уменьшению линейного тока Iл
. Последнее
будет сопровождаться уменьшением потерь
напряжения и мощности в сопротивлениях
проводов сети, обмотках трансформаторов
и генераторов.

Очевидно, при
уменьшении тока площади поперечного
сечения названных элементов могут быть
также уменьшены. В отношении трансформаторов
и генераторов это приводит к уменьшению
габаритных размеров, расхода дефицитных
материалов на изготовление, массы,
номинальной мощности и стоимости.

В действующей
установке повышение cos φ при существующей
площади поперечного сечения проводов
позволит увеличить число приемников,
которые могут быть подключены к данной
сети.

Таким образом,
повышение коэффициента мощности дает
определенные выгоды во многих отношениях,
а поэтому имеет большое народнохозяйственное
значение.

Большая часть
элементов электрических цепей переменного
тока потребляет кроме активной мощности
также индуктивную мощность. К ним
относятся в первую очередь наиболее
распространенные в народном хозяйстве
асинхронные электродвигатели. Значительная
часть индуктивной мощности потребляется
трансформаторами, широко используемыми
вразличных установках. Индуктивная
мощность потребляется также различными
электромагнитными аппаратами, такими,
например, как электромагниты, контакторы
и магнитные пускатели, реле и т. д.

Для уменьшения
индуктивной мощности и увеличения тем
самым cos φ необходимо прежде всего:

выбирать правильно
двигатели по мощности, так как
необоснованное завышение мощности
приведет к их работе с недогрузкой, а
при этом, как правило, cos φ понижается;

заменять двигатели,
работающие с недогрузкой, двигателями
меньшей мощности;

сокращать по
возможности времена работы двигателей
и трансформаторов вхолостую.

Если все же cos φ
оказывается недостаточно высоким,
прибегают часто к его искусственному
повышению. Для этой цели подключают к
трехфазной сети компенсирующие
устройства, к которым относятся батареи
конденсаторов и трехфазные синхронные
компенсаторы (см. гл. 11). Последние
применяются реже. Батарея конденсаторов
соединяется обычно треугольником, как
показано на рис. 3.18, а.
Батарея
конденсаторов потребляет емкостную
мощность, которая частично компенсирует
индуктивную мощность установки, в
результате чего реактивная мощность
уменьшается, а коэффициент мощности
повышается.   Естественно, что  
cos φ  самих  приемников  при 
этом остается прежним.

Рис.
3.18. Схема и векторная диаграмма к
примеру 3.5

Чтобы уменьшить
ток проводов сети, батарею конденсаторов
устанавливают по возможности вблизи
приемников.

Пример 3.5. К
трехфазной сети рис. 3.18, а
с линейными напряжениями Uл
=
220В подключены
два трехфазных приемника. Активная
мощность и коэффициент мощности первого
приемника P1
= 10 кВт, cos φ1
= 0,7. Фазные сопротивления второго
приемника rф
= 6 Ом,
xLф
= 8 Ом, нагрузка симметричная.

Определить токи,
мощности и коэффициент мощности cos φ
установки из двух приемников. Найти
мощность, токи и емкость батареи
конденсаторов, если требуется повысить
коэффициент мощности до cos φ’ = 0,95.
Определить токи и мощности установки
из двух приемников и батареи конденсаторов.

Решение. Полная и
реактивная мощности первого приемника

S1
= P1/cos
φ1
= 14,3 кВ•А,   Q1
= √S12
P12
≈ 10,2 квар.

Полное сопротивление
и ток фазы второго приемника

z2
= √r22
+ x
2L2
=
10 Ом;   
Iф2
= U
ф
/z2
= U
л
/z2
=
22 А.

Активная и реактивная
мощности второго приемника

Р2
= 3I2ф2r2
= 8,7 кВт;   Q2
= 3Iф2xLф
≈ 11,6 квар.

Активная, реактивная
и полная мощности установки, состоящей
из двух преемников.

Р
= P1
+ P2
=18,7 кВт;   Q
= Q1
+ Q2
= 21,8 квар;

S
= √P2
+ Q2
≈ 28,7 кВ•А.

Линейный ток и
коэффициент мощности установки из двух
приемников

Iл
= I
a
=
S√3Uл
≈ 75,5 A;   cos φ
= P/S

0,65.

Мощности установки
из приемников и батареи конденсаторов

Р’
= Р =
18,7 кВт;    S’
= P/cos
φ’ = 19,68 кВ•А;

Q’
= √S’2
P’2
=
6,13 квар.

Линейные токи
установки из приемников и батареи
конденсаторов, мощность и линейные токи
батареи конденсаторов

I’л
= I’
a
= S√3Uл
= 51,7 A; Qк
= Q – Q’
=15,67 квар;

Iк.л
= Qк
/√3Uл
= 41,2 А.

Фазные токи и
сопротивление фазы батареи конденсаторов

Iк.л/√3
= 20,8 А; xк.ф
= Uф
/Iк.ф
= Uл
/Iк.ф
= 10,58 Ом.

Емкость одной фазы
и всей батареи конденсаторов

Ск.ф
=1/2π/хк.ф
= 30 мкФ;    Ск
= 3Ск.ф
= 90 мкФ.

Векторная диаграмма
цепи рис, 3.18, а
приведена
на рис. 3.18, б.
На диаграмме
показаны только те токи, которые
определяют ток I’a
(t. е. Ia
и Iкa),
а также токи, определяющие ток Iкa

(т. е. Iкab
и Iкca).

20.
Основные понятия и принципы анализа
переходных процессов в электрических
цепях.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 29 марта 2021 года; проверки требуют 7 правок.

Синусоидальное напряжение (красная линия) и ток (зелёная линия) синфазны, то есть, угол фазового сдвига φ=0° (cosφ=1) — нагрузка полностью активная, нет реактивной составляющей. Мгновенная мощность (синяя линия) и активная мощность (голубая линия) рассчитаны с коэффициентом мощности, равным 1. Как видно, синяя линия (график мгновенной мощности) находится полностью над осью абсцисс (в положительной полуплоскости), вся подводимая энергия преобразуется в работу: переходит в активную мощность, потребляемую нагрузкой.

Синусоидальное напряжение (красная линия) и ток (зелёная линия) имеют фазовый сдвиг φ в 90° (cosφ=0) — нагрузка полностью реактивная, нет активной составляющей. Мгновенная мощность (синяя линия) и активная мощность (голубая линия) рассчитаны с коэффициентом мощности, равным 0. Расположение синей линии (графика мгновенной мощности) на оси абсцисс показывает, что в течение первой четверти цикла вся подводимая мощность временно сохраняется в нагрузке, а во второй четверти цикла возвращается в сеть, и так далее, то есть никакой активной мощности не потребляется, полезной работы в нагрузке не совершается.

Синусоидальное напряжение (красная линия) и ток (зелёная линия) имеют фазовый сдвиг φ в 45° (cosφ=0,71) — нагрузка имеет и активную, и реактивную составляющие. Мгновенная мощность (синяя линия) и активная мощность (голубая линия) рассчитаны из переменного напряжения и тока с коэффициентом мощности, равным 0,71. Расположение синей линии (графика мгновенной мощности) под осью абсцисс показывает, что некоторая часть подводимой мощности всё же возвращается в сеть в течение части цикла, отмеченного φ.

Коэффицие́нт мо́щности — безразмерная физическая величина, характеризующая потребителя переменного электрического тока с точки зрения наличия в нагрузке реактивной составляющей и мощности искажения (собирательное название — неактивная мощность). Следует отличать понятие «коэффициент мощности» от понятия «косинус фи», который равен косинусу сдвига фазы переменного тока, протекающего через нагрузку, относительно приложенного к ней напряжения. Второе понятие используют в случае синусоидальных тока и напряжения, и только в этом случае оба понятия эквивалентны.

Определение и физический смысл[править | править код]

Коэффициент мощности равен отношению потребляемой электроприёмником активной мощности к полной мощности. Активная мощность расходуется на совершение работы. В случае синусоидальных тока и напряжения полная мощность представляет собой геометрическую сумму активной и реактивной мощностей. Иными словами, она равна корню квадратному из суммы квадратов активной и реактивной мощностей. В общем случае полную мощность можно определить как произведение действующих (среднеквадратических) значений тока и напряжения в цепи. В качестве единицы измерения полной мощности принято использовать вольт-ампер (В∙А) вместо ватта (Вт).

В электроэнергетике для коэффициента мощности приняты обозначения {displaystyle operatorname {cos} varphi } (где varphi  — сдвиг фаз между силой тока и напряжением) либо lambda . Когда для обозначения коэффициента мощности используется lambda , его величину обычно выражают в процентах.

Согласно неравенству Коши—Буняковского, активная мощность, равная среднему значению произведения тока и напряжения, всегда не превышает произведение соответствующих среднеквадратических значений. Поэтому коэффициент мощности принимает значения от нуля до единицы (или от 0 до 100 %).

Коэффициент мощности математически можно интерпретировать как косинус угла между векторами тока и напряжения (в общем случае бесконечномерных). Поэтому в случае синусоидальных напряжения и тока величина коэффициента мощности совпадает с косинусом угла, на который отстают соответствующие фазы.

В случае синусоидального напряжения, но несинусоидального тока, если нагрузка не имеет реактивной составляющей, коэффициент мощности равен доле мощности первой гармоники тока в полной мощности, потребляемой нагрузкой.

При наличии реактивной составляющей в нагрузке, кроме значения коэффициента мощности, иногда также указывают характер нагрузки: активно-ёмкостный или активно-индуктивный. В этом случае коэффициент мощности соответственно называют опережающим или отстающим.

Прикладной смысл[править | править код]

Можно показать, что если к источнику синусоидального напряжения (например, розетка ~230 В, 50 Гц) подключить нагрузку, в которой ток опережает или отстаёт по фазе на некоторый угол от напряжения, то на внутреннем активном сопротивлении источника выделяется повышенная мощность. На практике это означает, что при работе на нагрузку с реактивной составляющей от электростанции требуется больше отвода тепла, чем при работе на активную нагрузку; избыток передаваемой энергии выделяется в виде тепла в проводах, и в масштабах, например, предприятия потери могут быть довольно значительными.

Не следует путать коэффициент мощности и коэффициент полезного действия (КПД) нагрузки. Коэффициент мощности практически не влияет на энергопотребление самого устройства, включённого в сеть, но влияет на потери энергии в идущих к нему проводах, а также в местах выработки или преобразования энергии (например, на подстанциях). То есть счётчик электроэнергии в квартире практически не будет реагировать на коэффициент мощности устройств, поскольку оплате подлежит лишь электроэнергия, совершающая работу (активная составляющая нагрузки). В то же время от КПД непосредственно зависит потребляемая электроприбором активная мощность. Например, компактная люминесцентная («энергосберегающая») лампа потребляет примерно в 1,5 раза больше энергии, чем аналогичная по яркости светодиодная лампа. Это связано с более высоким КПД последней. Однако независимо от этого каждая из этих ламп может иметь как низкий, так и высокий коэффициент мощности, который определяется используемыми схемотехническими решениями.

Для импульсного блока питания коэффициент мощности в первом приближении равен cos(f).[1]

Математические расчёты[править | править код]

Коэффициент мощности необходимо учитывать при проектировании электросетей. Низкий коэффициент мощности ведёт к увеличению доли потерь электроэнергии в электрической сети в общих потерях. Если его снижение вызвано нелинейным, и особенно импульсным характером нагрузки, это дополнительно приводит к искажениям формы напряжения в сети. Чтобы увеличить коэффициент мощности, используют компенсирующие устройства. Неверно рассчитанный коэффициент мощности может привести к избыточному потреблению электроэнергии и снижению КПД электрооборудования, питающегося от данной сети.

Для расчётов в случае гармонических переменных U (напряжение) и I (сила тока) используются следующие математические формулы:

  1. {displaystyle chi ={frac {P}{S}}}
  2. P=Utimes Itimes cos varphi
  3. Q=Utimes Itimes sin varphi
  4. {displaystyle S=textstyle sum _{k=1}^{infty }displaystyle (U)times I={sqrt {P^{2}+Q^{2}+T^{2}}}}

Здесь {displaystyle P} — активная мощность, S — полная мощность, Q — реактивная мощность, T — мощность искажения.

Типовые оценки качества электропотребления[править | править код]

Значение
коэффициента
мощности
Высокое Хорошее Удовлетворительное Низкое Неудовлетворительное
{displaystyle operatorname {cos} varphi } 0,95…1 0,8…0,95 0,65…0,8 0,5…0,65 0…0,5
lambda 95…100 % 80…95 % 65…80 % 50…65 % 0…50 %

При одной и той же активной мощности нагрузки мощность, бесполезно рассеиваемая на проводах, обратно пропорциональна квадрату коэффициента мощности. Таким образом, чем меньше коэффициент мощности, тем ниже качество потребления электроэнергии. Для повышения качества электропотребления применяются различные способы коррекции коэффициента мощности, то есть его повышения до значения, близкого к единице.

Например, большинство старых светильников с люминесцентными лампами для зажигания и поддержания горения используют электромагнитные балласты (ЭмПРА), характеризующиеся низким значением коэффициента мощности, то есть неэффективным электропотреблением. Многие компактные люминесцентные («энергосберегающие») лампы, имеющие ЭПРА, тоже характеризуются низким коэффициентом мощности (0,5…0,65). Но аналогичные изделия известных производителей, как и большинство современных светильников, содержат схемы коррекции коэффициента мощности, и для них значение {displaystyle operatorname {cos} varphi } близко к 1, то есть к идеальному значению.

Несинусоидальность[править | править код]

Низкое качество потребителей электроэнергии, связанное с наличием в нагрузке мощности искажения, то есть нелинейная нагрузка (особенно при импульсном её характере), приводит к искажению синусоидальной формы питающего напряжения. Несинусоидальность — вид нелинейных искажений напряжения в электрической сети, который связан с появлением в составе напряжения гармоник с частотами, многократно превышающими основную частоту сети. Высшие гармоники напряжения оказывают отрицательное влияние на работу системы электроснабжения, вызывая дополнительные активные потери в трансформаторах, электрических машинах и сетях; повышенную аварийность в кабельных сетях.

Источниками высших гармоник тока и напряжения являются электроприёмники с нелинейными нагрузками. Например, мощные выпрямители переменного тока, применяемые в металлургической промышленности и на железнодорожном транспорте, газоразрядные лампы, импульсные источники питания и др.

Коррекция коэффициента мощности[править | править код]

Коррекция коэффициента мощности при помощи конденсаторов

Коррекция коэффициента мощности (англ. power factor correction, PFC) — процесс приведения потребления конечного устройства, обладающего низким коэффициентом мощности при питании от силовой сети переменного тока, к состоянию, при котором коэффициент мощности соответствует принятым стандартам.

К ухудшению коэффициента мощности (изменению потребляемого тока непропорционально приложенному напряжению) приводят нерезистивные нагрузки: реактивная и нелинейная.
Реактивные нагрузки корректируются внешними реактивностями, именно для них определена величина {displaystyle cos varphi }.
Коррекция нелинейной нагрузки технически реализуется в виде той или иной дополнительной схемы на входе устройства.

Данная процедура необходима для равномерного использования мощности фазы и исключения перегрузки нейтрального провода трёхфазной сети. Так, коррекция коэффициента мощности рекомендуется для достаточно мощных импульсных источников питания. Компенсация обеспечивает отсутствие всплесков тока потребления на вершине синусоиды питающего напряжения, которая характерна для схем, где на входе стоит диодный мост и сглаживающий конденсатор, и, как следствие, более равномерную нагрузку на силовую линию.

Разновидности коррекции коэффициента мощности[править | править код]

  • Коррекция реактивной составляющей полной мощности потребления устройства. Выполняется путём включения в цепь реактивного элемента, производящего обратное действие. Например, для компенсации действия электродвигателя переменного тока, обладающего высокой индуктивной реактивной составляющей полной мощности, параллельно цепи питания включается конденсатор. В масштабах предприятия для компенсации реактивной мощности применяются батареи конденсаторов и других компенсирующих устройств.
  • Коррекция нелинейности потребления тока в течение периода колебаний питающего напряжения. Если нагрузка потребляет ток непропорционально приложенному напряжению, для повышения коэффициента мощности требуется схема пассивного (PPFC) или активного корректора коэффициента мощности (APFC). Простейшим пассивным корректором коэффициента мощности является дроссель с большой индуктивностью, включённый последовательно с питаемой нагрузкой. Дроссель выполняет сглаживание импульсного потребления нагрузки и выделение низшей, то есть основной, гармоники потребления тока, что и требуется (правда, это достигается в ущерб форме напряжения, поступающего на вход устройства). Активная коррекция коэффициента мощности ценой некоторого усложнения схемы устройства способна обеспечивать наилучшее качество коррекции, приближая коэффициент мощности к 1.

Примечания[править | править код]

  1. Вопросы про коэффициент мощности . Доморост. Дата обращения: 20 мая 2023.

Ссылки[править | править код]

  • Как повысить коэффициент мощности без использования компенсирующих устройств
  • Суднова В. В., Влияние качества электроэнергии на работу электроприемников
  • Несинусоидальность напряжения
  • Влияние высших гармоник напряжения и тока на работу электрооборудования
  • ГОСТ 13109-97
  • Оптимизация работы электроприемников — эффективный способ коррекции коэффициента мощности
  • PFC, Никс, 25.11.2007.
  • Решения от Texas Instruments для AC/DC- и DC/DC-преобразователей, «Новости электроники», N9, 2007.
  • Коррекция фактора мощности // Методика тестирования блоков питания, F-center, 24.12.2004.
  • постановлением Правительства РФ от 20 июля 2011 года № 602 «Об утверждении требований к осветительным устройствам и электрическим лампам, используемым в цепях переменного тока в целях освещения»
  • ТЕХНИЧЕСКИЙ РЕГЛАМЕНТ Таможенного союза «О требованиях к энергетической эффективности электрических энергопотребляющих устройств» (на стадии принятия)
  • ОСТ 45.183-2001 Установки электропитания аппаратуры электросвязи стационарные. Общие технические требования.

На шильдиках многих электромоторов (электродвигателей и др. устройств) указывают активную мощность в Вт и cosφ / или λ /или PF. Что тут к чему см. ниже.

Подразумеваем,что переменное напряжение в сети синусоидальное – обычное, хотя все рассуждения ниже верны и для всех гармоник по отдельности других периодических напряжений.

Полная, или кажущаяся мощность S (apparent power) измеряется в вольт-амперах (ВА или VA, кВА или kVA) и определяется произведением переменных напряжения и тока системы. Удобно считать, что полная мощность в цепи переменного тока выражается комплексным числом таким, что активная мощность является его действительной частью, реактивная мощность — мнимой. Генератор, должен поставить в сеть именно ее и именно поэтому мощность генератора дается в кВА.

Коэффициент мощности (cos φ, косинус фи ), Полная (кажущаяся), активная и реактивная мощность электродвигателя=электромотора и не только его. Коэффициент мощности для трехфазного электродвигателя.
  • угол φ -это угол между фазой напряжения и фазой тока, называемый еще сдвигом фаз, при этом, если ток отстаёт от напряжения, сдвиг фаз считается положительным, если опережает его, то отрицательным
  • величина sin φ для значений φ от 0 до плюс 90° является положительной величиной. Величина sin φ для значений φ от 0 до -90° является отрицательной величиной
  • если sin φ>0, то нагрузка имеет активно-индуктивный характер (электромоторы, трансформаторы, катушки…) – ток отстает от напряжения
  • если sin φ<0, нагрузка имеет активно-ёмкостный характер – (конденсаторы…) – ток опережает напряжение
  • Все соотношения между P, S и Q определяются теоремой Пифагора и элементарными тригонометрическими тождествами для прямоугольного треугольника

Активная мощность P (active power = real power =true power) измеряется в ваттах (Вт, W)  и это та мощность, которая потребляется электрическим сопротивлением системы на тепло и полезную работу. Для сетей переменного тока:

  • P=U*I*cosφ, где U и I – действующие=эффективные=среднеквадратичные значения напряжения и тока, а φ- сдвиг фаз между ними
  • Мощность необходимого генератора вычисляется через активную мощность как S = P/cosφ и выражается в ВА, а не в Вт в однофазной сети,
  • Мощность необходимого генератора вычисляется через активную мощность как S = √3P/cosφ и выражается в ВА, а не в Вт в трехфазной сети,

Реактивная мощность Q (reactive power) измеряется в вольт-амперах реактивных (вар, var) и это электромагнитная мощность, которая запасается в приемнике и отдается обратно в сеть колебательным контуром системы. Реактивная мощность в идеале не выполняет работы, т.е. название вводит в заблуждение. Легко догадаться глядя на рисунок, что:

  • P=U*I*sinφ, где U и I – действующие=эффективные=среднеквадратичные значения напряжения и тока, а φ- сдвиг фаз между ними
  • Мощность необходимого генератора вычисляется через реактивную мощность как S = P/sinφ и выражается в ВА, а не в Вт в однофазной сети– это, конечно, фантастика, что реактивная мощнать известна, а активная – нет 🙂
  • Мощность необходимого генератора вычисляется через активную мощность как S = √3P/sinφ и выражается в ВА, а не в Вт в трехфазной сети,

Сама концепция активной и реактивной мощности актуальна для устройств (приемников) переменного тока. Она малоактуальна=никогда не упоминатеся для приемников постоянного тока в силу малости (мизерности) соответствующих эффектов, связанных только с переходными процессами при включении/выключении.

Любая система, как известно, имеет емкость и индуктивность = является неким колебательным контуром. Переменный ток в одной фазе накачивает электромагнитное поле этого контура энергией а в противоположной фазе эта энергия уходит обратно в генератор ( в сеть). Это вызывает в РФ 3 проблемы (для поставщика энергии!)

  • Хотя теоретически, при нулевых сопротивлениях передачи, на выработку реактивной мощности не тратится мощность генератора, но практически для передачи реактивной мощности по сети требуется дополнительная, активная мощность генератора (потери передачи).
  • Сеть должна пропускать и активные и реактивные токи, т.е иметь запас по пропускным характеристикам.
  • Генератор мог бы, выдавая те же ток и напряжение, поставлять потребителю электроэнергии больше активной мощности.

попробуем догадаться, что делает поставщик электроэнергии? Правильно, пытается навязать Вам различные тарифы для разлиных значений cos φ. Что можно сделать: можно заказать компенсацию реактивной мощности ( т.е. установку неких блоков конденсаторов или катушек), которые заставят реактивную нагрузку колебаться внутри Вашего предприятия/устройства. Стоит ли это делать? Зависит от стоимости установки, наценок за коэффициент мощности и очень даже часто не имеет экономического смысла. В некоторых странах качество питающего напряжения тоже может пострадать от избытка реактивной мощности, но в РФ проблема неактуальна в силу изначально очень низкго качества в питающей сети.

Естественно, хотелось бы ввести величину, которая характеризовала бы степень линейности нагрузки. И такая величина вводится под названием коэффициент мощности (“косинус фи”, power factor, PF), как отношение активной мощности к полной, естественно сразу в 2-х видах, в РФ это:

  • λ=P/S*100% – то есть, если в %, то это лямбда, P в (Вт), S в (ВА)
  • cosφ=P/S – более распространенная величина , P в (Вт), S в (ВА)

Коэффициент мощности для однофазной нагрузки:

cosφ = P / (U*I), где

  • cosφ = косинус фи
  • P = активная мощность (Вт)
  • U = Напряжение межфазное (В)
  • I = Ток (А)

Коэффициент мощности для трехфазного асинхронного (обычного) электродвигателя и любой трехфазной нагрузки:

cosφ = P / (√3*U*I), где

  • cosφ = косинус фи
  • √3 = квадратный корень из трех
  • P = активная мощность (Вт)
  • U = Напряжение межфазное (В)
  • I = Ток (А)

Как понимать “хороший” или “плохой” коэффициент мощности?

  • 1 – оптимальное значение;
  • 0.95 – хороший показатель;
  • 0.90 – удовлетворительный показатель;
  • 0.80 – средний показатель (современный электродвигателей);
  • 0.70 – низкий показатель;
  • 0.60 – плохой показатель.
Коэффициент мощности (cos φ, косинус фи ), Полная (кажущаяся), активная и реактивная мощность электродвигателя=электромотора и не только его. Коэффициент мощности для однофазного и трехфазного электродвигателя. В чем отличие единиц мощности кВт и кВА?  Какие коэффициенты мощности "хорошие", а какие "плохие"?

Трёхфазнаянагрузка именуется равномерной, когда по всем фазным проводникам протекает однообразный ток. При всем этом сила тока в нулевом проводнике равна нулю. Примером равномерной (симметричной) нагрузки являютсятрёхфазныеэлектродвигатели. В данном случае мощность потребителя рассчитывается по формуле

P = 3*Uф*I* cos(φ) = 1,73Uл*I* cos(φ) (1)

Когда по фазным проводникам протекают разные по величине токи, нагрузка именуется неравномерной либо несимметричной. В случае несимметричной нагрузки по нулевому (нейтральному) проводу протекает ток. В этом случае мощность определяется по формуле:

Pобщ = Ua*Ia* cos(φ1) + Ub*Ib* cos(φ2) + Uc*Ic* cos(φ3) (2)

Пример 1

Какой ток протекает в цепи трехфазного электродвигателя мощностью 1,45 КВт и cos(φ)=0,76? Напряжение сети Uф/Uлин = 220/380 В

Решение: 3-х фазные электродвигатели являются симметричной нагрузкой. Используя формулу (1), после преобразований, получаем:

I = P/3*Uф* cos(φ) = 1450/3*220*0,76 = 2,9 А

Пример 2

Какую мощность потребляет коттедж с трёхфазным вводом, если по фазным проводам протекают токи величиной 4,2; 5,1 и 12 А? Принять cos(φ) = 1

Решение: Используя формулу (2), имеем:

Робщ = (4,2 + 5,1+12)*220 = 21,3*220 = 4,7 КВт

Расчет величины переменного электрического тока при однофазовой нагрузке.

Представим, что нас обыденный дом либо квартира в какой имеется электрическая сеть переменного тока напряжением 220 вольт.

В доме имеются электроприборы:

Для освещения дома установлены 5 электролампочек по 100 ватт любая и 8 электролампочек мощностью 60 ватт любая. 2. Электродуховка, мощностью 2 киловатта либо 2000 ватт. 3. Телек, мощностью 0,1 киловатт либо 100 ватт. 4. Холодильник, мощностью 0,3 киловатта либо 300 ватт. 5. Стиральная машина мощностью 0,6 киловатт либо 600 ватт. Нас интересует, какой ток будет протекать на вводе в наш дом либо квартиру при одновременной работе всех перечисленных выше электроприборов и не повредится ли наш электросчетчик, рассчитанный на ток 20 ампер?

Расчет: 1, Определяем суммарную мощность всех устройств: 500 + 480 + 2000 + 100 + 300 + 600 = 3980 ватт 2. Ток, протекающий в проводе при таковой мощности определяется по формуле:

где: I — ток в амперах (А) Р — мощность в ваттах (Вт) U — напряжение в вольтах (В) cos φ — коэффициент мощности (для бытовых электросетей можно принять 0,95) Подставим числа в формулу: І = 3980 /220 * 0,95 = 19,04 А Вывод: Счетчик выдержит, так как ток в цепи меньше 20 А. Для удобства юзеров ниже приведена форма расчета тока.

Для вас следует ввести в надлежащие поля формы суммарное значения мощности в ваттах всех ваших электроприборов, напряжение в вольтах, обычно 220 и коэффициента мощности, 0,95 для бытовой нагрузки, надавить кнопку “Вычислить” и в поле “Ток” появится величина тока в амперах. Если у вас нагрузка в киловаттах, следует перевести ее в ватты, зачем помножить на 1000. Для чистки введенного значения мощности следует надавить кнопку “Очистить”. Чистку введенных по дефлоту значений напряжения и косинуса следует произвести кнопкой delete переместив курсор в подобающую ячейку (по мере надобности).

Форма расчета для определения тока при однофазовой нагрузке.

Расчет величины переменного электрического тока при трехфазной нагрузке.

Сейчас представим, что нас обыденный дом либо квартира в какой имеется электрическая сеть переменного тока напряжением 380/220 вольт. Почему указываются два напряжения — 380 В и 220 В? Дело в том, что при подключении к трехфазной сети в ваш дом заходят 4 провода — 3 фазы и нейтраль (по старенькому — ноль).

Итак вот, напряжение между фазными проводами либо по другому — линейное напряжение будет 380 В, а между хоть какой из фаз и нейтралью либо по другому фазное напряжение будет 220 В. Любая из 3-х фаз имеет свое обозначение латинскими литерами А, В, С. Нейтраль обозначается латинской N.

Таким макаром, между фазами А и В, А и С, В и С — будет напряжение 380 В. Между А и N, В и N, С и N будет 220 В и к этим проводам можно подключать электроприборы напряжением 220 В, а означает в доме может быть как трехфазная, так и однофазовая нагрузка.

Вообще-то трехфазные нагрузки принято считать в киловаттах, потому, если они записаны в ваттах, их следует поделить на 1000. Нас интересует, какой ток будет протекать на вводе в наш дом либо квартиру при одновременной работе всех перечисленных выше электроприборов и не повредится ли наш электросчетчик, рассчитанный на ток 20 ампер?

Расчет: Определяем суммарную мощность всех устройств: 3 кВт + 15 кВт = 18 кВт 2. Ток, протекающий в фазном проводе при таковой мощности определяется по формуле:

где: I — ток в амперах (А) Р — мощность в киловаттах (кВт) U — линейное напряжение, В cos φ — коэффициент мощности (для бытовых электросетей можно принять 0,95) Подставим числа в формулу: = 28,79 А

Найти

Линейные и фазные токи

Пример расчета:.

К источнику трехфазной сети с линейным напряжением Uл=380В и частотой f=50 Гц подключена равномерная нагрузка, соединенная по схеме «звезда», с полным сопротивлением в фазе Z=90 Ом и индуктивностью L= 180 мГн, Найти актив­ную, реактивную и полную мощности, коэффициент мощности,

Решение.

1 Фазное напряжение:

U ф = U л / √ 3=380 / √ 3 = 220 В.

Фазный ток

Линейный ток

4 Реактивное сопротивление в фазе:

5 Активное сопротивление в фазе:

6 Коэффициент мощности катушки:

sinφ=XL/z= 56,5/90=0,628

7 Мощности, потребляемые нагрузкой:

а) активная:

Либо

б) реактивная:

в) Полная:

Расчет мощности трехфазной сети

Трёхфазнаянагрузка именуется равномерной, когда по всем фазным проводникам протекает однообразный ток. При всем этом сила тока в нулевом проводнике равна нулю. Примером равномерной (симметричной) нагрузки являютсятрёхфазныеэлектродвигатели. В данном случае мощность потребителя рассчитывается по формуле

P = 3*Uф*I* cos(φ) = 1,73Uл*I* cos(φ) (1)

Когда по фазным проводникам протекают разные по величине токи, нагрузка именуется неравномерной либо несимметричной. В случае несимметричной нагрузки по нулевому (нейтральному) проводу протекает ток. В этом случае мощность определяется по формуле:

Pобщ = Ua*Ia* cos(φ1) + Ub*Ib* cos(φ2) + Uc*Ic* cos(φ3) (2)

Пример 1

Какой ток протекает в цепи трехфазного электродвигателя мощностью 1,45 КВт и cos(φ)=0,76? Напряжение сети Uф/Uлин = 220/380 В

Решение: 3-х фазные электродвигатели являются симметричной нагрузкой. Используя формулу (1), после преобразований, получаем:

I = P/3*Uф* cos(φ) = 1450/3*220*0,76 = 2,9 А

Пример 2

Какую мощность потребляет коттедж с трёхфазным вводом, если по фазным проводам протекают токи величиной 4,2; 5,1 и 12 А? Принять cos(φ) = 1

Решение: Используя формулу (2), имеем:

Робщ = (4,2 + 5,1+12)*220 = 21,3*220 = 4,7 КВт

Опора древесной одностоечной и методы укрепление угловых опор: Опоры ВЛ — конструкции, предназначен­ные для поддерживания проводов на нужной высоте над землей, водой.

Механическое удерживание земельных масс: Механическое удерживание земельных масс на склоне обеспечивают контрфорсными сооружениями разных конструкций.

Общие условия выбора системы дренажа: Система дренажа выбирается зависимо от нрава защищаемого.

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особенное значение присваивают эстетическим.

Как отыскать мощность трехфазной сети по току и напряжению, расчет по формулам

Трехфазные и однофазовые сети распространены приблизительно идиентично в личных и многоквартирных домах. Но стоит увидеть, что промышленная сеть является трехфазной по дефлоту и почти всегда к улице, где размещены личные дома либо к многоквартирному дому подходит как раз-таки трехфазная сеть. А уже позже ее разветвляют на три однофазовые, и заводят к конечному потребителю тока.

Расчет изготовлен не просто так, а с целью обеспечить очень эффективную передачу электричества от электростанции к для вас, также преследуется цель большего понижения утрат электричества в транспортировочном процессе, ведь на ток оказывает сопротивление проводник, по которому этот самый ток течет.

Если для вас любопытно, какая сеть у вас в доме либо квартире, то найти это довольно легко. Если вы откроете электрический щиток и поглядите, сколько проводов применяется для вашей квартиры, то если вы увидите 2 либо 3 провода, это однофазовая сеть, 1 и 2 провод — это фаза и ноль, 3 провод, если он находится — это заземление. В трехфазной же сети проводов будет либо 4, либо 5. Три фазы А, В,С, ноль и если находится — заземляющий проводник.

Так же определяется и количество фаз по так именуемому пакетнику, вводному автоматическому выключателю. Для однофазовой сети выделяется 2 либо 1 сдвоенный кабель, а в трехфазной будет 1 строенный кабель и одинарный. Но не стоит забывать о напряжении, с которым необходимо быть очень усмотрительным.

Для того дабы произвести расчет по току, и расчет по напряжению дабы выяснить мощность нетрудно, обычно, в трехфазных сетях нуждаются огромные энергопотребители. При помощи формулы, приведенной в статье, произвести расчет мощности, используя значения тока и напряжения, вы можете с легкостью.

Узнаем потребляемую мощность электричества

Итак, перейдем к существу, нам необходимо выяснить мощность электричества по току и напряжению. Сначала необходимо знать, сколько потреблять энергии вы будете. Это просто выяснить, сопоставив все энергопотребители у вас на дому. Давайте выберем самую распространенную технику, без которой не обойтись современному человеку. Кстати, выяснить сколько потребляет тот либо другой устройство, можно в паспортных данных вашего электроприбора, либо на бирке, которая может быть на корпусе. Начнем с самого высокого употребления напряжения:

  • Стиральная машина — 2700 Ватт
  • Водонагреватель (бойлер) — 2000 Ватт
  • Утюг — 1875 Ватт
  • Кофеварка — 1200 Ватт
  • Пылесос — 1000 Ватт
  • Микроволновая печь — 800 Ватт
  • Компьютер — 500 Ватт
  • Освещение — 500 Ватт
  • Холодильник — 300 Ватт
  • Телек — 100 Ватт

По формуле нам необходимо все добавить и поделить на 1000, для перевода из ватт в киловатты.

Суммарно у нас вышло 10975 Ватт, переведем в киловатты, поделив на 1000.

Итого у нас потребление 10.9 кВт.

Для обыденного мещанина полностью довольно и одной фазы. В особенности если вы не собираетесь включать все сразу, что, конечно, маловероятно.

Но необходимо держать в голове что потребление тока может быть существенно выше, в особенности если вы живете в личном доме и/либо у вас есть гараж, тогда потребление 1-го устройства может составлять 4-5 кВт. Тогда для вас будет лучше трехфазная сеть, как более мощная и позволяющая подключать существенно более массивных потребителей тока.

Трехфазная сеть

Давайте более тщательно разглядим конкретно трехфазную сеть, как более предпочтительную для нас. Для начала приведем сравнительную характеристику однофазовой и трехфазной сети. Выделим некоторые плюсы и минусы.

Когда применяется трехфазная сеть есть возможность что нагрузка распределиться неравномерно на каждую фазу. Если, например, от первой фазы будет запитан электрический котел и мощнейший нагреватель, а от 2-ой — телек и холодильник, то будет иметь место такое явления, как «перекос фаз» — несимметрия напряжений и токов, что может быть следствием выхода из строя некоторых потребителей тока. Для избежания схожей ситуации следует тщательнее планировать рассредотачивание нагрузки еще на исходном шаге проектирования сети.

Также трехфазной сети будет нужно большее число проводов, кабелей и автоматических выключателей, пропускающих ток, так как мощность будет существенно выше, соответственно установка таковой сети будет дороже.

Однофазовая сеть по вероятной возможной мощности уступает трехфазной. Так что если вы предполагаете применять много массивных потребителей тока, то 2-ой вариант будет соответственно лучше. Для примера, если в дом входит двухжильный (трехжильный если он с заземлением), с полосы электропередач, кабель сечением 16 мм2, тогда общая мощность всех электропотребителей в доме не должна превосходить 14кВт, как в примере, наведенном выше.

Но если же вы будете применять то же сечение провода для трехфазной сети, но соответственно кабель будет 4-5 жильным, то уже тогда наибольшая суммарная мощность будет приравниваться уже 42 кВт.

Рассчитываем мощность трехфазной сети

Для расчета примем некий производственный цех, в каком установлены 30 электродвигателей. В цех входит четырехпроводная линия, помним что это 3 фазы: A, B, C, и нейтраль(ноль). Номинальное напряжение 380/220 вольт. Суммарная мощность всех движков составляет Ру1 — 48кВт, еще у нас есть осветительные лампы в мастерской, суммарная мощность которых составляет Ру2- 2кВт.

  • Ру — установленная суммарная мощность группы потребителей, по величине равная сумме их заявленных мощностей, измеряется в кВт.
  • Кс — коэффициент спроса при режиме наивысшей нагрузки. Коэффициент спроса учитывает самое огромное вероятное число включений приемников группы. Для электродвигателей коэффициент спроса должен брать в расчет величину их загрузки.

Коэффициент спроса для осветительной (освещения) нагрузки, другими словами освещения, Кс2-0,9, и для силовой нагрузки, другими словами электродвигателей Кс1=0,35. Усредненный коэффициент мощности для всех потребителей cos( φ ) = 0,75. Нужно отыскать расчетный ток полосы.

Расчет

Подсчитаем расчетную силовую нагрузку P1 = 0,35*48 = 16,8 кВт

и расчетную осветительную нагрузку Р2 = 0,9 *2 = 1.8 кВт.

Полная расчетная нагрузка P = 16,8+1,8=18,6 кВт;

Расчетный ток считаем при помощи формулы:

Р — расчетная мощность потребителя (электродвигатели и освещение), кВт;

Uн — напряжение номинальное на клеммах приемника, которое приравнивается междуфазному (линейному, когда подключается фаза и фаза, тоесть 380 В) другими словами напряжению в сети, от которой он запитан, В;

cos ( φ ) — коэффициент мощности приемника.

Таким макаром, мы произвели расчет мощности по току, который дозволит для вас разобраться с трехфазными сетями. Но перейдя конкретно к монтажу системы не запамятовывайте технику безопасности, ведь ток и напряжение опасное для вашей жизни явление.

Формула для расчета мощности трехфазной сети

Суббота, вечер. Затеял стирку, запустил стиральную машинку. Попутно решил пропылесосить, заодно включил электрочайник, чтобы после испить чаю. И свет погас, оставив квартиру в кромешной тьме. Знакомая картина? Дабы такового не вышло, необходимо знать, как высчитать нагрузку на сеть, зная мощность электрического тока.

Особенности трехфазной системы

Для оборудования электричеством жилых домов и квартир применяют два вида схем:

  • однофазовая;
  • трехфазная.

Электросеть от электрических станций выходит с 3 фазами, попадает к домам в таком же виде, дальше разветвляется на отдельные фазы.

Этот метод передачи электроэнергии считается экономным, так как уменьшает утраты при транспортировке.

Как узнать свою схему

Выяснить количество фаз у себя в доме либо квартире просто, для этого необходимо открыть распределительный щиток и посчитать провода, по которым ток поступает в квартиру.

При однофазовой сети количество проводов будет 2: фаза, ноль.

Время от времени встречается 3 провод-заземление. В трехфазной системе проводов 4: 3 фазы, ноль. Провод заземления также может быть добавлен.

2 фаворитных метода соединения трехфазной системы:

Схема “Треугольник”

Любая фаза соединяется с примыкающими. Сила тока от источника фазная, между собой-линейная.

Схема “Звезда”

Фазы соединяются в одной точке. В этой точке суммарное напряжение будет равно 0. Сила тока только фазная, а напряжение может варьироваться от линейного до фазного. Что это дает юзеру? Линейное напряжение в квартире 380 В, а фазовое-220 В.

Большая часть устройств работают при напряжении 220 В, но некоторые приборы нуждаются в большем напряжении: старенькые электрической плиты, массивные обогреватели и котлы, электроинструмент промышленного предназначения.

Благодаря таковой схеме хоть какой устройство будет работать без заморочек.

Характеристики трехфазной цепи

Трехфазная сеть имеет ряд преимуществ:

  • уменьшает утраты при транспортировке электричества на далекие расстояния;
  • кабели и оборудование имеют наименьший расход чем у монофазной сети;
  • энергосистема сбалансирована;
  • в системе для работы находятся сходу 2 формы напряжения: линейное 380 В и фазное 220 В.

Расчет

Вычисление мощности трехфазной системы дело затруднительное, так как в сети ток не неизменный, а переменный.

При неизменном токе мощность рассчитывается методом умножения напряжения и силы тока. При переменном токе все величины нестабильны из-за наличия нескольких фаз. Также имеет значение метод соединения. При однофазовой системе мощность рассчитывается также методом умножения напряжения и силы тока, но с учетом коэффициента мощности-cos, который охарактеризовывает сдвиг фаз при реактивной нагрузке между напряжением и током.

Вычисление происходит по следующей формуле полной расчета мощности по току в трехфазной сети:

Pобщ=Uа∙Iа∙cosа+ Ub∙Ib∙cosb+ Uc∙Ic∙cosc

где U-напряжение, I-сила тока, cos-коэффициент мощности, a, b и c-фазы.

Измерение мощности в трехфазных цепях проводят прибором-ваттметр.

При симметричной нагрузке определяют только одну фазу и итог измерения множат на 3. При замере сходу 3 фаз будет нужно 3 устройства. При отсутствии фазы “ноль” измерение проводится 2 устройствами и расчет мощности рассчитывается по 1 закону Кирхгофа:

Ia+Ib+Ic=0

Сумма показаний 2-ух ваттметров даст показатель мощности трехфазной цепи.

Узнаем потребляемую мощность электричества

Как рассчитать мощность и зачем это нужно?

Познание предельной потребляемой мощности дозволит организовать верно электроснабжение квартиры либо домовладения.

Дабы ее вычислить, нужно подсчитать мощность употребления у однофазовых устройств и изучить устройства-трехфазники. Характеристики указываются в технических паспортах изделий либо в техническом справочнике. Зная эти характеристики и используя формулу вычисления мощности, определяется сила тока в трехфазной системе, которая дает нагрузку на проводку.

При помощи приобретенной инфы подбираются предохранители и провода, которые будут применяться при прокладке внутренней электросети.

Рассчитываем мощность трехфазной сети

Для удобства и скорых вычислений есть онлайн сервисы с калькуляторами, в каких можно стремительно посчитать мощность сети, введя известные юзеру характеристики.

Видео: Распределение нагрузки по фазам. Перекос фаз | KonstArtStudio

Что такое коэффициент мощности, косинус фи и тангенс фи

Содержание

  • 1 Виды мощности
  • 2 Что такое коэффициент мощности
  • 3 Выгода электрооборудования с высоким коэффициентом мощности
  • 4 Как узнать коэффициент мощности
  • 5 Значения коэффициента для различных случаев
  • 6 Видео по теме

Одной из важнейших характеристик электрических устройств является мощность. Поэтому желательно знать, что такое коэффициент мощности и как он рассчитывается. Это поможет не только оценить эффективность использования электрической энергии, но и правильно организовать работу электроприбора.

Коэффициент мощности определяет эффективность-использования электроэнергии

Виды мощности

В цепи переменного электротока возникают три мощности: активная, реактивная и полная. Активную называют полезной или действующей мощностью. Это связано с тем, что она тратится на осуществление полезной работы. Обычно при этом электрическая энергия преобразуется в другие виды.

Реактивная мощность в процессе работы электроприбора не тратится, а лишь переходит из одной формы в другую. В данной мощности нуждаются устройства, принцип действия которых основывается на использовании электромагнитного поля.

Одним из примеров таких устройств может служить колебательный контур, включающий в себя индуктивность и ёмкость в предположении, что активное сопротивление деталей пренебрежимо мало. Ещё одним можно считать трансформатор. В нём ток и напряжение передаются по сердечнику с помощью колебаний электромагнитного поля.

Полную мощность можно получить векторным сложением активной и реактивной составляющих.

Треугольник мощностей

Что такое коэффициент мощности

Иногда бывает важно понять, какая часть мощности уходит на выполнение полезной работы. Для этого необходимо узнать активную и реактивную мощность рассматриваемого электрического прибора. Далее на их основе определяют полную.

В электротехнике для определения мощности в сети постоянного тока используется следующее соотношение:

Формула мощности

В цепи переменного тока вычисление искомой величины производится более сложным образом. При этом следует учитывать, что изменения напряжения и тока по времени совпадать не будут. Электроток в ёмкостной нагрузке опережает напряжение, а в индуктивной, наоборот, отстает.

Поэтому при вычислении мощности принято использовать эффективные значения тока и напряжения. При этом рассматривается такая постоянная величина тока и напряжения, которая на активном сопротивлении выделит то же количество тепла, что и рассматриваемые переменные величины.

Сдвиг между напряжением и током

Конечно, в таких случаях можно также вычислить мгновенную мощность. Для этого достаточно перемножить мгновенные значения тока и напряжения. Однако данная величина не учитывает сильную инерцию энергетических процессов, в связи с чем подобный расчет величин имеет ограниченное применение.

Чтобы определить коэффициент активной мощности нужно разделить активную мощность на полную. Данный коэффициент позволяет оценить эффективность использования рассматриваемого технического решения. Соотношение между реактивной и активной мощностью определяет тангенс «фи».

Полная мощность измеряется в вольт-амперах (ВА). Для активной используют ватты (Вт). Для реактивной применяется единица измерения вольт-ампер реактивный (ВАР).

Поскольку сложение мощностей происходит по векторным правилам, то нужно учитывать, что векторы активной и реактивной составляющих перпендикулярны друг к другу. Результат вычислений представляет собой гипотенузу прямоугольного треугольника с указанными катетами. Формула полной мощности выглядит следующим образом:

Выражение для полной мощности

Это следует из теоремы Пифагора. Здесь применяется правило для нахождения гипотенузы прямоугольного треугольника. Если выразить катеты через гипотенузу и угол «фи», то можно получить формулу для определения активной мощности:

Активная мощность

Аналогичным образом выражается и реактивная:

Реактивная мощность

Следовательно, из формулы для активной мощности можно найти cosφ:

Определение косинуса фи

Для трехфазного напряжения формула принимает следующий вид:

Формула для трёхфазного напряжения

Поэтому следует понимать, что такое косинус «фи» в данной формуле. А это все тот же коэффициент мощности, который позволяет оценивать электроприемники при наличии реактивной составляющей в потребляемом токе.

Называется cosφ коэффициентом мощности в связи с тем, что при векторном сложении в прямоугольном треугольнике значение косинуса угла φ можно найти, разделив длину катета, соответствующего активной мощности, на длину гипотенузы, выражающей полную мощность. Следовательно, формула коэффициента мощности выглядит так:

Выражение для коэффициента мощности

Коэффициент активной мощности cosφ может иметь значение в диапазоне от 0 до 1. Иногда его выражают в процентах. В таком случае коэффициент обозначают греческой буквой «лямбда». Соотношение катетов в прямоугольном треугольнике определяет тангенс «фи».

Коэффициент мощности является низким в тех случаях, когда активная составляющая мала по сравнению с полной мощностью. Это говорит о неэффективности применяемого оборудования.

Для тока и напряжения синусоидальной формы cosφ соответствует косинусу угла отставания по фазе для этих параметров.

Сущность косинуса фи

Выгода электрооборудования с высоким коэффициентом мощности

Это связано с наличием следующих факторов:

  • Поставщики электроэнергии в некоторых случаях контролируют коэффициент мощности оборудования, используемого потребителями. Они могут выставлять дополнительный счёт, если он будет ниже 0.95. В том случае, когда коэффициент меньше 0.85, поставка электроэнергии может быть ограничена.
  • Низкий коэффициент приводит к тому, что при относительно небольшом объёме полезной работы происходят повышенные траты электроэнергии. Таким образом, за определённый объём полезной работы потребителю приходится переплачивать.
  • В линиях электропередач наличие высоких показателей указывает на незначительные потери при передаче энергии.
  • Низкий коэффициент в системе электроснабжения может приводить к уменьшению напряжения в сети. Это часто становится причиной перегрева используемых потребителем устройств.

При рассмотрении работы электрических устройств нужно учитывать, что часть из них генерирует реактивную мощность, а другие являются потребителями. Следовательно, применение первых приводит к возрастанию реактивной мощности, а использование вторых — к её уменьшению.

Реактивная мощность генерируется при работе асинхронного электродвигателя, трансформаторов, ветряных генераторов, систем освещения на разрядных лампах. Наличие реактивной нагрузки ухудшает эффективность работы оборудования. В качестве потребителей рассматриваются конденсаторы, синхронные двигатели и генераторы.

Для уменьшения реактивной мощности можно использовать следующие способы:

  • В цепи устанавливаются конденсаторы. При их использовании совместно с индуктивностью они образуют колебательный контур. В нём мощность от индуктивности будет потребляться ёмкостью.
  • Следует избегать работы асинхронных двигателей вхолостую или с малой мощностью.
  • Нужно исключить возможность работы оборудования при напряжении, которое превышает номинальное.
  • Рекомендуется по мере замены двигателей переходить на те, которые имеют более высокий коэффициент полезного действия.

Оптимальной нагрузкой является номинальная. Если используется нагрузка, значение которой меньше или больше номинальной, то это существенно снижает эффективность работы оборудования.

Как узнать коэффициент мощности

Значение рассматриваемого коэффициента указывается в сопроводительной технической документации к приобретаемому промышленному оборудованию или бытовому прибору. Однако при этом речь идёт о номинальном значении.

Указание косинуса фи на этикетке

Более точно коэффициент измеряется с помощью специализированного прибора, который называется фазометром.

Такие приборы могут быть электродинамическими или цифровыми. С помощью измерений можно достаточно просто и с большой точностью узнать чему равен cosφ и какова эффективность использования прибора.

Если фазометра нет в распоряжении, следует воспользоваться амперметром, вольтметром и ваттметром, с помощью которых измеряются такие физические величины, как сила тока, напряжение и мощность, а затем с помощью соответствующих формул вычислить коэффициент мощности.

Фазометр

Значения коэффициента для различных случаев

При измерении или вычислении коэффициента мощности необходимо знать характерные значения для различных видов оборудования:

  • При использовании нагревательных устройств, несмотря на возможное присутствие индуктивных элементов, считается, что вся используемая мощность является активной. В таких случаях принимают косинус «фи» равный единице.
  • Для перфораторов и ударных дрелей этот коэффициент составляет 0.95-0.97.
  • Сварочные трансформаторы в значительной степени используют индуктивную нагрузку. Поэтому коэффициент мощности трансформатора обычно находится в диапазоне от 0.5 до 0.85.

Значение коэффициента мощности

Когда значения коэффициента являются широко известными, их могут не указывать в сопроводительной документации. Нужно помнить, что хотя в большинстве случаев напряжение меняется синусоидально, иногда оно может существенно отклоняться от этой формы. В такой ситуации говорят о присутствии высших гармоник в колебаниях.

Их появление ведёт к дополнительным затратам мощности, а также снижает компенсацию реактивной мощности, если она применялась. Подобное явление наблюдается при работе с дуговыми сталеплавильными печами, установками дуговой сварки, газоразрядными лампами.

Видео по теме

Добавить комментарий