Как найти коэффициент поверхностного натяжения керосина

Содержание

  1. ХИМИЯ НЕФТИ
  2. ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА
  3. Понятие поверхностного натяжения
  4. Параметры влияющие на поверхностное натяжение
  5. Экспериментальное определение поверхностного натяжения
  6. Поверхностное натяжение
  7. Поверхностное натяжение жидкости — формулы и определение с примерами
  8. Сила поверхностного натяжения
  9. Коэффициент поверхностного натяжения
  10. Капиллярные явления
  11. Поверхностное натяжение жидкости
  12. Каковы особенности поверхностного слоя жидкости
  13. Что такое сила поверхностного натяжения
  14. Где проявляется поверхностное натяжение
  15. Почему одни жидкости собираются в капли, а другие растекаются
  16. Почему жидкость поднимается в капиллярах
  17. Пример решения задачи

ХИМИЯ НЕФТИ

ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА

Понятие поверхностного натяжения

называется термодинамическая характеристика поверхности раздела фаз, определенная как работа обратимого изотермического образования единицы плошали этой поверхности. Для жидкости поверхностное натяжение рассматривается как сила, действующая на единицу длины контура поверхности и стремящаяся сократить поверхность до минимума при заданных объемах фаз.

Нефть — это нефтяная дисперсная система, состоящая из дисперсной фазы и дисперсионной среды.

Поверхность частицы дисперсной фазы (например, ассоциат асфальтенов, глобула воды и т. п.) обладает некоторым избытком свободной поверхностной энергии Fs, пропорциональной площади поверхности раздела фаз S:

Величина σ может рассматриваться не только как удельная поверхностная энергия, но и как сила, приложенная к единице длины контура, ограничивающего поверхность, направленная вдоль этой поверхности перпендикулярно контуру и стремящаяся эту поверхность стянуть или уменьшить. Эта сила носит название .

Действие поверхностного натяжения можно наглядно представить в виде совокупности сил, стягивающих края поверхности к центру.

Длина каждой стрелочки вектора отражает величину поверхностного натяжения, а расстояние между ними соответствует принятой единице длины контура поверхности. В качестве размерности величины σ в равной мере используются как [Дж/м 2 ] = 10 3 [эрг/см 2 ], так и [Н/м] = 10 3 [дин/см].

В результате действия сил поверхностного натяжения жидкость стремится сократить свою поверхность, и если влияние силы земного притяжения незначительно, жидкость принимает форму шара, имеющего минимальную поверхность на единицу объема.

Поверхностное натяжение различно для разных групп углеводородов — максимально для ароматических и минимально для парафиновых. С увеличением молекулярной массы углеводородов оно повышается.

Большинство гетероатомных соединений, обладая полярными свойствами, имеют поверхностное натяжение ниже, чем углеводороды. Это очень важно, поскольку их наличие играет значительную роль в образовании водонефтяных и газонефтяных эмульсий и в последующих процессах разрушения этих эмульсий.

Параметры влияющие на поверхностное натяжение

Поверхностное натяжение существенно зависит от температуры и давления, а также от химического состава жидкости и соприкасающейся с ней фазы (газ или вода).

С повышением температуры поверхностное натяжение убывает и при критической температуре равно нулю. С увеличением давления поверхностное натяжение в системе газ — жидкость также снижается.

Поверхностное натяжение нефтепродуктов может быть найдено расчетным путем по уравнению:

Пересчет σ от одной температуры T0 к другой T можно проводить по соотношению:

Значения поверхностного натяжения для некоторых веществ.

Вещества, добавка которых к жидкости уменьшает ее поверхностное натяжение, называют поверхностно-активными веществами (ПАВ).

Поверхностное натяжение нефти и нефтепродуктов зависит от количества присутствующих в них поверхностно-активных компонентов (смолистых веществ, нафтеновых и других органических кислот и т. п.).

Нефтепродукты с малым содержанием поверхностно-активных компонентов имеют наибольшее значение поверхностного натяжения на границе с водой, с большим содержанием — наименьшее.

Хорошо очищенные нефтепродукты имеют высокое поверхностное натяжение на границе с водой.

С поверхностными силами на границе раздела твердой и жидкой фаз связаны явления смачивания и капиллярные явления, на которых основаны процессы миграции нефти в пластах, подъем керосина и масла по фитилям ламп и масленок и т. д.

Экспериментальное определение поверхностного натяжения

Для экспериментального определения поверхностного натяжения нефтей и нефтепродуктов применяются различные методы.

Первый метод (а) основан на измерении силы, необходимой для отрыва кольца от поверхности раздела двух фаз. Эта сила пропорциональна удвоенной силе окружности кольца. При капиллярном методе (б) измеряют высоту подъема жидкости в капиллярной трубке. Недостатком его является зависимость высоты подъема жидкости не только от величины поверхностного натяжения, но и от характера смачивания стенок капилляра исследуемой жидкостью. Более точной разновидностью капиллярного метода является метод висячей капли (в), основанный на измерении массы капли жидкости, отрывающейся от капилляра. На результаты измерения влияют плотность жидкости и размеры капли и не влияет угол смачивания жидкостью твердой поверхности. Этот метод позволяет определять поверхностное натяжение в сосудах высокого давления.

Наиболее распространенным и удобным способом измерения поверхностного натяжения является способ наибольшего давления пузырьков или капель (г), что объясняется простотой конструкции, высокой точностью и независимостью определения от смачивания.

Этот способ основан на том, что при выдавливании пузырька воздуха или капли жидкости из узкого капилляра в другую жидкость поверхностное натяжение σ на границе с той жидкостью, в которую выпускается капля, пропорционально наибольшему давлению, необходимому для выдавливания капли.

Поверхностное натяжение о входит в выражение для так называемого парахора П — величины, связывающей молекулярную массу М углеводородов и плотность их в жидкой фазе ρж и в парах ρп:

Парахор углеводородов зависит от структуры их молекул: с увеличением числа боковых цепей, двойных связей, ароматических и нафтеновых циклов величина парахора уменьшается. При одинаковой температуре кипения углеводородов парахор уменьшается в следующем порядке: парафины — олефины — нафтены — ароматические углеводороды.

Источник

Поверхностное натяжение

Молекулы жидкости взаимодействуют между собой силами притяжения и отталкивания, которые проявляются заметно в пределах расстояния r, называемого радиусом молекулярного действия (порядка нескольких диаметров молекулы). Сфера радиуса r называется сферой молекулярного действия. Если молекула находится в поверхностном слое, то есть удалена от поверхности менее чем на r, то равнодействующая сил притяжения со стороны окружающих молекул направлена внутрь жидкости. Поэтому для перехода молекулы из внутренней части жидкости на её поверхность требуется совершить работу, в результате свободная энергия поверхности возрастает. Свободную поверхностную энергию, приходящуюся на единицу поверхности жидкости, называют коэффициентом поверхностного натяжения:

где А — работа, которую нужно совершить, чтобы площадь поверхности увеличить на S. В системе СИ коэффициент поверхностного натяжения (измеряется в Дж/м2.

В положении равновесия свободная энергия системы минимальна, поэтому жидкость, предоставленная самой себе, стремится сократить свою поверхность. Мысленно ограничим какой-либо участок поверхностного слоя замкнутым контуром. В нём действуют силы, называемые силами поверхностного натяжения, направленные по касательной к поверхности перпендикулярно к участку контура, на который они действуют. Коэффициент поверхностного натяжения (можно определить и как силу, приходящуюся на единицу длины контура,ограничивающего поверхность:

Единица его измерения в системе СИ: 1Н/м (ньтонах на метр = 1 Дж/м2, или миллиньтонах на метр.

Коэффициент поверхностного натяжения зависит от химического состава жидкости, среды, с которой она граничит, температуры. С ростом температуры (уменьшается и при критической температуре обращается в нуль.

В зависимости от силы взаимодействия молекул жидкости с частицами твёрдого тела, соприкасающегося с ней, возможно смачивание или не смачивание жидкостью твёрдого тела. В обоих случаях поверхность жидкости вблизи границы с твёрдым телом искривляется.

Поверхностное натяжение воды при различных температурах

t, °С Пов. натяжение, мН/м
20 72,75
21 72,59
22 72,44
23 72,28
24 72,13
25 71,97
26 71,82

Поверхностное натяжение (при 20° C)

Вещество Пов. натяжение 10 -3 Н/м
Азотнаякислота 70% 59,4
Анилин 42,9
Ацетон 23,7
Бензол 29,0
Вода 72,8
Глицерин 59,4
Нефть 26
Ртуть 465
Сернаякислота 85% 57,4
Спиртэтиловый 22,8
Уксуснаякислота 27,8
Эфирэтиловый 16,9

Поверхностное натяжение жидкостей

Вещество q, мН/м
Алюминий расплавленный (приt=7000 0 С, в) 840
Азот жидкий (при t=-183 0 С,п) 6,2
Ацетон (п) 24
Вода (при t=0 0 С,в) 75,6
Вода (при t=20 0 С,в) 72,8
Вода (при t=100 0 С,в) 58,8
Вода (при t=374,15 0 С,в) 0
Золото расплавленное (при t=1130 0 С, в) 1102
Глицерин (в) 63
Керосин (при t=0 0 С,в) 29
Керосин (в) 24
Кислород жидкий (приt=-183 0 С, в) 13,1
Молоко (в) 46
Нефть (в) 30
Раствор мыла (в) 40
Ртуть (п) 472
Свинец расплавленный (при t=350 0 С, в) 442
Серебро расплавленное (при t=970 0 С, в) 930
Спирт (при t=0 0 С,в) 22
Эфир (п) 17

Поверхностное натяжение водных растворов (в дин/см)
Пересчет в СИ: 1 дин/см = 10 — 3 Н/м

Растворенное вещество t, °C Содержание, масс.%
5 10 20 50
H2SO4 18 74,1 75,2 77,3
HNO3 20 72,7 71,1 65,4
NaOH 20 74,6 77,3 85,8
NaCl 18 74,0 75,5
Na2SO4 18 73,8 75,2
NaNO3 30 72,1 72,8 74,4 79,8
KC1 18 73,6 74,8 77,3
KNO3 18 73,0 73,6 75,0
K2CO3 10 75,8 77,0 79,2 106,4
NH3 18 66,5 63,5 59,3
NH4C1 18 73,3 74,5
NH4NO3 100 59,2 60,1 61,6 67,5
MgCl2 18 73,8
CaCl2 18 73,7

29 авг. 07 22 окт. 21, 19:54

Рейтинг Поделиться ссылкой

Вы можете изменять любую статью на сайте, более того, ваше участие всячески приветствуется! Делитесь своими знания и опытом.

Источник

Поверхностное натяжение жидкости — формулы и определение с примерами

Содержание:

Поверхностное натяжение жидкости:

В отличие от газов жидкости имеют свободную поверхность. Молекулы, расположенные на поверхности жидкости, и молекулы внутри жидкости находятся в разных условиях:

a) молекулы внутри жидкости окружены другими молекулами жидкости со всех сторон. Молекула 1 внутри жидкости испытывает действие соседних молекул со всех сторон, поэтому равнодействующая сил притяжения, действующих на нее, равна нулю (f; молекула 1);

b) молекулы на поверхности жидкости испытывают действие со стороны соседних молекул жидкости только сбоку и снизу. Притяжение со стороны молекул газа (пара жидкости или воздуха) над жидкостью во много раз слабее, чем со стороны молекул жидкости, поэтому не принимаются во внимание (f; молекула 2). В результате каждая из равнодействующих сил

Сила поверхностного натяжения

Сила поверхностного натяжения — это сила, направленная по касательной к поверхности жидкости, перпендикулярно к линии, ограничивающей поверхность жидкости, и стремящаяся сократить площадь поверхности жидкости. Сила поверхностного натяжения прямо пропорциональна длине границы соприкосновения свободной поверхности жидкости с твердым телом:

Здесь — сила поверхностного натяжения жидкости, — длина границы соприкосновения свободной поверхности жидкости с твердым телом, (сигма) — коэффициент поверхностного натяжения:

Коэффициент поверхностного натяжения

Коэффициент поверхностного натяжения — численно равен силе поверхностного натяжения, приходящейся на единицу длины линии, ограничивающей поверхность жидкости:

Значение коэффициента поверхностного натяжения зависит от вида жидкости и ее температуры, то есть с увеличением температуры жидкости коэффициент его поверхностного натяжения уменьшается и при критической температуре равен нулю. Единица коэффициента поверхностного натяжения в СИ:

Смачивающая и несмачивающая жидкость. При внимательном рассмотрении можно увидеть искривление поверхности жидкости на границе между жидкостью и твердым телом.

Мениск — это искривление свободной поверхности жидкости в месте ее соприкосновении с поверхностью твердого тела (или другой жидкости). Угол между поверхностью мениска и поверхностью твердого тела называется краевым углом.

Значение краевого угла (тетта) зависит от того, является ли жидкость смачивающей или несмачивающей твердое тело:

Смачивающая жидкость —это жидкость, у которой краевой угол острый. Сила взаимного притяжения между молекулами смачивающей жидкости и твердого тела больше, чем силы взаимного притяжения между молекулами самой жидкости. В результате свободная поверхность жидкости в сосуде становится вогнутой, например, вода в стеклянном сосуде — смачивающая жидкость (g).

Несмачивающая жидкость — это жидкость, у которой краевой угол тупой. Сила взаимного притяжения между молекулами несмачивающей жидкости и твердого тела меньше, чем сила взаимного притяжения между молекулами самой жидкости. В результате свободная поверхность жидкости в сосуде бывает выпуклой, например, ртуть в стеклянном сосуде — несмачивающая жидкость (i).

Капиллярные явления

В повседневной жизни встречаются и используются тела, с легкостью впитывающие в себя воду, например, полотенце, промокательная бумага, сахар, кирпич, растения и др. Это свойство в телах объясняется существованием в них большого количества очень узких трубочек — капилляров.

Капилляр — это узкая трубка (канал) диаметром меньше м. Уровень жидкости внутри капилляра, опущенного в жидкость, в зависимости от ее свойств (смачивающая или несмачивающая), отличается от общего уровня жидкости:

Капиллярными явлениями называют явления подъема смачивающей и опускания несмачивающей жидкости по капилляру относительно общего уровня жидкости под действием сил поверхностного натяжения (j).

В таблице 6.4 дана зависимость между величинами, характеризующими жидкость, поднимающуюся в капилляре.

Характеристики жидкости, поднимающейся в капилляре

Формула Вес жидкости, поднимающейся в капилляре

Где — радиус капилляра, — диаметр капилляра.

Масса жидкости, поднимающейся в капилляре Высота жидкости, поднимающейся в капилляре

Если жидкость полностью смачиваемая, то получаем в

Где — плотность жидкости, поднимающейся в капилляре. Высота подъема жидкости в капилляре зависит от рода жидкости и обратно пропорциональна радиусу капилляра.

Давление жидкости, поднимающейся в капилляре

Поверхностное натяжение жидкости

Некоторые виды пауков могут передвигаться по поверхности воды не проваливаясь, как будто эта поверхность покрыта невидимой тонкой пленкой. такое же впечатление создается, если наблюдать за вытеканием воды из маленького отверстия — вода течет не тоненькой струйкой, а образует капли. Бумажная салфетка впитывает воду, едва коснувшись ее поверхности. какая сила является причиной всех этих явлений?

Каковы особенности поверхностного слоя жидкости

На свободной поверхности жидкости молекулы находятся в особых условиях, отличающихся от условий, в которых находятся молекулы внутри жидкости. Рассмотрим две молекулы — А и Б (рис. 33.1): молекула А находится внутри жидкости, а молекула Б — на ее поверхности. Молекула А окружена другими молекулами жидкости равномерно, поэтому силы, действующие на молекулу А со стороны молекул, попадающих в сферу межмолекулярного взаимодействия, скомпенсированы, то есть их равнодействующая равна нулю.

Молекула Б с одной стороны окружена молекулами жидкости, а с другой — молекулами газа. Со стороны жидкости на нее действует гораздо больше молекул, чем со стороны газа, поэтому равнодействующая  F межмолекулярных сил направлена в глубь жидкости. Чтобы молекула из глубины попала в поверхностный слой, нужно совершить работу против межмолекулярных сил. Это означает, что молекулы поверхностного слоя жидкости (по сравнению с молекулами внутри жидкости) обладают избыточной потенциальной энергией. Эта избыточная энергия является частью внутренней энергии жидкости и называется поверхностной энергией (Wпов). Очевидно, что чем больше площадь S поверхности жидкости, тем больше поверхностная энергия: W S пов = σ , где σ (сигма) — коэффициент пропорциональности, который называют поверхностным натяжением жидкости.

Поверхностное натяжение жидкости — физическая величина, которая характеризует данную жидкость и равна отношению поверхностной энергии к площади поверхности жидкости:

Единица поверхностного натяжения в СИ — ньютон на метр:

Поверхностное натяжение жидкости определяется силами межмолекулярного взаимодействия, поэтому оно зависит:

  1. от природы жидкости: у летучих жидкостей (эфир, спирт, бензин) поверхностное натяжение меньше, чем у нелетучих (ртуть, жидкие металлы);
  2. температуры жидкости: чем выше температура жидкости, тем меньше поверхностное натяжение;
  3. присутствия в составе жидкости поверхностно активных веществ — их наличие уменьшает поверхностное натяжение;
  4. свойств газа, с которым жидкость граничит. В таблицах обычно приводят значение поверхностного натяжения на границе жидкости и воздуха при определенной температуре (табл. 1).

Поверхностное натяжение σ некоторых жидкостей

Что такое сила поверхностного натяжения

Поскольку поверхностный слой жидкости обладает избыточной потенциальной энергией (), а любая система стремится к минимуму потенциальной энергии, то свободная поверхность жидкости стремится уменьшить свою площадь (сжаться). То есть вдоль поверхности жидкости действуют силы, которые пытаются стянуть эту поверхность. Эти силы называют силами поверхностного натяжения.

Наличие сил поверхностного натяжения делает поверхность жидкости похожей на натянутую резиновую пленку, однако упругие силы в резиновой пленке зависят от площади ее поверхности (от того, насколько пленка деформирована), а поверхность жидкости всегда «натянута» одинаково, то есть силы поверхностного натяжения не зависят от площади поверхности жидкости. Наличие сил поверхностного натяжения можно доказать с помощью такого опыта. Если проволочный каркас с закрепленной на нем нитью опустить в мыльный раствор, каркас затянется мыльной пленкой, а нить приобретет произвольную форму (рис. 33.2, а).

Если осторожно проткнуть иглой мыльную пленку по одну сторону от нити, сила поверхностного натяжения мыльного раствора, действующая с другой стороны, натянет нить (рис. 33.2, б). Опустим в мыльный раствор проволочную рамку, одна из сторон которой подвижна. На рамке образуется мыльная пленка (рис. 33.3). Будем растягивать эту пленку, действуя на перекладину (подвижную сторону рамки) с некоторой силой .

Если под действием этой силы перекладина переместится на ∆x , то внешние силы совершат работу: За счет совершения этой работы площади обеих поверхностей пленки увеличатся, а значит, увеличится и поверхностная энергия: где — увеличение площади двух поверхностей мыльной пленки. Приравняв правые части полученных равенств, получим: , или:

Таким образом, поверхностное натяжение σ численно равно силе поверхностного натяжения, которая действует на единицу длины l линии, ограничивающей поверхность:

С одним из методов определения поверхностного натяжения жидкости вы ознакомитесь, выполняя лабораторную работу № 7.

Где проявляется поверхностное натяжение

В жизни вы постоянно сталкиваетесь с проявлениями сил поверхностного натяжения. Так, благодаря ему на поверхности воды удерживаются легкие предметы (рис. 33.4) и некоторые насекомые.

Рис. 33.4. Монетка удерживается на поверхности воды благодаря силе поверхностного натяжения. (Чтобы провести такой опыт, монетку нужно потереть между пальцев и осторожно опустить на поверхность воды.)

Когда вы ныряете, ваши волосы расходятся во все стороны, но как только вы окажетесь над водой, волосы слипнутся, так как в этом случае площадь свободной поверхности воды намного меньше, чем при раздельном расположении прядей в воде. По этой же причине можно лепить фигуры из влажного песка: вода, обволакивая песчинки, прижимает их друг к другу.

Рис. 33.5. Капля удерживается около небольшого отверстия до тех пор, пока сила поверхностного натяжения уравновешивает силу тяжести

Стремлением жидкости уменьшить площадь поверхности объясняется и тот факт, что в условиях невесомости вода принимает форму шара, — при заданном объеме шарообразной форме соответствует наименьшая площадь поверхности. Форму шара приобретают тонкие мыльные пленки (мыльные пузыри). Поверхностным натяжением объясняется образование пены: пузырек газа, достигнув поверхности жидкости, имеет над собой тонкий слой жидкости; если пузырек мал, то архимедовой силы недостаточно, чтобы разорвать двойной поверхностный слой, и пузырек «застревает» вблизи поверхности. Благодаря поверхностному натяжению жидкость не выливается из маленького отверстия тоненькой струйкой, а капает (рис. 33.5), дождь не проливается через ткань зонта или палатки и т. д.

Почему одни жидкости собираются в капли, а другие растекаются

Наличие сил поверхностного натяжения проявляется в сферической форме мелких капелек росы, в каплях воды, разбегающихся по раскаленной плите, в капельках ртути на поверхности стекла. Однако при соприкосновении с твердым телом сферическая форма капли, как правило, не сохраняется. Форма свободной поверхности жидкости зависит также от сил взаимодействия молекул жидкости с молекулами твердого тела.

Если силы взаимодействия между молекулами жидкости больше, чем силы взаимодействия между молекулами жидкости и твердого тела, жидкость не смачивает поверхность твердого тела (рис. 33.6). Например, ртуть не смачивает стекло, а вода не смачивает покрытую сажей поверхность.

Рис. 33.6. Капля несмачивающей жидкости принимает форму, близкую к сферической, а поверхность жидкости вблизи стенки сосуда является выпуклой

Если же капельку ртути поместить на цинковую пластину, то капелька будет стремиться растечься по поверхности пластины; так же ведет себя и капелька воды на стекле (рис. 33.7). Если силы взаимодействия между молекулами жидкости меньше сил взаимодействия между молекулами жидкости и твердого тела, жидкость смачивает поверхность твердого тела.

Рис. 33.7. Капля смачивающей жидкости стремится растечься по поверхности твердого тела, а вблизи стенки сосуда поверхность жидкости принимает вогнутую форму

Почему жидкость поднимается в капиллярах

В природе часто встречаются тела, пронизанные многочисленными мелкими капиллярами (от лат. capillaris — волосяной) — узкими каналами произвольной формы. Такую структуру имеют бумага, дерево, почва, многие ткани и строительные материалы. В цилиндрических капиллярах искривленная поверхность жидкости представляет собой часть сферы, которую называют мениском. У смачивающей жидкости образуется вогнутый мениск (рис. 33.8, а), а у несмачивающей — выпуклый (рис. 33.8, б).

Рис. 33.8. капиллярные явления: а — смачивающая жидкость поднимается по капилляру; б — несмачивающая жидкость опускается в капилляре

Поверхность жидкости стремится к минимуму потенциальной энергии, а искривленная поверхность обладает большей площадью по сравнению с площадью сечения капилляра, поэтому поверхность жидкости стремится выровняться и под ней возникает избыточное (отрицательное или положительное) давление — лапласово давление ().

Под вогнутой поверхностью (жидкость смачивает капилляр) лапласово давление отрицательное и жидкость втягивается в капилляр. Так поднимаются влага и питательные вещества в стеблях растений, керосин по фитилю, влага в почве. Вследствие лапласового давления салфетки или ткань впитывают воду, брюки в дождливую погоду сильно намокают снизу и т. д. Под выпуклой поверхностью (жидкость не смачивает капилляр) лапласово давление положительное и жидкость в капилляре опускается. Чем меньше радиус капилляра, тем больше высота подъема (или опускания) жидкости (см. задачу ниже).

Пример решения задачи

Капиллярную трубку радиусом r одним концом опустили в жидкость, смачивающую внутреннюю поверхность капилляра. На какую высоту поднимется жидкость в капилляре, если плотность жидкости ρ, а ее поверхностное натяжение σ ? Чему равно лапласово давление под вогнутой поверхностью капилляра? Смачивание считайте полным.

Решение:

На жидкость в капилляре действуют сила тяжести и сила поверхностного натяжения ( направлена вертикально вверх (по касательной к поверхности мениска). Подъем жидкости в капилляре будет продолжаться до тех пор, пока сила тяжести поднятого столба жидкости не уравновесит силу поверхностного натяжения: mg = ( *), где m — масса жидкости.

Поиск математической модели, решение

Поскольку m V = ρ , а объем воды в цилиндрическом капилляре , (длина окружности), следовательно, Подставим выражения для m и в равенство (*): Для определения лапласова давления под поверхностью мениска воспользуемся тем фактом, что в однородной неподвижной жидкости давление на одном уровне (у нас — на уровне АВ) одинаково, то есть:

где R — радиус кривизны мениска (при полном смачивании r=R).

Ответ: (Данные выводы следует запомнить!)

  • Высота подъема жидкости в капилляре прямо пропорциональна поверхностному натяжению жидкости и обратно пропорциональна плотности жидкости и радиусу капилляра: .
  • Лапласово давление (избыточное давление) под сферической поверхностью жидкости прямо пропорционально поверхностному натяжению жидкости и обратно пропорционально радиусу кривизны мениска: .
Рекомендую подробно изучить предметы:
  1. Физика
  2. Атомная физика
  3. Ядерная физика
  4. Квантовая физика
  5. Молекулярная физика
Ещё лекции с примерами решения и объяснением:
  • Свойства паров в физике
  • Кипение жидкостей в физике
  • Электромагнитные явления в физике
  • Электромагнитные волны и их свойства
  • Расчет количества теплоты при нагревании и охлаждении
  • Удельная теплота сгорания топлива
  • Плавление и кристаллизация в физике
  • Испарение жидкостей в физике

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Источник

1. Как коэффициент поверхностного натяжения жид¬кости зависит от длины границы?
2. Цилиндр заполнен насыщенным паром и жидкостью. Как ведет себя давление пара при увеличении объёма цилиндра?
3. На границу какой длины будет действовать си¬ла поверхностного натяжения воды равная 0,1 Н?
4. Для того, чтобы оторвать от поверхности керо¬сина проволочку длиной 7 см и массой 0,6б4 г, нужна сила 0,01 Н. Найти коэффициент поверхност¬ного натяжения керосина.
5. Масса 100 капель, накапанных из пипетки диа¬метром 0,5 мм, равна 0,38 г. Каков коэффициент по¬верхностного натяжения керосина? Почему ответы в задачах 4 и 5 не одинаковы?
6. В капилляре диаметром 1 мм керосин поднялся на высоту 12 мм. Найти коэффициент поверхностного натяжения керосина.
7. Что такое предел упругости для данного образ¬ца?
8. Модуль упругости для свинца равен 15 ГПа. Что означает это число?
9. На сколько см растянется пружина жесткостью 500 Н/м под действием груза весом 25 Н?
10. Стальная струна длиной 1 м под действием силы 100 Н должна удлиняться не более, чем на 1 мм. Какой должна быть площадь сечения струны?
11. Какой величины механическое напряжение возникает в стальной спице под действием силы, удлиняющей спицу на 0,001%?
12. К проволоке был подвешен груз. Затем взяли такую же проволоку, но большей длины. Сравнить относительные удлинения в обоих случаях.

10. Стальная струна длиной 1 м под действием силы 100 Н должна удлиняться не более, чем на 1 мм. Какой должна быть площадь сечения струны?
11. Какой величины механическое напряжение возникает в стальной спице под действием силы, удлиняющей спицу на 0,001%?
12. К проволоке был подвешен груз. Затем взяли такую же проволоку, но большей длины. Сравнить относительные удлинения в обоих случаях.

ХИМИЯ НЕФТИ

ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА

Понятие поверхностного натяжения

называется термодинамическая характеристика поверхности раздела фаз, определенная как работа обратимого изотермического образования единицы плошали этой поверхности. Для жидкости поверхностное натяжение рассматривается как сила, действующая на единицу длины контура поверхности и стремящаяся сократить поверхность до минимума при заданных объемах фаз.

Поверхность частицы дисперсной фазы (например, ассоциат асфальтенов, глобула воды и т. п.) обладает некоторым избытком свободной поверхностной энергии Fs, пропорциональной площади поверхности раздела фаз S:

F54

Fig44

Действие поверхностного натяжения можно наглядно представить в виде совокупности сил, стягивающих края поверхности к центру.

Длина каждой стрелочки вектора отражает величину поверхностного натяжения, а расстояние между ними соответствует принятой единице длины контура поверхности. В качестве размерности величины σ в равной мере используются как [Дж/м 2 ] = 10 3 [эрг/см 2 ], так и [Н/м] = 10 3 [дин/см].

В результате действия сил поверхностного натяжения жидкость стремится сократить свою поверхность, и если влияние силы земного притяжения незначительно, жидкость принимает форму шара, имеющего минимальную поверхность на единицу объема.

Большинство гетероатомных соединений, обладая полярными свойствами, имеют поверхностное натяжение ниже, чем углеводороды. Это очень важно, поскольку их наличие играет значительную роль в образовании водонефтяных и газонефтяных эмульсий и в последующих процессах разрушения этих эмульсий.

Параметры влияющие на поверхностное натяжение

Поверхностное натяжение существенно зависит от температуры и давления, а также от химического состава жидкости и соприкасающейся с ней фазы (газ или вода).

Fig45

Fig46

Поверхностное натяжение нефтепродуктов может быть найдено расчетным путем по уравнению:

F55

F57

Пересчет σ от одной температуры T к другой T можно проводить по соотношению:

F56

Значения поверхностного натяжения для некоторых веществ.

Вещества, добавка которых к жидкости уменьшает ее поверхностное натяжение, называют поверхностно-активными веществами (ПАВ).

Поверхностное натяжение нефти и нефтепродуктов зависит от количества присутствующих в них поверхностно-активных компонентов (смолистых веществ, нафтеновых и других органических кислот и т. п.).

Хорошо очищенные нефтепродукты имеют высокое поверхностное натяжение на границе с водой.

С поверхностными силами на границе раздела твердой и жидкой фаз связаны явления смачивания и капиллярные явления, на которых основаны процессы миграции нефти в пластах, подъем керосина и масла по фитилям ламп и масленок и т. д.

Экспериментальное определение поверхностного натяжения

Для экспериментального определения поверхностного натяжения нефтей и нефтепродуктов применяются различные методы.

Fig47

Первый метод (а) основан на измерении силы, необходимой для отрыва кольца от поверхности раздела двух фаз. Эта сила пропорциональна удвоенной силе окружности кольца. При капиллярном методе (б) измеряют высоту подъема жидкости в капиллярной трубке. Недостатком его является зависимость высоты подъема жидкости не только от величины поверхностного натяжения, но и от характера смачивания стенок капилляра исследуемой жидкостью. Более точной разновидностью капиллярного метода является метод висячей капли (в), основанный на измерении массы капли жидкости, отрывающейся от капилляра. На результаты измерения влияют плотность жидкости и размеры капли и не влияет угол смачивания жидкостью твердой поверхности. Этот метод позволяет определять поверхностное натяжение в сосудах высокого давления.

Наиболее распространенным и удобным способом измерения поверхностного натяжения является способ наибольшего давления пузырьков или капель (г), что объясняется простотой конструкции, высокой точностью и независимостью определения от смачивания.

Этот способ основан на том, что при выдавливании пузырька воздуха или капли жидкости из узкого капилляра в другую жидкость поверхностное натяжение σ на границе с той жидкостью, в которую выпускается капля, пропорционально наибольшему давлению, необходимому для выдавливания капли.

F58

Источник

Содержание:

Поверхностное натяжение жидкости:

В отличие от газов жидкости имеют свободную поверхность. Молекулы, расположенные на поверхности жидкости, и молекулы внутри жидкости находятся в разных условиях:

a) молекулы внутри жидкости окружены другими молекулами жидкости со всех сторон. Молекула 1 внутри жидкости испытывает действие соседних молекул со всех сторон, поэтому равнодействующая сил притяжения, действующих на нее, равна нулю (f; молекула 1);

244284

b) молекулы на поверхности жидкости испытывают действие со стороны соседних молекул жидкости только сбоку и снизу. Притяжение со стороны молекул газа (пара жидкости или воздуха) над жидкостью во много раз слабее, чем со стороны молекул жидкости, поэтому не принимаются во внимание (f; молекула 2). В результате каждая из равнодействующих сил 244274

Сила поверхностного натяжения

244286

Коэффициент поверхностного натяжения

244291

Значение коэффициента поверхностного натяжения зависит от вида жидкости и ее температуры, то есть с увеличением температуры жидкости коэффициент его поверхностного натяжения уменьшается и при критической температуре равен нулю. Единица коэффициента поверхностного натяжения в СИ:

244292

Смачивающая и несмачивающая жидкость. При внимательном рассмотрении можно увидеть искривление поверхности жидкости на границе между жидкостью и твердым телом.

Значение краевого угла 244295(тетта) зависит от того, является ли жидкость смачивающей или несмачивающей твердое тело:

244299

Несмачивающая жидкость — это жидкость, у которой краевой угол тупой. Сила взаимного притяжения между молекулами несмачивающей жидкости и твердого тела меньше, чем сила взаимного притяжения между молекулами самой жидкости. В результате свободная поверхность жидкости в сосуде бывает выпуклой, например, ртуть в стеклянном сосуде — несмачивающая жидкость (i).

244301

Капиллярные явления

Капиллярными явлениями называют явления подъема смачивающей и опускания несмачивающей жидкости по капилляру относительно общего уровня жидкости под действием сил поверхностного натяжения (j).

244314 3wU18OY

В таблице 6.4 дана зависимость между величинами, характеризующими жидкость, поднимающуюся в капилляре.

Характеристики жидкости, поднимающейся в капилляре

244338

Где 244339— радиус капилляра, 244340— диаметр капилляра.

Масса жидкости, поднимающейся в капилляре 244335 Высота жидкости, поднимающейся в капилляре

244336

Если жидкость полностью смачиваемая, то получаем в 244345244349

244351

Где 244352— плотность жидкости, поднимающейся в капилляре. Высота подъема жидкости в капилляре зависит от рода жидкости и обратно пропорциональна радиусу капилляра.

Давление жидкости, поднимающейся в капилляре 244354

Поверхностное натяжение жидкости

Некоторые виды пауков могут передвигаться по поверхности воды не проваливаясь, как будто эта поверхность покрыта невидимой тонкой пленкой. такое же впечатление создается, если наблюдать за вытеканием воды из маленького отверстия — вода течет не тоненькой струйкой, а образует капли. Бумажная салфетка впитывает воду, едва коснувшись ее поверхности. какая сила является причиной всех этих явлений?

212026

Каковы особенности поверхностного слоя жидкости

На свободной поверхности жидкости молекулы находятся в особых условиях, отличающихся от условий, в которых находятся молекулы внутри жидкости. Рассмотрим две молекулы — А и Б (рис. 33.1): молекула А находится внутри жидкости, а молекула Б — на ее поверхности. Молекула А окружена другими молекулами жидкости равномерно, поэтому силы, действующие на молекулу А со стороны молекул, попадающих в сферу межмолекулярного взаимодействия, скомпенсированы, то есть их равнодействующая равна нулю.

212035

Поверхностное натяжение жидкости — физическая величина, которая характеризует данную жидкость и равна отношению поверхностной энергии к площади поверхности жидкости:

212041

Единица поверхностного натяжения в СИ — ньютон на метр:

212051

Поверхностное натяжение жидкости определяется силами межмолекулярного взаимодействия, поэтому оно зависит:

Поверхностное натяжение σ некоторых жидкостей

212066

Что такое сила поверхностного натяжения

Поскольку поверхностный слой жидкости обладает избыточной потенциальной энергией (212071), а любая система стремится к минимуму потенциальной энергии, то свободная поверхность жидкости стремится уменьшить свою площадь (сжаться). То есть вдоль поверхности жидкости действуют силы, которые пытаются стянуть эту поверхность. Эти силы называют силами поверхностного натяжения.

Наличие сил поверхностного натяжения делает поверхность жидкости похожей на натянутую резиновую пленку, однако упругие силы в резиновой пленке зависят от площади ее поверхности (от того, насколько пленка деформирована), а поверхность жидкости всегда «натянута» одинаково, то есть силы поверхностного натяжения не зависят от площади поверхности жидкости. Наличие сил поверхностного натяжения можно доказать с помощью такого опыта. Если проволочный каркас с закрепленной на нем нитью опустить в мыльный раствор, каркас затянется мыльной пленкой, а нить приобретет произвольную форму (рис. 33.2, а).

212077

Если осторожно проткнуть иглой мыльную пленку по одну сторону от нити, сила поверхностного натяжения мыльного раствора, действующая с другой стороны, натянет нить (рис. 33.2, б). Опустим в мыльный раствор проволочную рамку, одна из сторон которой подвижна. На рамке образуется мыльная пленка (рис. 33.3). Будем растягивать эту пленку, действуя на перекладину (подвижную сторону рамки) с некоторой силой 212084.

212091

Таким образом, поверхностное натяжение σ численно равно силе поверхностного натяжения212119, которая действует на единицу длины l линии, ограничивающей поверхность: 212123

С одним из методов определения поверхностного натяжения жидкости вы ознакомитесь, выполняя лабораторную работу № 7.

Где проявляется поверхностное натяжение

В жизни вы постоянно сталкиваетесь с проявлениями сил поверхностного натяжения. Так, благодаря ему на поверхности воды удерживаются легкие предметы (рис. 33.4) и некоторые насекомые.

212130

Рис. 33.4. Монетка удерживается на поверхности воды благодаря силе поверхностного натяжения. (Чтобы провести такой опыт, монетку нужно потереть между пальцев и осторожно опустить на поверхность воды.)

Когда вы ныряете, ваши волосы расходятся во все стороны, но как только вы окажетесь над водой, волосы слипнутся, так как в этом случае площадь свободной поверхности воды намного меньше, чем при раздельном расположении прядей в воде. По этой же причине можно лепить фигуры из влажного песка: вода, обволакивая песчинки, прижимает их друг к другу.

212138 y6s3Qve

Рис. 33.5. Капля удерживается около небольшого отверстия до тех пор, пока сила поверхностного натяжения уравновешивает силу тяжести

Стремлением жидкости уменьшить площадь поверхности объясняется и тот факт, что в условиях невесомости вода принимает форму шара, — при заданном объеме шарообразной форме соответствует наименьшая площадь поверхности. Форму шара приобретают тонкие мыльные пленки (мыльные пузыри). Поверхностным натяжением объясняется образование пены: пузырек газа, достигнув поверхности жидкости, имеет над собой тонкий слой жидкости; если пузырек мал, то архимедовой силы недостаточно, чтобы разорвать двойной поверхностный слой, и пузырек «застревает» вблизи поверхности. Благодаря поверхностному натяжению жидкость не выливается из маленького отверстия тоненькой струйкой, а капает (рис. 33.5), дождь не проливается через ткань зонта или палатки и т. д.

Почему одни жидкости собираются в капли, а другие растекаются

Наличие сил поверхностного натяжения проявляется в сферической форме мелких капелек росы, в каплях воды, разбегающихся по раскаленной плите, в капельках ртути на поверхности стекла. Однако при соприкосновении с твердым телом сферическая форма капли, как правило, не сохраняется. Форма свободной поверхности жидкости зависит также от сил взаимодействия молекул жидкости с молекулами твердого тела.

Если силы взаимодействия между молекулами жидкости больше, чем силы взаимодействия между молекулами жидкости и твердого тела, жидкость не смачивает поверхность твердого тела (рис. 33.6). Например, ртуть не смачивает стекло, а вода не смачивает покрытую сажей поверхность.

212153

Рис. 33.6. Капля несмачивающей жидкости принимает форму, близкую к сферической, а поверхность жидкости вблизи стенки сосуда является выпуклой

Если же капельку ртути поместить на цинковую пластину, то капелька будет стремиться растечься по поверхности пластины; так же ведет себя и капелька воды на стекле (рис. 33.7). Если силы взаимодействия между молекулами жидкости меньше сил взаимодействия между молекулами жидкости и твердого тела, жидкость смачивает поверхность твердого тела.

212156

Рис. 33.7. Капля смачивающей жидкости стремится растечься по поверхности твердого тела, а вблизи стенки сосуда поверхность жидкости принимает вогнутую форму

Почему жидкость поднимается в капиллярах

В природе часто встречаются тела, пронизанные многочисленными мелкими капиллярами (от лат. capillaris — волосяной) — узкими каналами произвольной формы. Такую структуру имеют бумага, дерево, почва, многие ткани и строительные материалы. В цилиндрических капиллярах искривленная поверхность жидкости представляет собой часть сферы, которую называют мениском. У смачивающей жидкости образуется вогнутый мениск (рис. 33.8, а), а у несмачивающей — выпуклый (рис. 33.8, б).

212168

Рис. 33.8. капиллярные явления: а — смачивающая жидкость поднимается по капилляру; б — несмачивающая жидкость опускается в капилляре

Поверхность жидкости стремится к минимуму потенциальной энергии, а искривленная поверхность обладает большей площадью по сравнению с площадью сечения капилляра, поэтому поверхность жидкости стремится выровняться и под ней возникает избыточное (отрицательное или положительное) давление — лапласово давление (212176).

Под вогнутой поверхностью (жидкость смачивает капилляр) лапласово давление отрицательное и жидкость втягивается в капилляр. Так поднимаются влага и питательные вещества в стеблях растений, керосин по фитилю, влага в почве. Вследствие лапласового давления салфетки или ткань впитывают воду, брюки в дождливую погоду сильно намокают снизу и т. д. Под выпуклой поверхностью (жидкость не смачивает капилляр) лапласово давление положительное и жидкость в капилляре опускается. Чем меньше радиус капилляра, тем больше высота подъема (или опускания) жидкости (см. задачу ниже).

Пример решения задачи

219470219472

Решение:

На жидкость в капилляре действуют сила тяжести и сила поверхностного натяжения ( 219480 bGZV4h8направлена вертикально вверх (по касательной к поверхности мениска). Подъем жидкости в капилляре будет продолжаться до тех пор, пока сила тяжести поднятого столба жидкости не уравновесит силу поверхностного натяжения: mg = 219482( *), где m — масса жидкости.

Поиск математической модели, решение

219510

где R — радиус кривизны мениска (при полном смачивании r=R).

Ответ: (Данные выводы следует запомнить!)

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Источник

Чему равна величина поверхностного натяжения между нефтью и керосином

Лекция 2 Физико-химические свойства нефтей и нефтепродуктов

2. Молекулярная масса ;

4. Давление насыщенных паров ;

5. Критические параметры ;

В основе переработки нефти и товарных нефтепродуктов лежат физико-химические процессы. Управление этими процессами требует глубокого знания физических, физико-химических и коллоидно-дисперсных свойств нефти, ее фракций, остатков. Многие из этих свойств прямо или косвенно определяют химический состав нефтей и нефтепродуктов, межмолекулярные взаимодействия и структурные особенности нефтяных систем, отражают эксплуатационные характеристики нефтепродуктов.

Плотность является важнейшей характеристикой, позволяющей в совокупности с другими константами ориентировочно оценивать химический и фракционный состав нефти и нефтепродуктов. Плотность принято выражать абсолютной и относительной величиной.

В практике нефтепереработки принято использовать безразмерную величину относительной плотности нефти (нефтепродукта), которая равна отношению плотности нефти (нефтепродукта) при 20 °С к плотности воды при 4 °С. Относительная плотность обозначается image001.

Поскольку плотность воды при 4 °С равна единице, числовые значения относительной и абсолютной плотности совпадаю

Плотность нефтей и нефтепродуктов уменьшается с повышением температуры. Эта зависимость имеет линейный характер и хорошо описывается формулой Д. И. Менделеева

image002

г де , image003 — относительная плотность нефтепродукта при заданной температуре t ;

image004 — относительная плотность нефтепродукта при стандартной температуре (20 °С).

Уравнение Д. И. Менделеева справедливо для интервала температур от 0°С до 150°С (погрешность составляет 5—8 %).

В более широком интервале температур, т. е. до 300°С, и с меньшей погрешностью (до 3 %) зависимость плотности (кг/м3) от температуры рассчитывается по уравнению А. К. Мановяна:

image005

Существует несколько методов определения плотности нефтепродуктов. Выбор того или другого зависит от имеющегося количества нефтепродукта, его вязкости, требуемой точности определения и отводимого для анализа времени.

Практическое значение показателя плотности нефти и нефтепродуктов очень велико. В сочетании с другими физико-химическими константами (температура кипения, показатель преломления, молекулярная масса, вязкость и др.) плотность является параметром, характеризующим химическую природу, происхождение и товарное качество нефти и нефтепродуктов. Так, для фракций с одинаковыми температурами начала и конца кипения плотность наименьшая, если они выделены из парафинистых нефтей, и наибольшая, если они получены из высокоароматизированных нефтей. Фракции, полученные из нафтено-парафинистых нефтей, занимают по плотности промежуточное положение.

Для парафинистых нефтепродуктов характеризующий фактор равен 12,0—13,0, для нафтено-ароматических 10,0—11,0.

Относительная плотность газа равна отношению массы m газа, занимающего объем V при некоторых температуре и давлении, к массе m 1 воздуха, занимающего тот же объем V при тех же температуре и давлении:

image006

2. Молекулярная масса

Молекулярная масса нефтей и получаемых из них продуктов — один из важнейших показателей, широко используемый при расчете теплоты парообразования, объема паров, парциального давления, а также при определении химического состава узких нефтяных фракций.

Молекулярная масса нефтяных фракций тем больше, чем выше их температура кипения. Наряду с этим выделенные из различных нефтей фракции, выкипающие в одном и том же интервале температур, имеют разные молекулярные массы, так как углеводородный состав этих фракций различен.

Для определения молекулярной массы нефтепродуктов широкое применение получил криоскопический метод, основанный на изменении температуры замерзания растворителя (бензола или нафталина) при добавлении к нему навески нефтепродукта.

В редких случаях для определения молекулярной массы применяется эбулиоскопический метод, основанный на изменении приращения температуры кипения растворителя после ввода в него навески испытуемого нефтепродукта.

В расчетной практике молекулярную массу часто определяют по эмпирическим формулам. Наибольшее применение нашла формула Б. П. Воинова:

image007

г де , a, b и с — постоянные, значения которых различны для каждой группы углеводородов;

t — средняя молекулярная температура кипения продукта, °С.

Связь между молекулярной массой и относительной плотностью нефтяных фракций устанавливается формулой Крэга:

image008

Молекулярная масса — величина аддитивная, и для смеси нескольких нефтяных фракций ее можно определять по формуле:

image009

По последней формуле можно рассчитать также молекулярную массу нефти, если известны массы и молекулярные массы составляющих ее узких фракций. Этой же формулой пользуются для определения молекулярной массы остатка от перегонки нефти, если заранее известны молекулярные массы нефти и отогнанных от нее фракций.

Различают динамическую, кинематическую, условную и эффективную (структурную) вязкость.

Кинематической вязкостью (v) называется величина, равная отношению динамической вязкости жидкости (η) к ее плотности (ρ) при той же температуре: v = η/ ρ. Единицей кинематической вязкости является м 2 /с.

Нефти и нефтепродукты часто характеризуются условной вязкостью, за которую принимается отношение времени истечения через калиброванное отверстие стандартного вискозиметра 200 мл нефтепродукта при определенной температуре ( t ) ко времени истечения 200 мл дистиллированной воды при температуре 20 °С. Условная вязкость при температуре t обозначается знаком ВУ, и выражается числом условных градусов.

Для определения вязкости используют специальные стандартные приборы — вискозиметры, различающиеся по принципу действия.

4. Давление насыщенных паров

Нефть и нефтепродукты характеризуются определенным давлением насыщенных паров, или упругостью нефтяных паров. Давление насыщенных паров является нормируемым показателем для авиационных и автомобильных бензинов, косвенно характеризующим испаряемость топлива, его пусковые качества, склонность к образованию паровых пробок в системе питания двигателя.

Для жидкостей неоднородного состава, таких, как бензины, давление насыщенных паров при данной температуре является сложной функцией состава бензина и зависит от объема пространства, в котором находится паровая фаза. Поэтому для получения сравнимых результатов практические определения необходимо проводить при стандартной температуре и постоянном соотношении паровой и жидкой фаз.

С учетом выше изложенного давлением насыщенных паров топлив называют давление паровой фазы топлива, находящейся в динамическом равновесии с жидкой фазой, измеренное при стандартной температуре и определенном соотношении объемов паровой и жидкой фаз. Температура, при которой давление насыщенных паров становится равным давлению в системе,

называется температурой кипения вещества. Давление насыщенных паров резко увеличивается с повышением температуры. При одной и той же температуре большим давлением насыщенных паров характеризуются более легкие нефтепродукты.

Для определения давления насыщенных паров существует несколько методов. Однако в нефтепереработке вследствие своей простоты широкое применение получил стандартный метод с использованием бомбы Рейда.

image010

I — топливная камера; 2 — воздушная камера; 3 — манометр

Давление насыщенных паров испытуемой жидкости определяют по формуле:

image011

image014— показание манометра;

image015— атмосферное давление;

image016— температура окружающего воздуха, °С.

Определение давления паров в бомбе Рейда дает приближенные результаты, служащие только для сравнительной оценки качества моторных топлив.

5 . Критические параметры

Температура, давление и объем при критическом состоянии очень важны для физики нефти, особенно в связи с современными высокотемпературными процессами при высоком давлении.

Критическим состоянием вещества называется такое состояние, при котором исчезает различие (граница) между его жидкой и паровой фазами, т. е. они имеют одни и те же основные свойства. Для каждого вещества существует такая температура, выше которой оно никаким повышением давления не может быть переведено в жидкость. Эта температура называется критической температурой Ткр. Давление насыщенных паров, соответствующее критической температуре, называется критическим давлением Ркр. Объем паров при критической температуре и давлении называется критическим объемом.

Критические параметры определяются по эмпирическим формулам:

Источник

Коэффициент поверхностного натяжения (при 20°C), справочная таблица

Ацетон
коэффициент поверхностного натяжения ацетона
0.0233 (Ньютон / Метр)
Бензол
коэффициент поверхностного натяжения бензола
0.0289 (Ньютон / Метр)
Вода дистилированая
коэффициент поверхностного натяжения воды дистилированной
0.0727 (Ньютон / Метр)
Глицерин
коэффициент поверхностного натяжения глицерина
0.0657 (Ньютон / Метр)
Керосин
коэффициент поверхностного натяжения керосина
0.0289 (Ньютон / Метр)
Ртуть
коэффициент поверхностного натяжения ртути
0.4650 (Ньютон / Метр)
Этиловый спирт
коэффициент поверхностного натяжения этилового спирта
0.0223 (Ньютон / Метр)
Эфир
коэффициент поверхностного натяжения эфира
0.0171 (Ньютон / Метр)

Коэффициент поверхностного натяжения

стр. 859

Содержание:

Поверхностное натяжение жидкости:

В отличие от газов жидкости имеют свободную поверхность. Молекулы, расположенные на поверхности жидкости, и молекулы внутри жидкости находятся в разных условиях:

a) молекулы внутри жидкости окружены другими молекулами жидкости со всех сторон. Молекула 1 внутри жидкости испытывает действие соседних молекул со всех сторон, поэтому равнодействующая сил притяжения, действующих на нее, равна нулю (f; молекула 1);

Поверхностное натяжение жидкости - формулы и определение с примерами

b) молекулы на поверхности жидкости испытывают действие со стороны соседних молекул жидкости только сбоку и снизу. Притяжение со стороны молекул газа (пара жидкости или воздуха) над жидкостью во много раз слабее, чем со стороны молекул жидкости, поэтому не принимаются во внимание (f; молекула 2). В результате каждая из равнодействующих сил Поверхностное натяжение жидкости - формулы и определение с примерами

Сила поверхностного натяжения

Сила поверхностного натяжения – это сила, направленная по касательной к поверхности жидкости, перпендикулярно к линии, ограничивающей поверхность жидкости, и стремящаяся сократить площадь поверхности жидкости. Сила поверхностного натяжения прямо пропорциональна длине границы соприкосновения свободной поверхности жидкости с твердым телом:

Поверхностное натяжение жидкости - формулы и определение с примерами

Здесь Поверхностное натяжение жидкости - формулы и определение с примерами — сила поверхностного натяжения жидкости, Поверхностное натяжение жидкости - формулы и определение с примерами — длина границы соприкосновения свободной поверхности жидкости с твердым телом, Поверхностное натяжение жидкости - формулы и определение с примерами (сигма) – коэффициент поверхностного натяжения:

Коэффициент поверхностного натяжения

Коэффициент поверхностного натяжения – численно равен силе поверхностного натяжения, приходящейся на единицу длины линии, ограничивающей поверхность жидкости:

Поверхностное натяжение жидкости - формулы и определение с примерами

Значение коэффициента поверхностного натяжения зависит от вида жидкости и ее температуры, то есть с увеличением температуры жидкости коэффициент его поверхностного натяжения уменьшается и при критической температуре равен нулю. Единица коэффициента поверхностного натяжения в СИ:

Поверхностное натяжение жидкости - формулы и определение с примерами

Смачивающая и несмачивающая жидкость. При внимательном рассмотрении можно увидеть искривление поверхности жидкости на границе между жидкостью и твердым телом.

Мениск – это искривление свободной поверхности жидкости в месте ее соприкосновении с поверхностью твердого тела (или другой жидкости). Угол между поверхностью мениска и поверхностью твердого тела называется краевым углом.

Значение краевого угла Поверхностное натяжение жидкости - формулы и определение с примерами (тетта) зависит от того, является ли жидкость смачивающей или несмачивающей твердое тело:

Смачивающая жидкость —это жидкость, у которой краевой угол острый. Сила взаимного притяжения между молекулами смачивающей жидкости и твердого тела больше, чем силы взаимного притяжения между молекулами самой жидкости. В результате свободная поверхность жидкости в сосуде становится вогнутой, например, вода в стеклянном сосуде – смачивающая жидкость (g).

Поверхностное натяжение жидкости - формулы и определение с примерами

Несмачивающая жидкость — это жидкость, у которой краевой угол тупой. Сила взаимного притяжения между молекулами несмачивающей жидкости и твердого тела меньше, чем сила взаимного притяжения между молекулами самой жидкости. В результате свободная поверхность жидкости в сосуде бывает выпуклой, например, ртуть в стеклянном сосуде — несмачивающая жидкость (i).

Поверхностное натяжение жидкости - формулы и определение с примерами

Капиллярные явления

В повседневной жизни встречаются и используются тела, с легкостью впитывающие в себя воду, например, полотенце, промокательная бумага, сахар, кирпич, растения и др. Это свойство в телах объясняется существованием в них большого количества очень узких трубочек – капилляров.

Капилляр – это узкая трубка (канал) диаметром меньше Поверхностное натяжение жидкости - формулы и определение с примерами м. Уровень жидкости внутри капилляра, опущенного в жидкость, в зависимости от ее свойств (смачивающая или несмачивающая), отличается от общего уровня жидкости:

Капиллярными явлениями называют явления подъема смачивающей и опускания несмачивающей жидкости по капилляру относительно общего уровня жидкости под действием сил поверхностного натяжения (j).

Поверхностное натяжение жидкости - формулы и определение с примерами

В таблице 6.4 дана зависимость между величинами, характеризующими жидкость, поднимающуюся в капилляре.

Таблица 6.4

Характеристики жидкости, поднимающейся в капилляре

Формула
Вес жидкости, поднимающейся в капилляре

Поверхностное натяжение жидкости - формулы и определение с примерами

Где Поверхностное натяжение жидкости - формулы и определение с примерами — радиус капилляра, Поверхностное натяжение жидкости - формулы и определение с примерами — диаметр капилляра.

Масса жидкости, поднимающейся в капилляре Поверхностное натяжение жидкости - формулы и определение с примерами
Высота жидкости, поднимающейся в капилляре

Поверхностное натяжение жидкости - формулы и определение с примерами

Если жидкость полностью смачиваемая, то получаем в Поверхностное натяжение жидкости - формулы и определение с примерамиПоверхностное натяжение жидкости - формулы и определение с примерами

Поверхностное натяжение жидкости - формулы и определение с примерами

Где Поверхностное натяжение жидкости - формулы и определение с примерами — плотность жидкости, поднимающейся в капилляре. Высота подъема жидкости в капилляре зависит от рода жидкости и обратно пропорциональна радиусу капилляра.

Давление жидкости, поднимающейся в капилляре Поверхностное натяжение жидкости - формулы и определение с примерами

Поверхностное натяжение жидкости

Некоторые виды пауков могут передвигаться по поверхности воды не проваливаясь, как будто эта поверхность покрыта невидимой тонкой пленкой. такое же впечатление создается, если наблюдать за вытеканием воды из маленького отверстия — вода течет не тоненькой струйкой, а образует капли. Бумажная салфетка впитывает воду, едва коснувшись ее поверхности. какая сила является причиной всех этих явлений?

Поверхностное натяжение жидкости - формулы и определение с примерами

Каковы особенности поверхностного слоя жидкости

На свободной поверхности жидкости молекулы находятся в особых условиях, отличающихся от условий, в которых находятся молекулы внутри жидкости. Рассмотрим две молекулы — А и Б (рис. 33.1): молекула А находится внутри жидкости, а молекула Б — на ее поверхности. Молекула А окружена другими молекулами жидкости равномерно, поэтому силы, действующие на молекулу А со стороны молекул, попадающих в сферу межмолекулярного взаимодействия, скомпенсированы, то есть их равнодействующая равна нулю.

Поверхностное натяжение жидкости - формулы и определение с примерами

Молекула Б с одной стороны окружена молекулами жидкости, а с другой — молекулами газа. Со стороны жидкости на нее действует гораздо больше молекул, чем со стороны газа, поэтому равнодействующая  F межмолекулярных сил направлена в глубь жидкости. Чтобы молекула из глубины попала в поверхностный слой, нужно совершить работу против межмолекулярных сил. Это означает, что молекулы поверхностного слоя жидкости (по сравнению с молекулами внутри жидкости) обладают избыточной потенциальной энергией. Эта избыточная энергия является частью внутренней энергии жидкости и называется поверхностной энергией (Wпов). Очевидно, что чем больше площадь S поверхности жидкости, тем больше поверхностная энергия: W S пов = σ , где σ (сигма) — коэффициент пропорциональности, который называют поверхностным натяжением жидкости.

Поверхностное натяжение жидкости — физическая величина, которая характеризует данную жидкость и равна отношению поверхностной энергии к площади поверхности жидкости:

Поверхностное натяжение жидкости - формулы и определение с примерами

Единица поверхностного натяжения в СИ — ньютон на метр:

Поверхностное натяжение жидкости - формулы и определение с примерами

Поверхностное натяжение жидкости определяется силами межмолекулярного взаимодействия, поэтому оно зависит:

  1. от природы жидкости: у летучих жидкостей (эфир, спирт, бензин) поверхностное натяжение меньше, чем у нелетучих (ртуть, жидкие металлы);
  2. температуры жидкости: чем выше температура жидкости, тем меньше поверхностное натяжение;
  3. присутствия в составе жидкости поверхностно активных веществ — их наличие уменьшает поверхностное натяжение;
  4. свойств газа, с которым жидкость граничит. В таблицах обычно приводят значение поверхностного натяжения на границе жидкости и воздуха при определенной температуре (табл. 1).

Таблица 1

Поверхностное натяжение σ некоторых жидкостей

Поверхностное натяжение жидкости - формулы и определение с примерами

Что такое сила поверхностного натяжения

Поскольку поверхностный слой жидкости обладает избыточной потенциальной энергией (Поверхностное натяжение жидкости - формулы и определение с примерами), а любая система стремится к минимуму потенциальной энергии, то свободная поверхность жидкости стремится уменьшить свою площадь (сжаться). То есть вдоль поверхности жидкости действуют силы, которые пытаются стянуть эту поверхность. Эти силы называют силами поверхностного натяжения.

Наличие сил поверхностного натяжения делает поверхность жидкости похожей на натянутую резиновую пленку, однако упругие силы в резиновой пленке зависят от площади ее поверхности (от того, насколько пленка деформирована), а поверхность жидкости всегда «натянута» одинаково, то есть силы поверхностного натяжения не зависят от площади поверхности жидкости. Наличие сил поверхностного натяжения можно доказать с помощью такого опыта. Если проволочный каркас с закрепленной на нем нитью опустить в мыльный раствор, каркас затянется мыльной пленкой, а нить приобретет произвольную форму (рис. 33.2, а).

Поверхностное натяжение жидкости - формулы и определение с примерами

Если осторожно проткнуть иглой мыльную пленку по одну сторону от нити, сила поверхностного натяжения мыльного раствора, действующая с другой стороны, натянет нить (рис. 33.2, б). Опустим в мыльный раствор проволочную рамку, одна из сторон которой подвижна. На рамке образуется мыльная пленка (рис. 33.3). Будем растягивать эту пленку, действуя на перекладину (подвижную сторону рамки) с некоторой силой Поверхностное натяжение жидкости - формулы и определение с примерами.

Поверхностное натяжение жидкости - формулы и определение с примерами

Если под действием этой силы перекладина переместится на ∆x , то внешние силы совершат работу: Поверхностное натяжение жидкости - формулы и определение с примерами За счет совершения этой работы площади обеих поверхностей пленки увеличатся, а значит, увеличится и поверхностная энергия: Поверхностное натяжение жидкости - формулы и определение с примерами где Поверхностное натяжение жидкости - формулы и определение с примерами — увеличение площади двух поверхностей мыльной пленки. Приравняв правые части полученных равенств, получим: Поверхностное натяжение жидкости - формулы и определение с примерами, или: Поверхностное натяжение жидкости - формулы и определение с примерами

Таким образом, поверхностное натяжение σ численно равно силе поверхностного натяженияПоверхностное натяжение жидкости - формулы и определение с примерами, которая действует на единицу длины l линии, ограничивающей поверхность: Поверхностное натяжение жидкости - формулы и определение с примерами

С одним из методов определения поверхностного натяжения жидкости вы ознакомитесь, выполняя лабораторную работу № 7.

  • Заказать решение задач по физике

Где проявляется поверхностное натяжение

В жизни вы постоянно сталкиваетесь с проявлениями сил поверхностного натяжения. Так, благодаря ему на поверхности воды удерживаются легкие предметы (рис. 33.4) и некоторые насекомые.

Поверхностное натяжение жидкости - формулы и определение с примерами

Рис. 33.4. Монетка удерживается на поверхности воды благодаря силе поверхностного натяжения. (Чтобы провести такой опыт, монетку нужно потереть между пальцев и осторожно опустить на поверхность воды.)

Когда вы ныряете, ваши волосы расходятся во все стороны, но как только вы окажетесь над водой, волосы слипнутся, так как в этом случае площадь свободной поверхности воды намного меньше, чем при раздельном расположении прядей в воде. По этой же причине можно лепить фигуры из влажного песка: вода, обволакивая песчинки, прижимает их друг к другу.

Поверхностное натяжение жидкости - формулы и определение с примерами

Рис. 33.5. Капля удерживается около небольшого отверстия до тех пор, пока сила поверхностного натяжения уравновешивает силу тяжести

Стремлением жидкости уменьшить площадь поверхности объясняется и тот факт, что в условиях невесомости вода принимает форму шара, — при заданном объеме шарообразной форме соответствует наименьшая площадь поверхности. Форму шара приобретают тонкие мыльные пленки (мыльные пузыри). Поверхностным натяжением объясняется образование пены: пузырек газа, достигнув поверхности жидкости, имеет над собой тонкий слой жидкости; если пузырек мал, то архимедовой силы недостаточно, чтобы разорвать двойной поверхностный слой, и пузырек «застревает» вблизи поверхности. Благодаря поверхностному натяжению жидкость не выливается из маленького отверстия тоненькой струйкой, а капает (рис. 33.5), дождь не проливается через ткань зонта или палатки и т. д.

Почему одни жидкости собираются в капли, а другие растекаются

Наличие сил поверхностного натяжения проявляется в сферической форме мелких капелек росы, в каплях воды, разбегающихся по раскаленной плите, в капельках ртути на поверхности стекла. Однако при соприкосновении с твердым телом сферическая форма капли, как правило, не сохраняется. Форма свободной поверхности жидкости зависит также от сил взаимодействия молекул жидкости с молекулами твердого тела.

Если силы взаимодействия между молекулами жидкости больше, чем силы взаимодействия между молекулами жидкости и твердого тела, жидкость не смачивает поверхность твердого тела (рис. 33.6). Например, ртуть не смачивает стекло, а вода не смачивает покрытую сажей поверхность.

Поверхностное натяжение жидкости - формулы и определение с примерами

Рис. 33.6. Капля несмачивающей жидкости принимает форму, близкую к сферической, а поверхность жидкости вблизи стенки сосуда является выпуклой

Если же капельку ртути поместить на цинковую пластину, то капелька будет стремиться растечься по поверхности пластины; так же ведет себя и капелька воды на стекле (рис. 33.7). Если силы взаимодействия между молекулами жидкости меньше сил взаимодействия между молекулами жидкости и твердого тела, жидкость смачивает поверхность твердого тела.

Поверхностное натяжение жидкости - формулы и определение с примерами

Рис. 33.7. Капля смачивающей жидкости стремится растечься по поверхности твердого тела, а вблизи стенки сосуда поверхность жидкости принимает вогнутую форму

Почему жидкость поднимается в капиллярах

В природе часто встречаются тела, пронизанные многочисленными мелкими капиллярами (от лат. capillaris — волосяной) — узкими каналами произвольной формы. Такую структуру имеют бумага, дерево, почва, многие ткани и строительные материалы. В цилиндрических капиллярах искривленная поверхность жидкости представляет собой часть сферы, которую называют мениском. У смачивающей жидкости образуется вогнутый мениск (рис. 33.8, а), а у несмачивающей — выпуклый (рис. 33.8, б).

Поверхностное натяжение жидкости - формулы и определение с примерами

Рис. 33.8. капиллярные явления: а — смачивающая жидкость поднимается по капилляру; б — несмачивающая жидкость опускается в капилляре

Поверхность жидкости стремится к минимуму потенциальной энергии, а искривленная поверхность обладает большей площадью по сравнению с площадью сечения капилляра, поэтому поверхность жидкости стремится выровняться и под ней возникает избыточное (отрицательное или положительное) давление — лапласово давление (Поверхностное натяжение жидкости - формулы и определение с примерами).

Под вогнутой поверхностью (жидкость смачивает капилляр) лапласово давление отрицательное и жидкость втягивается в капилляр. Так поднимаются влага и питательные вещества в стеблях растений, керосин по фитилю, влага в почве. Вследствие лапласового давления салфетки или ткань впитывают воду, брюки в дождливую погоду сильно намокают снизу и т. д. Под выпуклой поверхностью (жидкость не смачивает капилляр) лапласово давление положительное и жидкость в капилляре опускается. Чем меньше радиус капилляра, тем больше высота подъема (или опускания) жидкости (см. задачу ниже).

Пример решения задачи

Капиллярную трубку радиусом r одним концом опустили в жидкость, смачивающую внутреннюю поверхность капилляра. На какую высоту поднимется жидкость в капилляре, если плотность жидкости ρ, а ее поверхностное натяжение σ ? Чему равно лапласово давление под вогнутой поверхностью капилляра? Смачивание считайте полным.

Поверхностное натяжение жидкости - формулы и определение с примерамиПоверхностное натяжение жидкости - формулы и определение с примерами

Решение:

На жидкость в капилляре действуют сила тяжести и сила поверхностного натяжения (Поверхностное натяжение жидкости - формулы и определение с примерами направлена вертикально вверх (по касательной к поверхности мениска). Подъем жидкости в капилляре будет продолжаться до тех пор, пока сила тяжести поднятого столба жидкости не уравновесит силу поверхностного натяжения: mg = Поверхностное натяжение жидкости - формулы и определение с примерами ( *), где m — масса жидкости.

Поиск математической модели, решение

Поскольку m V = ρ , а объем воды в цилиндрическом капилляре Поверхностное натяжение жидкости - формулы и определение с примерами, Поверхностное натяжение жидкости - формулы и определение с примерами (длина окружности), следовательно, Поверхностное натяжение жидкости - формулы и определение с примерами Подставим выражения для m и Поверхностное натяжение жидкости - формулы и определение с примерами в равенство (*): Поверхностное натяжение жидкости - формулы и определение с примерами Для определения лапласова давления Поверхностное натяжение жидкости - формулы и определение с примерами под поверхностью мениска воспользуемся тем фактом, что в однородной неподвижной жидкости давление на одном уровне (у нас — на уровне АВ) одинаково, то есть:

Поверхностное натяжение жидкости - формулы и определение с примерами

где R — радиус кривизны мениска (при полном смачивании r=R).

Ответ: (Данные выводы следует запомнить!)

  • Высота подъема жидкости в капилляре прямо пропорциональна поверхностному натяжению жидкости и обратно пропорциональна плотности жидкости и радиусу капилляра: Поверхностное натяжение жидкости - формулы и определение с примерами .
  • Лапласово давление (избыточное давление) под сферической поверхностью жидкости прямо пропорционально поверхностному натяжению жидкости и обратно пропорционально радиусу кривизны мениска: Поверхностное натяжение жидкости - формулы и определение с примерами.

Выводы:

  • Свойства паров в физике
  • Кипение жидкостей в физике
  • Электромагнитные явления в физике
  • Электромагнитные волны и их свойства
  • Расчет количества теплоты при нагревании и охлаждении
  • Удельная теплота сгорания топлива
  • Плавление и кристаллизация в физике 
  • Испарение жидкостей в физике

Добавить комментарий