Доброго времени суток. Сегодня мой пост о стабилизаторах напряжения. Что же это такое? Прежде всего, любой радиоэлектронной схеме для работы необходим источник питания. Источники питания бывают разные: стабилизированные и нестабилизированные, постоянного тока и переменного тока, импульсные и линейные, резонансные и квазирезонансные. Такое большое разнообразие обусловлено различными схемами, от которых будут работать электронные схемы. Ниже приведена таблица сравнения схем источников питания.
Для сборки радиоэлектронного устройства можно преобрески DIY KIT набор по ссылке.
Показатель | Линейный источник питания | Импульсный источник питания |
Стоимость | Низкая | Высока |
Масса | Большая | Небольшая |
ВЧ-шум | Отсутствует | Высокий |
КПД | 35 — 50 % | 70 — 90 % |
Несколько выходов | Нет | Есть |
Для питания электронных схем, которые не требуют высокой стабильности питающего напряжения постоянного тока или большой выходной мощности, целесообразно применять простые, надёжные и дешевые линейные источники напряжения. Основой любого линейного источника напряжения является параметрический стабилизатор напряжения. Основой таких устройств является элемент с нелинейной вольт-амперной характеристикой, у которого напряжение на электродах мало зависит от протекающего через элемент тока. Одним из таких элементов является стабилитрон.
Стабилитрон представляет собой особую группу диодов, режим работы которых характеризуется обратной ветвью вольт-амперной характеристики в области пробоя. Рассмотрим поподробнее вольт-амперную характеристику диода.
Вольт-амперная характеристика диода
Принцип работы стабилитрона
Когда диод включён в прямом направлении (анод – «+», катод – «–»), то он свободно начинает пропускать ток при напряжении Uпор, а при включении в обратном направлении (анод – «–», катод – «+») через диод может проходить лишь ток Iобр, который имеет значение нескольких мкА. Если увеличивать обратное напряжение Uобр на диоде до определённого значения Uобр.max произойдёт электрический пробой диода и если ток достаточно вели, то происходит тепловой пробой и диод выходит из строя. Диод можно заставить работать в области электрического пробоя, если ограничить ток, который проходит через диод (напряжение пробоя для разных диодов составляет 50 – 200 В).
Стабилитрон же разработан таким образом, что его вольт-амперная характеристика в области пробоя обладает высокой линейностью, а напряжение пробоя достаточно постоянно. Таким образом можно сказать, что стабилизация напряжения стабилитроном осуществляется при его работе на обратной ветви вольт-амперной характеристики, в области же прямой ветви стабилитрон ведёт себя аналогично обыкновенному диоду. Стабилитрон обозначается следующим образом
Обозначение стабилитрона
Основные параметры стабилитрона
Рассмотрим основные параметры стабилитрона по его вольт-амперной характеристике.
Вольт-амперная характеристика стабилитрона
Напряжение стабилизации Uст определяется напряжением на стабилитроне при протекании тока стабилизации Iст. В настоящее время выпускаютя стабилитроны с напряжением стабилизации от 0,7 до 200 В.
Максимально допустимый постоянный ток стабилизации Iст.max ограничен значением максимально допустимой рассеиваемой мощности Pmax, зависящей в свою очередь от температуры окружающей среды.
Минимальный ток стабилизации Iст.min определяется минимальным значением тока через стабилитрон, при котором ещё полностью сохраняется работоспособность прибора. Между значениями Iст.max и Iст.min вольт-амперная характеристика стабилитрона наиболее линейна и напряжение стабилизации изменяется незначительно.
Дифференциальное сопротивление стабилитрона rСТ – величина, определяемая отношением приращения напряжения стабилизации на приборе ΔUCT к вызвавшему его малому приращению тока стабилизации ΔiCT.
Стабилитрон, включённый в прямом направлении, как обычный диод, характеризуется значениями постоянного прямого напряжения Uпр и максимально допустимого постоянного прямого тока Iпр.max.
Параметрический стабилизатор
Основная схема включения стабилитрона, которая является схемой параметрического стабилизатора, а также источником опорного напряжения в стабилизаторах других типов приведена ниже.
Схема включения стабилитрона
Данная схема представляет собой делитель напряжения, состоящий из балластного резистора R1 и стабилитрона VD, параллельно которому включено сопротивление нагрузки RН. Такой стабилизатор напряжения обеспечивает стабилизацию выходного напряжения при изменении напряжения питания UП и тока нагрузки IН.
Рассмотрим принцип работы данной схемы. Увеличении напряжения на входе стабилизатора приводит к увеличению тока который проходит через резистор R1 и стабилитрон VD. За счёт своей вольт-амперной характеристики напряжение на стабилитроне VD практически не изменится, а соответственно напряжение на сопротивлении нагрузки Rн тоже. Таким образом практически всё изменение напряжение будет приложено к резистору R1. Таким образом достаточно легко подсчитать необходимые параметры схемы.
Расчёт параметрического стабилизатора.
Исходными данными для расчёта для расчёта простайшего параметрического стабилизатора напряжения являются:
входное напряжение U0;
выходное напряжение U1 = Ust – напряжение стабилизации;
выходной ток IH = IST;
Для примера возьмём следующие данные: U0 = 12 В, U1 = 5 В, IH = 10 мА = 0,01 А.
1. По напряжению стабилизации выбираем стабилитрон типа BZX85C5V1RL (Ust = 5,1 В, дифференциальное сопротивление rst = 10 Ом).
2. Определяем необходимое балластное сопротивление R1:
3. Определяем коэффициент стабилизации:
4. Определяем коэффициент полезного действия
Увеличение мощности параметрического стабилизатора
Максимальная выходная мощность простейшего параметрического стабилизатора напряжения зависит от значений Iст.max и Pmax стабилитрона. Мощность параметрического стабилизатора может быть увеличена, если в качестве регулирующего компонента использовать транзистор, который будет выступать в качестве усилителя постоянного тока.
Параллельный стабилизатор
Схема ПСН с параллельным включением транзистора
Схема представляет собой эмиттерный повторитель, параллельно транзистору VT включено сопротивление нагрузки RH. Балластный резистор R1 может быть включён как в коллекторную, так ив эмиттерную цепи транзистора. Напряжение на нагрузке равно
Схема работает следующим образом. При увеличении тока через резистор RH, а соответственно и напряжения (U1 = UCT) на выходе стабилизатора, происходит увеличение напряжения база-эмиттер (UEB) и коллекторного тока IK, так как транзистор работает в области усиления. Возрастание коллекторного тока приводит к увеличению падения напряжения на балластном резисторе R1, что компенсирует рост напряжения на выходе стабилизатора (U1 = UCT). Поскольку ток IСТ стабилитрона является одновременно базовым током транзистора, очевидно, что ток нагрузки в этой схеме может быть в h21e раз больше, чем в простейшей схеме параметрического стабилизатора. Резистор R2 увеличивает ток через стабилитрон, обеспечивая его устойчивую работу при максимальном значении коэффициента h21e, минимальном напряжении питания U0 и максимальном токе нагрузки IН.
Коэффициент стабилизации будет равен
где RVT – входное сопротивление эмиттерного повторителя
где Re и Rb – сопротивления эмиттера и базы транзистора.
Сопротивление Re существенно зависит от эмиттерного тока. С уменьшением тока эмиттера сопротивление Re быстро возрастает и это приводит к увеличению RVT, что ухудшает стабилизирующие свойства. Уменьшить значение Re можно за счёт применения мощных транзисторов или составных транзисторов.
Последовательный стабилизаттор
Параметрический стабилизатор напряжения, схема которого представлена ниже, представляет собой эмиттерный повторитель на транзисторе VT с последовательно включённым сопротивлением нагрузки RH. Источником опорного напряжения в данной схеме является стабилитрон VD.
Схема ПСН с последовательным включением транзистора
Выходное напряжение стабилизатора:
Схема работает следующим образом. При увеличении тока через резистор RH, а соответственно и напряжения (U1 = UST) на выходе стабилизатора происходит уменьшение отпирающего напряжения UEB транзистора и его базовый ток уменьшается. Это приводит к росту напряжения на переходе коллектор – эмиттер, в результате чего выходное напряжение практически не изменяется. Оптимальное значение тока опорного стабилитрона VD определяется сопротивлением резистора R2, включённого в цепь источника питания U0. При постоянном значении входного напряжения U0 базовый ток транзистора IB и ток стабилизации связаны между собой соотношением IB + IST = const.
Коэффициент стабилизации схемы
где Rk – сопротивление коллектора биполярного транзистора.
Обычно kST ≈ 15…20.
Коэффициент стабилизации параметрического стабилизатора напряжения может быть существенно увеличен при введении в его схему отдельного вспомогательного источника с U’0 > U1 и применении составного транзистора.
Схема ПСН с составным транзистором и питанием стабилитрона от отдельного источника напряжения
Сейчас выпускается много разных интегральных линейных стабилизаторов напряжения и кажется, что обычные стабилитроны отошли на второй план. А если все таки нужен стабилитрон, то можно взять TL431. Так?
Не совсем так. Стабилитроны по прежнему используют, хоть область их применения и сузилась. А TL431, при все его плюсах, иногда бывает избыточен. Да и стоит дороже, что иногда бывает важным.
Но сегодняшняя статья не об этом. Мы оставим в стороне споры о том, стоит ли использовать стабилитроны, как они работают, как устроены. Поговорим о некоторых практических аспектах их применения.
Статья из серии “электроника для начинающих“. Опытные любители электроники вряд ли найдут здесь для себя что то полезное или интересное. А профессионалам она точно будет не интересна.
Для понимания статьи достаточно знаний школьной программы в физике и математике.
Казалось бы, зачем снова рассказывать о том, что “устарело” и “давно всем известно”? Однако, как показывает практика, известно все таки не всё и не всем. И у новичков неизменно возникает множество вопросов. Особенно у тех, кто хочет достичь понимания, а не довольствуется чтением статей вроде “как рассчитать балластный резистор для стабилитрона”. Да и не устарели стабилитроны.
Давайте попробуем разобраться в некоторых особенностях применения стабилитронов. Без высшей математики и физики полупроводников, но относительно подробно.
Сразу уточню, что описываемое в статье применимо и для стабилитронов, и для стабисторов, и даже для TL431. И даже для защитных TVS диодов.
Небольшое примечание по стабисторам. В этих диодах рабочей является не обратная, а прямая ветвь ВАХ. И отсутствует обратимый пробой. Тем не менее, описанное в статье применимо и к стабисторам.
Стандартная схема включения стабилитрона и типичные советы по расчету балластного сопротивления
Не сомневаюсь, что вы уже много раз видели эту схему и можете нарисовать ее с закрытыми глазами. Но нам все таки нужно от чего то отталкиваться, что бы разговор был предметный.
Поскольку схема совершенно стандартная, я не буду ее подробно описывать. Но нам потребуется тот факт, что потребляемый от источника напряжения Е ток равен сумме тока через стабилитрон и тока нагрузки.
Исходя из этого обычно приводят формулу для расчету сопротивления балластного резистора
В этой формуле все верно. Просто записанная в таком виде она многое не учитывает. Напряжение источника E, напряжение стабилизации стабилитрона Uст, ток нагрузки Iн считаются известными и заранее заданными. А вот ток через стабилитрон Iст предлагается выбирать. Тут то у новичков и возникают вопросы. И ответ на вопрос, а какой же ток выбрать, не так прост, как кажется на первый взгляд.
Да, можно просто сказать, например, 3-5 мА будет хорошим выбором. И у новичка тут же возникает еще один вопрос, а почему именно такой ток? Вполне закономерный вопрос. К тому же, такой простой совет может быть и неверным. Хотите примеры? Для Д815 (буква нам сейчас не важна) такой ток будет недопустимо малым. Для этих стабилитронов нужно выбирать ток не менее 300 мА. Зачем ворошить прошлое и вспоминать такие раритеты? Вот вам пример посвежее. Для 1SMA5918BT3G нужен ток не менее 65 мА.
Что бы понять, почему так происходит мы должны повнимательнее посмотреть на ВАХ (вольт-амперную характеристику) стабилитронов и разобраться с понятием дифференциального сопротивления. Для начала.
Вольт-амперная характеристика и дифференциальное сопротивление
Давайте нарисуем рабочую ветвь ВАХ упрощенно, в более крупном масштабе и без учета знаков тока и напряжения. Пропорции так же не соблюдаются.
Разными цветами я показал три основных области.
В области обратно-смещенного перехода стабилитрон ведет себя как обычный диод при подаче обратного напряжения. У стабисторов рабочей является на обратная, а прямая ветвь ВАХ, поэтому на ВАХ будет не область обратно-смещенного перехода, а область прямо-смещенного перехода при малых напряжениях. Понятно, что эта область не является рабочей для стабилитронов, а значит и интереса для нас не представляет. В справочных данных на стабилитроны обычно приводится значение обратного тока Iобр при определенном напряжении Uобр.
В переходной области начинают проявляться эффекты связанные с обратимым пробоем. Часто считается, что пробой возникает мгновенно, однако это не так. Переходная область может быть довольно большой, например, у низковольтных стабилитронов. В качестве отдельного участка ВАХ эту область выделяют не всегда.
Рабочая область является основной используемой, как и следует из ее названия. Я показал ее почти линейной, но в реальности линейной она не является. Именно в этой области находится точка, которая в справочных данных соответствует паспортному значению напряжения стабилизации Uст при определенном токе через стабилитрон Iст
Для рабочей области определяются еще две точки. Первая соответствует минимальному току Iстмин через стабилитрон, при котором рабочая точка еще находится в рабочей области. Вторая соответствует максимальному току Iстмакс через стабилитрон, при котором рассеиваемая стабилитроном мощность не превышает предельной.
Понятно, что ток Iст через стабилитрон должен лежать в пределах между Iстмин и Iстмакс. Но обратите внимание, что я показал рабочую область не строго вертикальной. И это соответствует реальности. Напряжение стабилизации зависит от тока через стабилитрон. Причем зависит нелинейно даже в рабочей области, в общем случае.
Обратите внимание, что на графике ВАХ координатные оси это напряжение и ток. А значит, прямая линия, проходящая через начало координат, будет соответствовать постоянному сопротивлению. Конечно не любая линия, а та, для которой положительное приращение тока соответствует положительному приращению напряжения.
А если это не прямая линия, а кривая? Как наша ВАХ. Как вы знаете, кривую можно аппроксимировать отрезками прямых. Да, не только прямых, но давайте это не будем рассматривать, нам это не потребуется. Каждый отрезок прямой определяется по двум точкам, (U0,I0) и (U1,I1), лежащими на концах аппроксимируемого отрезка кривой. Теперь мы можем ввести понятие дифференциального (разностного сопротивления).
Дифференциальное сопротивление можно определить для каждой точки ВАХ. Если дифференциальное сопротивление определяется не на постоянном, а на переменном токе, то его физический смысл не изменяется, но при этом его чаще называют динамическим сопротивлением. Давайте еще раз посмотрим на наш пример ВАХ
Хорошо видно, что для точки (U1,I1) дифференциальное сопротивление больше, чем для точки (U2,I2). А это означает, что небольшие отклонения тока через стабилитрон во второй точке дадут меньшие отклонения напряжения стабилизации, чем в первой точке.
Что это для нас означает? Скоро узнаете. Но сначала давайте посмотрим на ВАХ реально выпускаемых стабилитронов BZX84.
Здесь показаны кривые для стабилитронов с разным напряжением стабилизации. В документации приводятся напряжения стабилизации при токе через стабилитрон (тестовый ток) 5 мА, что показано на иллюстрации горизонтальной линией.
Очень хорошо видно, что низковольтные стабилитроны имеют большее дифференциальное сопротивление (для BZX84 это динамическое сопротивление на частоте 1кГц). А это значит, гораздо большую зависимость напряжения стабилизации от тока через стабилитрон.
Немного подробнее о стабилизации
Давайте вспомним типовую схему включения стабилитрона, которая приводилась в начале статьи. В общем случае, у нас может изменяться напряжение источника Е и ток нагрузки. При этом напряжение на нагрузке должно, в идеальном случае, оставаться неизменным. Это и есть стабилизация.
Мы можем ввести понятия коэффициента стабилизации и внутреннего сопротивления стабилизатора напряжения на стабилитроне
Коэффициент стабилизации показывает влияние изменения входного напряжения на напряжение стабилизации, а выходное сопротивление влияние изменения тока нагрузки.
Давайте рассмотрим сначала влияние изменения входного напряжения при постоянной нагрузке. Для этого вспомним, что ток через стабилитрон равен разности потребляемого от источника Е тока и тока нагрузки. Ток нагрузки у нас постоянный. Поэтому изменение входного напряжения повлияет только на ток через стабилитрон.
Для упрощения предположим, что стабилитрон идеальный, а значит его напряжение стабилизации не изменится. Поэтому
ΔIст = ΔЕ / Rб
Теперь вспомнив, что такое дифференциальное сопротивление, мы можем определить изменение напряжения стабилизации соответствующее изменению входного напряжения.
Собственно мы подтвердили ранее сделанное утверждение, что чем больше дифференциальное сопротивление, тем больше влияние изменения тока через стабилитрон, а значит, и влияние изменений входного напряжения. Тем меньше коэффициент стабилизации.
Давайте немного посчитаем для реального стабилитрона BZV55C5V1 с напряжением стабилизации 5.1 В при токе 5 мА. Пусть у нас входное напряжение будет 10 В, а ток нагрузки равен 0.5 мА. Сопротивление балластного резистора при этом будет равняться 890 Ом. Предположим, что входное напряжение увеличилось на 2 В, на сколько увеличится напряжение стабилизации (выходное напряжение)?
Типовое значение дифференциального сопротивления для BZV55C5V1 при токе 5 мА составляет 40 Ом. То есть, выходное напряжение изменится на 0.09 В. В худшем случае, если дифференциальное сопротивление будет равно 60 Ом, изменение составит уже 0.135 В. Даже в худшем случае изменение составит лишь 2.65% от номинального выходного напряжения.
А теперь посмотрим, что будет, если мы выберем ток через стабилитрон равным не 5, а 1 мА. Для этого сопротивление балластного резистора должно равняться 3.27 кОм. Типовое дифференциальное сопротивление стабилитрона при этом токе будет равняться 400 Ом (480 Ом максимум). Теперь у нас выходное напряжение изменится на 0.24 В (0.29 В в худшем случае). А это уже 4.71% (5.69% в худшем случае).
То есть, от выбора рабочего тока через стабилитрон весьма существенно зависит стабильность напряжения стабилизации. При токе 5 мА у нас получается коэффициент стабилизации 7.56, а при токе 1 мА лишь 3.52.
Если мы будет рассматривать влияние тока нагрузки, то придем к таким же выводам. Я не буду приводить формулы и расчеты, вы можете сделать это самостоятельно, в качестве упражнения.
Теперь стало понятно, что ток через стабилитрон нужно выбирать с учетом дифференциального сопротивления. Слишком малый ток снижает стабильность напряжения стабилизации. Если сейчас вспомнить приведенный в начале статьи пример про стабилитрон 1SMA5918BT3G, то из его паспортных данных (динамическое сопротивление 4 Ом при токе 73.5 мА и 350 Ом при 1 мА) будет понятно, что стандартно советуемый ток 5 мА будет для него слишком мал. А вот для BZV55C5V1 он вполне подходит.
В общем случае, дифференциальное сопротивление стабилитрона должно быть много меньше балластного сопротивления и много меньше сопротивления нагрузки.
Это создает проблемы при входном напряжении близком к напряжению стабилизации. В таких случаях поможет использование TL431, который имеет дифференциальное сопротивление 0.2 Ом (0.5 Ом в худшем случае). Однако, тут есть ограничение минимального напряжения стабилизации на уровне 2.5 В.
Проблема с малым сопротивлением нагрузки может быть решена использованием, например, эмиттерного повторителя. Что приводит нас к стандартной схеме простейшего последовательного стабилизатора. Без сомнения, вы эту схему отлично знаете.
Осталось сказать несколько слов о старых советских стабилитронах. Для них приводилось дифференциальное сопротивление для определенного тока через стабилитрон, что позволяло оценить коэффициент стабилизации. И иногда задавался минимальный ток стабилизации (во всяком случае, в отраслевых справочниках такое было).
Еще раз о расчете балластного сопротивления
Теперь мы лучше представляем себе выбор оптимального тока через стабилитрон. Но расчет балластного сопротивления все еще не учитывает некоторые, довольно важные, факторы.
Во первых, изменение входного напряжения. Если входное напряжение постоянно, то нет и необходимости в стабилизации. Во вторых, изменение тока нагрузки. Ток нагрузки может быть постоянным, или может считаться таковым. Например, если стабилитрон используется в качестве источника опорного напряжения для компаратора, то током нагрузки можно вообще пренебречь.
Что бы учесть влияние этих факторов нестабильности на работу стабилитрона (не на коэффициент стабилизации!) необходимо после расчета балластного сопротивления для номинального входного напряжения и номинального тока нагрузки провести дополнительную проверку.
Максимальный ток через стабилитрон будет при минимальном токе нагрузки и максимальном входном напряжении. Нужно проверить, что бы ток через стабилитрон для выбранного Rб не превышал максимально допустимого. Причем с некоторым запасом.
Минимальный ток через стабилитроне будет при минимальном входном напряжении и максимальном токе нагрузки. Нужно проверить, что бы ток через стабилитроне не был меньше минимального тока стабилизации. Другими словами, что бы рабочая точка находилась в рабочей области, а дифференциальное сопротивление было достаточно малым.
Улучшения/ухудшения
Разумеется, стандартную схему параметрического стабилизатора на стабилитроне не раз пытались улучшить. Пожалуй, наиболее известно предложение вместо Rб использовать стабилизатор тока. Например, заменив резистор на полевой транзистор с p-n переходом включенный как двухполюсник. Вы без сомнения видели подобные схемы не один раз.
Идея здесь проста – стабилизатор тока позволяет обеспечить заданный ток, а его дифференциальное сопротивление велико. Это существенно повышает коэффициент стабилизации. Собственно, тут не важно, какой именно стабилизатор тока используется, вполне можно использовать и токовое зеркало.
Но не стоит забывать, что это отнюдь не универсальный способ повышения коэффициента стабилизации. Он хорошо работает при стабильной нагрузке, но может катастрофически ухудшить ситуацию при переменной нагрузке. Поскольку стабилизатор тока в этом случае может стать дополнительным дестабилизирующим фактором. Подумайте, почему, и в каких ситуациях, это может произойти.
ТКН (температурный коэффициент напряжения)
Напряжение стабилизации, как и следовало ожидать, зависит от температуры. Для низковольтных стабилитронов ТКН обычно отрицательный. То есть, напряжение стабилизации снижается с ростом температуры. Для высоковольтных стабилитронов ТКН обычно положительный. Но у стабилитронов есть и островок стабильности, который расположен примерно вокруг напряжения стабилизации 5.5 В.
Выпускаются и термостабильные стабилитроны, которые можно использовать при работе в большом диапазоне температур.
Но нужно учитывать еще один момент, о котором не редко забывают. Стабилитрон при работе нагревается от рассеиваемой им мощности. Причем температура кристалла может быть ощутимо выше температуры корпуса. А это приводит к дополнительному изменению напряжения стабилизации.
Заключение
Пожалуй, на сегодня достаточно. Я коснулся, упрощенно, очень небольшой части касающихся использования стабилитронов вопросов. Той части, которая наиболее важна для новичков и в части практического использования, и для понимания работы стабилитронов.
Остались в стороне вопросы частотных свойств, емкости, временной стабильности. Остались в стороне интересные варианты схем включении. Например, когда выходным напряжением является не напряжение на стабилитроне, а напряжение на балластном резисторе. Остались в стороне не стандартные варианты использования стабилитронов. Например, в качестве варикапов для настройки колебательных контуров приемников.
Стабилитрон это простой и дешевый электронный прибор, который имеет массу разных применений. Но за этой простотой скрывается не мало тонкостей, которые нужно учитывать.
До новых встреч!
Лабораторная
работа № 1
Тема:
Исследование работы кремниевого
стабилитрона.
Цель:
1. Снять прямую и обратную ветви
вольтамперной характеристики.
2.
Рассчитать коэффициент стабилизации
стабилитрона.
1.
1. Краткие теоретические сведения
о
стабилитроне
ВАХ
полупроводниковых диодов в области
электрического пробоя имеет участок,
который может быть использован для
стабилизации напряжения. Такой участок
у кремниевых плоскостных диодов
соответствует изменениям обратного
тока в широких пределах. При этом до
наступления пробоя обратный ток очень
мал, а в режиме пробоя, т.е. в режиме
стабилизации, он получается таким же,
как и прямой ток. В настоящее время
выпускаются кремниевые стабилитроны
многих типов. Их также называют опорными
диодами, т.к. получаемые от них стабильное
напряжение в ряде случаев используется
в качестве эталонного. На рис. 1.1. дана
типичная ВАХ стабилитрона при обратном
токе, показывающая, что в режиме
стабилизации напряжение меняется мало.
Характеристика для прямого тока такая
же, как у обычных диодов.
Кремневые
стабилитроны могут изготовлены на малые
напряжения (единицы вольт), а именно
такие нужны для питания многих
транзисторных устройств.
Основными
параметрами кремниевых стабилитронов
являются следующие величины. Напряжение
стабилизации Uст.
может быть примерно от 3,3 до 200 В, изменение
тока стабилитрона от Imin
до Imax
составляет десятки и даже сотни
миллиампер. Максимальная допустимая
мощность Pmax,
рассеиваемая в стабилитроне – от сотен
милливатт до единиц ватт. Дифференциальное
сопротивление Rд
= U
/ I
в режиме стабилизации может быть от
десятых долей Ома для низковольтных
более мощных стабилитронов до 100200
Ом для стабилитронов на более высокие
напряжения.
Низковольтные
стабилитроны небольшой мощности имеют
сопротивление Rд,
равное единицам и десяткам Ом. Чем меньше
Rд,
тем лучше стабилизация. При идеальной
стабилизации было бы Rд
= 0. Так как Rд
является сопротивлением переменному
току, то его не следует путать со
статическим сопротивлением, т.е.
сопротивлением постоянному току R0
= U
/ I.
Сопротивление R0
всегда во
много раз больше Rд.
Влияние температуры оценивается
температурным коэффициентом напряжения
стабилизации ТКН, который представляет
собой относительное изменение напряжения
Uст.
при изменении температуры на один
градус, т.е.:
ТКН
= Uст.
/ (Uст.
Т)
Температурный
коэффициент напряжения может быть от
10-5
до 10-3
К-1.
Значение Uст.
и знак ТКН зависят от удельного
сопротивления основного полупроводника.
Стабилитроны на напряжения до 6-7 В
изготавливаются из кремния с малым
удельным сопротивлением, т.е. с большой
концентрацией примесей. В этих
стабилитронах n-p-переход
имеет малую толщину, в нем действует
поле с высокой напряженностью и пробой
происходит главным образом за счет
туннельного эффекта. При этом ТКН
получается отрицательным. Если же
применен кремний с меньшей концентрацией
примесей, то n-p-переход
будет толще. Его пробой возникает при
более высоких напряжениях и является
лавинным. Для таких стабилитронов
характерен положительный ТКН.
Для
получения более высоких стабильных
напряжений применяется последовательное
соединение стабилитронов, рассчитанных
на одинаковые токи (рис.1.2.). Вследствие
разброса характеристик и параметров
отдельных экземпляров стабилитронов
данного типа, их параллельное соединение
с целью получения больших токов не
рекомендуется. Оно допускается только
при условии, что суммарная мощность,
рассеиваемая на всех стабилитронах, не
превышает предельной мощности одного
стабилитрона.
Для
повышения стабильности напряжения
может применяться схема каскадного
соединения стабилитронов (рис.1.3), в
которой стабилитрон VD1
должен иметь более высокое Uст.,
нежели стабилитрон VD2.
Эффективность стабилизации напряжения
характеризуется коэффициентом
стабилизации Кст.,
который показывает во сколько раз
относительное изменение напряжения на
выходе схемы стабилизации меньше, чем
на входе. Для простейшей схемы по рис.
1.4. можно написать:
,
где
Е – напряжение Uвх.
Uст.
= Uобр.
Практически
полупроводниковый стабилитрон может
обеспечить Кст.,
равный нескольким десяткам. А при
каскадном соединении (рис.1.3) общий
коэффициент стабилизации равен
произведению коэффициентов стабилизации
отдельных звеньев:
Кст.
= Кст1.
Кст2.
…
И
уже при двух звеньях достигает нескольких
сотен.
Недостатком
рассматриваемых схем стабилизации
являются значительные потери мощности
в самом стабилитроне и на Rогр.,
в результате чего сильно снижается
К.П.Д. Потери особенно велики в схеме
каскадного соединения.
Если
имеют место пульсации напряжения на
входе (Uвх.
= Е), то стабилитрон значительно сглаживает
их, т.к. стабилитрон обладает малым
сопротивлением переменному току. Оно
обычно во много раз меньше Rогр.,
поэтому большая часть напряжения
пульсаций поглощается в Rогр.,
а на стабилитроне и на нагрузке будет
лишь малая часть этого напряжения.
Rогр.
служит для установления и поддержания
правильного режима стабилизации и
является для каждой схемы вполне
определенной величиной. Обычно Rогр.
рассчитывается для средней точки Т
характеристики стабилитрона:
Rогр.
= (Еср.
– Uст.)
/ (Iср.
+ Iн),
где
Еср.
= Uвх.ср.
= 0,5 (Еmin
+ Еmax)
– среднее напряжение источника питания;
Iср.
= 0,5 (Imin
+ Imax)
– средний ток стабилитрона;
Iн.
= Uст.
/ Rн.
– ток нагрузки.
Приборы:
электропанель
«Полупроводники-микросхемы», блок
питания на 30В (БП-30), 2 электронных
измерительных прибора DT-830В,
стабилитрон КС 156А встроенный в панель,
соединительные провода.
Подготовка
к работе:
-
Повторить
ТБ. -
Собрать
схему для снятия статических характеристик
транзистора. -
Показать
схему преподавателю или лаборанту.
Паспортные
данные стабилитрона КС156А:
-
Напряжение
стабилизации Uст.
=10 mA:
5,04…5,6…6,16 B -
Минимальный
ток стабилизации: 3 mA -
Максимальный
ток стабилизации: 55
mA -
Рассеиваемая
мощность при Т +500
С: 300 мВт
Порядок
проведения лабораторной работы.
1. Собрать
схему, показанную на рис.1.5 и снять прямую
ветвь ВАХ стабилитрона: Iпр
=f(Uпр.).
Стабилитрон
КС156А и сопротивление номиналом 330 Ом
входит в состав монтажной электрической
панели. Электронные измерительные
приборы подсоединяются к боковым
гнездам-переходникам электропанели.
Далее происходит подсоединение
гнезд-переходников непосредственно к
узлам схемы, собранной непосредственно
на электропанели. Гнездо прибора с
обозначением «СОМ» является общим
проводом «–» или «земля», а среднее
гнездо с обозначением «VΩmA»
– сигнальным «+». Верхнее гнездо у
приборов DT-830В
остается неподключенным (обозначение
«10А»).
Настройка
приборов происходит следующим образом:
микроамперметр (Р1) – переключателем
ставится предел 200 m
на поле «DCA»
(изменение постоянного тока); вольтметр
(Р2) – переключателем ставится предел
20 на поле «DCV»
(изменение постоянного напряжения).
После
измерений переключатели приборов
ставится на поле «OFF»
(выключено).
Ниже,
в таблице 1.1 и 1.2, перечислены Uвх.
для трех
вариантов, для снятия соответственно
прямой и обратной ВАХ стабилитрона:
Табл. |
||
Uвх., |
||
1 |
2 |
3 |
0 1 2 6 10 15 |
0 2 4 8 12 16 |
0 1 3 7 10 17 |
Табл.1.2. |
||
Uвх., |
||
1 |
2 |
3 |
0 2 4 6 8 10 15 |
0 1 3 5 7 11 16 |
0 3 5 7 10 14 18 |
Снятые
параметры занести в табл.1.3:
Табл.1.3.
Uвх, |
Uвх, |
Iпр, |
-
Собрать
схему, показанную на рис.1.6 и снять
обратную ветвь ВАХ стабилитрона:
Iобр.=f(Uобр.).
Снятые параметры занести в табл.1.4:
Табл.1.4.
Uвх, |
Uобр, |
Iобр, |
2. Построить
графики снятых зависимостей в масштабе,
удобном для расчета параметров. На
графике отметить область стабилизации.
3. Произвести
расчет коэффициента стабилизации Кст,
ориентируясь по параметрам, записанных
в табл. 1.3 и 1.4 и построенным графикам.
,
где
Uвх
разность максимального и минимального
входного напряжения.
∆Uвых
возможно минимальная разность между
двумя ближайшими значениями напряжения
на стабилитроне.
∆Uвх
– разность между двумя ближайшими
входными напряжениями, соответствующие
разности выходного напряжения на
стабилитроне.
Uвых
– разность максимального и минимального
выходного напряжения на стабилитроне.
Контрольные
вопросы.
-
Общие
сведения о стабилитроне. -
ВАХ
стабилитрона. -
Основные
параметры кремниевых стабилитронов. -
Схемы
включения стабилитронов. -
Кст.
для различных схем стабилизации. -
Назначение
и расчет Rогр. -
Достоинства
и недостатки полупроводниковых
стабилитронов.
8
Соседние файлы в папке Основы электроники лаб
- #
- #
- #
- #
- #
- #
28.03.2015166.91 Кб44УМ.doc
Сразу хочу сказать, что здесь никакой воды про задачи стабилизатор, и только нужная информация. Для того чтобы лучше понимать что такое
задачи стабилизатор, задачи стабилитрон, ток стабилитрона, напряжения стабилизации, характеристики стабилитрона , настоятельно рекомендую прочитать все из категории Электроника, Микроэлектроника , Элементная база.
Задача. В параметрическом стабилизаторе напряжения используется стабилитрон с Uст= 10 В. Определить допустимые пределы изменения входного напряжения, если максимальный
ток стабилитрона Iст.макс= 30 мА, минимальный ток стабилитрона Iст.мин= 1 мА, сопротивление резистора нагрузки Rн= 1 кОм и сопротивление ограничительного резистора Rогр= 0,5 кОм.
Решение.
Входное напряжение параметрического стабилизатора
Ток нагрузки определим по формуле .
Подставив это значение в первую формулу, получим:
.
Подставляя в эту формулу максимальное и минимальное значение тока стабилитрона, получим максимальное и минимальное значения входного напряжения:
Пример расчета параметрического стабилизатора напряжения
При изменении
напряжения стабилизации напряжения от 8 до 8.1 В ток стабилитрона изменился от 2 до 22 мА. Определить дифференциальное сопротивление стабилитрона. Определить коэффициент стабилизации параметрического стабилизатора на таком стабилитроне, если Uвх= 16 В,Rогр= 500 Ом.
Решение. Дифференциальное (динамическое) сопротивление стабилитрона
кОм или 5 Ом.
Коэффициент стабилизации .
задачи стабилизатор
1 . Об этом говорит сайт https://intellect.icu . Чему равно относительное изменение напряжение на выходе параметрического стабилизатора, если ток стабилитрона изменился на 2 мА, Uст = 8 В, Rдиф = 16 Ом?
Решение:
2. Напряжение u = Um(1,5 – 2t/T) B подается на цепочку из последовательно соединенных резистора R = 200 Ом и стабилитрона КС182 . Определить ток в цепи для t = 0.2T, если дифференциальное сопротивление стабилитрона Rн = 30 Ом, Um = 12 В.
Решение:
i = (u – Uст) / (R + Rн)
U(0,2T) = 1,1Um
i(0,2T) = (14 – 8,2)/230 = 0,025 A
3. Нарисовать характеристику стабилитрона с параметрами:
Uст = 12 В, Iст min = 3 мА, Rдиф = 25 Ом
Iст mах = 50 мА.
Решение:
∆Iст = Iст mах – Iст min = 50 – 3 = 47 мА
∆ Uст = ∆Iст •Rдиф = 0,047•25 = 1,175 В
Uст min = Uст – ∆ Uст/2 = 11,42 В
Uст mах = Uст + ∆ Uст/2 = 12,59 В
Строим ВАХ стабилитрона как показано на рисунке .
4. Для схемы стабилизатора, стабилитрон имеет параметры:
Uст = 20 В, Iст min = 1 мА, Rдиф = 40 Ом, Iст mах = 71 мА. Определить ток I в цепи графическим способом, если Iн =20 мА:
Решение:
I = Iст + Iн
∆Iст = Iст mах – Iст min = 71 – 1 = 70 мА
∆ Uст = ∆Iст •Rдиф = 0,07•40 = 2,8 В
Uст min = Uст – ∆Uст/2 = 18,6 В
Uст mах = Uст + ∆Uст/2 = 21,4 В
Строим ВАХ стабилитрона, ВАХ резистора. Суммируем ВАХ-ки. Графически определяем ток неразветвленного участка цепи.
I = 55 мА
5. Для стабилизации напряжения в нагрузке Rн = 2 кОм используется параметрический стабилизатор напряжения . Стабилитрон имеет параметры:
Iстmin = 1 мА, Iстmax = 23 мА, Rдиф = 30 Ом; номинальное напряжение на выходе равно 11 В, входное напряжение 22 В.
Определить Кст и Rбал.
Решение:
6. Определить напряжение на входе стабилизатора. Параметры
стабилитрона: Uст = 12 В, Iст min =5 мА, Iст mах=35 мА, Rдиф = 20 Ом
Rбал = 800 Ом, Rн = ∞.
Решение:
ток через стабилизатор
Так как стабилитрон и балластное сопротивление включены в цепь последовательно, то
По второму закону Кирхгофа:
7. Определить U2 в стабилизаторе напряжения, если U1 = 16 В, R1 = 300 Ом,
R2 = 1.2 кОм, Uст min = 12 В, Rст = 15 Ом.
Указание: решить задачу аналитическим методом, ис¬пользуя схему замещения стабилитрона (ис¬точник эдс Е = Uст, включенный последовательно с резистором Rст).
Решение:
Начертим схему замещения стабилизатора
Используем метод двух узлов:
U2 = 12,2 В
8. Периодическое напряжение u меняется по закону u(t) = 24(1 – 2t/T), где T – период. Напряжение стабилизации стабилитрона 8 В. R1 = R2 = 1 кОм.
Построить график изменения напряжения на выходе.
Диод и стабилитрон считать идеальными.
Решение:
В положительный полупериод диод VD2 закрыт. Напряжение Uвых при t = 0 будет равно напряжению стабилизации. С момента времени
t = T/3 до T/2 меняется от 8 В до нуля.
В отрицательный полупериод диод VD2 открыт. При отключенной ветви со стабилитронами напряжение на резисторе R2 меняется от нуля (при t = T/2) до – 12 В, при t = T. Подключение ветви со стабилитронами ограничивает напряжение на выходе до – 8 В.
См. также
- задачи диод , задачи выпрямитель , задачи электротехника ,
- полупроводниковый диод , вах диодов , классификация диодов , уго диодов ,
- задачи транзисторы , задачи усилители ,
- стабилитрон
- ВАХ диодов
Статью про задачи стабилизатор я написал специально для тебя. Если ты хотел бы внести свой вклад в развии теории и практики,
ты можешь написать коммент или статью отправив на мою почту в разделе контакты.
Этим ты поможешь другим читателям, ведь ты хочешь это сделать? Надеюсь, что теперь ты понял что такое задачи стабилизатор, задачи стабилитрон, ток стабилитрона, напряжения стабилизации, характеристики стабилитрона
и для чего все это нужно, а если не понял, или есть замечания,
то нестесняся пиши или спрашивай в комментариях, с удовольствием отвечу. Для того чтобы глубже понять настоятельно рекомендую изучить всю информацию из категории
Электроника, Микроэлектроника , Элементная база
Параметрические стабилизаторы напряжения до сих пор используются для питания маломощных устройств электронных изделий, поэтому необходимо уметь их рассчитывать.
Зачастую при повторении готовых конструкций, условия функционирования которых отличаются от рекомендованных разработчиком, требуется провести анализ работы параметрического стабилизатора напряжения для уточнения значения сопротивления балластного резистора.
Указанные задачи решены с помощью разработанного автором файла в Microsoft Excel. Приведено два варианта расчета параметрического стабилизатора напряжения и расчет для анализа условий работы стабилитрона в готовой схеме.
Объектами расчета и анализа в примерах выступают параметрические стабилизаторы двух известных конструкций усилителей мощности звуковой частоты. Это
«Lanzar»
c Интерлавки и датагорский «Green Lanzar» от Андрея Зеленина.
Содержание статьи / Table Of Contents
На рис. 1 показана принципиальная схема параметрического стабилизатора: Uвх – входное нестабилизированное напряжение, Uвых=Uст – выходное стабилизированное напряжение, Iст – ток через стабилитрон, Iн – ток нагрузки, R0 – балластный (ограничительный, гасящий) резистор.
Uвх=Uст+(Iн+Iст)R0=Uст+IR0, (1)
I= Iн+Iст – ток, протекающий через балластный резистор R0.
Рис. 1. Схема параметрического стабилизатора напряжения на стабилитроне
Как видно из рис. 1, параметрический стабилизатор на кремниевом стабилитроне представляет собой делитель напряжения, состоящий из балластного резистора R0 с линейной
Вольт
– амперной характеристикой (ВАХ) и стабилитрона VD1, который можно рассматривать как резистор с резко нелинейной ВАХ.
При изменении напряжения Uвх изменяется ток через делитель, приводящий к изменению падения напряжения на резисторе R0, а напряжение на стабилитроне, следовательно, на нагрузке Rн практически не изменяется.
Малое изменение напряжения на нагрузке в диапазоне от Uст min до Uст max соответствует изменению тока через стабилитрон от Iст min до Iст max. Причем, минимальный ток через стабилитрон соответствует минимальному входному напряжению и максимальному току нагрузки, что достигается при сопротивлении балластного резистора
R0=(Uвх min-Uст min)/(Iн max+Iст min). (2)
В свою очередь, максимальный ток через стабилитрон будет протекать при минимальном токе нагрузки и максимальном входном напряжении.
Несложно найти условия работы стабилизатора:
ΔUвх=ΔUст+R0(ΔIст-ΔIн), (3)
где ΔUвх=Uвх max-Uвх min, ΔUст= Uст max-Uст min, ΔIст=Iст max- Iст min, ΔIн= Iн max-Iн min.
Положим для упрощения ΔUст=0 и проанализируем выражение (3).
Диапазон изменения тока нагрузки не может быть больше, чем диапазон изменения тока стабилитрона, поскольку в этом случае правая часть выражения становится отрицательной, и схема не будет работать как стабилизатор напряжения.
Если изменение тока нагрузки незначительно, выражение для условия работы стабилизатора упрощается:
ΔUвх= ΔIстR0. (4)
КПД параметрического стабилизатора определяется из выражения:
КПД=Uст Iн /(Uвх (Iн + Iст)=1/(Nст(1+ Iст/Iн)), (5)
где Nст=Uвх/Uст – коэффициент передачи стабилизатора; обычно Nст=1,4…2.
Из выражения (5) следует, что чем ниже коэффициент передачи стабилизатора и чем меньше отношение тока через стабилитрон к току нагрузки, тем выше КПД.
Основным параметром стабилизатора напряжения, по которому оценивают его качество работы, является коэффициент стабилизации:
Kст=(ΔUвх/Uвх)/(ΔUвых/Uвых)= R0Uст/rдUвх=R0/Nстrд=KфКПД, (6)
где rд – динамическое сопротивление стабилитрона; Kф – коэффициент фильтрации.
проведем для случая, когда напряжение питания нестабильно, а сопротивление нагрузки относительно постоянно.
Исходными данными для расчета служат: Uвых, Iн, ΔIн, Uвх, ΔUвх.
Для получения требуемого выходного напряжения по справочнику выбираем стабилитрон с параметрами: Uст= Uвых, Iст max, Iст min, rд.
Требуемоемое входное напряжение рассчитываем исходя из крайних оптимальных коэффициентов передачи стабилизатора Nст=1,4…2, который также может быть выбран пользователем в любом необходимом диапазоне Nст:
Uвх= Nст Uст.
Далее выбираем рабочий ток через стабилитрон Iст р примерно из середины диапазона допустимых значений, убедившись при этом, что Iст р> Iн:
Iст р=0,5(Iст min+Iст max)> Iн.
Вычислим сопротивление балластного резистора:
R0=(Uвх- Uст)/(Iст р+ Iн).
Рассчитаем с двукратным запасом мощность балластного резистора:
Po=2(Iст р+ Iн)2R0.
Проверим выбранный режим работы стабилизатора.
Расчет произведен верно, если при одновременном изменении Uвх на величину ΔUвх и Iн на величину ΔIн ток стабилитрона не выходит за пределы Iст max и Iст min:
Iст р max=(Uвх+ ΔUвх- Uст)/(R0-(Iн- ΔIн))<0,8 Iст max;
Iст р min=(Uвх- Uст)/(R0-(Iн+ ΔIн))>1,2 Iст min.
Здесь учтен запас в 20%, необходимый для надежной работы стабилитрона. Принятое при расчете наибольшее рабочее значение тока через стабилитрон не более 0,8 от справочного Iст max вызвано соображениями эксплуатационной надежности устройства, чтобы мощность, рассеиваемая на стабилитроне была ниже предельной. Для гарантированного обеспечения требуемого коэффициента стабилизации минимальное рабочее значение тока через стабилитрон Iст р min принято в расчете в 1,2 раза большим, чем Iст min.
Если полученные значения токов Iст р max и Iст р min выходят за пределы допустимых значений, то необходимо выбрать другое значение Iст р, изменить сопротивление R0 или заменить стабилитрон.
Также вычислим параметры стабилизатора, определяющие его качество и эффективность – коэффициент стабилизации Kст=(ΔUвх/Uвх)/(ΔUвых/Uвых)= R0/(rдNст),
коэффициент полезного действия КПД=Uст Iн /(Uвх (Iн + Iст))=1/(Nст(1+ Iст/Iн)),
и коэффициент фильтрации Kф=Kст/КПД.
Рассчитаем параметрический стабилизатор напряжения со следующими характеристиками: стабилизированное напряжение на нагрузке Uн=9 В; ток в нагрузке Iн=10 мА; изменение тока в нагрузке ΔIн=2 мА; изменение входного напряжения ΔUвх=10%.
Выберем стабилитрон типа Д814Б, для которого Uст= Uн=9 В; rд=10 Ом; Iст max=36 мА; Iст min=3 мА.
Заносим приведенную выше информацию в соответствующие ячейки исходных данных (выделены светло-голубой заливкой) листа «Первый вариант расчета» таблицы Microsoft Excel «Расчет и анализ работы параметрического стабилизатора напряжения.xlsx» и тут же получаем результаты вычислений в расчетных ячейках, выделенных светло-коричневой заливкой:
входное напряжение Uвх=15,0 В; сопротивление балластного резистора R0=240 Ом, мощность балластного резистора с двукратным запасом Po=0,3 Вт; Kст=15,0, КПД=24%, Kф=62,5 (см. рис. 2).
Рис. 2. Печать с экрана примера расчета №1
Выбираем резистор сопротивлением 240 Ом мощностью 0,5 Вт.
Предположим, что на входе стабилизатора имеются пульсации переменного напряжения амплитудой Uп вх=0,1 В=100 мВ. Амплитуда пульсаций на выходе стабилизатора составит Uп ст= Uп вх/Kф=100/62,5=1,6 мВ.
Произведем расчет параметрического стабилизатора для
усилителя “Green Lanzar” на N-канальных MOSFET-ах. Симметричный усилитель с квазикомплементарным выходом
[6] для питающих напряжений Uп=Uвх=±25 В; ±35 В и ±45 В.
Расчет выполним для параметрического стабилизатора положительной полярности (R5, VD1, C2), поскольку другой стабилизатор, отрицательной полярности (R6, VD2, C4) отличается только направлением включения стабилитрона.
Подготовим исходные данные: стабилизированное напряжение на нагрузке Uн=12 В, ток в нагрузке Iн=(12-0,5)/R2=11,5/10=1,15 мА, ΔIн=0,115 мА, изменение входного напряжения ΔUвх=10%.
Выберем стабилитрон BZX55C12, имеющий следующие параметры: Uст= Uн=12 В; rд=20 Ом; Iст max=32 мА; Iст min=5 мА.
Результаты вычислений показаны на рис. 3; для Uп=±25 В R5=R6=1,3 кОм (0,25 Вт); для Uп=±35 В R5=R6=2,4 кОм (0,5 Вт); для Uп=±45 В R5=R6=3,6 кОм (1 Вт).
Рис. 3. Расчет параметрических стабилизаторов для усилителя «Green Lanzar»
в качестве исходных данных использует предельные значения тока в нагрузке Iн min и Iн max, что при Iн min=0 позволяет предусмотреть режим холостого хода стабилизатора. Для постоянной нагрузки выбирают Iн max= Iн min.
Итак, исходными данными являются: стабилизированное напряжение на нагрузке Uвых, токи нагрузки Iн min, Iн max, номинальное входное напряжение Uвх и его отклонения ΔUвх н и ΔUвх в.
Параметры стабилитрона те же, что и в предыдущем расчете: Uст= Uвых, Iст max, Iст min, rд.
Вычисляем максимальное и минимальное значения рабочего тока стабилитрона:
Iст р max=0,8 Iст max,
Iст р min=1,2 Iст min.
Если стабилизатор должен работать режиме холостого хода (Iн min=0), выбираем Iст р min=Iст min.
Проверяем пригодность выбранного по напряжению стабилизации стабилитрона заданных пределах тока нагрузки и питающего напряжения:
(Iст р max+ Iн min)(1- ΔUвх н)-(Iст min+ Iн max)(1+ ΔUвх в)>0,
где ΔUвх н=(Uвх- Uвх min)/ Uвх, ΔUвх в=(Uвх max-Uвх)/ Uвх.
Если неравенство не выполняется, нужно:
• применить более мощный стабилитрон;
• задаться меньшими значениями ΔUвх н и ΔUвх в;
• уменьшить Iн max или увеличить Iн min.
Номинальное напряжение Uвх, которое должен обеспечить выпрямитель, вычисляем по формуле:
Uвх= Uст[(Iст р max+I н min)- (Iст р min+ I н max)]/[(Iст р max+I н min)(1- ΔUвх н)- (Iст р min+I н max)(1+ΔUвх в)].
Сопротивление балластного резистора:
R0= Uвх(ΔUвх в+ΔUвх н)/[(Iст р max+ Iн min)- (Iст р min+ Iн max)].
Также вычисляем мощность резистора с двукратным запасом:
Po=2(Uвх(1+ ΔUвх н)- Uст)2/R0.
По приведенным в первом варианте расчета формулам находим Kст, КПД и Kф.
Рассчитаем параметрический стабилизатор напряжения со следующими характеристиками: стабилизированное напряжение на нагрузке Uн=9 В; ток Iн min =0, Iн max =10 мА; изменение входного ΔUвх н=10%, ΔUвх в=15%.
Выберем стабилитрон типа Д814Б, для которого Uст= Uн; rд=10 Ом; Iст max=36 мА, Iст min=3 мА.
После занесения исходных данных листе таблицы «Второй вариант расчета» получаем следующие результаты (рис. 4):
Uвх=14 В, R0=221 Ом, Po=0,45 Вт, Kст=14,2.
Рис. 4. Скриншот параметрического стабилизатора режимом холостого хода
Выбираем резистор сопротивлением 220 Ом мощностью 0,5 Вт.
Исходные данные анализа следующие: Uн, Iн, ΔIн, ΔUвх, R0.
Также для анализа необходимы параметры стабилитрона: Uст= Uн, rд, Iст max и Iст min.
Анализ сводится к вычислению рабочего тока стабилитрона Iст р=(Uвх-Uст)/R0-Iн; коэффициента передачи Nст= Uвх/Uст; мощности Po балластного резистора, коэффициента стабилизации Kст, КПД и коэффициента фильтрации Kф.
Важной является проверка режима работы стабилитрона в схеме стабилизатора, которая выполняется по формулам, аналогичным приведенным в первом варианте расчета.
Проанализируем номиналы балластных резисторов R3 и R4 компенсационных стабилизаторов напряжения усилителя «Ланзар» [7-9] в зависимости от используемого напряжения питания.
Заявлен диапазон питающих напряжений усилителя от Uп=±30 В до ±65 В, в то время как на принципиальной схеме указаны сопротивления балластных резисторов R0=R3=R4=2,2 кОм (1 Вт) [8].
В другой публикации [9] рекомендуется выбирать величину сопротивления балластных резисторов в зависимости от напряжения питания усилителя по формуле R0=(Uп-15)/I, где I=8…10 мА. В таблице 1 выполнен расчет по указанной формуле для диапазона питающих напряжений усилителя с шагом в 5 В.
Исходные данные для анализа: стабилизированное напряжение на нагрузке Uн=15 В, ток в нагрузке Iн=(15-0,5)/R5=14,5/6,8=2,13 мА, ΔIн=0,213 мА, изменение входного напряжения ΔUвх=10%.
Выберем стабилитрон 1N4744A, имеющий следующие параметры: Uст= Uн=15 В; rд=14 Ом; Iст max=61 мА; Iст min=5 мА.
Анализ работы параметрических стабилизаторов в усилителе «Ланзар» показал, что минимальный ток стабилизатора Iст р min выбран на пределе с запасом всего 3…14% вместо требуемых 20% (рис. 5).
Рис. 5. Режимы работы стабилизаторов в усилителе «Ланзар» в зависимости от выбранного напряжения питания
Используя средство анализа данных электронной таблицы Microsoft Excel «Подбор параметра», уточним сопротивления балластных резисторов. Для этого перейдем в ячейку с формулой для Iст р min (ячейка C26) и в меню выберем Данные -> «Анализ «что-если»->Подбор параметра.
Установим в ячейке C26 значение 6,0 (запас 20% от Iст min), изменяя значение ячейки, в которой занесено сопротивление балластного резистора ($C$15).
Получим R0=1,438 кОм. Занесем в эту ячейку ближайшее значение сопротивления из стандартного ряда R0=1,3 кОм.
Проведя в таблице указанную операцию для всех значений питающих напряжений, получим следующий результат (рис. 6).
Рис. 6. Уточнение режимов работы параметрических стабилизаторов усилителя «Ланзар»
Итоги анализа сведены также в таблицу 2.
Мощность резисторов для напряжений питания усилителя от ±30 В до ±40 В – 0,5 Вт, для остальных напряжений – 1 Вт.
Необходим расчет даже такого простого устройства как параметрический стабилизатор напряжения. Выбор значения сопротивления балластного резистора «на глазок» может вызвать ошибки проектирования, которые не сразу будут замечены.
Перед сборкой понравившейся конструкции целесообразно проанализировать и при необходимости уточнить режим работы стабилитрона параметрического стабилизатора с помощью предлагаемых электронных таблиц в Microsoft Excel.
При проектировании новых устройств помните, что в настоящее время вместо параметрического стабилизатора на стабилитроне намного эффективнее применить современные компенсационные стабилизаторы [10].
🎁Экселевский файл для расчётов
20.12 Kb ⇣ 97
1. Поляков В. Теория: понемногу обо всем // Радио, 2000, №12, с. 45, 46 (8.6. Стабилизаторы напряжения); Радио, 2002, №12, с. 45 (Нелинейные цепи); Радио, 2003, №5, с. 51, 52 (Расчет блоков питания).
2. Будов А. Расчет параметрического стабилизатора напряжения // Радио, 1983, №8, с. 30.
3. Соколов А. Расчет на ПМК параметрического стабилизатора // Радио, 1990, №12, с.60, 61.
4.
Параметрические стабилизаторы напряжения. Расчёт простейшего параметрического стабилизатора на стабилитроне
.
5.
Простые стабилизаторы напряжения и их расчет
.
6. Усилитель «Green Lanzar» на N-канальных MOSFET-ах. Симметричный усилитель с квазикомплементарным выходом.
7. Симметричный усилитель мощности «Ланзар» // Радиоконструктор, 2008, №9, с. 10 – 13.
8. Статья на Интерлавке —
Усилитель мощности «Ланзар»
.
9.
Мощный усилитель «Ланзар»
.
10. Нефедов А. Микросхемные стабилизаторы напряжения // Радио, 2008, №10, с. 38 – 40 (Регулируемые стабилизаторы); Радио, 2009, №4, с. 41 – 44; №5, с. 41 – 44; №6, с. 41 – 44; №7, с. 42 – 44 (Стабилизаторы с фиксированным выходным напряжением).
Спасибо за внимание!