Как найти коэффициент прямой линейной функции

На этой странице вы узнаете:

  • За что отвечают коэффициенты в записи линейной функции?
  • Как пронумерованы четверти на координатной плоскости?
  • Чем отличается график функции квадратного корня от графика квадратичной функции и почему?

Линейная функция

Любую функцию можно изобразить на графике (рисунке) и наглядно определить многие её свойства. Этим пользуются люди, составляя графики движения транспорта, посещения соцсетей или просмотра видеороликов на канале.  

Вспомним, что функция – это зависимость одной переменной от другой, а график функции – это представление данной зависимости на координатной плоскости. 

С помощью графика функции можно изучать поведение функции: возрастает или убывает, имеет ли нули, на каких промежутках значения положительные, а на каких отрицательные, наибольшее и наименьшее значение, является ли симметричной относительно OY.

Теперь давайте рассмотрим основные элементарные функции.

Что же такое линейная функция? 

Линейная функция – это функция вида y=kx+b, где k и b – известные числа, графиком которой является прямая.

y = kx + b, где
k – коэффициент
b – свободный член
x – переменная 

С линейной функцией мы встречаемся, когда оплачиваем проезд  в общественном транспорте.

Коэффициент и переменная определяют стоимость билета в зависимости от дальности поездки. Свободным членом может выступать доплата за комфортное место или за поезд-экспресс.

Пункт назначения Станция 200 км Станция 300 км Станция 400 км
Цена поездки в обычном вагоне (kx) 500 руб. 750 руб. 1000 руб.
Цена за вагон “Люкс” (kx + b) 750 руб. 1000 руб. 1250 руб.

Рассмотрим пример такой функции и ее график:
y = 2x + 3

Составим таблицу значений.

Теперь отметим найденные точки на координатной плоскости и проведём через них прямую.

Полученный нами график является графиком данной линейной функции.

Также можно составить уравнение линейной функции самостоятельно при наличии графика.

За что отвечают коэффициенты в записи линейной функции?

Коэффициент b – это длина отрезка по оси OY, на который происходит сдвиг от начала координат (может быть отрицательным, если пересечение графика с осью Y в точке с отрицательным значением).

Коэффициент k – это угол наклона прямой, он равен отношению разностей координат двух произвольных точек.

На графике найдем сначала коэффициент b , после определим координаты двух произвольных точек прямой и вычислим коэффициент k.

Подставим найденные коэффициенты в формулу линейной функции и получим
(y = frac{1}{2}x + 2)

Свойства линейной функции:

  1. Область определения: D(y) = (-∞; +∞)
  2. Область значений функции: E(y) = (-∞; +∞)
  3. Наименьшего и наибольшего значения не существует.
  4. Непериодическая.
  5. Возрастает при  k > 0, убывает при k < 0.

Квадратичная функция

Квадратичная функция – это функция вида y = ax2, где a – известное число и a ≠ 0, графиком которой является парабола.

y = ax2, где 
a – известное число 
a ≠ 0
x – переменная

Для примера построим график функции y = 2x2

Параболой можно описать полет мяча в баскетбольную корзину.

Какой вид имеет парабола в зависимости от коэффициента a ?

При a > 0 – ветви параболы вверх

При a < 0 – ветви параболы вниз

Сдвиг параболы по оси Y

y = ax2 + c

При c > 0 – сдвиг параболы вверх 

При c < 0 – сдвиг параболы вниз 

Сдвиг параболы по оси X

y = a(x — n)2

При n > 0 – сдвиг параболы вправо 

При n < 0 – сдвиг параболы влево 

Свойства квадратичной функции:

  1. Область определения: D(y) = (-∞; +∞)
  2. Область значений функции: E(y) = [0; +∞)
  3. При a > 0 – наименьшее значение y = 0.
    При a < 0 – наибольшее значение y=0.
  4. Непериодическая.
  5. На (-∞; 0] – убывает при  a > 0 и возрастает при a < 0.
    На [0; +∞) — убывает при a < 0 и возрастает при a > 0.
  6. Нуль функции x=0.
  7. Четная (симметричная относительно OY).

Функция обратной пропорциональности

Функция обратной пропорциональности – это функция вида y = (frac{k}{x}), где k – известное число и k ≠ 0, графиком которой является гипербола.

(y = frac{k}{x}), где 
k – известное число 
k ≠ 0
x – переменная

Рассмотрим пример такой функции (y = frac{2}{x})

Как коэффициент k влияет на расположение гиперболы?

Как пронумерованы четверти на координатной плоскости?

Вспомним четверти плоскостей. Они идут против часовой стрелки начиная с четверти, где и x, и y — положительные.

Гипербола при k > 0 – в первой и третьей плоскостях

Гипербола при k< 0 – во второй и четвертой плоскостях

Гипербола может также двигаться по оси X или по оси Y

Движение графика по оси Y

(y = frac{k}{x} + n) при k> 0

При n < 0, сдвиг вниз
При n > 0, сдвиг вверх

По графику выше можно сделать вывод, что n = 3.

Движение графика по оси X

(y = frac{k}{x + c}) при k> 0

При c < 0, сдвиг вправо
При c > 0, сдвиг влево

По графику выше можно сделать вывод, что c = 3.

Свойства функции обратной пропорциональности:

  1. Область определения: D(y) = (-∞; 0) U (0; +∞)
  2. Область значений функции: E(y) = (-∞; 0) U (0; +∞)
  3. Наименьшего и наибольшего значений не существует.
  4. Непериодическая.
  5. При k > 0 убывает на (-∞;0) и (0; +∞).
    При k < 0 возрастает на (-∞; 0) и (0; +∞).
  6. Нулей нет.
  7. Нечетная.

Где же в реальной жизни мы можем встретить эту функцию? 

Самый простой пример – движение автомобиля: чем выше его скорость, тем меньше времени потребуется, чтобы преодолеть одно и то же расстояние.

Функция квадратного корня

Функция квадратного корня – это функция вида (y = sqrt{x}), где x ≥ 0 .

(y = sqrt{x}), где
x – переменная
x ≥ 0

В жизни такая функция часто используется для определения стороны квадрата при известной площади. Например: при проектировании дома или разбиения участка земли на квадраты.

Рассмотрим график такой функции.

Чем отличается график функции квадратного корня от графика квадратичной функции и почему?

По графику квадратного корня уже видно, что это половина параболы, изображенной вдоль оси х. А график квадратичной функции — это целая парабола, изображенная вдоль оси y.
Так как корень всегда положительный, у функции квадратного корня (y = sqrt{x}) , всегда y ≥ 0.  А значит не будет части параболы, где y < 0. 
Если возвести обе части функции квадратного корня в квадрат, то получим y2 = x. Получившаяся функция будет уже квадратичной функцией относительно y, следовательно, будет строиться относительно х.

Какие бывают сдвиги функции квадратного корня?

Сдвиг по оси Y

(y = sqrt{x} + n)

При n < 0, сдвиг вниз
При n > 0, сдвиг вверх

По графику выше можно утверждать, что n = -2.

Сдвиг по оси X

(y = sqrt{x + c})

При c < 0, сдвиг вправо
При c > 0, сдвиг влево

Сделаем вывод, что для рисунка выше c = -2.

Свойства функции квадратного корня:

  1. Область определения: D(y) = [0; +∞)
  2. Область значений функции: E(y) = [0; +∞)
  3. Наименьшее значение при y = 0.
  4. Непериодическая.
  5. Возрастает на всей области определения.
  6. Нуль функции x = 0.

Фактчек

  • Линейная функции y = kx + b.
  • Квадратичная функции y = ax2.
  • Функция обратной пропорциональности (y = frac{k}{x}).
  • Функция квадратного корня (y = sqrt{x}).

Термины

Элементарная функция – это функция вида y = f(x) , где f(x) – это формула, содержащая конечное число арифметических операций. 

Парабола – это незамкнутая линия, точки на которой равноудалены от оси ординат.

Проверь себя

Задание 1.
Определите какая из функций является линейной

  1. (y = 2x^2 + frac{1}{2})
  2. (y = sqrt{x + 2})
  3. (y = frac{1}{2}x + 3)
  4. (y = frac{1}{x — 2})

Задание 2.
Определите какая из функций является квадратичной

  1. y = 4(x — 1)2
  2. y = 2x + 11
  3. (y = frac{x}{2} + 1)
  4. (y = sqrt{x} + 3)

Задание 3.
Определите какая функция является обратной пропорциональностью

  1. (y = frac{x}{2} + 5)
  2. (y = frac{1}{x + 2})
  3. (y = sqrt{x + 1})
  4. y = x2

Задание 4.
Определите какая функция является функцией квадратного корня

  1. y = x2
  2. (y = sqrt{x — 1} — 4)
  3. (y = 6x + frac{1}{3})
  4. y = 2x2 + 3

Задание 5.
В какую сторону будет сдвиг у параболы y = (x + 4)2?

  1. Вправо
  2. Вниз
  3. Вверх
  4. Влево

Ответы: 1. – 3; 2. – 1; 3. – 2; 4. – 2; 5. – 4

В новой 9 задаче профильного ЕГЭ много заданий на линейные функции. Самое сложное, что нужно сделать, решая эти задачи – определить формулу линейной функции, т.е. найти (k) и (b) по графику. Примеры таких заданий (решения будут внизу статьи):

пример нового 9 задание ЕГЭ

Новое задание ЕГЭ с линейной функцией

В статье я расскажу про два простых способа найти (k) и (b), если известен график линейной функции.

Способ 1

Первый способ основывается на трех фактах:

  1. Линейная функция пересекает ось (y) в точке (b).
    Примеры:

    Как определить b по линейной функции

    Но не советую определять так (b), если прямая пересекает ось не в целом значении или если точка пересечения вообще не видна на графике. Для таких случаев пользуйтесь вторым способом.

    Примеры:

    В каких случаях b не надо определять

  2. Если функция возрастает, то знак коэффициента (k) плюс, если убывает – минус, а если постоянна, то (k=0).

    Примеры:

    Как определить знак k у линейной функции

  3. Чтоб конкретнее определить (k) надо построить на прямой прямоугольный треугольник так, чтобы гипотенуза лежала на графике функции, а вершины треугольника совпадали с вершинами клеточек. Далее, чтоб определить (k) нужно вертикальную сторону треугольника поделить на горизонтальную и поставить знак согласно возрастанию/убыванию функции.

    Примеры:

    Как найти k у линейной функции

Пример (ЕГЭ)

пример 9 задания ЕГЭ

Давайте пока что не будем искать формулу иррациональной функции, сосредоточимся только на линейной функции.

решение 9 задания ЕГЭ

(b=3) – это сразу видно. Функция идет вниз, значит (k<0).

Достроим прямую до прямоугольного треугольника. Вершинами будут жирные точки, которые нам дали в задаче.

решение 9 задания ЕГЭ

(k=-frac{AC}{BC}=-frac{1}{3}). Получается (g(x)=-frac{1}{3}x+3).

Способ 1 быстрее способа 2, но не во всех ситуациях помогает. Поэтому важно владеть и вторым способом тоже.

Способ 2

Вы обращали внимание, что в задачах ЕГЭ на прямых всегда жирно выделяют 2 точки? Так вот, чтобы найти формулу линейной функции, достаточно подставить координаты этих точек в формулу (f(x)=kx+b) и решить получившуюся систему уравнений.

Пример (ЕГЭ)

Новое задание ЕГЭ с линейной функцией

Обозначим жирные точки какими-нибудь буквами и найдем их координаты.

решение 9 задания ЕГЭ

(A(-2;2)) и (B(2;-5)) подставим эти значения вместо (x) и (f(x)) в формулу (f(x)=kx+b):

Получим:

(begin{cases}2=-2k+b\-5=2k+bend{cases})

Теперь найдем (k) и (b), решив эту систему.

Для этого сложим уравнения друг с другом, чтобы исчезло (k):

(2+(-5)=-2k+b+2k+b)
(-3=2b)
(b=-1,5)

Теперь подставим найденное (b) во второе уравнение системы и найдем (k):

(-5=2k-1,5)
(-5+1,5=2k)
(-3,5=2k)
(k=-1,75)

Получается (f(x)=-1,75x-1,5). Остается последний шаг – вычислим при каком иксе функция, то есть (f(x)), равна (16):

(16=-1,75x-1,5)
(17,5=-1,75x)
(x=-10).

Ответ: (-10).

Пример (ЕГЭ)

пример нового 9 задание ЕГЭ

Чтоб решить задачу, нам понадобятся формулы каждой из двух функций. Давайте формулу нижней функции найдем с помощью способа 1, а формулу верхней с помощью способа 2. Начнем с нижней функции.

решение 9 задания ЕГЭ

Функция (f(x)) возрастает, значит (k>0). (k=+frac{AC}{BC}=frac{4}{4}=1,b=1). (f(x)=x+1).

Теперь перейдем к функции (g(x)). Найдем координаты точек (D) и (E): (D(-2;4)), (E(-4;1)). Можно составить систему:

(begin{cases}4=-2k+b\1=-4k+bend{cases})

Вычтем второе уравнение из первого, чтоб убрать (b):

(4-1=-2k+b-(-4k+b))
(3=2k)
(k=1,5)

Найдем (b):

(4=-2cdot 1,5+b)
(4=-3+b)
(b=7)

(g(x)=1,5x+7). Обе функции найдены, теперь можно найти абсциссу (икс) точки пересечения. Приравняем (f(x)) и (g(x)).

(x+1=1,5x+7)
(x-1,5x=7-1)
(-0,5x=6)
(x=6:(-0,5))
(x=-12).

Ответ: (-12).

Шпаргалка как найти k и b

Картинку в хорошем качестве, можно скачать нажав на кнопку “скачать статью”.

Смотрите также:
Как определить a, b и c по графику параболы

Скачать статью


Загрузить PDF


Загрузить PDF

Угловой коэффициент характеризует угол наклона прямой к оси абсцисс (угловой коэффициент численно равен тангенсу этого угла). Угловой коэффициент присутствует в уравнении прямой и используется в математическом анализе кривых, где всегда равен производной функции. Для облегчения понимания углового коэффициента представьте, что он влияет на скорость изменения функции, то есть чем больше значение углового коэффициента, тем больше значение функции (при одном и том же значении независимой переменной).

  1. Изображение с названием Find the Slope of an Equation Step 1

    1

    Используйте угловой коэффициент для нахождения угла наклона прямой к оси абсцисс и направления этой прямой. Вычислить угловой коэффициент довольно легко, если вам дано уравнение прямой. Запомните, что в любом уравнении прямой:

  2. Изображение с названием Find the Slope of an Equation Step 2

    2

    Для нахождения углового коэффициента необходимо найти значение k (коэффициент при «х»). Если данное вам уравнение имеет вид y=kx+b, то для нахождения углового коэффициента вам нужно просто посмотреть на число, стоящее перед «х». Обратите внимание, что k (угловой коэффициент) всегда находится при независимой переменной (в данном случае «х»). Если вы запутались, просмотрите следующие примеры:

  3. Изображение с названием Find the Slope of an Equation Step 3

    3

    Если данное вам уравнение имеет вид, отличный от y=kx+b, обособьте зависимую переменную. В большинстве случаев зависимая переменная обозначается как «у», а для ее обособления можно выполнять операции сложения, вычитания, умножения и другие. Помните, что любая математическая операция должна быть выполнена на обеих сторонах уравнения (чтобы не менять его исходного значения). Вам необходимо привести любое данное вам уравнение к виду y=kx+b. Рассмотрим пример:

    Реклама

  1. Изображение с названием Find the Slope of an Equation Step 4

    1

    Для вычисления углового коэффициента воспользуйтесь графиком и двумя точками. Если вам дан просто график функции (без уравнения), вы все еще можете найти угловой коэффициент. Для этого вам понадобятся координаты любых двух точек, лежащих на этом графике; координаты подставляются в формулу: {frac  {y_{2}-y_{1}}{x_{2}-x_{1}}}. Чтобы избежать ошибок при вычислении углового коэффициента, запомните следующее:

    • Если график возрастает, то угловой коэффициент имеет положительное значение.
    • Если график убывает, то угловой коэффициент имеет отрицательное значение.
    • Чем больше значение углового коэффициента, тем круче график (и наоборот).
    • Угловой коэффициент прямой, параллельной оси абсцисс, равен 0.
    • Угловой коэффициент прямой, параллельной оси ординат, не существует (он бесконечен).[4]
  2. Изображение с названием Find the Slope of an Equation Step 5

    2

    Найдите координаты двух точек. На графике отметьте любые две точки и найдите их координаты (х,у). Например, на графике лежат точки А(2,4) и В(6,6).[5]

    • В паре координат первое число соответствует «х», а второе – «у».
    • Каждому значению «х» соответствует определенное значение «у».
  3. Изображение с названием Find the Slope of an Equation Step 6

    3

    Приравняйте x1, y1, x2, y2 к соответствующим значениям. В нашем примере с точками А(2,4) и В(6,6):

    • x1: 2
    • y1: 4
    • x2: 6
    • y2: 6[6]
  4. Изображение с названием Find the Slope of an Equation Step 7

    4

    Подставьте найденные значения в формулу для вычисления углового коэффициента. Чтобы найти угловой коэффициент, используются координаты двух точек и следующая формула: {frac  {y_{2}-y_{1}}{x_{2}-x_{1}}}. Подставьте в нее координаты двух точек.

  5. Изображение с названием Find the Slope of an Equation Step 8

    5

    Объяснение сути формулы. Угловой коэффициент равен отношению изменения координаты «у» (двух точек) к изменению координаты «х» (двух точек). Изменение координаты – это разность между значениями соответствующей координаты первой и второй точек.

  6. Изображение с названием Find the Slope of an Equation Step 9

    6

    Другой вид формулы для вычисления углового коэффициента. Стандартная формула для вычисления углового коэффициента: k = {frac  {y_{2}-y_{1}}{x_{2}-x_{1}}}. Но она может иметь следующий вид: k = Δy/Δx, где Δ – это греческая буква «дельта», обозначающая в математике разность. То есть, Δx = x_2 – x_1, а Δy = y_2 – y_1.[8]

    Реклама

  1. Изображение с названием Find the Slope of an Equation Step 10

    1

    Научитесь брать производные от функций. Производная характеризует скорость изменения функции в определенной точке, лежащей на графике этой функции. В данном случае графиком может быть как прямая, так и кривая линия. То есть производная характеризует скорость изменения функции в конкретный момент времени. Вспомните общие правила, по которым берутся производные, и только потом переходите к следующему шагу.

    • Прочитайте статью Как брать производную.
    • Как брать простейшие производные, например, производную показательного уравнения, описано этой статье. Вычисления, представленные в следующих шагах, будут основаны на описанных в ней методах.
  2. Изображение с названием Find the Slope of an Equation Step 11

    2

    Научитесь различать задачи, в которых угловой коэффициент требуется вычислить через производную функции. В задачах не всегда предлагается найти угловой коэффициент или производную функции. Например, вас могут попросить найти скорость изменения функции в точке А(х,у). Также вас могут попросить найти угловой коэффициент касательной в точке А(х,у). В обоих случаях необходимо брать производную функции.

  3. Изображение с названием Find the Slope of an Equation Step 12

    3

    Возьмите производную данной вам функции. Здесь строить график не нужно – вам понадобится только уравнение функции. В нашем примере возьмите производную функции f(x)=2x^{2}+6x. Берите производную согласно методам, изложенным в упомянутой выше статье:

    • Производная: f'(x)=4x+6
  4. Изображение с названием Find the Slope of an Equation Step 13

    4

    В найденную производную подставьте координаты данной вам точки, чтобы вычислить угловой коэффициент. Производная функции равна угловому коэффициенту в определенной точке. Другими словами, f'(х) – это угловой коэффициент функции в любой точке (x,f(x)). В нашем примере:

  5. Изображение с названием Find the Slope of an Equation Step 14

    5

    Если возможно, проверьте полученный ответ на графике. Помните, что угловой коэффициент можно вычислить не в каждой точке. Дифференциальное исчисление рассматривает сложные функции и сложные графики, где угловой коэффициент можно вычислить не в каждой точке, а в некоторых случаях точки вообще не лежат на графиках. Если возможно, используйте графический калькулятор, чтобы проверить правильность вычисления углового коэффициента данной вам функции. В противном случае проведите касательную к графику в данной вам точке и подумайте, соответствует ли найденное вами значение углового коэффициента тому, что вы видите на графике.

    • Касательная будет иметь тот же угловой коэффициент, что и график функции в определенной точке. Для того, чтобы провести касательную в данной точке, двигайтесь вправо/влево по оси Х (в нашем примере на 22 значения вправо), а затем вверх на единицу по оси Y. Отметьте точку, а затем соедините ее с данной вам точкой. В нашем примере соедините точки с координатами (4,2) и (26,3).

    Реклама

Об этой статье

Эту страницу просматривали 143 928 раз.

Была ли эта статья полезной?

На прошлых уроках мы рассмотрели линейную функцию и научились строить ее график на координатной плоскости. На этом уроке мы углубимся в теорию и разберем, почему график выглядит именно так.

Вспомним, что линейная функция имеет вид $y = kx+b$, где $x$ – переменная, а $k$ и $b$ – некоторые числа, называемые коэффициентами.

Например,

  • $y = textcolor{blue}{5}x + color{green}{10}$ – линейная функция
  • $color{blue} k = 5$
  • $color{green} b = 10$.

График линейной функции – прямая линия, а ее положение на плоскости зависит от того, какие у функции $k$ и $b$.

Коэффициент $k$ называют угловым, так как он показывает угол наклона линейной функции на графике относительно оси $Ox$

угловой коэффициент линейной функции

При $k > 0$ угол между графиком и осью $Ox$ меньше $90 degree$ (острый)

угловой коэффициент линейной функции

При $k < 0$ угол между графиком и осью $Ox$ больше $90 degree$ (тупой)

Коэффициент b

Коэффициент $b$ называют свободным. На графике он показывает длину отрезка, который отсекает линия функции по оси ординат относительно начала координат. 

Другими словами, коэффициент $b$ показывает, насколько график выше или ниже оси $Oy$.

  • Если $b > 0$, график сдвинут вверх,
  • если $b < 0$, то график сдвинут вниз.

На нашем графике функции из примера про копилку видно, что прямая пересекает ось $Oy$ выше начала координат на $500$ единиц (этому числу и равен коэффициент $b$).

График функции $y=50x + 500$

Частные случаи. b = 0

Если коэффициент $b = 0$, функция приобретает вид $y = kx + 0$, что можно сократить до $y = kx$.

Подставим в формулу $x = 0$, получим: $$y = k times 0$$

Значит, график будет проходить через начало координат $O(0;0)$.

Для построения графика функции вида $y = kx$ достаточно найти одну точку, вторая – начало координат.

k = 0

Если коэффициент $k = 0$, угол наклона также будет равен $0$.

Функция при этом принимает вид $y = 0 times x + b$, то есть $y = b$.

Куда делась переменная $x$? Она нам больше не нужна, так как какой бы $x$ мы не подставили, значение $y$ не изменится.

Пример. График функции $y = 2$

Таблица

Линейная функция

Но сначала официальное определение «Функции» – теперь ты его поймешь. Держи в уме: деньги – зарплата, вес – круассаны, расстояние – время.

Функция – это правило, по которому каждому элементу одного множества (аргументу) ставится в соответствие некоторый (единственный!) элемент другого множества (множества значений функции).

То есть, если у тебя есть функция ( y=fleft( x right)), это значит что каждому допустимому значению переменной ( x) (которую называют «аргументом») соответствует одно значение переменной ( y) (называемой «функцией»).

Что значит «допустимому»?

Все дело в понятии «область определения»: для некоторых функций не все аргументы «одинаково полезны» — не все можно подставить в зависимость.

Например, для функции ( y=sqrt{x}) отрицательные значения аргумента ( x) – недопустимы.

Ну и вернемся, наконец, к теме данной статьи.

Линейной называется функция вида ( y=kx+b), где ( k) и ( b) ­– любые числа (они называются коэффициентами).

Другими словами, линейная функция – это такая зависимость, что функция прямо пропорциональна аргументу.

Как думаешь, почему она называется линейной?

Все просто: потому что графиком этой функции является прямая линия. Но об этом чуть позже.

Как уже говорилось в теме «Функции», важнейшими понятиями, связанными с любой функцией, являются ее область определения ( Dleft( y right)) и область значений ( Eleft( y right)).

Область значений линейной функции

Тут тоже все просто: поскольку функция прямо пропорциональна аргументу, то чем больше аргумент ( x), тем больше значение функции ( y).

Значит, ( y) так же как и ( x) может принимать все возможные значения, то есть ( Eleft( y right)=mathbb{R}), верно?

Верно, да не всегда. Есть такие линейные функции, которые не могут принимать любые значения. Как думаешь, в каком случае возникают ограничения?

Вспомним формулу: ( y=kx+b). Какие нужно выбрать коэффициенты ( k) и ( b), чтобы значение функции y не зависело от аргумента ( x)?

А вот какие: ( b) – любое, но ( k=0). И правда, каким бы ни был аргумент ( x), при умножении на ( k=0) получится ( 0)!

Тогда функция станет равна ( y=0cdot x+b=b), то есть она принимает одно и то же значение при всех ( x):

( y = kx + b:{rm{ }}left[ begin{array}{l}Eleft( y right) = mathbb{R}{rm{ при }}k ne 0\Eleft( y right) = left{ b right}{rm{ при }}k = 0.end{array} right.)

Теперь рассмотрим несколько задач на линейную функцию.

График линейной функции

Как я уже упоминал ранее, график такой функции – прямая линия.

Как известно из геометрии, прямую можно провести через две точки (то есть, если известны две точки, принадлежащие прямой, этого достаточно, чтобы ее начертить).

Предположим, у нас есть функция линейная функция ( y=2x+1). Чтобы построить ее график, нужно вычислить координаты любых двух точек.

То есть нужно взять любые два значения аргумента ( x) и вычислить соответствующие два значения функции.

Затем для каждой пары ( left( x;y right)) найдем точку в системе координат, и проведем прямую через эти две точки.

Проще всего найти функцию, если аргумент ( x=0:yleft( 0 right)=2cdot 0+1=1).

Итак, первая точка имеет координаты ( left( 0;1 right)).

Теперь возьмем любое другое число в качестве ( x), например, ( x=1:yleft( 1 right)=2cdot 1+1=3).

Вторая точка имеет координаты ( left( 1;3 right)).

Ставим эти две точки на координатной плоскости:

Теперь прикладываем линейку, и проводим прямую через эти две точки:

Вот и все, график построен!

Давай теперь на этом же рисунке построим еще два графика: ( y={x} -1) и ( y=-x+2).

Построй их самостоятельно так же: посчитай значение y для любых двух значений ( x), отметь эти точки на рисунке и проведи через них прямую.

Должно получиться так:

Коэффициенты линейной функции

Для начала выясним, что делает коэффициент ( displaystyle b). Рассмотрим функцию ( displaystyle y=x+b), то есть ( displaystyle k=1).

Меняя ( displaystyle b) будем следить, что происходит с графиком.

Итак, начертим графики для разных значений ( displaystyle b:b=-2,text{ -}1,text{ }0,text{ }1,text{ }2):

Что ты можешь сказать о них? Чем отличаются графики?

Это сразу видно: чем больше ( displaystyle b), тем выше располагается прямая.

Более того, заметь такую вещь: график пересекает ось ( displaystyle mathbf{y}) в точке с координатой, равной ( displaystyle mathbf{b})!

И правда. Как найти точку пересечения графика с осью ( displaystyle y)? Чему равен ( displaystyle x) в такой точке?

В любой точке оси ординат (это название оси ( displaystyle y), если ты забыл) ( displaystyle x=0).

Значит достаточно подставить ( displaystyle x=0) в функцию, и получим ординату пересечения графика с осью ( displaystyle y):

( displaystyle y=kcdot 0+b=b)

Теперь по поводу ( displaystyle k). Рассмотрим функцию ( displaystyle left( b=0 right).) Будем менять ( displaystyle k) и смотреть, что происходит с графиком.

Построим графики для ( displaystyle k=-3,text{ -}1,text{ }0,text{ }1,text{ }2:)

Так, теперь ясно: ( displaystyle k) влияет на наклон графика.

Чем больше ( displaystyle k) по модулю (то есть несмотря на знак), тем «круче» (под большим углом к оси абсцисс – ( displaystyle Ox)) расположена прямая.

Если ( displaystyle k>0), график наклонен «вправо», при ( displaystyle k<0) – «влево». А когда ( displaystyle k=0), прямая располагается вдоль оси абсциссс.

Давай разбираться. Начертим новый график ( displaystyle y=kx+b):

Выберем на графике две точки ( displaystyle A) и ( displaystyle B). Для простоты выберем точку ( displaystyle A) на пересечении графика с осью ординат. Точка ( displaystyle B) – в произвольном месте прямой, пусть ее координаты равны ( displaystyle left( x;y right)).

Рассмотрим прямоугольный треугольник ( displaystyle ABC), построенный на отрезке ( displaystyle AB) как на гипотенузе.

Из рисунка видно, что ( displaystyle AC=x), ( displaystyle BC=y-b).

Подставим ( displaystyle y=kx+b) в ( displaystyle BC:BC=y-b=kx+b-b=kx).

Получается, что ( BC = k cdot AC{rm{ }} Rightarrow {rm{ }}k = frac{{BC}}{{AC}} = {mathop{rm tg}nolimits} alpha ).

Итак, коэффициент ( displaystyle k) равен тангенсу угла наклона графика, то есть угла между графиком и осью абсциссс.

Именно поэтому его (коэффициент ( displaystyle k)) обычно называют угловым коэффициентом.

В случае, когда ( k < 0,{mathop{rm tg}nolimits} alpha < 0,) что соответствует тупому углу:

Если же ( displaystyle k=0), тогда и ( {mathop{rm tg}nolimits} alpha = 0,) следовательно ( displaystyle alpha =0), то есть прямая параллельна оси абсцисс.

Понимать геометрическое значение коэффициентов очень важно, оно часто используется в различных задачах на линейную функцию.

Добавить комментарий